- 余辉
-
得是有一个角为30度的直角三角形才有直角三角形中斜边等于最短直角边的2倍
- 大鱼炖火锅
-
在直角三角形中,勾三股四弦五是成立的;但是如果勾和股并不是三和四的关系,那么弦当然也不是五啦。你说的情况,是指的:在直角三角形中,30度角所对边等于斜边的一半。
勾三股四弦五,是什么
同志们真热心,这种问题也回答,不如问小盆友拉2023-05-20 19:22:0712
钩三股四旋五基本公式
a^2 b^2=c^22023-05-20 19:22:495
勾三股四弦五是什么意思
勾三股四弦五是勾股定律的一个解读,就是当直角三角形的两条右边分别为3(短边)和4(长边)时,直径角(即弦)为5。我国古把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。中国古代称两直角边为勾和股,斜边为弦。勾三股四弦五就是:勾三的平方九,加股四的平方十六,等于弦五的平方二十五。在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特叫做勾股定理或勾股弦定理,又称毕达拉斯定理或毕氏定理。是一个基本的几何定理,传统上认为是由古希腊的毕达拉斯所证明。勾股定理的解析勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。2023-05-20 19:23:151
“勾三股四弦五”是什么?
勾股定理:在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(PythagorasTheorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a²+b²=c²即直角三角形两直角边的平方和等于斜边的平方。如果三角形的三条边a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。(称勾股定理的逆定理)2023-05-20 19:23:283
勾3股4弦5最简单的方法
勾3股4弦5最简单的方法是勾²+股²=弦²,3²+4²=5²。勾三股四弦五是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。勾股定律(Pythagorean Theorem)是一个基本的几何定理,最早提出并证明此定理是古希腊的毕达哥拉斯学派(公元前6世纪),在中国最早由商高提出(周朝时期)。勾股定理指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方,它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。2023-05-20 19:23:361
勾三股四弦五角度是什么?
勾3的对角是37度,股4的对角为53度,弦5相对着的角是90度。详细的解释为:首先由勾3股4弦5知三角形满足勾股定理,是直角三角形;设勾3的对角是A,股4的对角为B。那么sinA=3/5,A=arcsin3/5=37度。sinB=4/5,B=arcsin4/5=53度。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理主要意义:1、勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。2、勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。2023-05-20 19:23:541
勾三股四玄五分别是什么意思
这是勾股定理的2023-05-20 19:24:084
勾三股四弦五是怎样计出各边长度的?
在直角三角形中两直角边的平方和等于斜边的平方。勾股定理:勾²+股²=弦²。3²+4²=5²。即:3×3+4×4=5×5。知道其中二个数字,可以计算出另一个数字。1、这是勾股定理的一个特例。2、勾方+股方=弦方。3、a、b为直角三角形的两个直角边c为斜边,那么就有:a²+b²=c²。4、数字3、4、5恰好符合这个规律。2023-05-20 19:24:161
为什么勾股定理叫做勾三股四弦五?
在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着 15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.无论是古埃及人、古巴比伦人还是我们中国人谁最先发现了勾股定理,我们的先人在不同的时期、不同的地点发现的这同一性质,显然不仅仅是哪一个民族的私有财产而是我们全人类的共同财富.值得一提的是:在发现这一共同性质后的收获却是不完全相同的.下面以“毕达哥拉斯定理”和“勾股定理”为例,做一简单介绍:一、毕达哥拉斯定理毕达哥拉斯是一个古希腊人的名字.生于公元前6世纪的毕达哥拉斯,早年曾游历埃及、巴比伦(另一种说法是到过印度)等地,后来移居意大利半岛南部的克罗托内,并在那里组织了一个集政治、宗教、数学于一体的秘密团体毕达哥拉斯学派,这个学派非常重视数学,企图用数来解释一切.