汉邦问答 / 问答 / 问答详情

极限的定义是什么?

2023-05-22 18:14:32
铁血嘟嘟

极限的定义分为四个部分

对任意的ε>0

ε在定义中的作用就是刻画出在x→x0时,f(x)可以无限接近于常数A,也就是∣f(x)-A∣可以任意小。为了达到这一要求,所以ε必须可以足够小。

极限

存在δ>0

δ就是这个邻域的半径,x→x0所能取到的所有点就是(x0-δ,x0)∪(x0,x0+δ),这里x取不到x0.但是这个邻域δ到底有多大、距离x0有多远,我们不知道,也没有必要知道,只要知道δ是很小的一个数就可以啦。

0<∣x-x0∣<δ

自变量x→x0时,再次强调一下,x取不到x0这个点,但是可以取到x0附近和两侧的所有点。这就涉及到邻域的概念,邻域通俗讲就是以点x0为中心的附近和两侧所有点,是一个局部概念。

∣f(x)-A∣<ε

既然ε可以足够小,则f(x)可以无限接近于常数A,也就是f(x)→A,这里需要注意一点,虽然自变量x不能取到x0这个点,但是因变量f(x)是可以取到A的。特别注意函数在一点的极限存不存在和函数在这个点有没有定义没有关系。

极限的定义是什么?

极限的定义是:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程。此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。极限的几何意义:在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点xN+1,xN+2,...(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。换句话说,如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。
2023-05-22 17:13:311

极限是什么意思?

具体回答如图:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。扩展资料:在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点xN+1,xN+2,...(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。为了排除极限概念中的直观痕迹,维尔斯特拉斯提出了极限的静态的抽象定义,给微积分提供了严格的理论基础。所谓xn→x,就是指:“如果对任何ε>0,总存在自然数N,使得当n>N时,不等式|xn-x|<ε恒成立”。设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都∃N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn} 收敛于a。参考资料来源:百度百科——极限
2023-05-22 17:13:431

极限的定义是怎样的?

具体回答如图:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。扩展资料:在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点xN+1,xN+2,...(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。为了排除极限概念中的直观痕迹,维尔斯特拉斯提出了极限的静态的抽象定义,给微积分提供了严格的理论基础。所谓xn→x,就是指:“如果对任何ε>0,总存在自然数N,使得当n>N时,不等式|xn-x|<ε恒成立”。设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都∃N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn} 收敛于a。参考资料来源:百度百科——极限
2023-05-22 17:13:561

“极限”是什么意思?

指突破某些事物或人的能力达到了新高度。
2023-05-22 17:14:114

极限是什么意思?

极限存在的定义是:函数在某一点极限存在的充要条件是函数左极限和右极限在某点都存在且相等,即从左趋向于所求点时的极限值和从右趋向于所求点的极限值相等。如果左右极限不相同、或者不存在,则函数在该点极限不存在。极限的性质:和实数运算的相容性,譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。与子列的关系数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
2023-05-22 17:14:321

极限怎么求?

极限的求法如下:当a趋于无穷小的时候,有一个公式(sin a)/a=1。你的题目中xsin1/x可以拆解成 x乘以sin1/x的形式,由题意可知x是无穷小,而sin1/x是一个有界函数,因为无穷小乘以有界函数任然是无穷小。所以 xsin1/x 为无穷小。sin(xsin1/x)比上xsin1/x 可以用公式(当a趋于无穷小的时候,有一个公式(sin a)/a=1)。答案等于1。极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。2、利用恒等变形消去零因子(针对于0/0型)。3、利用无穷大与无穷小的关系求极限。4、利用无穷小的性质求极限。5、利用等价无穷小替换求极限,可以将原式化简计算。6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
2023-05-22 17:14:441

极限的意思

意思如下:属于高等数学范畴。当x取某个值时,将此x代入函数或表达式时,可能能够算出某个值,也可能根本不可以代入,因为在代入时,出现了如分母为零之类的不合理情况。但是,当x趋向于这个值的过程中,每次算出的值越来越趋向于一个定值,或者说越来越接近、无限接近这个定值。我们就说该函数在这点的极限存在。概念特点1、两个重要极限:极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。2、极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础之上。
2023-05-22 17:14:571

