汉邦问答 / 问答 / 问答详情

虚数i的三次方,四次方分别是什么←_←???

2023-05-20 08:55:57
NerveM

i的平方是-1,三次方是-i,-i的四次方就是1啦

LuckySXyd

i^3 = i^2 * i = (-1) * i = -i

i^4 = i^2 * i^2 = (-1) * (-1) = 1

陶小凡

三次方是-i。四次方是1

小白

3次方是-i 四次方是1

hi投

虚数

北营

三次方-1,四次方1

meira

什么是虚数?虚数的定义是什么?

在数学里,将平方是负数的数定义为纯虚数负数开平方,在实数范围内无解。 数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。 于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分)。 虚数单位为i, i即根号负1。 3i为虚数,即根号(-3), 即3×根号(-1) 2+3i为复数,(实数部分为2,虚数部分为3i)
2023-05-19 22:30:0312

虚数是什么?

虚数可以表示为z=a+bi(a、b∈R),当a=0,b≠0时就表示的是纯虚数。【扩展】虚数就是其平方是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。1777年瑞士数学家欧拉(或译为欧勒)开始使用符号i[其中i=√(-1)]表示虚数的单位,后来人们将虚数和实数有机地结合起来,写成a+bi形式,其中a称为该虚数的实部,b称为该虚数的虚部,且a、b均为实数,当复数的实部为0且虚部不为0时,平方是负数的数定义为纯虚数即为已知:当b=0时,z=a,这时复数成为实数 当a=0且b≠0时,z=bi,我们就将其称为纯虚数。负数是纯虚数的充要条件:1:z=a+bi(a,b∈R)是纯虚数<=>a=0且b≠02:z是纯虚数<=>z+z"=0且z≠03: z是纯虚数<=>z²<0
2023-05-19 22:30:381

什么是虚数?

什么是虚数? 负数开平方,在实数范围钉无解。 数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。 于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分)。虚数单位为i, i即根号负1。 3i为虚数,即根号(-3), 即3×根号(-1) 2+3i为复数,(实数部分为2,虚数部分为3i) 什么是虚数单位? i的平方=-1 i就是虚数单位 高三数学课本上有 我们将形如:Z=x+iy的数称为复数,其中i为虚数单位,并规定i^2=i*i=-1.x与y是任意实数,依次称为z的实部(real part)与虚部(imaginary part),分别表示为Rz=x , Im z=y. 易知:当y=0时,z=x+iy=x+0,我们就认为它是实数;当x=0时z=x+iy=0+iy我们就认为它是纯虚数。设 Z1=x+iy是一个复数,称 Z2=x-iy为Z1的共轭复数。 复数的四则运算规定为: (a+bi)+(c+di)=(a+c)+(b+d)i, (a+bi)-(c+di)=(a-c)+(b-d)i, (a+bi)•(c+di)=(ac-bd)+(bc+ad)i, (c与d不同时为零) (a+bi)÷(c+di)=[(ac+bd) / (c^2+d^2)]+[(bc-ad) / (c^2+d^2)] i, (c+di)不等于0 复数有多种表示形式,常用形式 z=a+bi 叫做代数式。 此外有下列形式。 ①几何形式。复数z=a+bi 用直角座标平面上点 Z(a,b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。 ②向量形式。复数z=a+bi用一个以原点O为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数的加、减法运算得到恰当的几何解释。 ③三角形式。复数z=a+bi化为三角形式 z=r(cosθ+sinθi) 式中r= sqrt(a^2+b^2),叫做复数的模(或绝对值);θ 是以x轴为始边;向量OZ为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。 ④指 数形式。将复数的三角形式 z=r( cosθ+isinθ)中的cosθ+isinθ换为 exp(iθ),复数就表为指数形式z=rexp(iθ) 复数三角形式的运算: 设复数z1、z2的三角形式分别为r1(cosθ1+isinθ1)和r2(cosθ2+isinθ2),那么z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)] z1÷z2=r1÷r2[cos(θ1-θ2)+isin(θ1-θ2)],若复数z的三角形式为r(cosθ+isinθ),那么z^n=r^n(cosnθ+isinnθ),n√z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=1,2,3……)必须记住:z的n次方根是n个复数。 复数的乘、除、乘方、开方可以按照幂的运算法则进行。复数集不同于实数集的几个特点是:开方运算永远可行;一元n次复系数方程总有n个根(重根按重数计);复俯不能建立大小顺序。 高考的话出在第一道选择题上
2023-05-19 22:30:451

虚数的概念,定义

对形如z=a+bi(a,b是实数)的数叫复数当a=0时叫纯虚数当b=0时为实数当b不为零时叫虚数
2023-05-19 22:30:546

“虚数”包括什么?

