汉邦问答 / 问答 / 问答详情

虚数怎么计算

2023-05-20 08:55:54
TAG: 虚数
kikcik

定义:虚数是指平方是负数的数

虚数和实数是复数的两大部分

计算:规定i^2=-1

实数与i进行四则运算时,原有的运算仍让成立

因此如-2=2*i^2

直观上来看根号2*i就是根号-2的表示,但是【注意】不能用根号里带符号这种表示。

CarieVinne

其实你不用对虚数下太多的功夫

高考的虚数就是考一个选择题

而且只是虚数的四则运算

这个你没有问题吧

见到i??就用-1来带~

什么是虚数?虚数的定义是什么?

在数学里,将平方是负数的数定义为纯虚数负数开平方,在实数范围内无解。 数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。 于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分)。 虚数单位为i, i即根号负1。 3i为虚数,即根号(-3), 即3×根号(-1) 2+3i为复数,(实数部分为2,虚数部分为3i)
2023-05-19 22:30:0312

虚数是什么?

虚数可以表示为z=a+bi(a、b∈R),当a=0,b≠0时就表示的是纯虚数。【扩展】虚数就是其平方是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。1777年瑞士数学家欧拉(或译为欧勒)开始使用符号i[其中i=√(-1)]表示虚数的单位,后来人们将虚数和实数有机地结合起来,写成a+bi形式,其中a称为该虚数的实部,b称为该虚数的虚部,且a、b均为实数,当复数的实部为0且虚部不为0时,平方是负数的数定义为纯虚数即为已知:当b=0时,z=a,这时复数成为实数 当a=0且b≠0时,z=bi,我们就将其称为纯虚数。负数是纯虚数的充要条件:1:z=a+bi(a,b∈R)是纯虚数<=>a=0且b≠02:z是纯虚数<=>z+z"=0且z≠03: z是纯虚数<=>z²<0
2023-05-19 22:30:381

什么是虚数?

什么是虚数? 负数开平方,在实数范围钉无解。 数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。 于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分)。虚数单位为i, i即根号负1。 3i为虚数,即根号(-3), 即3×根号(-1) 2+3i为复数,(实数部分为2,虚数部分为3i) 什么是虚数单位? i的平方=-1 i就是虚数单位 高三数学课本上有 我们将形如:Z=x+iy的数称为复数,其中i为虚数单位,并规定i^2=i*i=-1.x与y是任意实数,依次称为z的实部(real part)与虚部(imaginary part),分别表示为Rz=x , Im z=y. 易知:当y=0时,z=x+iy=x+0,我们就认为它是实数;当x=0时z=x+iy=0+iy我们就认为它是纯虚数。设 Z1=x+iy是一个复数,称 Z2=x-iy为Z1的共轭复数。 复数的四则运算规定为: (a+bi)+(c+di)=(a+c)+(b+d)i, (a+bi)-(c+di)=(a-c)+(b-d)i, (a+bi)•(c+di)=(ac-bd)+(bc+ad)i, (c与d不同时为零) (a+bi)÷(c+di)=[(ac+bd) / (c^2+d^2)]+[(bc-ad) / (c^2+d^2)] i, (c+di)不等于0 复数有多种表示形式,常用形式 z=a+bi 叫做代数式。 此外有下列形式。 ①几何形式。复数z=a+bi 用直角座标平面上点 Z(a,b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。 ②向量形式。复数z=a+bi用一个以原点O为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数的加、减法运算得到恰当的几何解释。 ③三角形式。复数z=a+bi化为三角形式 z=r(cosθ+sinθi) 式中r= sqrt(a^2+b^2),叫做复数的模(或绝对值);θ 是以x轴为始边;向量OZ为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。 ④指 数形式。将复数的三角形式 z=r( cosθ+isinθ)中的cosθ+isinθ换为 exp(iθ),复数就表为指数形式z=rexp(iθ) 复数三角形式的运算: 设复数z1、z2的三角形式分别为r1(cosθ1+isinθ1)和r2(cosθ2+isinθ2),那么z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)] z1÷z2=r1÷r2[cos(θ1-θ2)+isin(θ1-θ2)],若复数z的三角形式为r(cosθ+isinθ),那么z^n=r^n(cosnθ+isinnθ),n√z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=1,2,3……)必须记住:z的n次方根是n个复数。 复数的乘、除、乘方、开方可以按照幂的运算法则进行。复数集不同于实数集的几个特点是:开方运算永远可行;一元n次复系数方程总有n个根(重根按重数计);复俯不能建立大小顺序。 高考的话出在第一道选择题上
2023-05-19 22:30:451

虚数的概念,定义

对形如z=a+bi(a,b是实数)的数叫复数当a=0时叫纯虚数当b=0时为实数当b不为零时叫虚数
2023-05-19 22:30:546

“虚数”包括什么?