请问极限是什么意思

极限   在高等数学中,极限是一个重要的概念。  极限可分为数列极限和函数极限,分别定义如下。  首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An+1<A<An+2[(An+1)-An](n=1,2,3....)得到圆周率=3927/1250约等于3.1416  数列极限:  定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式  |Xn - a|<ε  都成立,那么就成常数a是数列|Xn|的极限,或称数列|Xn|收敛于a。记为lim Xn = a 或Xn→a(n→∞)  数列极限的性质:  1.唯一性:若数列的极限存在,则极限值是唯一的;  2.改变数列的有限项,不改变数列的极限。  几个常用数列的极限:  an=c 常数列 极限为c  an=1/n 极限为0  an=x^n 绝对值x小于1 极限为0  函数极限的专业定义:  设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式:   |f(x)-A|<ε   那么常数A就叫做函数f(x)当x→x。时的极限。  函数极限的通俗定义:  1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∽时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作lim f(x)=A ,x→+∞。  2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。  函数的左右极限:  1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a.  2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a.  注:若一个函数在x(0)上的左右极限不同则此函数在x(0)上不存在极限  函数极限的性质:  极限的运算法则(或称有关公式):   lim(f(x)+g(x))=limf(x)+limg(x)   lim(f(x)-g(x))=limf(x)-limg(x)   lim(f(x)*g(x))=limf(x)*limg(x)   lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 )  lim(f(x))^n=(limf(x))^n   以上limf(x) limg(x)都存在时才成立  lim(1+1/x)^x =e  x→∞   无穷大与无穷小:  一个数列(极限)无限趋近于0,它就是一个无穷小数列(极限)。  无穷大数列和无穷小数列成倒数。  两个重要极限:  1、lim sin(x)/x =1 ,x→0  2、lim (1 + 1/x)^x =e ,x→∞ (e≈2.7182818...,无理数)  ========================================================================  举两个例子说明一下  一、0.999999……=1?  (以下一段不作证明,只助理解——原因:小数的加法的第一步就是对齐数位,即要知道具体哪一位加哪一位才可操作,下文中0.33333……的加法使用小数点与小数点对齐并不可以保证以上标准,所以对于无限小数并不能做加法。既然不可做加法,就无乘法可言了。)  谁都知道1/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。  10×0.999999…… —1×0.999999……=9=9×0.999999  ∴0.999999=1  二、“无理数”算是什么数?  我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。  结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。  类似的根源还在物理中(实际上,从科学发展的历程来看,哲学才是真正的发展动力,但物理起到了无比推动作用),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点切线斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。  真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的。  几个常用数列的极限  an=c 常数列 极限为c  an=1/n 极限为0  an=x^n 绝对值x小于1 极限为0
2023-05-22 17:15:131

极限的解释极限的解释是什么

极限的词语解释是:极限jíxiàn。1. 最大的限度。2. 自变量的值无限趋近但不等于某规定数值时,或向正向或负向增大到一定程度时,与数学函数的数值差为无穷小的数。极限的词语解释是:极限jíxiàn。1. 最大的限度。2. 自变量的值无限趋近但不等于某规定数值时,或向正向或负向增大到一定程度时,与数学函数的数值差为无穷小的数。结构是:极(左右结构)限(左右结构)。拼音是:jíxiàn。词性是:名词。注音是:ㄐ一_ㄒ一ㄢ_。极限的具体解释是什么呢,我们通过以下几个方面为您介绍:一、引证解释【点此查看计划详细内容】⒈最大的限度。引郑义《迷雾》十一:“常委会真开成了‘长尾"会,唐可林觉得自己的耐心实在已经达到极限了。”祖慰《被礁石划破的水流》:“我不知道人类惊愕的感情极限是什么样,我确实惊愕得发傻了。”二、国语词典最高的限度。如:「忍耐是有极限的。」三、网络解释极限(数学术语)“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。极限(汉语词语)极限,是指无限趋近于一个固定的数值。在高等数学中,极限是一个重要的概念:极限可分为数列极限和函数极限。关于极限的近义词顶点极点关于极限的反义词无限关于极限的诗句虽然我们有过炽热的誓言虽然我们有过忘怀的欢乐可狂欢的极限之后苦难在今天判决深深的创伤;关于极限的单词limitsultimateextremebreaklimitutmostboomoutmaximum关于极限的成语广袤无限画地自限关于极限的词语不可限量极则必反跻峰造极昊天罔极户限为穿极武穷兵画地自限严限追比极恶不赦大限临头关于极限的造句1、哪怕是一个习惯逆来顺受的人,也会有忍无可忍的时候,当被压力压迫到极限之后,往往会铤而走险,做出一些非常危险的事情。2、我觉得自己的耐心已经到了极限。3、志在四方又不好高骛远,脚踏实地而又挑战极限。4、博学多才的浮士德博士,睥睨生死,穷宇宙知识之极限。5、人口过多使得城市的垃圾处理能力达到了极限。点此查看更多关于极限的详细信息
2023-05-22 17:15:201