“虚数”包括形如a+b*i的数,其中a,b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。虚数的作用:如果涉及到旋转角度的改变,处理起来更方便。比如,一条船的航向是 3 + 4i 。如果该船的航向,逆时针增加45度,计算新航向。45度的航向就是 1 + i 。计算新航向,只要把这两个航向 3 + 4i 与 1 + i 相乘就可以了(原因在下一节解释):( 3 + 4i ) * ( 1 + i ) = ( -1 + 7i )所以,该船的新航向是 -1 + 7i 。如果航向逆时针增加90度,就更简单了。因为90度的航向就是 i ,所以新航向等于:( 3 + 4i ) * i = ( -4 + 3i )。
2023-05-19 22:31:141

什么是虚数?虚数的定义又是什么??

虚数可以指以下含义: (1)[unreliable figure]:虚假不实的数字。  (2)[imaginary part]:复数中a+bi,b不等于零时bi叫虚数。  (3)[imaginary number]:汉语中不表明具体数量的词。 [编辑本段]数学中的虚数  在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。  这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 [编辑本段]虚数的实际意义  我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 [编辑本段]起源  “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。  人们发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。   到了16世纪,意大利数学家卡当在其著作《大法》(《大衍术》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。  1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式:  形如:x^3+ax+b=0的三次方程解如下:x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)  当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3)  在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。   直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。  由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如  继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。 [编辑本段]i的性质  i 的高次方会不断作以下的循环:  i^1 = i  i^2 = - 1  i^3 = - i  i^4 = 1  i^5 = i  i^6 = - 1...  由于虚数特殊的运算规则,出现了符号i  当ω=(-1+√3i)/2或ω=(-1-√3i)/2时:  ω^2 + ω + 1 = 0  ω^3 = 1  许多实数的运算都可以推广到i,例如指数、对数和三角函数。  一个数的ni次方为:  x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)).  一个数的ni次方根为:  x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))).  以i为底的对数为:  log_i(x) = 2 ln(x)/ i*pi.  i的余弦是一个实数:  cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064.  i的正弦是虚数:  sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i.  i,e,π,0和1的奇妙关系:  e^(i*π)+1=0  i^I=e^(-π÷2) [编辑本段]符号来历  1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。  通常,我们用符号C来表示复数集,用符号R来表示实数集。 [编辑本段]相关描述  虚数 原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院)   翻译:徐国强  虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。  IMAGINARY by Lawrence Mark LesserArmstrong Atlantic State University  Imaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i."   [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致[1]参考资料: 《人文数学网络期刊》22期48页开放分类: 词语,数学,词汇,数词,复数
2023-05-19 22:31:381

什么是虚数

与实数相对。
2023-05-19 22:31:473

什么是虚数?

虚数定义在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。虚数的由来随着数学的发展,数学家发现一些 三次方程的实数根还非得用负数的平方根表示不可。而且,如果承认了负数的平方根,那么代数方程的有无根问题就可以得到解决,并且会得出n次方程有n个根这 样一个令人满意的结果。此外,对负数的 平方根按数的运算法则进行运算,结果也是正确的。意大利数学家卡尔丹作出一个折中表示,他称负数的平方根为 “虚构的数”,意思是,可以承认它为数,但不像实数那样可以表示实际存在的 量,而是虚构的。到了 1632年,法国数学家笛卡儿,正式给了负数的平方根一个 大家乐于接受的名字——虚数。虚数的虚字表示它不代表实际的 数,而只存在于想象之中。尽管虚数是 “虚”的,但数学家却没有放松对它的研 究,他们发现了关于虚数的许许多多的性 质和应用。大数学家欧拉提出了 “虚数单位”的概念,他把U 作为虚数单位,用符号i表示,相当于实数的单位1。虚数有了单位,就能像实数 一样,写成虚数单位倍数的形式了。从此,数学家把实数与虚数同等对待,并合称为复数,于是,数的家族得到 了统一。任何一个复数可以写成a+bi的 形式,当b=0时a+bi=a,它就是实数,当 b#0时,a+bi就是虚数了。“在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴。这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。”
2023-05-19 22:31:541

什么是虚数?