“虚数”包括形如a+b*i的数,其中a,b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。虚数的作用:如果涉及到旋转角度的改变,处理起来更方便。比如,一条船的航向是 3 + 4i 。如果该船的航向,逆时针增加45度,计算新航向。45度的航向就是 1 + i 。计算新航向,只要把这两个航向 3 + 4i 与 1 + i 相乘就可以了(原因在下一节解释):( 3 + 4i ) * ( 1 + i ) = ( -1 + 7i )所以,该船的新航向是 -1 + 7i 。如果航向逆时针增加90度,就更简单了。因为90度的航向就是 i ,所以新航向等于:( 3 + 4i ) * i = ( -4 + 3i )。
2023-05-19 22:31:141

什么是虚数?虚数的定义又是什么??

虚数可以指以下含义: (1)[unreliable figure]:虚假不实的数字。  (2)[imaginary part]:复数中a+bi,b不等于零时bi叫虚数。  (3)[imaginary number]:汉语中不表明具体数量的词。 [编辑本段]数学中的虚数  在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。  这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 [编辑本段]虚数的实际意义  我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 [编辑本段]起源  “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。  人们发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。   到了16世纪,意大利数学家卡当在其著作《大法》(《大衍术》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。  1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式:  形如:x^3+ax+b=0的三次方程解如下:x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)  当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3)  在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。   直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。  由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如  继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。 [编辑本段]i的性质  i 的高次方会不断作以下的循环:  i^1 = i  i^2 = - 1  i^3 = - i  i^4 = 1  i^5 = i  i^6 = - 1...  由于虚数特殊的运算规则,出现了符号i  当ω=(-1+√3i)/2或ω=(-1-√3i)/2时:  ω^2 + ω + 1 = 0  ω^3 = 1  许多实数的运算都可以推广到i,例如指数、对数和三角函数。  一个数的ni次方为:  x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)).  一个数的ni次方根为:  x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))).  以i为底的对数为:  log_i(x) = 2 ln(x)/ i*pi.  i的余弦是一个实数:  cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064.  i的正弦是虚数:  sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i.  i,e,π,0和1的奇妙关系:  e^(i*π)+1=0  i^I=e^(-π÷2) [编辑本段]符号来历  1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。  通常,我们用符号C来表示复数集,用符号R来表示实数集。 [编辑本段]相关描述  虚数 原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院)   翻译:徐国强  虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。  IMAGINARY by Lawrence Mark LesserArmstrong Atlantic State University  Imaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i."   [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致[1]参考资料: 《人文数学网络期刊》22期48页开放分类: 词语,数学,词汇,数词,复数
2023-05-19 22:31:381

什么是虚数

与实数相对。
2023-05-19 22:31:473

什么是虚数?

虚数定义在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。虚数的由来随着数学的发展,数学家发现一些 三次方程的实数根还非得用负数的平方根表示不可。而且,如果承认了负数的平方根,那么代数方程的有无根问题就可以得到解决,并且会得出n次方程有n个根这 样一个令人满意的结果。此外,对负数的 平方根按数的运算法则进行运算,结果也是正确的。意大利数学家卡尔丹作出一个折中表示,他称负数的平方根为 “虚构的数”,意思是,可以承认它为数,但不像实数那样可以表示实际存在的 量,而是虚构的。到了 1632年,法国数学家笛卡儿,正式给了负数的平方根一个 大家乐于接受的名字——虚数。虚数的虚字表示它不代表实际的 数,而只存在于想象之中。尽管虚数是 “虚”的,但数学家却没有放松对它的研 究,他们发现了关于虚数的许许多多的性 质和应用。大数学家欧拉提出了 “虚数单位”的概念,他把U 作为虚数单位,用符号i表示,相当于实数的单位1。虚数有了单位,就能像实数 一样,写成虚数单位倍数的形式了。从此,数学家把实数与虚数同等对待,并合称为复数,于是,数的家族得到 了统一。任何一个复数可以写成a+bi的 形式,当b=0时a+bi=a,它就是实数,当 b#0时,a+bi就是虚数了。“在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴。这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。”
2023-05-19 22:31:541

什么是虚数?