他们宣称,数是宇宙万物的本原,研究数学的目的并不在于实用,而是为了探索自然的奥秘.他们对数学看法的一个重大贡献是有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是截然不同的.有些原始文明社会中的人(如埃及人和巴比伦人)也知道把数脱离实物来思考,但他们对这种思考的抽象性质所达到的自觉认识程度,与毕达哥拉斯学派相比,是有相当差距的.而且在希腊人之前,几何思想是离不开实物的.例如,埃及人认为,直线就是拉紧的绳或田地的一条边;而矩形则是田地的边界.毕达哥拉斯学派还有一个特点,就是将算术和几何紧密联系起来.正因为如此,毕达哥拉斯学派在他们的探索中,发现了既属于算术又属于几何的用三个整数表示直角三角形边长的公式:若2n+1,2n2+2n分别是两直角边,则斜边是2n2+2n+1(不过这法则并不能把所有的整勾股数组表示出来).也正是由于上述原因,这个学派通过对整勾股数的寻找和研究,发现了所谓的 “不可通约量”例如,等腰直角三角形斜边与一直角边之比即正方形对角线与其一边之比不能用整数之比表达.为此,他们把那些能用整数之比表达的比称做“可公度比”,意即相比两量可用公共度量单位量尽,而把不能这样表达的比称做“不可公度比”.像我们今日写成:1的比便是不可公度比.至于与1不能公度的证明也是毕达哥拉斯学派给出的.这个证明指出:若设等腰直角三角形斜边能与一直角边公度,那么,同一个数将既是奇数又是偶数.证明过程如下:设等腰直角三角形斜边与一直角边之比为:,并设这个比已表达成最小整数之比.根据毕达哥拉斯定理2=2+2,有2=22.由于22为偶数即x2为偶数,所以必然也是偶数,因为任一奇数的平方必是奇数(任一奇数可表示为2n+1,于是(2n+1)2=4n2+4n+1,这仍是一个奇数.但是比:是既约的,因此,必然不是偶数而是奇数,既然是偶数,故可设=2.于是2=42=22.因此,2=22,这样,2是个偶数,于是也是偶数,但是同时又是个奇数,这就产生了矛盾.关于对毕达哥拉斯定理的证明,现在人类保存下来的最早的文字资料是欧几里得(公元前300年左右)所著的《几何原本》第一卷中的命题47:“直角三角形斜边上的正方形等于两直角边上的两个正方形之和”.实际上,毕达哥拉斯学派关心得更多的是数学问题本身的研究;以毕达哥拉斯学派为代表的古希腊数学是以空间形式为主要研究对象,以逻辑上的演绎推理为主要的理论形式.而毕达哥拉斯定理的发现(关于可公度比与不可公度比的研究、讨论),实际上导致了无理数的发现,尽管毕达哥拉斯学派不愿意接受这样的数,并因此造成了数学史上所谓的第一次数学危机,但是毕达哥拉斯学派的探索仍然是功不可没的.二、我国的勾股定理在我国,至今可查的有关勾股定理的最早记载,是大约公元前1世纪前后成书的《周髀算经》,其中有一段公元前1千多年前的对话:“昔者周公问于商高曰:窃闻乎大夫善数也,请问古者包牺立周天历度,夫天不可阶而升,地不可得尺寸而度.请问数安从出?商高曰:数之法,出于圆方.圆出于方,方出于矩,矩出于九九八十一.故折矩,以为勾广三,股修四,径隅五.”《周髀算经》中还有“陈子测日”的记载:根据勾股定理,周子可以测出日高及日远.例如,当求得了日高及测得了测量人所在位置到日下点的距离之后,计算日远的方法是:“若求邪至日者,以日下为勾,日高为股,勾股自乘,并开方而除之,得邪至日者.”《周髀算经》是我国流传至今的一部最早的数学著作.书中主要讲述了学习数学的方法以及用勾股定理来计算高深远近和比较复杂的分数计算等.在唐代,《周髀算经》与其他九部陆续出现在我国汉唐两代千余年间的数学著作一起,被国子监算学馆定为课本,后世通称这十本书为《算经十书》.《算经十书》较全面地反映了自先秦至唐初我国的数学成就.其中许多书中都涉及到了勾股定理的内容,尤其《九章算术》(《算经十书》之一)第九章“勾股”专门讲解有关直角三角形的理论,所讨论的主要内容就是勾股定理及其应用.该章共有设问24题,提出22术.其中第6题是有名的“引葭赴岸”:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.”这是一个流传甚广的题目,类似题目一再在其他书中出现,例如成书于5世纪中叶的《张邱建算经》(《算经十书》之一)、朱世杰所著的《四元玉鉴》(1303年)等.我们的先辈们还根据勾股定理发明了一种由互相垂直的勾尺和股尺构成的测量工具矩.如,《周髀算经》中记载了商高对用矩之道的论述:“平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”又如,我国魏晋间杰出的数学家刘徽在他的名著《海岛算经》(《算经十书》之一)中共列出了9个有代表性的可用矩解决的测望问题,其中第4个问题是:“今有望深谷,偃矩岸上,令勾高六尺,从勾端望谷底,入下股九尺一寸,又设重矩于上,其矩间相去三丈,更从勾端望谷底,入上股八尺五寸,问谷深几何.”