- 拌三丝
-
函数是数学中的一种对应关系,是从非空数集A到实数集B的对应.简单地说,甲随着乙变,甲就是乙的函数.精确地说,设X是一个非空集合,Y是非空数集 ,f是个对应法则 ,若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应 ,就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合{y|y=f(x),x∈R}为其值域(值域是Y的子集),x叫做自变量,y叫做因变量,习惯上也说y是x的函数.
对应法则和定义域是函数的两个要素.
函数的定义是什么?
函数定义:设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有惟一的元素和它对应,这样的对应叫做从集合A到集合B的映射,记作f : A-->B. 当集合A,B都是非空的数的集合,且B的每一个元素都有原象时,这样的映射f:A-->B.就叫定义域A到值域B上的函数.在初中课本中的定义是:一般的,有两个变量XY,其中一个变量Y随着另一个变量X的变化而变化,并且,给出一个X值都有唯一的一个Y值与它对应。X叫自变量,Y叫因变量。函数在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。因变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。函数的概念对于数学和数量学的每一个分支来说都是最基础的。术语函数,映射,对应,变换通常都有同一个意思。但函数只表示数与数之间的对应关系,映射还可表示点与点之间,图形之间等的对应关系。可以说函数是一种特殊的映射。2023-05-21 10:02:511
函数的定义?
函数数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。2023-05-21 10:02:582
函数的定义是什么?
函数的定义(1)传统定义:如果在某个变化过程中有两个变量x和y,并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么把y叫做x的函数,x叫做自变量,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。y是x的函数,可以记作y=f(x)(f表示对应法则)。(2)近代定义:设A、B都是非空的数的集合,f是从A到B的一个对应法则,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x?A,y?B。原象的集合A叫做函数f(x)的定义域,象的集合C叫做函数f(x)的值域,显然C?B。注意①由函数的近代定义可知,函数是数集间的映射。②对应法则f是联系x、y的纽带,是函数的核心,常用一个解析式表示,但在不少问题中,对应法则f也可能不便用或不能用上个解析式来表示,而是采用其他方式(如数表或图象等)。定义域(或原象集合)是自变量的取值范围,它是函数的一个不可缺少的组成部分,它和对应法则是函数的两个重要因素。定义域不同而解析式相同的函数,应看作是两个不同的函数。③f(a)与f(x)的涵义是不同的,f(a)表示自变量x=a时所得的函数值,它是一个常量,而f(x)是x的函数,是表示对应关系的。2023-05-21 10:03:114
什么是函数的定义
函数的定义(1)传统定义:如果在某个变化过程中有两个变量x和y,并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么把y叫做x的函数,x叫做自变量,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。y是x的函数,可以记作y=f(x)(f表示对应法则)。(2)近代定义:设A、B都是非空的数的集合,f是从A到B的一个对应法则,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x?A,y?B。原象的集合A叫做函数f(x)的定义域,象的集合C叫做函数f(x)的值域,显然C?B。注意①由函数的近代定义可知,函数是数集间的映射。②对应法则f是联系x、y的纽带,是函数的核心,常用一个解析式表示,但在不少问题中,对应法则f也可能不便用或不能用上个解析式来表示,而是采用其他方式(如数表或图象等)。定义域(或原象集合)是自变量的取值范围,它是函数的一个不可缺少的组成部分,它和对应法则是函数的两个重要因素。定义域不同而解析式相同的函数,应看作是两个不同的函数。③f(a)与f(x)的涵义是不同的,f(a)表示自变量x=a时所得的函数值,它是一个常量,而f(x)是x的函数,是表示对应关系的。2023-05-21 10:03:251
函数的概念定义是什么?
一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.两个变量 ,一个x值确定一个y值一次函数与正比例函数:一般地,如果两个变量x与y之间的函数关系可以表示为y=kx+b(k,b为常数,且k¹0)的形式,那么称y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y是x的正比例函数。变量的指数为一次;含自变量的式子为整式;k¹0.2023-05-21 10:03:333
函数的定义是什么
在C程序设计中,将完成指定功能的C代码定义成函数,变成逻辑上一个相对独立的程序单位。函数定义需要指明函数返回值的类型、函数名、函数的形式参数(常简称形参)和函数体(包括说明和定义及语句序列)。函数定义的一般形式为 存储类型说明符 数据类型说明符 函数名(形式参数表) 形式参数说明序列 { 说明和定义部分 执行语句序列 } 存储类型说明符或省缺,或为static。省缺表示一个全局函数,static表示一个静态函数,只供同一源程序文件中的函数使用。 数据类型说明符用来指定函数返回值类型,可以是基本数据类型、某种指针类型、结构类型等。但不可以是数组类型。特别当函数不返回结果时,可用void明确指明函数不返回值。 数据类型说明符也可省缺,省缺被默认为返回int型值。 函数名是一个标识符。形式参数表是用远号分隔的若干形式参数,用不同的标识符指明各形式参数的名。形式参数说明序列用来说明各形式参数的数据类型,相同数据类型的形式参数可以一起说明。现在编写C程序的习惯是形式参数说明序列直接放在形式参数表中,即在形式参数说明表中顺序列出各形式参数的数据类型和形式参数的名称。如是这样,一般形式的第一行全部内容称为函数头,也称为函数模型。 特别情况,函数可能不设形式参数,也就没有形式参数表和形式参数说明序列。但函数名后的一对圆括号是不可以没有的。 一对花括号括住的部分称为函数体,函数体包括类型说明、变量定义和函数的执行语句序列。在函数体内可以有return语句终止函数的执行。如函数有返回值类型,则return语句中一定要有表达式,作为函数调用的返回值。2023-05-21 10:03:461
什么是函数?函数的定义是什么?