在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2 = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。定义在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。“虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。
2023-05-19 22:32:015

什么叫虚数

虚数 在数学里,如果有数平方是负数的话,那个数就是虚数了;所有的虚数都是复数。“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数轴和实数轴构成的平面称复平面,复平面上每一点对应着一个复数。 虚数的符号 1777年瑞士数学家欧拉开始使用符号i=√(-1)表示叙述的单位。而后人将虚数和实数有机的结合起来,写成a+bi形式 (a、b为实数),称为复数。 虚数的历史 由于虚数闯入数的领域时,人们对它的实际用处一无所知,在实际生活中似乎也没有用复数来表达的量,因此,在很长的一段时间里,人们对虚数产生过种种怀疑和误解。卡迪尔称“虚数”的本意是指他是假的;莱布尼兹在公元18世纪初则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如√(-1)、√(-2)的数学式都是不可能有的,纯属虚幻的。 欧拉之后,挪威的一个测量学家维塞尔,提出把复数a+bi用平面上的点(a,b)来表示。后来,高斯提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一盘用来表示向量(有方向的数量),这在水力学、地图学、航空学中的应用是十分广泛的。虚数越来越显示出其丰富的内容,真是:虚数不虚
2023-05-19 22:32:171

什么叫做虚数

虚数释义:1.复数a+bi中,当b≠0时叫做虚数,如1-3i;当a=0,b≠0时叫做纯虚数,如5i。见〖复数〗。
2023-05-19 22:32:351

虚数是什么

通常是指负数的平方根,用i表示。例如,-2的平方根为根2i。
2023-05-19 22:32:435

什么是虚数

a+bi(b不等于0)的形式出现
2023-05-19 22:33:004

虚数是什么意思

虚数没有正负可言。不是实数的复数,即使是纯虚数,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的在数学里。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,起名为复数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,所以±√(-1)=±i,也不能比较大小
2023-05-19 22:33:071

虚数是什么意思

题库内容:虚数的解释(1) [unreliable figure]∶虚假 不实 的数字 (2) [imaginary number]∶实数与虚数单位之积,亦即实部为零的 复数 (如3i) 详细解释 (1).不表示 实际 数量的数词。 宋 司马 光 《言山陵择地札子》 :“伏望朝廷特赐指挥按行山陵使等,只於 永安县 界旧陵侧近选择善地,旬日之内,早定夺闻奏……不得 大约 虚数及妄立近限,必使号令明信,则事无不济而民力不困矣。” 清 汪中 《述学·释三九上》 :“因而生人之措辞,凡一二之所不能尽者,则约之三以见其多;三之所不能尽者,则约之九以见其极多,此 言语 之虚数也。实数可稽也,虚数不可执也。” (2).虚假的数额。 宋 苏轼 《应诏论四事状》 :“ 元丰 八年登极大赦以前,人户积欠共计五万三百馀贯,若谓非贫乏有可送纳,即自 元祐 元年 至今,并不曾纳到分文,显见 有司 空留帐籍虚数,以害朝廷实惠。” 宋 陆游 《陆郎中墓 志铭 》 :“尝为 丹徒 丞,朝廷用言者,遣使籍江上沙田,立税额,使指甚厉,吏莫敢违,亦或从而张虚数以为功。” 《宋史·食货志下五》 :“十三场茶岁课缗钱五十万……岁纔得息钱三万馀缗,而官吏廪给杂费不预,是则虚数多而 实利 寡。” 《金史·陈规传》 :“ 唐 魏徵 曰:‘兵在以道御之而已。御壮健 足以 无敌于 天下 ,何取细弱以增虚数。"” (3).虚伪的礼节。数, 礼数 。 清 侯方域 《陈 将军 二鹤记》 :“世之战士,皆骁雄劲悍之徒……养以有馀之财而作其感恩之气, 然后 报其主而不叛。吾未见其可以虚数致也。” (4).数学 名词 。负数的平方根。 词语分解 虚的解释 虚 ū 空:虚无。虚实。虚度。虚名。虚左( 尊敬 地空出左边的座位,古代以左为尊)。空虚。乘虚而入。 不真实的:虚伪。虚假(?)。虚妄。虚惊。虚夸。虚构。虚传。虚张声势。 内心怯懦:做贼 心虚 。 不 自满 :虚 数的解释 数 (数) ù 表示、划分或 计算 出来的量:数目。数量。数词。数论(数学的一支,主要 研究 正整数的 性质 以及和它有关的 规律 )。数控。 几,几个:数人。数日。 技艺 ,学术:“今夫弈之为数,小数也”。 命运 ,天
2023-05-19 22:33:141