我国最早的关于勾股定理的证明,目前人们认为是汉代赵爽对《周髀算经》的注释.我国古代的数学与古希腊的数学不大一样.实际上,我国数学的主要研究对象不是空间形式,而是数量关系;其理论形式不是逻辑演绎体系,而是以题解为中心的算法体系.与古希腊数学采取层层论证的思维方式不同,我国古代数学家的思维方式是以直觉思维为主,又以类比为发现和推论结果的主要手段.对于勾股定理,我国古代的数学家没有把主要精力放在仅仅给出严格的逻辑推理证明上,也没有在不可通约量究竟是什么性质的数上面做文章,而是立足于对由此可以解决的一类实际问题算法的深入研究.通过在直角三角形范围内讨论与勾股定理、相似直角三角形性质定理有关的命题,他们推出了一种组合比率算法勾股术.勾股术把相似直角三角形的概念作为基本概念,把相似直角三角形的性质作为基本性质,使相似直角三角形之间的相似比率构成了勾股的核心.勾股术用比率表达相似勾股对应边成比例的原理,勾股整数和勾股两容(容圆、容方)问题的求解;建立了勾股测量的理论基础.后来,刘徽实际上把相似勾股形理论确定为勾股比率论,并明确提出了“不失本率原理”,又把这个原理与比例算法结合起来,去论证各种各样的勾股测量原理,从而为我国古代的勾股测望术建立了坚实的理论基础.有的专家还提出:勾股定理在我国古代数学中占有十分重要的地位,千百年来逐渐形成了一门以勾股定理及其应用为核心的中国式的几何学2023-05-20 19:24:231
勾三股四弦五公式
勾三股四弦五公式:勾^2+股^2=弦^2,即勾股定理:a^+b^2=c^2。勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。2023-05-20 19:24:421
勾三股四弦五什么意思
在中国古代数学中,把直角三角形的较短直角边叫做勾,叫较长直角边叫做股,斜边叫做弦,勾三股四弦五就是以3,4,5为边的三角形是直角三角形。2023-05-20 19:24:491
勾三股四弦五是什么意思
勾3股4弦5是著名的勾股定理。当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。什么是勾3股4弦5在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特叫做勾股定理或勾股弦定理,又称毕达拉斯定理或毕氏定理。是一个基本的几何定理,传统上认为是由古希腊的毕达拉斯所证明。在髀算经记载了勾股定理的一个特例,相传是在商由商高发现,故又有称之为商高定理;三国时的爽对髀算经内的勾股定理作出了详细注释,作为一个证明。我国古把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。怎样求勾3股4弦5三角形的高这是直角三角形3和4两边是直角边,可以互为底边和高至于一5为底边时的高可以根据面积求s=3*4/2=5*h/2h=2.4。用面积求:3*4/5=2.4就是斜边的高了,因为“勾3股4弦5三角形”是直角三角形!2023-05-20 19:24:561
勾三股四弦五是什么意思?
是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a²+b²=c² 即直角三角形两直角边的平方和等于斜边的平方。 (称勾股定理的逆定理)2023-05-20 19:25:161
勾3股4弦5数怎样计算得来的?
勾3股4弦5是一种判定直角三角形的方法,其实就是一种直角的判定方法,原理是勾股定理的逆定理,在确定直角三角形后,可以利用勾股定理来进行计算。但只是适应于直角三角形,(3角度数为36.8698976 °,53.1301024°,90°。)中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西汉时期算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。扩展资料如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。设△ABC为一直角三角形,其直角为∠CAB。其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。分别连接CF、AD,形成△BCF、△BDA。∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。因为AB=FB,BD=BC,所以△ABD≌△FBC。因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。因此四边形BDLK=BAGF=AB²。同理可证,四边形CKLE=ACIH=AC²。把这两个结果相加,AB²+AC²=BD×BK+KL×KC由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。此证明是于欧几里得《几何原本》一书第1.47节所提出的。2023-05-20 19:25:221
勾三股四弦五是什么意思?