在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2 = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。定义在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。“虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。
2023-05-19 22:32:015

什么叫虚数

虚数 在数学里,如果有数平方是负数的话,那个数就是虚数了;所有的虚数都是复数。“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数轴和实数轴构成的平面称复平面,复平面上每一点对应着一个复数。 虚数的符号 1777年瑞士数学家欧拉开始使用符号i=√(-1)表示叙述的单位。而后人将虚数和实数有机的结合起来,写成a+bi形式 (a、b为实数),称为复数。 虚数的历史 由于虚数闯入数的领域时,人们对它的实际用处一无所知,在实际生活中似乎也没有用复数来表达的量,因此,在很长的一段时间里,人们对虚数产生过种种怀疑和误解。卡迪尔称“虚数”的本意是指他是假的;莱布尼兹在公元18世纪初则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如√(-1)、√(-2)的数学式都是不可能有的,纯属虚幻的。 欧拉之后,挪威的一个测量学家维塞尔,提出把复数a+bi用平面上的点(a,b)来表示。后来,高斯提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一盘用来表示向量(有方向的数量),这在水力学、地图学、航空学中的应用是十分广泛的。虚数越来越显示出其丰富的内容,真是:虚数不虚
2023-05-19 22:32:171

什么叫做虚数

虚数释义:1.复数a+bi中,当b≠0时叫做虚数,如1-3i;当a=0,b≠0时叫做纯虚数,如5i。见〖复数〗。
2023-05-19 22:32:351

虚数是什么

通常是指负数的平方根,用i表示。例如,-2的平方根为根2i。
2023-05-19 22:32:435

什么是虚数

a+bi(b不等于0)的形式出现
2023-05-19 22:33:004

虚数是什么意思

虚数没有正负可言。不是实数的复数,即使是纯虚数,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的在数学里。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,起名为复数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,所以±√(-1)=±i,也不能比较大小
2023-05-19 22:33:071

虚数是什么意思

题库内容:虚数的解释(1) [unreliable figure]∶虚假 不实 的数字 (2) [imaginary number]∶实数与虚数单位之积,亦即实部为零的 复数 (如3i) 详细解释 (1).不表示 实际 数量的数词。 宋 司马 光 《言山陵择地札子》 :“伏望朝廷特赐指挥按行山陵使等,只於 永安县 界旧陵侧近选择善地,旬日之内,早定夺闻奏……不得 大约 虚数及妄立近限,必使号令明信,则事无不济而民力不困矣。” 清 汪中 《述学·释三九上》 :“因而生人之措辞,凡一二之所不能尽者,则约之三以见其多;三之所不能尽者,则约之九以见其极多,此 言语 之虚数也。实数可稽也,虚数不可执也。” (2).虚假的数额。 宋 苏轼 《应诏论四事状》 :“ 元丰 八年登极大赦以前,人户积欠共计五万三百馀贯,若谓非贫乏有可送纳,即自 元祐 元年 至今,并不曾纳到分文,显见 有司 空留帐籍虚数,以害朝廷实惠。” 宋 陆游 《陆郎中墓 志铭 》 :“尝为 丹徒 丞,朝廷用言者,遣使籍江上沙田,立税额,使指甚厉,吏莫敢违,亦或从而张虚数以为功。” 《宋史·食货志下五》 :“十三场茶岁课缗钱五十万……岁纔得息钱三万馀缗,而官吏廪给杂费不预,是则虚数多而 实利 寡。” 《金史·陈规传》 :“ 唐 魏徵 曰:‘兵在以道御之而已。御壮健 足以 无敌于 天下 ,何取细弱以增虚数。"” (3).虚伪的礼节。数, 礼数 。 清 侯方域 《陈 将军 二鹤记》 :“世之战士,皆骁雄劲悍之徒……养以有馀之财而作其感恩之气, 然后 报其主而不叛。吾未见其可以虚数致也。” (4).数学 名词 。负数的平方根。 词语分解 虚的解释 虚 ū 空:虚无。虚实。虚度。虚名。虚左( 尊敬 地空出左边的座位,古代以左为尊)。空虚。乘虚而入。 不真实的:虚伪。虚假(?)。虚妄。虚惊。虚夸。虚构。虚传。虚张声势。 内心怯懦:做贼 心虚 。 不 自满 :虚 数的解释 数 (数) ù 表示、划分或 计算 出来的量:数目。数量。数词。数论(数学的一支,主要 研究 正整数的 性质 以及和它有关的 规律 )。数控。 几,几个:数人。数日。 技艺 ,学术:“今夫弈之为数,小数也”。 命运 ,天
2023-05-19 22:33:141

虚数是什么

高中课本 选修2 104页
2023-05-19 22:33:235

数学:什么是虚数?详细!