初中函数的概念是:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数。函数的三种表示法1.解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。2.列表法:用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。3.图像法:把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。这种方法的优点是通过函数图象可以直观、形象地把函数关系表示出来;缺点是从图象观察得到的数量关系是近似的。2023-05-21 10:03:531
函数的定义是什么?
给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。 函数的由来 中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。 中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。 函数的定义 给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。 函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。 首先要理解,函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止且不止一个。最后,要重点理解函数的三要素。 函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。 在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。 自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。 因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。 函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。2023-05-21 10:04:171
函数的定义?
一、 函数的定义 函数的传统定义: 设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量. 我们将自变量x取值的集合叫做函数的定义域,和自变量x对应的y的值叫做函数值,函数值的集合叫做函数的值域. 函数的近代定义: 设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域,显然有CB. 符号y=f(x)即是“y是x的函数”的数学表示,应理解为: x是自变量,它是法则所施加的对象;f是对应法则,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x为允许的某一具体值时,相应的y值为与该自变量值对应的函数值,当f用解析式表示时,则解析式为函数解析式.y=f(x)仅仅是函数符号,不是表示“y等于f与x的乘积”,f(x)也不一定是解析式,在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等符号来表示. 对函数概念的理解 函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发.这样,就不难得知函数实质是从非空数集A到非空数集B的一个特殊的映射. 由函数的近代定义可知,函数概念含有三个要素:定义域A、值域C和对应法则f.其中核心是对应法则f,它是函数关系的本质特征.y=f(x)的意义是:y等于x在法则f下的对应值,而f是“对应”得以实现的方法和途径,是联系x与y的纽带,所以是函数的核心.至于用什么字母表示自变量、因变量和对应法则,这是无关紧要的. 函数的定义域(即原象集合)是自变量x的取值范围,它是构成函数的一个不可缺少的组成部分.当函数的定义域及从定义域到值域的对应法则完全确定之后,函数的值域也就随之确定了.因此,定义域和对应法则为“y是x的函数”的两个基本条件,缺一不可.只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数,这就是说: 1)定义域不同,两个函数也就不同; 2)对应法则不同,两个函数也是不同的; 3)即使是定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则. 例如:函数y=x+1与y=2x+1,其定义域都是x∈R,值域都为y∈R.也就是说,这两个函数的定义域和值域相同,但它们的对应法则是不同的,因此不能说这两个函数是同一个函数. 定义域A,值域C以及从A到C的对应法则f,称为函数的三要素.由于值域可由定义域和对应法则唯一确定.两个函数当且仅当定义域与对应法则分别相同时,才是同一函数. 例如:在①y=x与 ,② 与 ,③y=x+1与 ,④y=x0与y=1,⑤y=|x|与 这五组函数中,只有⑤表示同一函数. f(x)与f(a)的区别与联系 f(a)表示当x=a时函数f(x)的值,是一个常量.而f(x)是自变量x的函数,在一般情况下,它是一个变量,f(a)是f(x)的一个特殊值.如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一常数. 当法则所施加的对象与解析式中表述的对象不一致时,该解析式不能正确施加法则. 比如f(x)=x2+1,左端是对x施加法则,右端也是关于x的解析式,这时此式是以x为自变量的函数的解析式;而对于f(x+1)=3x2+2x+1,左端表示对x+1施加法则,右端是关于x的解析式,二者并不统一,这时此式既不是关于x的函数解析式,也不是关于x+1的函数解析式. 函数的定义域: 定义: 原象的集合A叫做函数y=f(x)的定义域,即自变量的允许值范围. 当函数用解析式给出时,定义域就是使式子有意义的自变量的允许值的集合. 求定义域: 求定义域的三种基本方法: 一是依据函数解析式中所包含的运算(除法、开平方等)对自变量的制约要求,通过解不等式(组)求得定义域; 二是依据确定函数y=f(x)的对应法则f对作用对象的取值范围的制约要求,通过解不等式(组)求得定义域; 三是根据问题的实际意义,规定自变量的取值范围,求得定义域. 如果函数是由一些基本函数通过四则运算构成的,那么它的定义域是使各个部分都有意义的x值组成的集合.对含参数的函数求定义域(或已知定义域,求字母参数的取值范围)时,必须对参数的取值进行讨论. 当函数由实际问题给出时,其定义域由实际问题确定. 函数的值域: 定义: 象的集合C(C B)叫做函数y=f(x)的值域,即函数值的变化范围. 求值域的基本方法: 依据各类基本函数的值域,通过不等式的变换,确定函数值的取值范围,在这一过程中,充分利用函数图像的直观性,能有助于结论的得出和检验.从定义域出发,利用函数的单调性,是探求函数值域的通法2023-05-21 10:04:241
函数的定义是什么?
1、函数通俗的意思就是由自变量和因变量所确定的一种关系,自变量可能有一个、两个或者N个,但因变量的值当自变量确定的时候也是唯一确定的。2、函数的意义是在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个集合里的唯一元素。函数的特性1、有界性设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。2、单调性设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2)。则称函数f(x)在区间I上是单调递增的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。2023-05-21 10:04:332
函数定义?