什么是极限?

到头了
2023-05-22 17:15:515

极限的定义是怎么来的

因为cosh小于等于1,那么1-cosh永远不会出现在0的左侧,也就是0的左导数,不确定,谢谢,不懂的话可以继续问我。
2023-05-22 17:16:083

极限公式是什么呢?

1、第一个重要极限的公式:lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。特别注意的是x→∞时,1 / x是无穷小,无穷小的性质得到的极限是0。2、第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x→0时,(1+x)^(1/x)的极限等于e。求极限基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。2、无穷大根式减去无穷大根式时,分子有理化。3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
2023-05-22 17:17:041

什么叫极限?

“极限”是数学中的分支——微积分的基础概念,通常指某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。 极限是一种“变化状态”的描述。 此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
2023-05-22 17:17:192

极限是什么意思?

这是写在纸上的八个常见的泰勒公式,泰勒公式是等号而不是等价,这就使所有函数转化为幂函数,在利用高阶无穷小被低阶吸收的原理,可以秒杀大部分极限题。常见的泰勒公式泰勒公式:就是用多项式函数去逼近光滑函数。
2023-05-22 17:17:342

极限的定义是什么?

(1+1/n)^n的极限是e,(n-∞)。设f(n)=(1+1/n)^n两边取自然对数ln[(1+1/n)^n]=n×ln(1+1/n)对n*ln(1+1/n)用罗比达法则得lim(n×ln(1+1/n))=1 (n-∞)所以lim(1+1/n)^n=e,(n-∞)极限的思想方法贯穿于数学分析课程的始终。可以说数学分析中的几乎所有的概念都离不开极限。在几乎所有的数学分析著作中,都是先介绍函数理论和极限的思想方法,然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:(1)函数在 点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。(2)函数在 点导数的定义,是函数值的增量 与自变量的增量 之比 ,当 时的极限。(3)函数在 点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。(4)数项级数的敛散性是用部分和数列 的极限来定义的。(5)广义积分是定积分其中 为,任意大于 的实数当 时的极限等等。
2023-05-22 17:17:571

极限的定义是什么?极限存在吗?

极限存在的定义是:函数在某一点极限存在的充要条件是函数左极限和右极限在某点都存在且相等,即从左趋向于所求点时的极限值和从右趋向于所求点的极限值相等。如果左右极限不相同、或者不存在,则函数在该点极限不存在。极限的性质:和实数运算的相容性,譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。与子列的关系数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
2023-05-22 17:18:111

极限是什么意思解释

极限的解释(1) [limit] (2) 最大的限度 一个人的忍耐的极限 (3) 自变量的值无限趋近但不等于某规定数值时,或向正向或负向增大到 一定 程度 时,与数学 函数 的数值差为无穷小的数 详细解释 最大的限度。 郑义 《迷雾》 十一:“常委会真开成了‘长尾"会, 唐可林 觉得自己的耐心实在 已经 达到极限了。” 祖慰 《被礁石划破的水流》 :“我 不知 道人 类惊愕的感情极限是什么样,我确实惊愕得发傻了。” 词语分解 极的解释 极 (极) í 顶端,最高点, 尽头 :登极(帝王即位)。 登峰造极 。 指地球的南北两端或电路、磁体的正负两端: 极地 (极圈以内的地区)。极圈。北极。阴极。 尽,达到顶点:极力。极目四望。物极必反。 最高的, 限的解释 限 à 指定的范围:期限。界限。权限。局限。限额。 指定范围: 限制 。限于。限期。限价(官方指定最高或最低价格,不得超越)。无限。 门槛:门限。 险阻:关限。 部首 :阝。
2023-05-22 17:18:221