在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。这种数有一个专门的符号“i”(imaginary),它称为虚数单位。定义为i^2=-1。
2023-05-19 22:33:394

虚数的定义是什么?

一个实数乘以i称为纯虚数,例如5i 就是一个纯虚数。在复数域中,负数-1的平方根记为i(即i²=-1),称为虚数或虚数单位。从复数相等的定义知道,任何一个复数都可以用一个有序实数对(a,b)唯一确定,可以用建立直角坐标系的平面来表示复数。建立了直角坐标系来表示复数的平面叫作复平面,x轴叫作实轴,y轴叫作虚轴,这样,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。扩展资料在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b*i分别被称为复数的实部和虚部。虚数表示具有非零虚部的任何复数。参考资料来源:百度百科——纯虚数参考资料来源:百度百科——虚数
2023-05-19 22:33:531

虚数是什么?

虚数就是指数幂是负数的数.虚数这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字.后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实. 虚数都是复数.定义为i²=-1
2023-05-19 22:34:051

什么是虚数?

亲,虽然百度上有一种解释为虚数[xūshù]更多图片(3张)虚数就是指数幂是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实
2023-05-19 22:34:1315

什么是虚数?

为了定义一个数i的平方是负一的一个常数
2023-05-19 22:34:482

虚数有什么性质?

虚数的性质:没有大小,可以用向量在复平面表示,有其共轭虚数,纯虚数的平方为负。所有的虚数都是复数。虚数就是其平方是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念 认为这是真实不存在的数字。后来发现 虚数可对应平面上的纵轴,与对应平面 上横轴的实数同样真实。虚数轴和实数轴构成的平面称复数平面,复平面上每一点对应着一个复数。
2023-05-19 22:35:093

什么是虚数和复数??

(1)[unreliable figure]∶虚假不实的数字(2)[imaginary part]∶复数中a+bi,b不等于零时bi叫虚数(3)[英文]:imaginary number汉语中不表明具体数量的词。 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。 虚数单位为i, i即根号负1。 3i为虚数,即根号(-3), 即3×根号(-1) a为实数部,b虚数部为2+3i为复数,(分为2,分为3i) 虚数的实际意义 在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。这种数有一个专门的符号“i”(imaginary),它称为虚数单位。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA. 不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。1<2是对的,但1+i<2+i是错的。 我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。 “虚数”这个名词,使人觉得挺玄乎,好像有点“虚”,实际上它的内容却非常“实”。 虚数是在解方程时产生的。求解方程时,常常需要将数开方,如果被开方数是正数,就可以算出要求的根;但如果被开方数是负数,那怎么办呢? 早以前,大多数人都认为负数是没有平方根的。到了16世纪,意大利数学家卡当在其著作《大法》(年)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。 直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。 由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如 继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。真是:虚数不虚! 虚数的发展说明了:许多数学概念的产生并不直接来自实践,而是来自思维,但只有在实际生活中有了用处时,这些概念才能被接受而获得发展。[编辑本段]i的性质 i 的高次方会不断作以下的循环: i^1 = i i^2 = - 1 i^3 = - i i^4 = 1 i^5 = i i^6 = - 1... 由于虚数特殊的运算规则,出现了符号i 当ω=(-1+√3i)/2或ω=(-1-√3i)/2时: ω^2 + ω + 1 = 0 ω^3 = 1[编辑本段]虚数的符号 1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。 通常,我们用符号C来表示复数集,用符号R来表示实数集。复数的定义 数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解。因此将数集再次扩充,达到复数范围。 我们定义,形如z=a+bi的数称为复数,其中规定i为虚数单位,且i^2=i*i=-1(a与b是任意实数) 我们将复数z=a+bi中的实数a称为虚数z的实部(real part)记作Rez=a 实数b称为虚数z的虚部(imaginary part)记作 Imz=b. 易知:当b=0时,z=a+ib=a+0,这时复数成为实数; 当a=0时z=a+bi=0+bi我们就将其称为纯虚数。 设z=a+bi是一个复数,则称复数z‘=a-bi为z的共轭复数。 定义:复数的模(绝对值)=√(a^2+b^2)(定义原因见下述内容) 复数的集合用C表示,显然,R∩C=R(即R是C的真子集)复数(代数式)的四则运算:(a+bi)+(c+di)=(a+c)+(b+d)i, (a+bi)-(c+di)=(a-c)+(b-d)i, (a+bi)•(c+di)=(ac-bd)+(bc+ad)i, (c与d不同时为零) (a+bi)÷(c+di)=[(ac+bd) / (c^2+d^2)]+[(bc-ad) / (c^2+d^2)] i, (c+di)不等于0
2023-05-19 22:35:388