设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。就是【变量Y】和【变量X】之间有个固定不变的关系,【自变量X】有个取值范围。他们之间的关系就是叫函数。2023-05-21 10:04:502
函数的定义
传统定义在一个变化过程中,如果有两个变量x y 如果给定一个x值都有唯一的一个y和他对应那么称y是x的函数 x是自变量y是因变量现代定义如果A B是两个非空数集且x y分别属于A B 如果在A中任取一个x根据对应法则f在B中都有唯一的y与之对应那么成f是B对于A的函数。 自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。 ----A rule of correspondence between two sets such that there is a unique element in the second set assigned to each element in the first set. 函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。 函数的概念对于数学和数量学的每一个分支来说都是最基础的。 用映射的定义 一般地,给定非空数集A,B,从集合A到集合B的一个映射,叫做从集合A到集合B的一个函数。 向量函数:自变量是向量的函数 叫向量函数 f(a1.a2,a3......an)=y 对应、映射、函数三者的重要关系: 函数是数集上的映射,映射是特指的对应。即:{函数}包含于{映射}包含于{对应} 编程定义 函数过程中的这些语句用于完成某些有意义的工作——通常是处理文本,控制输入或计算数值。通过在程序代码中引入函数名称和所需的参数,可在该程序中执行(或称调用)该函数。 类似过程,不过函数一般都有一个返回值。它们都可在自己结构里面调用自己,称为递归。 大多数编程语言构建函数的方法里都含有Function关键字(或称保留字)。函数概念设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作 y=f(x). 数集D称为函数的定义域,由函数对应法则或实际问题的要求来确定。相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素。2023-05-21 10:04:571
函数定义请解释下。
函数其实就是表示2个或者几个量之间的一种相互关系,因为就是说:一个量随另一个或另几个量变化的关系。比如Y=2X,就是说Y随X的变化而变化,但是Y始终是X的2倍。在函数中,可以根据谈们之间的关系进行互求。2023-05-21 10:05:041
数学函数的函数定义
函数是数学中的一种对应关系,是从非空数集A到实数集B的对应。简单地说,甲随着乙变,甲就是乙的函数。精确地说,设X是一个非空集合,Y是非空数集 ,f是个对应法则 , 若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应 , 就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合为其值域(值域是Y的子集),x叫做自变量,y叫做因变量,习惯上也说y是x的函数。对应法则和定义域是函数的两个要素。 自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。因变量(函数),随着自变量的变化而变化,且仅当自变量取唯一值时,因变量(函数)有且只有唯一一值与其相对应。 如果X到Y的二元关系fÍX×Y,对于每个,都有唯一的,使得,则称f为X到Y的函数,记做:f:X→Y。当时,称f为n元函数。其特点:前域和定义域重合;单值性:→2023-05-21 10:05:101
什么是函数?函数的意义是什么
对于两个非空数集A、B,对于集合A中的任意一个元素,按照某种对应法则,在集合B中都有唯一确定的元素与之对应,则这样的对应称为函数。函数的意义是在探求两个变量的关键2023-05-21 10:05:272
程序开发函数的定义怎么定义呢?
函数定义就是根据不同开发语言的开发规范把一定的逻辑代码写到一个代码块里面,不同语言定义有细微差别。一个函数定义是一个可执行的表达式, 执行结果是一个类型为 function 的值。 当 Lua 预编译一个代码块时, 代码块作为一个函数,整个函数体也就被预编译了。 那么,无论何时 Lua 执行了函数定义, 这个函数本身就进行了 实例化(或者说是 关闭了)。 这个函数的实例(或者说是 闭包)是表达式的最终值。形参被看作是一些局部变量, 它们将由实参的值来初始化: parlist ::= namelist [‘," ‘..."] | ‘..."当一个函数被调用, 如果函数并非一个 可变参数函数, 即在形参列表的末尾注明三个点 ("..."), 那么实参列表就会被调整到形参列表的长度。 变长参数函数不会调整实参列表; 取而代之的是,它将把所有额外的参数放在一起通过 变长参数表达式传递给函数, 其写法依旧是三个点。 这个表达式的值是一串实参值的列表, 看起来就跟一个可以返回多个结果的函数一样。 如果一个变长参数表达式放在另一个表达式中使用, 或是放在另一串表达式的中间, 那么它的返回值就会被调整为单个值。 若这个表达式放在了一系列表达式的最后一个, 就不会做调整了 (除非这最后一个参数被括号给括了起来)。一个函数定义是一个可执行的表达式, 执行结果是一个类型为 function 的值。 当 Lua 预编译一个代码块时, 代码块作为一个函数,整个函数体也就被预编译了。 那么,无论何时 Lua 执行了函数定义, 这个函数本身就进行了 实例化(或者说是 关闭了)。 这个函数的实例(或者说是 闭包)是表达式的最终值。形参被看作是一些局部变量, 它们将由实参的值来初始化: parlist ::= namelist [‘," ‘..."] | ‘..."当一个函数被调用, 如果函数并非一个 可变参数函数, 即在形参列表的末尾注明三个点 ("..."), 那么实参列表就会被调整到形参列表的长度。 变长参数函数不会调整实参列表; 取而代之的是,它将把所有额外的参数放在一起通过 变长参数表达式传递给函数, 其写法依旧是三个点。 这个表达式的值是一串实参值的列表, 看起来就跟一个可以返回多个结果的函数一样。 如果一个变长参数表达式放在另一个表达式中使用, 或是放在另一串表达式的中间, 那么它的返回值就会被调整为单个值。 若这个表达式放在了一系列表达式的最后一个, 就不会做调整了 (除非这最后一个参数被括号给括了起来)。2023-05-21 10:05:471
怎样定义一个函数?函数定义有哪几个关键元素?
1函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A).那么这个关系式就叫函数关系式,简称函数.简单来讲,对于两个变量x和y,如果每给定x的一个值,y都有唯一一个确定的值与其对应,那么我们就说y是x的函数。其中,x叫做自变量,y叫做因变量。函数得关键元素是1定义域,2值域,3对应法则。2023-05-21 10:06:001
函数的定义?