极限的意思

极限的意思:1、最大的限度。2、自变量的值无限趋近但不等于某规定数值时,或向正向或负向增大到一定程度时,与数学函数的数值差为无穷小的数。出处:郑义《迷雾》十一:“常委会真开成了‘长尾"会,唐可林觉得自己的耐心实在已经达到极限了。”祖慰《被礁石划破的水流》:“我不知道人类惊愕的感情极限是什么样,我确实惊愕得发傻了。”极限的笔顺:极总笔画:7笔。1. 一(横)、2. 丨(竖)、3. ノ(撇)、4. 丶(点)、5. ノ(撇)、6. ㇋(横折折撇)、7. ㇏(捺)。限总笔画:8笔。1. ㄋ(横折折折钩/横撇弯钩)、2. 丨(竖)、3. ㄱ(横折)、4. 一(横)、5. 一(横)、6. し(竖提)、7. ノ(撇)、8. ㇏(捺)。
2023-05-22 17:18:412

极限中有哪些重要极限?

第一个重要极限的公式:lim sinx / x = 1 (x->0)     当x→0时,sin / x的极限等于1.特别注意的是x→∞时,1 / x是无穷小,根据无穷小的性质得到的极限是0。2. 第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)   当 x → ∞ 时,(1+1/x)^x的极限等于e;或 当 x → 0 时,(1+x)^(1/x)的极限等于e。这两个重要极限有什么作用呢?这两个重要极限的用处实在是太大了:(1)sinx/x 的极限,在中国国内的教学环境中,经常被歪解成 等价无穷小。而在国际的微积分教学中,依旧是中规中矩, 没有像国内这么疯狂炒作等价无穷小代换。 sinx 经过麦克劳林级数展开后,x 是最低价的无穷小,sinx跟 x 只有在比值时,当 x 趋向于 0 时,极限才是 1。用我们一贯的,并不是十分妥当的说法,是“以直代曲”。这一特性在计算、推导其他极限公式、导数公式、积分公式时,会反反复复地用到。sinx、x、tanx 也给夹挤定理提供了最原始的实例,也给复变函数中 sinx/x 的定积分提供形象理解。(2)关于 e 的重要性,更是登峰造极。 表面上它起了两个作用:A、一个上升、有阶级数,跟一个下降的有阶级数,具有一个共同极限;B、破灭了我们原来的一些固有概念:大于1的数开无限次幂的结果会越来越小,直到1为止;小于1的正数开无限次幂的结果会越来越大,直到1为止。整体而言,e 的重要极限,有这么几个意义:A、将代数函数、对数函数、三角函数,整合为一个整体理论,再结合复数理论,它们成为一个严密的互通互化互补的、相辅相成、交相印证的完整理论体系.B、使得整个微积分理论,包括微分方程理论,简洁明了。没有了 e^x 这一函数,就没有了 lnx,也就没有一切理论,所有的公式将十分复杂。
2023-05-22 17:18:551

极限怎么求?

1、第一个重要极限的公式:lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。特别注意的是x→∞时,1 / x是无穷小,无穷小的性质得到的极限是0。2、第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x→0时,(1+x)^(1/x)的极限等于e。求极限基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。2、无穷大根式减去无穷大根式时,分子有理化。3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
2023-05-22 17:19:231

如何理解极限

如何理解极限:极限的意思:词语解释:1.  最大的限度。例:一个人的忍耐的极限。2.  自变量的值无限趋近但不等于某规定数值时,或向正向或负向增大到一定程度时,与数学函数的数值差为无穷小的数。引证解释:1.最大的限度。引:郑义《迷雾》十一:“常委会真开成了‘长尾"会, 唐可林觉得自己的耐心实在已经达到极限了。”祖慰《被礁石划破的水流》:“我不知道人类惊愕的感情极限是什么样,我确实惊愕得发傻了。”国语词典:最高的限度。如:「忍耐是有极限的。」网络解释:极限 (数学术语)。“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量。此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化。被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。
2023-05-22 17:19:371

什么是极限

极限 在高等数学中,极限是一个重要的概念. 极限可分为数列极限和函数极限,分别定义如下. 数列极限: 设为数列,A为定数.若对任给的正数ε,总存在正整数N,使得当n>N时,有 |An - A|A(n->∞), 读作“当n趋于无穷大时,An的极限等于A或An趋于A”. 函数极限: 设f为定义在[a,+∞)上的函数,A为定数.若对任给的ε>0,存在正数M(>=a),使得当x>M时有: |f(x)-A|A(x->+∞)
2023-05-22 17:20:241

什么是“极限”?