什么叫虚数?

√-1在实数范围内无解,定义:√-1=i,虚数的形式就是:bi
2023-05-19 22:35:542

什么是虚数和复数

在数学中,将偶指数幂是负数的数定义为纯虚数。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。复数包含虚数,所以所有的虚数都是复数。虚数没有正负可言,不是实数的复数,即使是纯虚数,也不能比较大小。复数集包含了实数集,因而是复数是实数的扩张。
2023-05-19 22:36:002

虚数在实际生活中究竟有什么意义?

因为没有什么实际意义,所以叫虚数
2023-05-19 22:36:2411

什么是实数、虚数?

实数可以分为有理数和无理数两类,或正实数,负实数和零三类,或代数式和超越数三类.我们平常生活、学习中碰到的数都是实数. 虚数就是指数幂是负数的数.如果有一个数的平方是负数,那这个数就是虚数了,例:x^2=-1,那么x就是虚数.
2023-05-19 22:37:101

虚数怎么计算

其实你不用对虚数下太多的功夫高考的虚数就是考一个选择题而且只是虚数的四则运算这个你没有问题吧见到i??就用-1来带~
2023-05-19 22:37:182

虚数如何产生的,意义是什么

复数 开放分类: 数学、数学家、实数、虚数定义[编辑本段]复数就是实数和虚数的统称复数的基本形式是a+bi,其中a,b是实数,a称为实部,bi称为虚部,i是虚数单位,在复平面上,a+bi是点Z(a,b)。Z与原点的距离r称为Z的模|Z|=√a方+b方a+bi中:a=0为纯虚数,b=0为实数,b不等于0为虚数。复数的三角形式是 Z=r[cosx+isinx]中x,r是实数,rcosx称为实部,irsinx称为虚部,i是虚数单位。Z与原点的距离r称为Z的模,x称为辐角。起源[编辑本段]16世纪意大利米兰学者卡当(Jerome Cardan1501—1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”。他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把10分成两部分,使它们的乘积等于40时,他把答案写成=40,尽管他认为和这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两部分,并使它们的乘积等于40。给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数”与“实的数”相对应,从此,虚数才流传开来。 数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家莱布尼茨(1646—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。瑞士数学大师欧拉(1707—1783)说;“一切形如,习的数学武子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达朗贝尔(1717—1783)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是的形式(a、b都是实数)(说明:现行教科书中没有使用记号=-i,而使用=一1)。法国数学家棣莫佛(1667—1754)在1730年发现公式了,这就是著名的棣莫佛定理。欧拉在1748年发现了有名的关系式,并且是他在《微分公式》(1777年)一文中第一次用i来表示一1的平方根,首创了用符号i作为虚数的单位。“虚数”实际上不是想象出来的,而它是确实存在的。挪威的测量学家成塞尔(1745—1818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。 德国数学家高斯(1777—1855)在1806年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数a+bi。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“高斯平面”。高斯在1831年,用实数组(a,b)代表复数a+bi,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数—一对应,扩展为平面上的点与复数—一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间—一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。 经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不虚呵。虚数成为了数系大家庭中一员,从而实数集才扩充到了复数集。 随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据。具体内容和应用[编辑本段]形如a+bi的数 。式中 a,b 为实数 ,i是 一个满足i^2=-1的数 ,因为任何实数的平方不等于-1,所以 i不是实数,而是实数以外的新的数。在复数a+bi中,a 称为复数的实部,b称为复数的虚部 ,复数的实部和虚部分别用Rez和Imz表示,即Rez =a,Imz=b。i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。复数的产生来自解代数方程的需要。16世纪,意大利数学家G.卡尔达诺首先用公式表示出了一元三次方程的根,但公式中引用了负数开方的形式,并把 i=sqrt(-1) 当作数,与其他数一起参与运算。由于人们无法理解 i的实质,所以在很长时间内不承认负数的平方根也是数,而称之为虚数。直到19世纪,数学家们对这些虚数参与实数的代数运算作出了科学的解释,并在解方程和其他领域中使虚数得到了广泛的应用,人们才认识了这种新的数。复数的四则运算规定为:(a+bi)+(c+di)=(a+c)+(b+d)i,(a+bi)-(c+di)=(a-c)+(b-d)i,(a+bi)�6�1(c+di)=(ac-bd)+(bc+ad)i,(c与d不同时为零)(a+bi)÷(c+di)=(ac+bd/c^2+d^2)+(bc-ad/c^2+d^2)i,(c+di)不等于0复数有多种表示形式,常用形式 z=a+bi 叫做代数式。此外有下列形式。①几何形式。复数z=a+bi 用直角坐标平面上点 Z(a,b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。②向量形式。复数z=a+bi用一个以原点O为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数的加、减法运算得到恰当的几何解释。③三角形式。复数z=a+bi化为三角形式z=r(cosθ+isinθ)式中r= sqrt(a^2+b^2),叫做复数的模(或绝对值);θ 是以x轴为始边;向量OZ为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。④指 数形式。将复数的三角形式 z=r( cosθ+isinθ)中的cosθ+isinθ换为 exp(iθ),复数就表为指数形式z=rexp(iθ)复数三角形式的运算:设复数z1、z2的三角形式分别为r1(cosθ1+isinθ1)和r2(cosθ2+isinθ2),那么z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]z1÷z2=r1÷r2[cos(θ1-θ2)+isin(θ1-θ2)],若复数z的三角形式为r(cosθ+isinθ),那么z^n=r^n(cosnθ+isinnθ),n√z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=1,2,3……)必须记住:z的n次方根是n个复数。复数的乘、除、乘方、开方可以按照幂的运算法则进行。复数集不同于实数集的几个特点是:开方运算永远可行;一元n次复系数方程总有n个根(重根按重数计);复数不能建立大小顺序。┢柯乐栤┮ 2008-08-24 12:03 您觉得这个答案好不好?好(2)不好(0) 实数包括有理数和无理数。其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括整数,分数,0.数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是:│a│=①a为正数时,|a|=a②a为0时, |a|=0③a为负数时,|a|=-a③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)
2023-05-19 22:37:251