134215107052023-05-21 10:06:0913
函数的概念 函数的概念简述
1、函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。 2、函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。2023-05-21 10:07:501
如何用c语言定义一个函数
函数是用户与程序的接口,在定义一个函数前,首先要清楚以下三个问题。 1) 函数的功能实现及算法选择。算法选择会在后续文章详细讲解,本节重点关注函数的功能实现。一般选取能体现函数功能的函数名,且见名知意,如求和函数的函数名可取为 add,求最大值的函数名可取为 max,排序函数可取名为 sort 等。 2) 需要用户传给该函数哪些参数、什么类型,即函数参数。 3) 函数执行完后返回给调用者的参数及类型,即函数返回值类型。 函教定义格式 函数定义的一般格式为: 返回类型 函数名 (类型参数1,类型参数2,…) { 函数体 } 也可以不含参数,不含参数时,参数表中可写关键字 void 或省略,为规范起见,教程中对没有参数的函数,参数表中统一写 void。例如: 类型 函数名 () { 函数体 } 等价于: 类型 函数名 (void) //建议的书写方式 { 函数体 } 如果该函数没有返回类型,则为 void 类型。例如: void add (int x,int y) { printf ("sum=%d ", x+y); } 除了 void 类型外,在函数体中,均需要显式使用 return 语句返回对应的表达式的值。 函教返回值 函数的值是指调用函数结束时,执行函数体所得并返回给主调函数的值。 关于函数返回值说明如下。 1) 带返回值的函数,其值一般使用 return 语句返回给调用者。其格式为: return 表达式; 或者 return (表达式); 例如: int add (int a, int b) { return (a + b); //return 后为表达式 } 函数可以含一个或多个 return 语句,但每次调用时只能执行其中一个 return 语句。 例如,求整数绝对值的函数: int f (int n) //含多个return语句,但每次调用只执行一个 { if (n >= 0) return n; else return -n; }2023-05-21 10:07:581
函数的概念及表示方法有哪些
2023-05-21 10:08:051
在数学中函数的定义是什么?
(1)函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.(2)函数的近代定义:设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域.2023-05-21 10:08:132
在C语言中怎样定义一个新的函数
是否静态(寄存器)返回值类型(默认为空)函数名(参数1类型参数1,参数2类型参数2....){函数内容}如intadd(inta,intb){returna+b;}2023-05-21 10:08:213
C语言函数的特点及其定义?
函数的特点:返回值参数定义:返回值类型函数名称(参数列表);2023-05-21 10:08:293
大学函数的定义是什么
映射知道吧,集合X中的每个元素x都能根据一个法则f,在集合Y中找到唯一确定的y。举例子,学生和学号之间属于映射(单射),法则就是学生表。这是从学生到数字的映射,而从数字到数字的映射就是函数。数学语言就是:设数集 D ⊆ R,则映射 f:D→R 为定义在 D 上的函数。高等数学,同济大学,第七版,第3页2023-05-21 10:08:493
什么是函数,怎么定义函数
~‖函数的定义:设x和y是两个变量,d是实数集的某个子集,若对于d中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).数集d称为函数的定义域,由函数对应法则或实际问题的要求来确定。相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素。2023-05-21 10:09:121
什么叫函数在定点处有定义?
1)连续点的定义是:如果函数在某一邻域内有定义,且x->x。时limf(x)=f(x。),就称x。为f(x)的连续点。一个推论,即y=f(x)在x。处连续等价于y=f(x)在x。处既左连续又右连续,也等价于y=f(x)在x。处左、右极限都等于f(x。)。【这就包括了函数连续必须同时满足三个条件:函数在x。处有定义;x->x。极限limf(x)存在;x->x。时limf(x)=f(x。)】初等函数在其定义域内是连续的。(2)连续函数:函数f(x)在其定义域内的每一点都连续,则称函数f(x)为连续函数。根据定理有:函数可导必然连续;不连续必然不可导2023-05-21 10:09:212
函数概念的起源
一、函数的起源﹙产生﹚十六、十七世纪,欧洲资本主义国家先后兴起,为了争夺霸权,迫切需要发展航海和军火工业。为了发展航海事业,就需要确定船只在大海中的位置,在地球上的经纬度;要打仗,也需知道如何使炮弹打的准确无误等问题, 这就促使了人们对各种“运动”的研究,对各种运动中的数量关系进行研究,这就为函数概念的产生提供了客观实际需要的基础。十七世纪中叶,笛卡儿(Descartes)引入变数(变量)的概念,制定了解析几何学,从而打破了局限于方程的未知数的理解;后来,牛顿( Newton)、莱布尼兹(Leibniz)分别独立的建立了微分学说。这期间,随着数学内容的丰富,各种具体的函数已大量出现,但函数还未被给出一个一般的定义。牛顿于 1665年开始研究微积分之后,一直用“流量”( fluent)一词来表示变量间的关系。 1673年,莱布尼兹在一篇手稿里第一次用“函数”( fluent)这一名词,他用函数表示任何一个随着曲线上的点的变动而变动的量。(定义1)这可以说是函数的第一个“定义”。例如,切线,弦,法线等长度和横、纵坐标,后来,又用这个名词表示幂,即表示 x , x2, x3,…。显然,“函数”这个词最初的含义是非常的模糊和不准确的。人们是不会满足于这样不准确的概念,数学家们纷纷对函数进行进一步讨论。二、函数概念的发展与完善⒈以“变量”为基础的函数概念 在 1718年,瑞士科学家,莱布尼兹的学生约翰·贝奴里(Bernoulli,Johann)给出了函数的明确定义:变量的函数是由这些变量与常量所组成的一个解析表达式。(定义2)并在此给出了函数的记号φx。这一定义使得函数第一次有了解析意义。 十八世纪中叶,著名的数学家达朗贝尔 (D"Alembert)和欧拉( Euler)在研究弦振动时,感到有必要给出函数的一般定义。达朗贝尔认为函数是指任意的解析式,在 1748年欧拉的定义是:函数是随意画出的一条曲线。