您好!广义的讲,只要是不能超越的位置或者程度,都叫极限。举机个接近生活容易理解的例子吧:1、你爬一座山,不借助其他工具,到达山顶就是你上升高度的极限。2、你吃饭,吃到一口也吃不下去,就是饭量的极限了。相反,饿到死的时候就是饿的极限。你坚持不睡,到一定时间,你会失去知觉,就是你坚持不睡的极限。3、长跑中有个极限,这个是很多人都感受过的。狭义的讲,一些学科对极限都有其具体的定义,这个要分门别类。这样的例子有很多,可能我们听说过的没有那么全面。最简单的例子:绝对零度。
2023-05-22 17:20:301

极限的条件有哪些?

具体回答如图:如果两个数列{xn} ,{yn} 都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。扩展资料:所有其他的点xN+1,xN+2,...(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。设{xn} 是一个数列,如果对任意ε>0,存在N∈Z*,只要 n 满足 n > N,则对于任意正整数p,都有|xn+p-xn|<ε,这种渐进稳定性与收敛性是等价的。即为充分必要条件。设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都∃N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn} 收敛于a。参考资料来源:百度百科——极限
2023-05-22 17:20:371

极限是个什么概念?

还没有上的高3的同学们要知道啊,极限就是人所能达到的(包括身体,心里上)界限,有点玄的感觉。极限?老实说人应该是没有极限的吧,因为世界上么有绝对的事情,人的浅能是要自己开发出来的,还有要别人来开导,人也是很脆弱的,有的人超过自身的极限,脆弱的时候就要去做消极的事情,但是人也是最神奇的动物,你看人不能飞翔,但是他能做出飞翔的东西,可见人的极限是无可限量的.那就要靠自己了 上了高3的要明白极限在高考中的地位!极限理论 [英] the theory of limit 读理工和经济的人都知道,从初等数学到高等数学的第一个坎就是微积分的极限理论。对极限理论的理解和处理是专业学数学和其他科系学数学的分水岭之一,这就是微积分教学中臭名昭著的数列极限ε(伊普西龙)——δ(德尔塔)理论(epsilon——δ,函数极限为epsilon——Delta理论)。这个ε(伊普西龙)——δ(德尔塔)(Delta)理论诲涩难懂,令一拨刚从初等数学跳到高等数学的学生焦头烂额。包括数学系的学生,一些人到了毕业,还对为什么要用如此抽象的ε(伊普西龙)——δ(德尔塔)(Delta)理论极限来描述微积分的极限理论的不甚了了。以数列f(n)的极限为L为例,ε(伊普西龙)——δ(德尔塔)理论是这么表述的:对一个任意给定的实数ε>0(epsilon),存在一个相应的正整数N,当n>N时,|f(n)-L|<ε 成立。我们就认为L是f(n)的极限。
2023-05-22 17:21:021

什么是极限

(名词)极限是指趋近但不达到的元素;(动词)极限是指趋近但不达到的行为。
2023-05-22 17:21:113

求极限的方法有哪些?

一、利用极限四则运算法则求极限函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则lim[f(x)±g(x)]=limf(x)±limg(x)=A±Blim[f(x)・g(x)]=limf(x)・limg(x)=A・Blim==(B≠0)(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有:1.直接代入法对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。2.无穷大与无穷小的转换法在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。3.除以适当无穷大法对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。4.有理化法适用于带根式的极限。二、利用夹逼准则求极限函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)利用夹逼准则关键在于选用合适的不等式。三、利用单调有界准则求极限单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。四、利用等价无穷小代换求极限常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。五、利用无穷小量性质求极限在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。六、利用两个重要极限求极限使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。七、利用洛必达法则求极限如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。
2023-05-22 17:21:191