虚数是什么

高中课本 选修2 104页
2023-05-19 22:33:235

数学:什么是虚数?详细!

在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。这种数有一个专门的符号“i”(imaginary),它称为虚数单位。定义为i^2=-1。
2023-05-19 22:33:394

虚数的定义是什么?

一个实数乘以i称为纯虚数,例如5i 就是一个纯虚数。在复数域中,负数-1的平方根记为i(即i²=-1),称为虚数或虚数单位。从复数相等的定义知道,任何一个复数都可以用一个有序实数对(a,b)唯一确定,可以用建立直角坐标系的平面来表示复数。建立了直角坐标系来表示复数的平面叫作复平面,x轴叫作实轴,y轴叫作虚轴,这样,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。扩展资料在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b*i分别被称为复数的实部和虚部。虚数表示具有非零虚部的任何复数。参考资料来源:百度百科——纯虚数参考资料来源:百度百科——虚数
2023-05-19 22:33:531

虚数是什么?

虚数就是指数幂是负数的数.虚数这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字.后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实. 虚数都是复数.定义为i²=-1
2023-05-19 22:34:051

什么是虚数?

亲,虽然百度上有一种解释为虚数[xūshù]更多图片(3张)虚数就是指数幂是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实
2023-05-19 22:34:1315

什么是虚数?

为了定义一个数i的平方是负一的一个常数
2023-05-19 22:34:482

虚数有什么性质?

虚数的性质:没有大小,可以用向量在复平面表示,有其共轭虚数,纯虚数的平方为负。所有的虚数都是复数。虚数就是其平方是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念 认为这是真实不存在的数字。后来发现 虚数可对应平面上的纵轴,与对应平面 上横轴的实数同样真实。虚数轴和实数轴构成的平面称复数平面,复平面上每一点对应着一个复数。
2023-05-19 22:35:093

什么是虚数和复数??

(1)[unreliable figure]∶虚假不实的数字(2)[imaginary part]∶复数中a+bi,b不等于零时bi叫虚数(3)[英文]:imaginary number汉语中不表明具体数量的词。 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。 虚数单位为i, i即根号负1。 3i为虚数,即根号(-3), 即3×根号(-1) a为实数部,b虚数部为2+3i为复数,(分为2,分为3i) 虚数的实际意义 在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。这种数有一个专门的符号“i”(imaginary),它称为虚数单位。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA. 不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。1<2是对的,但1+i<2+i是错的。 我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。 “虚数”这个名词,使人觉得挺玄乎,好像有点“虚”,实际上它的内容却非常“实”。 虚数是在解方程时产生的。求解方程时,常常需要将数开方,如果被开方数是正数,就可以算出要求的根;但如果被开方数是负数,那怎么办呢? 早以前,大多数人都认为负数是没有平方根的。到了16世纪,意大利数学家卡当在其著作《大法》(年)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。 直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。 由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如 继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。真是:虚数不虚! 虚数的发展说明了:许多数学概念的产生并不直接来自实践,而是来自思维,但只有在实际生活中有了用处时,这些概念才能被接受而获得发展。[编辑本段]i的性质 i 的高次方会不断作以下的循环: i^1 = i i^2 = - 1 i^3 = - i i^4 = 1 i^5 = i i^6 = - 1... 由于虚数特殊的运算规则,出现了符号i 当ω=(-1+√3i)/2或ω=(-1-√3i)/2时: ω^2 + ω + 1 = 0 ω^3 = 1[编辑本段]虚数的符号 1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。 通常,我们用符号C来表示复数集,用符号R来表示实数集。复数的定义 数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解。因此将数集再次扩充,达到复数范围。 我们定义,形如z=a+bi的数称为复数,其中规定i为虚数单位,且i^2=i*i=-1(a与b是任意实数) 我们将复数z=a+bi中的实数a称为虚数z的实部(real part)记作Rez=a 实数b称为虚数z的虚部(imaginary part)记作 Imz=b. 易知:当b=0时,z=a+ib=a+0,这时复数成为实数; 当a=0时z=a+bi=0+bi我们就将其称为纯虚数。 设z=a+bi是一个复数,则称复数z‘=a-bi为z的共轭复数。 定义:复数的模(绝对值)=√(a^2+b^2)(定义原因见下述内容) 复数的集合用C表示,显然,R∩C=R(即R是C的真子集)复数(代数式)的四则运算:(a+bi)+(c+di)=(a+c)+(b+d)i, (a+bi)-(c+di)=(a-c)+(b-d)i, (a+bi)•(c+di)=(ac-bd)+(bc+ad)i, (c与d不同时为零) (a+bi)÷(c+di)=[(ac+bd) / (c^2+d^2)]+[(bc-ad) / (c^2+d^2)] i, (c+di)不等于0
2023-05-19 22:35:388