(定义 3)在此之前的 1734年,欧拉也给出了一种函数的符号f(x),这个符号我们一直沿用至今。实际上,这两种定义(定义 1和定义 2)就是现在通用的函数的两种表示方法:解析法和图像法。后来,由于富里埃级数的出现,沟通了解析式与曲线间的联系,但是用解析式来定义函数,显然是片面的,因为有很多函数是没有解析式的,如狄利克雷函数。 1775年,欧拉在《微分学原理》一书的前言中给出了更广泛的定义:如果某些变量,以这样一种方式依赖与另一些变量,即当后面这些变量变化时,前面这些变量也随之而变化,则将前面的变量称为后面变量的函数。(定义 4)这个定义朴素地反映了函数中的辨证因素,体现了“自变”到“因变”的生动过程 ,但未提到两个变量之间的对应关系,因此它并未反映出真正意义上的科学函数概念的特征,只是科学的定义函数概念的“雏形”。函数是从研究物体运动而引出的一个概念,因此前几种函数概念的定义只是认识到了变量“变化”的关系,如自由落体运动下降的路程,单摆运动的幅角等都可以是看成时间的函数。很明显,只从运动中变量“变化”观点来理解函数,对函数概念的了解就有一定的局限性。如对常值函数 ,不好解释。 十九世纪初,拉克若斯( Lacroix)正式提出只要有一个变量依赖另一个变量,前者就是后者的函数。 1834年 ,俄国数学家罗巴契夫斯基(Лобачевский)进一步提出函数的定义: x的函数是这样的一个数,它对于每一个 x都有确定的值,并且随着 x一起变化,函数值可以由解析式给出,这个条件提供了一种寻求全部对应值的方法,函数的这种依赖关系可以存在,但仍然是未知的。(定义 5)这实际是“列表定义”,好像有一个“表格”,其中一栏是 x值,另一栏是与它相对应的 y值。这个定义指出了对应关系(条件)的必要性,把函数的“对应”思想表现出来,而“对应”概念正是函数概念的本质与核心。十九世纪法国数学家柯西( Cauchy)更明确的给出定义:有两个互相联系的变量,一个变量的数值可以在某一范围内任意变化,这样的变量叫做自变量,另一个变量的数值随着自变量的数值而变化,这个变量称为因变量,并且称因变量为自变量的函数。(定义 6) 1829年 ,狄利克雷( Dirichlet)给出了所谓狄利克雷函数: y=1 当 x为有理数时; y=0 当 x为无理数时。这个函数并不复杂,但不能用解析式来表示,这一思想的提出,正是数学由过去的研究“算”到以后研究“概念、性质、结构”的转变的开端。 1837年他对函数下的定义是:在某个变化过程中,有两个变量 x和 y。如果对于 x在某一范围内的每一个确定的值,按照某个对应关系, y都有唯一确定值和它对应,则 y称为 x的函数; x称为自变量。(定义 7)这个定义的优点是直截了当地强调与突出了“对应”关系,抓住了概念的本质属性,只须有一个法则存在,使得这个函数定义域中的每一个值有一个确定的 y值和它对应就行了,不管这个法则是公式或图像或表格或其他形式;其缺点是把生动的函数变化思想省略和简化掉了。 ⒉以“集合”为基础的函数概念函数的概念是随着数学的发展而发展的。函数的定义在数学的发展过程中,不断的改进,不断的抽象,不断的完善。十九世纪七十年代,德国数学家康托( G.Cantor)提出了集合论。进入二十世纪后,伴随着集合论的发展,函数的概念也取得了新的进展,它终于摆脱了数域的束缚向更广阔的研究领域扩大,使概念获得了现代化。 二十世纪初美国数学家维布伦( Weblan)给出了函数的如下定义:若在变量 y的集合与另一变量 x的集合之间,有这样的关系成立,即对 x的每一个值,有完全确定的 y值与之对应,则称 y是变量 x的函数。(定义 8)从这个定义开始,函数概念已把基础建立在集合上面,而前七个定义则是把基础建立在变量(数)上的。 随着时间的推移,函数便被明确的定义为集合之间的对应关系,其定义是: A和 B是两个集合,如果按照某种对应关系,使 A的任何一个元素在 B中都有唯一的元素和它对应,这样的对应关系成为从集合 A到集合 B的函数。(定义 9)此定义根据映射的概念,用“映射”观点建立函数概念,其又可叙述为:从集合 A到集合 B的映射 f: A→ B称为集合 A到集合 B的函数,简称函数 f 。(定义 10)以上三个定义,已打破数域的束缚,将集合中的元素改为抽象的,可以是数,也可以不是数,而是其它一切有形或无形的东西,如 X是所有三角形的集合, Y是所有圆的集合,则 f 可以是把每一个三角形映射成它的外接圆的映射。对新函数定义可以这样理解:函数是一个对应(规则),对于某一范围(集合)的元素,按照这个对应(规则)确定另一个元素。这样函数概念从狭义的“变化”观点转化到较广义的“对应”观点,函数即是一个对应(规则)。对函数概念用“对应”(“规则”)来理解比起最初阶段虽然揭示出了函数概念的实质,但它还不符合我们最低限度地使用未被定义的术语的意图。因为什么叫“对应”和怎样理解“规则”还需要定义,例如规则不同,那么是否函数也不同呢?如f(x)=x与f(x)=(1+x)-1当然是不同的规则但却定义了同一函数。 为了解决这一矛盾,二十世纪初,特别是在六十年代以后,广泛采用只涉及“集合”这一概念的函数定义,而集合作为原始概念是不予定义的,这样的定义是:设 A、 B是任意两个集合, f是笛卡儿集 A× B的一个子集,满足:①对任意的 a ∈ A,存在一个 b∈B,使得 (a,b)∈ f,②若 (a,b)∈ f, (a,c)∈ f则 b=c。则称 f为 A到 B的一个函数。记作 f:A→B。(定义11)这个定义利用“关系”这个概念,便给出了只涉及原始概念“集合”的函数的一般定义,即不需要用到“对应”,又避免了对“规则”的解释,只要集合理论适用一切数学领域,这样给出的函数定义总是适用的。它可称的上是最现代的定义了。到此,“函数”最完善的定义(定义 11)已给出,作为数学中最基本的概念之一,已把基础直接建立在集合上面,即把函数看作是从一个集合到另一个集合的对应,它和“映射”实际上是一回事。三、新旧两种定义的比较比较新定义(把以集合为基础的函数定义称为新的定义方式,而以变量(数)为基础的定义称为旧的定义方式。)和旧定义,它们之间有两个重要的区别:⑴旧定义是建立在“变量”这个基本概念上的,而新定义则建立在“集合”这个基本概念上。什么是变量呢?通常把它理解为在选定一个单位以后,可加以度量的东西,如长度、质量、时间之类,这种理解一方面太疏于笼统,只能通过举例来说明,而难于加以精确化;另一方面,由于涉及大小关系,嫌过于狭窄,无法体现应用上的普遍性。其次,即使什么是“量”的问题不存在,作为变量,它须在某一范围取值(不一定是数值),这一定范围实际上就是事先得假定的一个集合 A(它构成函数的定义域),所谓“变量取值 a”,实质上就是“ a属于 A”的一种变相迂回的说法。可见,在变量的概念中已蕴含集合的思想。⑵旧定义中以“因变量”为函数,而新定义中则以“对应关系”为函数。函数概念的实质,主要的并不是因变量要随自便量“变”,而是两集合之间存在某种确定的对应关系。显然,新定义更能直接地揭示出函数的实质。2023-05-21 10:09:312