极限存在的条件

在有了极限的定义之后,为了判断具体某一数列或函数是否有极限,人们必须不断地对极限存在的充分条件和必要条件进行探讨。在经过了许多数学家的不断努力之后,终于由法国数学家柯西(Cauchy)获得了完善的结果。下面我们将以定理的形式来叙述它,这个定理称为“柯西收敛原理”。编辑本段定理叙述: 数列有极限的充要条件是:对任意给定的ε>0,有一正整数N,当m,n>N时,有|xn-xm|<ε成立 将柯西收敛原理推广到函数极限中则有: 函数f(x)在无穷远处有极限的充要条件是:对任意给定的ε>0,有Z属于实数,当x,y>Z时,有|f(x)-f(y)|<ε成立 此外柯西收敛原理还可推广到广义积分是否收敛,数项级数是否收敛的判别中,有较大的适用范围。在课本中有柯西定理的讲述,仔细看看
2023-05-22 17:21:289

极限的准确定义?

某个函数数值中x在无限趋近与某值,函数数值为某数,即为此极限。
2023-05-22 17:22:092

极限的定义

极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础之上。
2023-05-22 17:22:163

极限的概念与性质

  广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。   极限性质:唯一性,有界性,保号性,保不等式性,和实数运算的相容性。
2023-05-22 17:22:231

极限的定义是什么?

具体回答如图:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。扩展资料:在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点xN+1,xN+2,...(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。为了排除极限概念中的直观痕迹,维尔斯特拉斯提出了极限的静态的抽象定义,给微积分提供了严格的理论基础。所谓xn→x,就是指:“如果对任何ε>0,总存在自然数N,使得当n>N时,不等式|xn-x|<ε恒成立”。设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都∃N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn} 收敛于a。参考资料来源:百度百科——极限
2023-05-22 17:22:411

数学的极限是什么

数学是没有极限的,随着人类生活的长进是不会有极限的
2023-05-22 17:22:574

怎么理解极限的概念?

最好放到坐标轴上看,一条直线,0为原点,往右越来越大为正数,往左为负数越来越小。x趋向于0正就是指在右边无限靠近于0,x趋向于0负指从左边无限接近于0。“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量。极限计算:不管是什么题,如果求极限时出现无穷,直接倒代换就行了,不用想太多。只要考虑倒代换后的0的正负。在等价无穷小的操作中,涉及到加减法一般不能用等价无穷小替换,如果分式中只有乘法除法,则可以使用等价无穷小替换。
2023-05-22 17:23:031

极限意味着什么?

极限意味超越,只有在一次一次地超越所谓的极限,才会产生新的极限,在不断超越中提升自己突破自己!
2023-05-22 17:23:202

怎样理解极限的定义?

当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。极限存在准则:有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A。不但能证明极限存在,还可以求极限,主要用放缩法。2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。3.柯西准则。数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。
2023-05-22 17:23:271

极限怎么算

当x→0+的时候,1/x→+∞。那么3的(1/x)次方→+∞所以当x→0+的时候,分子分母同时除以3的(1/x)次方,就得到极限是1当x→0-的时候,1/x→-∞。那么3的(1/x)次方→0所以当x→0-的时候,将3的(1/x)次方的极限带入,就得到极限是-1主要是要注意,当x→0+和x→0-的时候,1/x的极限不同,所以3的(1/x)次方的极限不同。
2023-05-22 17:23:411

用极限定义证明极限

这就是严格的用定义证明数列的极限值,详细过程见图。
2023-05-22 17:23:492

极限的类型极其解答…

极限的类型可分为数列极限和函数极限 设|Xn|为一数列如果存在常数a对于任意给定的正数ε,总存在正整数N,使得当n>N时,|Xn - a|
2023-05-22 17:24:021

极限怎么求

1、利用函数的连续性求函数的极限(直接带入即可)如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。2、利用有理化分子或分母求函数的极限a.若含有,一般利用去根号3、利用两个重要极限求函数的极限4、利用无穷小的性质求函数的极限性质1:有界函数与无穷小的乘积是无穷小性质2:常数与无穷小的乘积是无穷小性质3:有限个无穷小相加、相减及相乘仍旧无穷小5、利用抓大头准则求函数的极限
2023-05-22 17:24:221