商高定理 商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作 《周髀 算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的勾股定理. 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。 毕达哥拉斯定理 Pythagoras" theorem 在国外,相传勾股定理是公元前500多年时古希腊数学家毕达哥拉斯首先发现的。因此又称此定理为“毕达哥拉斯定理”。法国和比利时称它为“驴桥定理”,埃及称它为“埃及三角形”等。但他们发现的时间都比我国要迟得多。 赵爽与勾股定理 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。 中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。” 伽菲尔德与勾股定理 总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的.事情的经过是这样的; 在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。 于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 应用就是求题,直角三角形知道2长边求第3边长2023-05-20 19:25:341
勾三股四玄五的旋读什么音
应该读二声吧2023-05-20 19:25:435
直角三角形,勾3股4弦5数怎样计算得来的
“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出 。但只是适应于直角三角形,(3角度数为36.8698976 °,53.1301024°,90°。)中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西汉时期算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。扩展资料:勾股定理的历史发展:公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“?故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。 公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理做出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。参考资料来源:百度百科-勾股定理参考资料来源:百度百科-勾三股四弦五2023-05-20 19:25:571
勾三股四玄五怎么计算
就是直角三角形的两条直角边的边长平方的和,等于斜边的平方。这在中国叫做勾股定理,在西方叫毕达哥拉斯定理。勾三股四弦是五,这是勾股定理的一个特例。算式为:3的平方+4的平方=5的平方2023-05-20 19:26:241
勾三股四弦五,角是多少度
在勾三股四弦五这个三角形里各个角的度数是:勾股角90度,勾弦角60度,股弦角30度。2023-05-20 19:26:311
勾股定理勾三股四弦五
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。2023-05-20 19:26:381
勾三股四弦五的三角形斜边上的中线的长度是多少?
直角三角形斜边上的中线等于斜边的一半,可得斜边上的中线的长度是5/2=2.5。直角三角形斜边中线定理是数学中关于直角三角形的一个定理,具体内容为:如果一个三角形是直角三角形,那么这个三角形斜边上的中线等于斜边的一半。扩展资料:设△ABC的角A、角B、角C的对边分别为a、b、c,则有:1、三角形的三条中线都在三角形内。2、三角形的三条中线长:ma=(1/2)√2b²+2c²-a² ;mb=(1/2)√2c²+2a²-b² ;mc=(1/2)√2a²+2b²-c²(ma,mb,mc分别为角A,B,C所对边的中线长)3、三角形的三条中线交于一点,该点叫做三角形的重心。4、直角三角形斜边上的中线等于斜边的1/2。5、三角形中线组成的三角形面积等于这个三角形面积的3/4。6、三角形重心将中线分为长度比为1:2的两条线段 。2023-05-20 19:26:461
勾三股四玄五是什么样的三角形?
你问:勾三股四玄五是什么样的三角形?是直角三角形!2023-05-20 19:26:582
勾三股四弦五三角形的三个内角分别是几度?
边长为5的对着直角(90度) 边长为3的对角约37度 边长为4的对角约53度 因为不是特殊角,所以没有确切数字,只能根据三角函数值约等于.2023-05-20 19:27:051
谁最早在《周髀》中提出”勾三股四弦五“的定理?
早在公元前1100年,我们古代的数学家商高就已经知道"勾三股四弦五",因此有人主张毕氏定理应为"商高定理".商高是周朝的大夫,《周髀算经》(简称《周髀》)中记载了一段周公与商高之间的问答:周公问於商高曰:『窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出 』商高曰:『数之法出於圆方.圆出於方,方出於矩,矩出於九九八十一.故折矩,以为勾广三,股修四,径隅五.......此数之所生也……』但(3, 4, 5) 只是满足毕氏定理的一组特殊解,一般性的定理一直等到陈子时代(公元前6, 7世纪)才出现,我们称之为"勾股弦定理"或"勾股定理",至於提出定理证明的则首推赵爽(公元3世纪).赵爽,字君卿,三国时期吴国数学家,为《周髀算经》作注.在《周髀》卷上在周公,商高问答之后,有一个《弦图》及赵君卿的注释《勾股圆方图说》.2023-05-20 19:27:121
勾三股四玄五怎么证明
证明如下:已知一个正方形ABCD,边长为a+b,正方形ABCD各边各取一个点O、P、E、G,构成一个四边形OPEG。已知,BO=AP=DE=CG=a,OA=PD=EC=GB=b。如图所示:很容易可以得出,四边形OPEG也是正方形,设正方形OPEG边长为c。那么,正方形OPEG的面积等于正方形ABCD的面积减去4个直角三角形的面积。即:c²=(a+b)²-4×½ab展开后得到,c²=a²+b²。简介:勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。2023-05-20 19:27:181
勾三,股四,弦五的说法最早记载于我国古代著名的数学著作?