在C语言中,函数定义跟函数声明有什么区别有什么不同之出?
定义是实现功能的代码,本质是需要编译器编译成二进制代码的。函数声明对函数的描述,用于告诉编译器本文件中提到的这个函数应该按照声明的形式去调用。2023-05-21 10:09:455
初中数学函数的定义是什么
在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。2023-05-21 10:10:013
函数定义的语法格式是什么
函数定义就是规定函数的格式与功能。函数声明就是在函数调用之前进行的一种说明。下面举例说明两者的语法格式:#include<stdio.h>int fun(int a, int b); // 函数的声明void main(){ int x=1, y=2; int c; c = fun(x+y);}// 下面的fun函数就是函数的定义int fun(int a, int b){ return a+b;}注:如果被调函数(上例中为fun函数)写在调用处之前,可以不声明(本例是现在调用处 (c = fun(x+y);)之后)。2023-05-21 10:10:091
请问函数的定义域是什么?
函数的定义域就是使函数有意义的自变量的取值集合 1,对于函数是整式结构,没有特殊说明,定义域为R 例:y=X^2+3X-5,定义域为R 2,分式结构,分母不为零 例:y=(3x+5)/(x^2-1) 函数要有意义则x^2-1≠0∴x≠±1 ∴定义域为{x|x∈R,且x≠±1} 3,开偶次方根被开方数大于等于0 例:y=√(x^2-x-2) 函数要有意义则x^2-x-2≥0∴x≥2或x≤-1 ∴定义域为{x|x≥2或x≤-1} 再来个综合的 例:y==[√(x^2-x-2)]/(x^2-1) 函数要有意义则x^2-x-2≥0 ① x^2-1≠0② ∴定义域为{x|x≥2或x<-1}(对两个不等式求交集) 4,对数函数要注意真数大于0,底数大于0且不等到于1这些都是有意义的条件 例:y=log2 (x^2-x-2) (x^2-x-2是真数,2是底数) 函数要有意义则x^2-x-2>0 所以定义域为{x|x>2或x<-1} 若底数含有自变量则底数大于0且不等到于1 5,若是指数为0函数,底数不能为0 例;y=(2x-1)^0 则定义域为{x|x≠1/2} 总之定义域是函数有意义的自变的范围,若是实际应用题还要符合实际意义.2023-05-21 10:10:171
函数的定义
函数的定义:函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的。如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。2023-05-21 10:10:361
函数的定义是什么?
1、函数通俗的意思就是由自变量和因变量所确定的一种关系,自变量可能有一个、两个或者N个,但因变量的值当自变量确定的时候也是唯一确定的。2、函数的意义是在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个集合里的唯一元素。函数的特性1、有界性设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。2、单调性设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2)。则称函数f(x)在区间I上是单调递增的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。2023-05-21 10:10:512
函数的定义是什么?
01 给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。 函数的由来 中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。 中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。 函数的定义 给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。 函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。 首先要理解,函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止且不止一个。最后,要重点理解函数的三要素。 函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。 在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。 自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。 因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。 函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。2023-05-21 10:11:072
函数的定义是什么 函数的定义是啥
1、函数的定义通常分为传统定义和近代定义。 2、传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。 3、近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。2023-05-21 10:11:141
函数怎么定义的?
函数定义:设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有惟一的元素和它对应,这样的对应叫做从集合A到集合B的映射,记作f : A-->B. 当集合A,B都是非空的数的集合,且B的每一个元素都有原象时,这样的映射f:A-->B.就叫定义域A到值域B上的函数.在初中课本中的定义是:一般的,有两个变量XY,其中一个变量Y随着另一个变量X的变化而变化,并且,给出一个X值都有唯一的一个Y值与它对应。X叫自变量,Y叫因变量。函数在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。因变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。函数的概念对于数学和数量学的每一个分支来说都是最基础的。术语函数,映射,对应,变换通常都有同一个意思。但函数只表示数与数之间的对应关系,映射还可表示点与点之间,图形之间等的对应关系。可以说函数是一种特殊的映射。2023-05-21 10:11:221
函数的定义是什么啊?