极限的求法

A、1^∞型极限,就是(1+1/x)^x,x→∞的极限【解答方法是运用特殊极限】B、0/0型极限,就是无穷小/无穷小的极限【解答方法是罗必达方法,或放大、缩小法】C、∞/∞型极限,就是∞/∞的极限【解答方法是罗必达方法,或化无穷大为无穷小法】D、∞-∞型极限,就是∞ - ∞的极限【解答方法是分子有理化】E、0°型极限,就是无穷小的无穷小次幂,【解答方法:利用指数、对数,化成B型或C型】F、∞^0型极限,就是无穷大的无穷小次幂,【解答方法同上】G、0×∞型极限,就是无穷小乘以无穷大,【解答方法同上】不定式有上面七种,后面的方法是一般的方法,具体的还有其他方法,如【积分法】等等。【如果不是不定式,就直接代入计算】
2023-05-22 17:24:421

极限概念的七大形式

极限概念的七大形式:第一种:四则运算,此方法大家最为熟悉,但比较容易出错,需要注意使用四则运算的前提是进行运算的函数极限必须都是存在的。第二种:等价无穷小替换,这一方法比较受欢迎,而且很多极限计算的问题只需经过等价无穷小代换就能得出结果,不需再使用其他方法,需要注意的是等价无穷小代换前提必须首先是无穷小才可代换,另外只能在乘积因子内代换(有些是可以在加减因子中代换的,但是在没有十足把握的情况下应避免使用在加减因子中代换)。第三种:洛必达法则,适用于及 型未定式,在使用的过程中需要注意一下几点:洛必达法则必须结合等价无穷小使用;使用一次整理一次;其他类型未定式需要转化成 及 型才可以使用洛必达法则等。第四种:泰勒展式,这是解决极限问题的利器,在基础阶段不必要求掌握如何使用,只需了解泰勒展式的内容即可,具体使用原则会在强化阶段给出。第五种:夹逼定理,主要用于解决含有不等式关系的极限问题,特别应用于 个分式之和的数列极限问题,通过放缩分母来达到出现不等关系的目的。第六种:定积分的定义,与夹逼定理相区别,夹逼定理解决的问题放缩分母后分子可用一个式子去表示,而定积分的定义可解决夹逼定理不能解决的问题,通过主要的三步:1、提取,2、凑出,3、极限符号及连加符号改写为,改写为,改写为计算定积分即可解决个分式之和的数列极限问题。第七种:适用于数列极限的单调有界性定理,难点在于如何确定证明方向,一般单调有界性定理适用于由递推公式给出的数列极限问题,因此可采取数学归纳法证明有界性,做差的办法证明单调性。
2023-05-22 17:24:502

lim极限的公式是什么?

求极限lim的常用公式:1、lim(f(x)+g(x))=limf(x)+limg(x)。2、lim(f(x)-g(x))=limf(x)-limg(x)。3、lim(f(x)*g(x))=limf(x)*limg(x)。lim极限运算公式总结,p>差、积的极限法则。当分子、分母的极限都存在,且分母的极限不为零时,才可使用商的极限法则。当有一个极限本身是不存在的,则不能用四则运算法则。极限的四则运算法则只有当两个极限同时存在的情况下,极限的四则才可以与四则的极限相互转换。极限的四则运算特殊用法由于在考试中,我们已知极限最后是可以求出解的,所以当我们在用极限四则运算将它们拆分的时候,只要其中一个分量的极限明显存在,我们就能够判定这样的拆分方法合理,并将极限明显存在的一部分先计算出来,下面就是明了的数学公式:limf(x)=lim(g(x)+h(x)),如果limg(x)和limf(x)存在,limf(x)=limf(x)+limg(x)。这种方法给人们的感觉就好像是部分代入,这也就逐渐成为了化简极限的重要手段。
2023-05-22 17:25:091

极限什么意思

极限的解释(1) [limit] (2) 最大的限度 一个人的忍耐的极限 (3) 自变量的值无限趋近但不等于某规定数值时,或向正向或负向增大到 一定 程度 时,与数学 函数 的数值差为无穷小的数 详细解释 最大的限度。 郑义 《迷雾》 十一:“常委会真开成了‘长尾"会, 唐可林 觉得自己的耐心实在 已经 达到极限了。” 祖慰 《被礁石划破的水流》 :“我 不知 道人 类惊愕的感情极限是什么样,我确实惊愕得发傻了。” 词语分解 极的解释 极 (极) í 顶端,最高点, 尽头 :登极(帝王即位)。 登峰造极 。 指地球的南北两端或电路、磁体的正负两端: 极地 (极圈以内的地区)。极圈。北极。阴极。 尽,达到顶点:极力。极目四望。物极必反。 最高的, 限的解释 限 à 指定的范围:期限。界限。权限。局限。限额。 指定范围: 限制 。限于。限期。限价(官方指定最高或最低价格,不得超越)。无限。 门槛:门限。 险阻:关限。 部首 :阝。
2023-05-22 17:25:221