什么叫虚数?

√-1在实数范围内无解,定义:√-1=i,虚数的形式就是:bi
2023-05-19 22:35:542

什么是虚数和复数

在数学中,将偶指数幂是负数的数定义为纯虚数。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。复数包含虚数,所以所有的虚数都是复数。虚数没有正负可言,不是实数的复数,即使是纯虚数,也不能比较大小。复数集包含了实数集,因而是复数是实数的扩张。
2023-05-19 22:36:002

虚数在实际生活中究竟有什么意义?

因为没有什么实际意义,所以叫虚数
2023-05-19 22:36:2411

什么是实数、虚数?

实数可以分为有理数和无理数两类,或正实数,负实数和零三类,或代数式和超越数三类.我们平常生活、学习中碰到的数都是实数. 虚数就是指数幂是负数的数.如果有一个数的平方是负数,那这个数就是虚数了,例:x^2=-1,那么x就是虚数.
2023-05-19 22:37:101

虚数如何产生的,意义是什么

复数 开放分类: 数学、数学家、实数、虚数定义[编辑本段]复数就是实数和虚数的统称复数的基本形式是a+bi,其中a,b是实数,a称为实部,bi称为虚部,i是虚数单位,在复平面上,a+bi是点Z(a,b)。Z与原点的距离r称为Z的模|Z|=√a方+b方a+bi中:a=0为纯虚数,b=0为实数,b不等于0为虚数。复数的三角形式是 Z=r[cosx+isinx]中x,r是实数,rcosx称为实部,irsinx称为虚部,i是虚数单位。Z与原点的距离r称为Z的模,x称为辐角。起源[编辑本段]16世纪意大利米兰学者卡当(Jerome Cardan1501—1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”。他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把10分成两部分,使它们的乘积等于40时,他把答案写成=40,尽管他认为和这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两部分,并使它们的乘积等于40。给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数”与“实的数”相对应,从此,虚数才流传开来。 数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家莱布尼茨(1646—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。瑞士数学大师欧拉(1707—1783)说;“一切形如,习的数学武子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达朗贝尔(1717—1783)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是的形式(a、b都是实数)(说明:现行教科书中没有使用记号=-i,而使用=一1)。法国数学家棣莫佛(1667—1754)在1730年发现公式了,这就是著名的棣莫佛定理。欧拉在1748年发现了有名的关系式,并且是他在《微分公式》(1777年)一文中第一次用i来表示一1的平方根,首创了用符号i作为虚数的单位。“虚数”实际上不是想象出来的,而它是确实存在的。挪威的测量学家成塞尔(1745—1818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。 德国数学家高斯(1777—1855)在1806年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数a+bi。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“高斯平面”。高斯在1831年,用实数组(a,b)代表复数a+bi,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数—一对应,扩展为平面上的点与复数—一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间—一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。 经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不虚呵。虚数成为了数系大家庭中一员,从而实数集才扩充到了复数集。 随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据。具体内容和应用[编辑本段]形如a+bi的数 。式中 a,b 为实数 ,i是 一个满足i^2=-1的数 ,因为任何实数的平方不等于-1,所以 i不是实数,而是实数以外的新的数。