1)函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.(2)函数的近代定义:设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域.上述两个定义实质上是一致的,只不过传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发,侧重点不同.函数实质上是从集合A到集合B的一个特殊的映射,其特殊性在于集合A、B都是非空数集.自变量的取值集合叫做函数的定义域,函数值的集合C叫做函数的值域.这里应该注意的是,值域C并不一定等于集合B,而只能说C是B的一个子集.2.函数的三要素定义域A,值域C以及从A到C的对应法则f,称为函数的三要素.由于值域可由定义域和对应法则唯一确定,所以也可以说函数有两要素:定义域和对应法则.两个函数当且仅当定义域与对应法则分别相同时,才是同一函数.2023-05-21 10:11:291
函数的定义是什么?
函数的概念定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。扩展资料:函数的元素:输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。注意,把对应域称作值域是不正确的,函数的值域是函数的对应域的子集。计算机科学中,参数和返回值的数据类型分别确定了子程序的定义域和对应域。因此定义域和对应域是函数一开始就确定的强制进行约束。另一方面,值域是和实际的实现有关。参考资料来源:百度百科-函数2023-05-21 10:11:381
函数怎样定义?
函数的定义:1、函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。2、函数的近代定义:设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域。函数的性质1、对称性数轴对称:所谓数轴对称也就是说函数图像关于坐标轴X和Y轴对称。原点对称:同样,这样的对称是指图像关于原点对称,原点两侧,距离原点相同的函数上点的坐标的坐标值互为相反数。关于一点对称:这种类型和原点对称颇为相近,不同的是此时对称点不再仅限于原点,而是坐标轴上的任意一点。2、周期性函数在一部分区域内的图像是重复出现的,假设一个函数F(X)是周期函数,那么存在一个实数T,当定义域内的X都加上或者减去T的整数倍时,X所对应的Y不变,那么可以说T是该函数的周期,如果T的绝对值达到最小,则称之为最小周期。2023-05-21 10:11:501
函数的定义是什么?
在C程序设计中,将完成指定功能的C代码定义成函数,变成逻辑上一个相对独立的程序单位。函数定义需要指明函数返回值的类型、函数名、函数的形式参数(常简称形参)和函数体(包括说明和定义及语句序列)。函数定义的一般形式为 存储类型说明符 数据类型说明符 函数名(形式参数表) 形式参数说明序列 { 说明和定义部分 执行语句序列 } 存储类型说明符或省缺,或为static。省缺表示一个全局函数,static表示一个静态函数,只供同一源程序文件中的函数使用。 数据类型说明符用来指定函数返回值类型,可以是基本数据类型、某种指针类型、结构类型等。但不可以是数组类型。特别当函数不返回结果时,可用void明确指明函数不返回值。 数据类型说明符也可省缺,省缺被默认为返回int型值。 函数名是一个标识符。形式参数表是用远号分隔的若干形式参数,用不同的标识符指明各形式参数的名。形式参数说明序列用来说明各形式参数的数据类型,相同数据类型的形式参数可以一起说明。现在编写C程序的习惯是形式参数说明序列直接放在形式参数表中,即在形式参数说明表中顺序列出各形式参数的数据类型和形式参数的名称。如是这样,一般形式的第一行全部内容称为函数头,也称为函数模型。 特别情况,函数可能不设形式参数,也就没有形式参数表和形式参数说明序列。但函数名后的一对圆括号是不可以没有的。 一对花括号括住的部分称为函数体,函数体包括类型说明、变量定义和函数的执行语句序列。在函数体内可以有return语句终止函数的执行。如函数有返回值类型,则return语句中一定要有表达式,作为函数调用的返回值。2023-05-21 10:12:161
什么是函数?函数的意义是什么
对于两个非空数集A、B,对于集合A中的任意一个元素,按照某种对应法则,在集合B中都有唯一确定的元素与之对应,则这样的对应称为函数。函数的意义是在探求两个变量的关键2023-05-21 10:12:372
数学:什么是函数?函数的定义?
两个非空数集A→B上的映射f,叫函数,记作:y=f(x)。其中A叫定义域,值域是B的子集。2023-05-21 10:12:454
数学函数定义
f"[u(x)]是f"(x)在x=u(x)时候的导数值也就是说,f"[u(x)]就类似f"(1)的性质f"(1)并不是对f(1)这个函数值求导,而是f(x)在x=1处的导数值。所以f"[u(x)]在x=u(x)处的导数值。这只需要将f"(x)求出来的结果,将x替换成u(x)即可。简单的说,f"[u(x)]=df[u(x)]/du(x)但是[f(u(x))]"就是,对g(x)=f(u(x))这个复合函数求导等于[f(u(x))]"=df[u(x)]/dx=df[u(x)]/du(x)*du(x)/dx这就是区别。2023-05-21 10:12:571
函数的概念及表示法
函数的概念:在某一个变化过程中有两个变量x和y,设变量x的取值范围为数集D,如果对于D内的每一个x值,按照某个对应法则f,y都有唯一确定的值与它对应,那么,把x叫做自变量,把y叫做x的函数。函数的表示法:将上述函数记作y=f(x)。变量x叫做自变量,数集D叫做函数的定义域。当x=xo时,函数y=f(x)对应的值yo叫做函数y=f(x)在点xo处的函数值,记作yo=f(xo)。函数值的集合{y|y=f(x),x∈D}叫做函数的值域。函数的定义域与对应法则一旦确定,函数的值域也就确定了,因此函数的定义域与对应法则叫做函数的两个要素。2023-05-21 10:13:051
函数的定义域是什么?
函数的定义域是:设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应。那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。函数的特性:设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。奇函数的例子有x、sin(x)、sinh(x)和erf(x)。2023-05-21 10:13:231
什么叫函数有定义?