“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出.中国古代称短的直角边为勾,长的直角边为股,斜边为弦.据我国西汉时期算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五.即:勾三的平方九,加股四的平方十六,等于弦五的平方二十五.在西方,也有“勾三股四弦五”的定理,《周髀算经》比西方早了五百多年,这一定理在西方称为“毕达哥拉斯定理”.2023-05-20 19:27:431
在施工中放线怎么利用勾三股四弦五才能放出直角线
在直线AD为初始直线,以A点为起点向右量取300mm,即AB=300,以A点为圆心,400mm为半径画圆,以B点为圆心,500mm为半径画圆,两圆交于点C,连接AC,BC,则AC垂直于BC,完毕。2023-05-20 19:28:011
勾三股四定理
“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国古算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。即:勾三的平方九,加股四的平方十六,等于弦五的平方二十五。希望对你有启发2023-05-20 19:28:143
勾股定理怎么用
A^2+B^2=C^22023-05-20 19:28:226
勾三股四
勾三股四弦五其实就是勾股定理,边长分别是3、4、5及其倍数的三角形。2023-05-20 19:28:453
勾股定理、正弦定理、余弦定理和勾三股四玄五是什么意思?
勾股定理是在直角三角形中,两直角边的平方和等于斜边的平方。勾三股四玄五,就是两直角边分别为3、4,斜边为5在△ABC中,∠A、∠B、∠C对应的三边分别为a、b、c正弦定理:三角形三个边长与对应角正弦值的比值均相等,且均等于外接圆直径长。即:a/sinA=b/sinB=c/sinC=2R(R为△ABC外接圆的半径)余弦定理:a^2+b^2-2*a*b*cosC=c^2a^2+c^2-2*a*c*cosB=b^2b^2+c^2-2*b*c*cosA=a^2由此可见,勾股定理只是余弦定理的一个特殊情况,即其中有一个角,∠A、∠B或∠C等于90度的特殊情况。正弦定理和余弦定理可应用于所有三角形,而勾股定理只适用于直角三角形。2023-05-20 19:28:531
勾股定理
你在玩什么啊.?2023-05-20 19:29:014
勾三股四玄五 用英语怎么说
勾三股四玄五的英文翻译 勾三股四玄五Hook three shares four Xuan five2023-05-20 19:29:152
勾三股四弦五是什么意思?
是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a²+b²=c² 即直角三角形两直角边的平方和等于斜边的平方。 (称勾股定理的逆定理)2023-05-20 19:29:221
勾股数顺口溜口诀
勾股数就是可以构成一个直角三角形三边的一组正整数。接下来给大家分享 勾股数顺口溜及口诀。供参考。 勾股数顺口溜 3,4,5:勾三股四弦五 5,12,13:5月12记一生(13) 6,8,10:连续的偶数 8,15,17:八月十五在一起(17) 特殊勾股数: 连续的勾股数只有3,4,5 连续的偶数勾股数只有6,8,10 勾股数的口诀 (一)奇数组口诀:平方后拆成连续两个数 5^2=25,25=12+13,于是5,12,13是一组勾股数。 7^2=49,49=24+25,于是7,24,25是一组勾股数。 9^2=81,81=40+41,于是9,40,41是一组勾股数。 (二)偶数组口诀:平方的一半再拆成差2的两个数 8^2=64,64/2=32,32=15+17,于是8,15,17是一组勾股数。 10^2=100,100/2=50,50=24+26,于是10,24,26是一组勾股数。 12^2=144,144/2=72,72=35+37,于是12,35,37是一组勾股数。 什么是勾股数 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(例如a,b,c)。即a²+b²=c²,a,b,c∈N。 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个正整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。2023-05-20 19:29:281
勾3股4弦5是什么意思?
这是干什么用的,不知道为什么,也不知道该如何回答2023-05-20 19:29:4713
勾3股4弦5是什么意思
勾3股4弦5是著名的勾股定理。当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。 什么是勾3股4弦5 在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特叫做勾股定理或勾股弦定理,又称毕达拉斯定理或毕氏定理。是一个基本的几何定理,传统上认为是由古希腊的毕达拉斯所证明。 在髀算经记载了勾股定理的一个特例,相传是在商由商高发现,故又有称之为商高定理;三国时的爽对髀算经内的勾股定理作出了详细注释,作为一个证明。 我国古把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 怎样求勾3股4弦5三角形的高 这是直角三角形3和4两边是直角边,可以互为底边和高至于一5为底边时的高可以根据面积求s=3*4/2=5*h/2h=2.4。 用面积求:3*4/5=2.4就是斜边的高了,因为“勾3股4弦5三角形”是直角三角形!其他两边的高就是其对应的边。2023-05-20 19:30:231
勾三股四弦五,是什么
【意思】勾三的平方九,加股四的平方十六,等于弦五的平方二十五,指直角三角形的两条直角边的平方和等于斜边的平方。【历史】1、《周髀算经》中记录了周朝(公元前十一世纪)数学家商高提出的“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。2、公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。3、清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。【解释】中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。2023-05-20 19:30:291
勾3股4弦5数怎样计算得来的?