数学中虚数是什么?生活中又什么?

虚数只有在高中课程里遇到,在初中的知识里,一个数的平方只能是一个大于或者等于0的数,但是到了高中以后,我们发现并不能满足我们的计算需要,就规定一个数的平方等于-1,即i^2=-1,i就是一个虚数单位。
2023-05-19 22:37:441

虚数有什么实际用途?

有啊,而且用处很大,在工程技术中尤为重要。楼主应该知道,纯虚数加上一个实数部分就变成复数了,就因为复数的这种特殊结构,所以它在复平面上并不是表示一个数,而可以表示一个点,表示一个平面向量。所以有关平面向量的问题就有可能利用复变函数来研究。这样,它就逐渐被广泛应用于物理理论、弹性力学、流体力学等等学科,成为重要的数学工具。与此同时,人们也逐渐改变了对复数的看法,不再指责它是“虚无缥缈”的东西了。复变函数里的解析函数的性质非常方便解决工程问题,还有非常有名的“傅立叶变换”和“拉普拉斯变换”都是利用复变函数得到的。
2023-05-19 22:37:501

复数中的实数、虚数、纯虚数是怎样定义的

对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数~嗯哼~╮(╯▽╰)╭
2023-05-19 22:37:591

复数和虚数有区别吗?

你好!在西方,如果有人敲门,主人会自言自语一句,是谁呀?而这个谁不是用he,也不是用she,而是用it.因为无法判断性别,故用it代替,这是一种不确定性。而你说的如果就是一种不确定性,复数是一切数的代称,就像初中讲的未知数x一样。而数学就用一些方法和计算,去证明,来确认,就像初中做的解方程一样。
2023-05-19 22:38:084

实数虚数的概念,纯虚数和虚数的区别

实数:有理数和无理数的总称.其中无理数就是无限不循环小数,有理数就包括整数和分数.虚数:在数学里,将平方是负数的数定义为纯虚数.所有的虚数都是复数.这种数有一个专门的符号“i”(imaginary),它称为虚数单位.定义为i^2=-1.纯虚数:将虚数和实数有机地结合起来,写成a+bi形式,其中a称为该虚数的实部,b称为该虚数的虚部,且a、b均为实数,当虚数的实部为0且虚部不为0时,该虚数就叫纯虚数.
2023-05-19 22:38:231

微积分中什么是虚数,什么又是复数?