什么是函数的一般性定义 函数的定义通常包含以下内容: 函数返回值类型 函数名(形参表说明) /* 函数首部 */ { 说明语句 /* 函数体 */ 执行语句} 说明: (1)数的定义中的类型,是指函数返回值的类型。函数返回值不能是数组,也不能是函数,除此之外任何合法的数据类型都可以是函数的类型,如:int 、long、float、char等,或是后面讲到的指针、结构等。函数的类型是可以省略的,当不指明函数类型时,系统默认的是整类型。 (2)函数名是用户自定义的标识符,是C语言函数定义中唯一不可省略的部分,需符合C语言对标识符的规定,即由字母,数字或下划线组成,用于标识函数,并用该标识符调用函数。另外,函数名本身也有值,它代表了该函数的入口地址,使用指针调用该函数时,将用到此功能。 (3)形参也成为"形式参数"。形参表是用逗号分隔的一组变量说明,包括形参的类型和形参标识符,其作用是指出每一个形参的类型和形参的名称,当调用函数时,接受来自主调函数的数据,确定各参数的值。形参表说明可以有两种表示形式: int func (int x, int y ) { …… } 或 : int func ( x, y ) int x, y; { …… } 通常,调用函数需要多个原始数据,就必须定义多个形式参数。注意,在")"后面不能加分号";"。 (4)用{ }括起来的部分是函数的主体,称为函数体。函数体是一段程序,确定该函数应完成的规定的运算,应执行的规定的动作,集中体现了函数的功能。函数内部应有自己的说明语句和执行语句,但函数内定义的变量不可以与形参同名。花括号{ }是不可省略的。 根据函数定义的一般形式,我们可以得到一个C语言中最简单的函数: dumy ( ) { } 这是C语言中一个合法的函数,函数名为dumy。它没有函数类型说明,也没有形参表,同时函数体内也没有语句。实际上函数dumy不执行任何操作和运算,在一般情况下是没有用途的,但在程序开发的过程中有时是需要的,常用来代替尚未开发完毕的函数。 1, 什么是函数原型?什么是函数定义?二者有何区别? 当函数声明和定义出现在主函数之后的,我们需要在函数之前(在函数调用以前)加函数原型声明。 函数原型声明,指明 函数名字,返回类型,有几个参数,这几个参数是什么类型。不需要函数体。也不需要形式参数的名字(当然,写了形式参数的名字也不算错)。分号作原型声明 结束符 当函数定义出现在主函数之前,就不需要函数原型声明。 函数定义,必须有函数体。同时有 函数名字,返回类型,有形式参数的类型和名字。 二者主要区别是一个有函数体,描写函数数据加工和返回的过程和细节。另一个只是简单地说一下函数名字,返回类型,有几个参数。 例如: 函数原型声明:int fun(int a, int b); 函数名字fun,返回类型 int,有2个 int 参数 函数原型声明:int fun(int, int); 函数名字fun,返回类型 int,有2个 int 参数 函数原型声明:fun(int, int); 函数名字fun,默人返回类型,有2个 int 参数 例如函数声明和定义: int fun(int a, int b) {return a+b;} 花括号里是函数体,结束处没有分号,有形参名。 函数是什么意思? 函数就是在某变化过程中有两个变量X和Y,变量Y随着变量X一起变化,而且依赖于X。如果变量X取某个特定的值,Y依确定的关系取相应的值,那么称Y是X的函数。这一要领是由法国数学家黎曼在19世纪提出来的,但是最早产生于德国的数学家菜布尼茨。他和牛顿是微积分的发明者。17世纪末,在他的文章中,首先使用了“function"一词。翻译成汉语的意思就是“函数。不过,它和我们今天使用的函数一词的内涵并不一样,它表示”幂”、“座标”、“切线长”等概念。 直到18世纪,法国数学家达朗贝尔在进行研究中,给函数重新下了一个定义,他认为,所谓变量的函数,就是指由这些变量和常量所组成的解析表达式,即用解析式表达函数关系。后来瑞士的数学家欧拉又把函数的定义作了进一步的规范,他认为函数是能描画出的一条曲线。我们常见到的一次函数的图像、二次函数的图像、正比例函数的图像、反比例的图像等都是用图像法表示函数关系的。如果用达朗贝尔和欧拉的方法来表达函数关系,各自有它们的优点,但是如果作为函数的定义,还有欠缺。因为这两种方法都还停留在表面现象上,而没有提示出函数的本质来。 19世纪中期,法国数学家黎紧吸收了莱布尼茨、达朗贝尔和欧拉的成果,第一次准确地提出了函数的定义:如果某一个量依赖于另一个量,使后一个量变化时,前一个量也随着变化,那么就把前一个量叫做后一个量的函数。黎曼定义的最大特点在于它突出了就是之间的依赖、变化的关系,反映了函数概念的本质属性。2023-05-21 10:13:351
关于函数的定义
y=f(x)中的y叫因变量,但它还有个名字,就是函数。所以我们说“函数f(x)”的时候,你可以理解成我在说因变量这个概念。只不过因为等量代换,函数y,也叫做函数f(x)。而且这样代换之后还有个好处就是能看出对应法则f是什么,如对于y=sinx,你说函数y,没人知道这个函数具体是什么。但你说函数sinx,大家就知道你的函数关系就是取正弦。2023-05-21 10:13:423
函数的定义和表达式有何区别?
函数的概念:在一个变化过程中,发生变化的量叫变量(数学中,变量为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。表示:函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系有且不止一个。最后,要重点理解函数的三要素。函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。函数的由来中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组2023-05-21 10:13:491
什么是函数定义?
函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系有且不止一个。最后,要重点理解函数的三要素。通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。2023-05-21 10:14:022