勾股定理:勾²+股²=弦²3²+4²=5²即:3×3+4×4=5×5知道其中二个数字,可以计算出另一个数字.2023-05-20 19:30:393
勾三股四弦五公式
勾三股四弦五公式:勾^2+股^2=弦^2。“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形,(3角度数为36.8698976°,53.1301024°,90°。)中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西汉时期算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。在西方,也有“勾三股四弦五”的定理,《周髀算经》比西方早了五百多年,这一定理在西方称为“毕达哥拉斯定理”。2023-05-20 19:31:051
勾三股四弦五的计算方法
勾三股四弦五的计算方法:勾²+股²=弦²,3²+4²=5²。“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。勾股定理勾股定律(Pythagorean Theorem)是一个基本的几何定理,最早提出并证明此定理是古希腊的毕达哥拉斯学派(公元前6世纪),在中国最早由商高提出(周朝时期)。勾股定理指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方,它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。2023-05-20 19:31:111
钩三股四旋五基本公式
a*a+b*b=c*c勾三股四弦五,是勾股定理的解释。三角形的两直角边一边为三,一边为四,那么斜边为五如果直角三角形两直角边分别为a,b,斜边为c,那么a*a+b*b=c*c提醒: 更好的写法应为:勾三股四弦五例如一个直角三角形,一边为3CM,一边为4CM,那另一半为5CM。勾三股四弦五直角三角形的内切圆直径为2。故有 “勾三股四弦五径二”之说。扩展资料:勾股定理的推导:在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。在这个定理的证明中,我们需要如下四个辅助定理:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。设△ABC为一直角三角形,其直角为∠CAB。其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。分别连接CF、AD,形成△BCF、△BDA。∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。因为AB=FB,BD=BC,所以△ABD≌△FBC。因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。因此四边形BDLK=BAGF=AB²。同理可证,四边形CKLE=ACIH=AC²。把这两个结果相加,AB²+AC²=BD×BK+KL×KC由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。此证明是于欧几里得《几何原本》一书第1.47节所提出的。由于这个定理的证明依赖于平行公理,而且从这个定理可以推出平行公理,很多人质疑平行公理是这个定理的必要条件,一直到十九世纪尝试否定第五公理的非欧几何出现。参考资料来源:百度百科—沟三股四玄五2023-05-20 19:31:241
勾三股四弦五,角是多少度
记小的那个角是θ 由三角函数的定义 sinθ=3/5,cosθ=4/5,tanθ=3/4 所以θ=arcsin3/5=arccos4/5=arctan3/4 大约是37度不到一点2023-05-20 19:32:531
勾3股4弦5怎么算长度
勾3股4弦5是勾股定理的一个特别的例子,那么用勾3股4弦5怎么算长度呢?下面和我一起学习一下吧,仅供大家参考。 什么是勾3股4弦5 “勾3股4弦5”是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形,(3角度数为36.8698976°,53.1301024°,90°。) 中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西汉时期算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。 在西方,也有“勾3股4弦5”的定理,《周髀算经》比西方早了五百多年,这一定理在西方称为“毕达哥拉斯定理”。 勾3股4弦5直角三角形的内切圆直径为2。故有“勾三股四弦五径二”之说。 勾3股4弦5怎么算长度 在直角三角形中两直角边的平方和等于斜边的平方。 勾股定理:勾²+股²=弦²。 3²+4²=5²。 即:3×3+4×4=5×5。 知道其中二个数字,可以计算出另一个数字。 1、这是勾股定理的一个特例。 2、勾方+股方=弦方。 3、a、b为直角三角形的两个直角边c为斜边,那么就有:a²+b²=c²。 4、数字3、4、5恰好符合这个规律。 勾股定理的意义 1.勾股定理的证明是论证几何的发端; 2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理; 3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解; 4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理; 5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用.1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。2023-05-20 19:32:591
勾3股4弦5是什么意思
勾3股4弦5是著名的勾股定理。当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。 什么是勾3股4弦5在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特叫做勾股定理或勾股弦定理,又称毕达拉斯定理或毕氏定理。是一个基本的几何定理,传统上认为是由古希腊的毕达拉斯所证明。 在髀算经记载了勾股定理的一个特例,相传是在商由商高发现,故又有称之为商高定理;三国时的爽对髀算经内的勾股定理作出了详细注释,作为一个证明。 我国古把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 怎样求勾3股4弦5三角形的高这是直角三角形3和4两边是直角边,可以互为底边和高至于一5为底边时的高可以根据面积求s=3*4/2=5*h/2h=2.4。 用面积求:3*4/5=2.4就是斜边的高了,因为“勾3股4弦5三角形”是直角三角形!其他两边的高就是其对应的边。2023-05-20 19:33:171
勾三股四玄五分别代表什么三角形的那条边
勾三股四弦五,分别表示直角三角形的边长为3的直角边、边长为4的直角边和边长为5的斜边。2023-05-20 19:33:242
直角三角形,勾3股4弦5数怎样计算得来的
勾股定理:勾²+股²=弦²3²+4²=5²即:3×3+4×4=5×5知道其中二个数字,可以计算出另一个数字.2023-05-20 19:33:312
勾三股四弦五是什么意思?