在复数a+bi中,a 称为复数的实部,b称为复数的虚部 ,复数的实部和虚部分别用Rez和Imz表示,即Rez =a,Imz=b。i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。复数的产生来自解代数方程的需要。16世纪,意大利数学家G.卡尔达诺首先用公式表示出了一元三次方程的根,但公式中引用了负数开方的形式,并把 i=sqrt(-1) 当作数,与其他数一起参与运算。由于人们无法理解 i的实质,所以在很长时间内不承认负数的平方根也是数,而称之为虚数。直到19世纪,数学家们对这些虚数参与实数的代数运算作出了科学的解释,并在解方程和其他领域中使虚数得到了广泛的应用,人们才认识了这种新的数。复数的四则运算规定为:(a+bi)+(c+di)=(a+c)+(b+d)i,(a+bi)-(c+di)=(a-c)+(b-d)i,(a+bi)�6�1(c+di)=(ac-bd)+(bc+ad)i,(c与d不同时为零)(a+bi)÷(c+di)=(ac+bd/c^2+d^2)+(bc-ad/c^2+d^2)i,(c+di)不等于0复数有多种表示形式,常用形式 z=a+bi 叫做代数式。此外有下列形式。①几何形式。复数z=a+bi 用直角坐标平面上点 Z(a,b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。②向量形式。复数z=a+bi用一个以原点O为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数的加、减法运算得到恰当的几何解释。③三角形式。复数z=a+bi化为三角形式z=r(cosθ+isinθ)式中r= sqrt(a^2+b^2),叫做复数的模(或绝对值);θ 是以x轴为始边;向量OZ为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。④指 数形式。将复数的三角形式 z=r( cosθ+isinθ)中的cosθ+isinθ换为 exp(iθ),复数就表为指数形式z=rexp(iθ)复数三角形式的运算:设复数z1、z2的三角形式分别为r1(cosθ1+isinθ1)和r2(cosθ2+isinθ2),那么z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]z1÷z2=r1÷r2[cos(θ1-θ2)+isin(θ1-θ2)],若复数z的三角形式为r(cosθ+isinθ),那么z^n=r^n(cosnθ+isinnθ),n√z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=1,2,3……)必须记住:z的n次方根是n个复数。复数的乘、除、乘方、开方可以按照幂的运算法则进行。复数集不同于实数集的几个特点是:开方运算永远可行;一元n次复系数方程总有n个根(重根按重数计);复数不能建立大小顺序。┢柯乐栤┮ 2008-08-24 12:03 您觉得这个答案好不好?好(2)不好(0) 实数包括有理数和无理数。其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括整数,分数,0.数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是:│a│=①a为正数时,|a|=a②a为0时, |a|=0③a为负数时,|a|=-a③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)
2023-05-19 22:37:251

数学中虚数是什么?生活中又什么?

虚数只有在高中课程里遇到,在初中的知识里,一个数的平方只能是一个大于或者等于0的数,但是到了高中以后,我们发现并不能满足我们的计算需要,就规定一个数的平方等于-1,即i^2=-1,i就是一个虚数单位。
2023-05-19 22:37:441

虚数有什么实际用途?

有啊,而且用处很大,在工程技术中尤为重要。楼主应该知道,纯虚数加上一个实数部分就变成复数了,就因为复数的这种特殊结构,所以它在复平面上并不是表示一个数,而可以表示一个点,表示一个平面向量。所以有关平面向量的问题就有可能利用复变函数来研究。这样,它就逐渐被广泛应用于物理理论、弹性力学、流体力学等等学科,成为重要的数学工具。与此同时,人们也逐渐改变了对复数的看法,不再指责它是“虚无缥缈”的东西了。复变函数里的解析函数的性质非常方便解决工程问题,还有非常有名的“傅立叶变换”和“拉普拉斯变换”都是利用复变函数得到的。
2023-05-19 22:37:501

复数中的实数、虚数、纯虚数是怎样定义的

对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数~嗯哼~╮(╯▽╰)╭
2023-05-19 22:37:591

复数和虚数有区别吗?