“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数轴和实数轴构成的平面称复平面,复平面上每一点对应着一个复数。复数由实数部分和虚数部分所组成的数。实数部分可以是零。如果虚数部分也允许是零,那么实数就是复数的子集。列如形为2+3i,4+5i的数都是复数。就如同实数可以在数轴上表示一样,复数可以在平面上表示,这种表示通常被称为阿干图示法,以纪念瑞士数学家阿干(J.R.Argand,1768-1822)。复数x+iy以坐标黑点(x,y)来表示如果两个复数的实部相等,虚部互为相反数,那么这两个复数称为共轭复数.
2023-05-19 22:38:321

虚数概念

复数的平方根叫虚数
2023-05-19 22:38:452

复数中的实数、虚数、纯虚数是怎样定义的

数学上,实数直观地定义为和数轴上的点一一对应的数.原本的数称作“实数”——意义是“实在的数”.虚数是指平方是负数的数.当复数的实部为0且虚部不为0时,平方是负数的数定义为纯虚数
2023-05-19 22:38:541

什么叫虚数

虚数是指实数以外的复数,其中实部为0的虚数称为纯虚数。 在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。 可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。定义在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。符号1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。通常,我们用符号C来表示复数集,用符号R来表示实数集。
2023-05-19 22:39:281

什么是虚数?

非实数,即为虚数,比如X的平方=-1,X的解即为虚数!!虚数用i表示。i就是一个虚数,再比如1+i,2+i,.....
2023-05-19 22:39:353

什么是虚数 虚数的介绍

1、在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2 = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。 2、可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。 3、在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。
2023-05-19 22:39:411

什么叫虚数

虚假不实的数字,实数与虚数单位之积、亦即实部为零的复数(如3i)。在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b可对应平面上的纵轴。这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。sin(a+bi)=sin(a)cos(bi)+sin(bi)cos(a)=sin(a)cosh(b)+isinh(b)cos(a)cos(a-bi)=cos(a)cos(bi)+sin(bi)sin(a)=cos(a)cosh(b)+isinh(b)sin(a)tan(a+bi)=sin(a+bi)/cos(a+bi)cot(a+bi)=cos(a+bi)/sin(a+bi)sec(a+bi)=1/cos(a+bi)csc(a+bi)=1/sin(a+bi)
2023-05-19 22:39:501

什么是虚数?

-1开方,就是虚数i还有很多,都是一些无法表示成实数,但数学家们坚称存在的数在我们高中范围内虚数的平方是负数,但具体还有没有其它的就不知道了
2023-05-19 22:40:092

虚数是什么 举一个例子有哪些?

在数学中,虚数就是形如a+b*i的数,其中a、b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内地点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。例如:(1)2+3i就表示一个复数,2是实部,3i表示虚部,3i就表示一个纯虚数;(2)-1的开方就是虚数,称为一个虚数单位。虚数的由来:随着数学的发展,数学家发现一些三次方程的实数根还非得用负数的平方根表示不可,而且如果承认了负数的平方根,那么代数方程的有无根问题就可以得到解决,并且会得出n次方程有n个根这样一个令人满意的结果,此外对负数的平方根按数的运算法则进行运算,结果也是正确的。意大利数学家卡尔丹作出一个折中,表示他称负数的平方根为 “虚构的数”,意思是可以承认它为数,但不像实数那样可以表示实际存在的量,而是虚构的,到了1632年,法国数学家笛卡儿正式给了负数的平方根,一个大家乐于接受的名字——虚数。虚数的虚字,表示它不代表实际的数,而只存在于想象之中,尽管虚数是 “虚”的,但数学家却没有放松对它的研究。他们发现了关于虚数的许许多多的性质和应用,大数学家欧拉提出了 “虚数单位”的概念,他把U作为虚数单位,用符号i表示,相当于实数的单位1,虚数有了单位,就能像实数一样写成虚数单位倍数的形式了。从此数学家把实数与虚数同等对待,并合称为复数,于是数的家族得到了统一,任何一个复数可以写成a+bi的形式,当b=0时,a+bi=a,它就是实数当;b#0时,a+bi就是虚数了。以上内容参考:百度百科-虚数
2023-05-19 22:40:171