极限存在的条件

函数极限存在的条件:一、单调有界准则.二、夹逼准则,如能找到比目标数列或者函数大而有极限的数列或函数,并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。拓展资料函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。参考资料:百度百科:函数极限
2023-05-22 17:25:301

极限常用的9个公式是什么?

1、e^x-1~x (x→0) 2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)扩展资料:一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。参考资料来源:百度百科-极限
2023-05-22 17:25:371

极限的重要极限有哪些?

第一个重要极限的公式:lim sinx / x = 1 (x->0)     当x→0时,sin / x的极限等于1.特别注意的是x→∞时,1 / x是无穷小,根据无穷小的性质得到的极限是0。2. 第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)   当 x → ∞ 时,(1+1/x)^x的极限等于e;或 当 x → 0 时,(1+x)^(1/x)的极限等于e。这两个重要极限有什么作用呢?这两个重要极限的用处实在是太大了:(1)sinx/x 的极限,在中国国内的教学环境中,经常被歪解成 等价无穷小。而在国际的微积分教学中,依旧是中规中矩, 没有像国内这么疯狂炒作等价无穷小代换。 sinx 经过麦克劳林级数展开后,x 是最低价的无穷小,sinx跟 x 只有在比值时,当 x 趋向于 0 时,极限才是 1。用我们一贯的,并不是十分妥当的说法,是“以直代曲”。这一特性在计算、推导其他极限公式、导数公式、积分公式时,会反反复复地用到。sinx、x、tanx 也给夹挤定理提供了最原始的实例,也给复变函数中 sinx/x 的定积分提供形象理解。(2)关于 e 的重要性,更是登峰造极。 表面上它起了两个作用:A、一个上升、有阶级数,跟一个下降的有阶级数,具有一个共同极限;B、破灭了我们原来的一些固有概念:大于1的数开无限次幂的结果会越来越小,直到1为止;小于1的正数开无限次幂的结果会越来越大,直到1为止。整体而言,e 的重要极限,有这么几个意义:A、将代数函数、对数函数、三角函数,整合为一个整体理论,再结合复数理论,它们成为一个严密的互通互化互补的、相辅相成、交相印证的完整理论体系.B、使得整个微积分理论,包括微分方程理论,简洁明了。没有了 e^x 这一函数,就没有了 lnx,也就没有一切理论,所有的公式将十分复杂。
2023-05-22 17:25:431

函数极限存在的条件

应该是函数的(左右极限存在且相等)是函数的极限存在的充要条件
2023-05-22 17:26:134

极限存在的条件

函数极限存在的条件: 1、单调有界准则。 2、夹逼准则:如能找到比目标数列或者函数大而有极限的数列或函数并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限.。 极限是研究变量的变化趋势的一个基本工具,在高等数学中许多基本概念和研究问题的方法都和极限密切相关,如定积分的定义、偏导数的定义、二重积分和三重积分的定义、无穷级数收敛的定义等等。这些高数中最重要的概念都是用极限来定义的。极限是贯穿高等数学的一条主线,将高等数学的各个知识点连在一起。实际上,极限的思想和方法产生于某些实际问题的精确解,并且对数学在实际中的应用也有着重要的作用。
2023-05-22 17:26:441

极限是多少?

-∞。分析:(∞-∞)属不定式,一般将它化为0/0型、或∞/∞型来求极限,但本题没法化,于是用具体数据推理,取x=10^2、10^3、10^4、10^5 ··· ,得到x→∞时,极限为(lnx-x)=-∞。扩展资料极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值2、利用恒等变形消去零因子(针对于0/0型)3、利用无穷大与无穷小的关系求极限4、利用无穷小的性质求极限5、利用等价无穷小替换求极限,可以将原式化简计算6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限
2023-05-22 17:27:021