在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2 股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500). 实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库. 无论是古埃及人、古巴比伦人还是我们中国人谁最先发现了勾股定理,我们的先人在不同的时期、不同的地点发现的这同一性质,显然不仅仅是哪一个民族的私有财产而是我们全人类的共同财富.值得一提的是:在发现这一共同性质后的收获却是不完全相同的.下面以“毕达哥拉斯定理”和“勾股定理”为例,做一简单介绍: 一、毕达哥拉斯定理 毕达哥拉斯是一个古希腊人的名字.生于公元前6世纪的毕达哥拉斯,早年曾游历埃及、巴比伦(另一种说法是到过印度)等地,后来移居意大利半岛南部的克罗托内,并在那里组织了一个集政治、宗教、数学于一体的秘密团体毕达哥拉斯学派,这个学派非常重视数学,企图用数来解释一切.他们宣称,数是宇宙万物的本原,研究数学的目的并不在于实用,而是为了探索自然的奥秘.他们对数学看法的一个重大贡献是有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是截然不同的.有些原始文明社会中的人(如埃及人和巴比伦人)也知道把数脱离实物来思考,但他们对这种思考的抽象性质所达到的自觉认识程度,与毕达哥拉斯学派相比,是有相当差距的.而且在希腊人之前,几何思想是离不开实物的.例如,埃及人认为,直线就是拉紧的绳或田地的一条边;而矩形则是田地的边界.毕达哥拉斯学派还有一个特点,就是将算术和几何紧密联系起来. 正因为如此,毕达哥拉斯学派在他们的探索中,发现了既属于算术又属于几何的用三个整数表示直角三角形边长的公式:若2n 1,2n2 2n分别是两直角边,则斜边是2n2 2n 1(不过这法则并不能把所有的整勾股数组表示出来).也正是由于上述原因,这个学派通过对整勾股数的寻找和研究,发现了所谓的“不可通约量”例如,等腰直角三角形斜边与一直角边之比即正方形对角线与其一边之比不能用整数之比表达.为此,他们把那些能用整数之比表达的比称做“可公度比”,意即相比两量可用公共度量单位量尽,而把不能这样表达的比称做“不可公度比”.像我们今日写成:1的比便是不可公度比.至于与1不能公度的证明也是毕达哥拉斯学派给出的.这个证明指出:若设等腰直角三角形斜边能与一直角边公度,那么,同一个数将既是奇数又是偶数.证明过程如下:设等腰直角三角形斜边与一直角边之比为:,并设这个比已表达成最小整数之比.根据毕达哥拉斯定理2=2 2,有2=22.由于22为偶数即x2为偶数,所以必然也是偶数,因为任一奇数的平方必是奇数(任一奇数可表示为2n 1,于是(2n 1)2=4n2 4n 1,这仍是一个奇数.但是比:是既约的,因此,必然不是偶数而是奇数,既然是偶数,故可设=2.于是2=42=22.因此,2=22,这样,2是个偶数,于是也是偶数,但是同时又是个奇数,这就产生了矛盾. 关于对毕达哥拉斯定理的证明,现在人类保存下来的最早的文字资料是欧几里得(公元前300年左右)所著的《几何原本》第一卷中的命题47:“直角三角形斜边上的正方形等于两直角边上的两个正方形之和”.实际上,毕达哥拉斯学派关心得更多的是数学问题本身的研究;以毕达哥拉斯学派为代表的古希腊数学是以空间形式为主要研究对象,以逻辑上的演绎推理为主要的理论形式.而毕达哥拉斯定理的发现(关于可公度比与不可公度比的研究、讨论),实际上导致了无理数的发现,尽管毕达哥拉斯学派不愿意接受这样的数,并因此造成了数学史上所谓的第一次数学危机,但是毕达哥拉斯学派的探索仍然是功不可没的. 二、我国的勾股定理 在我国,至今可查的有关勾股定理的最早记载,是大约公元前1世纪前后成书的《周髀算经》,其中有一段公元前1千多年前的对话:“昔者周公问于商高曰:窃闻乎大夫善数也,请问古者包牺立周天历度,夫天不可阶而升,地不可得尺寸而度.