虚数是什么

虚数就是指数幂是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。
2023-05-19 22:40:323

虚数是什么

在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。下面是我整理的详细内容,一起来看看吧! 虚数定义 在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 虚数的由来 随着数学的发展,数学家发现一些 三次方程的实数根还非得用负数的平方根表示不可。而且,如果承认了负数的平方根,那么代数方程的有无根问题就可以得到解决,并且会得出n次方程有n个根这 样一个令人满意的结果。此外,对负数的 平方根按数的运算法则进行运算,结果也是正确的。 意大利数学家卡尔丹作出一个折中表示,他称负数的平方根为 “虚构的数”,意思是,可以承认它为数,但不像实数那样可以表示实际存在的 量,而是虚构的。到了 1632年,法国数学家笛卡儿,正式给了负数的平方根一个 大家乐于接受的名字——虚数。 虚数的虚字表示它不代表实际的 数,而只存在于想象之中。尽管虚数是 “虚”的,但数学家却没有放松对它的研 究,他们发现了关于虚数的许许多多的性 质和应用。大数学家欧拉提出了 “虚数单位”的概念,他把U 作为虚数单位,用符号i表示,相当于实数的单位1。虚数有了单位,就能像实数 一样,写成虚数单位倍数的形式了。 从此,数学家把实数与虚数同等对待,并合称为复数,于是,数的家族得到 了统一。任何一个复数可以写成a+bi的 形式,当b=0时a+bi=a,它就是实数,当 b#0时,a+bi就是虚数了。
2023-05-19 22:40:401

虚数是什么

就是复数。。。规定-1的平方根是i 就是一个虚数
2023-05-19 22:40:473

什么是虚数?虚数的定义又是什么

虚数可以指以下含义: (1)[unreliable figure]:虚假不实的数字。  (2)[imaginary part]:复数中a+bi,b不等于零时bi叫虚数。  (3)[imaginary number]:汉语中不表明具体数量的词。 [编辑本段]数学中的虚数  在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。  这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 [编辑本段]虚数的实际意义  我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 [编辑本段]起源  “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。  人们发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。   到了16世纪,意大利数学家卡当在其著作《大法》(《大衍术》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。  1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式:  形如:x^3+ax+b=0的三次方程解如下:x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)  当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3)  在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。   直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。  由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如  继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。 [编辑本段]i的性质  i 的高次方会不断作以下的循环:  i^1 = i  i^2 = - 1  i^3 = - i  i^4 = 1  i^5 = i  i^6 = - 1...  由于虚数特殊的运算规则,出现了符号i  当ω=(-1+√3i)/2或ω=(-1-√3i)/2时:  ω^2 + ω + 1 = 0  ω^3 = 1  许多实数的运算都可以推广到i,例如指数、对数和三角函数。  一个数的ni次方为:  x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)).  一个数的ni次方根为:  x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))).  以i为底的对数为:  log_i(x) = 2 ln(x)/ i*pi.  i的余弦是一个实数:  cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064.  i的正弦是虚数:  sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i.  i,e,π,0和1的奇妙关系:  e^(i*π)+1=0  i^I=e^(-π÷2) [编辑本段]符号来历  1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。  通常,我们用符号C来表示复数集,用符号R来表示实数集。 [编辑本段]相关描述  虚数 原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院)   翻译:徐国强  虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。  IMAGINARY by Lawrence Mark LesserArmstrong Atlantic State University  Imaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i."   [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致[1]参考资料: 《人文数学网络期刊》22期48页开放分类: 词语,数学,词汇,数词,复数
2023-05-19 22:40:531

什么叫虚数

在实数界无法找到的数。如根号负一得多少?这就引进了全新的数——虚数。虚数单位为i。
2023-05-19 22:41:154

虚数定义是什么

虚数是相对于实数域而言,新扩充的一个数域。联合实数域一起,构成了更大复数域。这里首先要介绍虚数单位i, 规定 i²=-1;复数的一般形式为 z=a+bi, 其中a,b均为实数;当a=0,z表示纯虚数;当b=0, z表示实数。
2023-05-19 22:41:211

虚数是什么?

与实数相反的数,就是除了 有理数、无理数、0,外的数
2023-05-19 22:41:314