请问数安从出?商高曰:数之法,出于圆方.圆出于方,方出于矩,矩出于九九八十一.故折矩,以为勾广三,股修四,径隅五.” 《周髀算经》中还有“陈子测日”的记载:根据勾股定理,周子可以测出日高及日远.例如,当求得了日高及测得了测量人所在位置到日下点的距离之后,计算日远的方法是:“若求邪至日者,以日下为勾,日高为股,勾股自乘,并开方而除之,得邪至日者.” 《周髀算经》是我国流传至今的一部最早的数学著作.书中主要讲述了学习数学的方法以及用勾股定理来计算高深远近和比较复杂的分数计算等.在唐代,《周髀算经》与其他九部陆续出现在我国汉唐两代千余年间的数学著作一起,被国子监算学馆定为课本,后世通称这十本书为《算经十书》.《算经十书》较全面地反映了自先秦至唐初我国的数学成就.其中许多书中都涉及到了勾股定理的内容,尤其《九章算术》(《算经十书》之一)第九章“勾股”专门讲解有关直角三角形的理论,所讨论的主要内容就是勾股定理及其应用.该章共有设问24题,提出22术.其中第6题是有名的“引葭赴岸”:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.”这是一个流传甚广的题目,类似题目一再在其他书中出现,例如成书于5世纪中叶的《张邱建算经》(《算经十书》之一)、朱世杰所著的《四元玉鉴》(1303年)等. 我们的先辈们还根据勾股定理发明了一种由互相垂直的勾尺和股尺构成的测量工具矩.如,《周髀算经》中记载了商高对用矩之道的论述:“平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”又如,我国魏晋间杰出的数学家刘徽在他的名著《海岛算经》(《算经十书》之一)中共列出了9个有代表性的可用矩解决的测望问题,其中第4个问题是:“今有望深谷,偃矩岸上,令勾高六尺,从勾端望谷底,入下股九尺一寸,又设重矩于上,其矩间相去三丈,更从勾端望谷底,入上股八尺五寸,问谷深几何.” 我国最早的关于勾股定理的证明,目前人们认为是汉代赵爽对《周髀算经》的注释. 我国古代的数学与古希腊的数学不大一样.实际上,我国数学的主要研究对象不是空间形式,而是数量关系;其理论形式不是逻辑演绎体系,而是以题解为中心的算法体系.与古希腊数学采取层层论证的思维方式不同,我国古代数学家的思维方式是以直觉思维为主,又以类比为发现和推论结果的主要手段. 对于勾股定理,我国古代的数学家没有把主要精力放在仅仅给出严格的逻辑推理证明上,也没有在不可通约量究竟是什么性质的数上面做文章,而是立足于对由此可以解决的一类实际问题算法的深入研究.通过在直角三角形范围内讨论与勾股定理、相似直角三角形性质定理有关的命题,他们推出了一种组合比率算法勾股术.勾股术把相似直角三角形的概念作为基本概念,把相似直角三角形的性质作为基本性质,使相似直角三角形之间的相似比率构成了勾股的核心.勾股术用比率表达相似勾股对应边成比例的原理,勾股整数和勾股两容(容圆、容方)问题的求解;建立了勾股测量的理论基础.后来,刘徽实际上把相似勾股形理论确定为勾股比率论,并明确提出了“不失本率原理”,又把这个原理与比例算法结合起来,去论证各种各样的勾股测量原理,从而为我国古代的勾股测望术建立了坚实的理论基础. 有的专家还提出:勾股定理在我国古代数学中占有十分重要的地位,千百年来逐渐形成了一门以勾股定理及其应用为核心的中国式的几何学.2023-05-20 19:33:421
勾三股四弦五是什么意思?
是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a²+b²=c² 即直角三角形两直角边的平方和等于斜边的平方。 (称勾股定理的逆定理)2023-05-20 19:33:491
勾三股四弦五黄方二的黄方二是什么意思?
黄方是指直角三角形内切圆的直径 黄方二就是内切圆直径为二2023-05-20 19:33:551