你好!在西方,如果有人敲门,主人会自言自语一句,是谁呀?而这个谁不是用he,也不是用she,而是用it.因为无法判断性别,故用it代替,这是一种不确定性。而你说的如果就是一种不确定性,复数是一切数的代称,就像初中讲的未知数x一样。而数学就用一些方法和计算,去证明,来确认,就像初中做的解方程一样。
2023-05-19 22:38:084

实数虚数的概念,纯虚数和虚数的区别

实数:有理数和无理数的总称.其中无理数就是无限不循环小数,有理数就包括整数和分数.虚数:在数学里,将平方是负数的数定义为纯虚数.所有的虚数都是复数.这种数有一个专门的符号“i”(imaginary),它称为虚数单位.定义为i^2=-1.纯虚数:将虚数和实数有机地结合起来,写成a+bi形式,其中a称为该虚数的实部,b称为该虚数的虚部,且a、b均为实数,当虚数的实部为0且虚部不为0时,该虚数就叫纯虚数.
2023-05-19 22:38:231

微积分中什么是虚数,什么又是复数?

“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数轴和实数轴构成的平面称复平面,复平面上每一点对应着一个复数。复数由实数部分和虚数部分所组成的数。实数部分可以是零。如果虚数部分也允许是零,那么实数就是复数的子集。列如形为2+3i,4+5i的数都是复数。就如同实数可以在数轴上表示一样,复数可以在平面上表示,这种表示通常被称为阿干图示法,以纪念瑞士数学家阿干(J.R.Argand,1768-1822)。复数x+iy以坐标黑点(x,y)来表示如果两个复数的实部相等,虚部互为相反数,那么这两个复数称为共轭复数.
2023-05-19 22:38:321

虚数概念

复数的平方根叫虚数
2023-05-19 22:38:452

复数中的实数、虚数、纯虚数是怎样定义的

数学上,实数直观地定义为和数轴上的点一一对应的数.原本的数称作“实数”——意义是“实在的数”.虚数是指平方是负数的数.当复数的实部为0且虚部不为0时,平方是负数的数定义为纯虚数
2023-05-19 22:38:541

什么叫虚数

虚数是指实数以外的复数,其中实部为0的虚数称为纯虚数。 在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。 可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。定义在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。符号1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。通常,我们用符号C来表示复数集,用符号R来表示实数集。
2023-05-19 22:39:281

什么是虚数?

非实数,即为虚数,比如X的平方=-1,X的解即为虚数!!虚数用i表示。i就是一个虚数,再比如1+i,2+i,.....
2023-05-19 22:39:353

什么是虚数 虚数的介绍

1、在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2 = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。 2、可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。 3、在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。
2023-05-19 22:39:411

什么叫虚数

虚假不实的数字,实数与虚数单位之积、亦即实部为零的复数(如3i)。在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b可对应平面上的纵轴。这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。sin(a+bi)=sin(a)cos(bi)+sin(bi)cos(a)=sin(a)cosh(b)+isinh(b)cos(a)cos(a-bi)=cos(a)cos(bi)+sin(bi)sin(a)=cos(a)cosh(b)+isinh(b)sin(a)tan(a+bi)=sin(a+bi)/cos(a+bi)cot(a+bi)=cos(a+bi)/sin(a+bi)sec(a+bi)=1/cos(a+bi)csc(a+bi)=1/sin(a+bi)
2023-05-19 22:39:501

什么是虚数?

-1开方,就是虚数i还有很多,都是一些无法表示成实数,但数学家们坚称存在的数在我们高中范围内虚数的平方是负数,但具体还有没有其它的就不知道了
2023-05-19 22:40:092

虚数是什么 举一个例子有哪些?

在数学中,虚数就是形如a+b*i的数,其中a、b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内地点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。例如:(1)2+3i就表示一个复数,2是实部,3i表示虚部,3i就表示一个纯虚数;(2)-1的开方就是虚数,称为一个虚数单位。虚数的由来:随着数学的发展,数学家发现一些三次方程的实数根还非得用负数的平方根表示不可,而且如果承认了负数的平方根,那么代数方程的有无根问题就可以得到解决,并且会得出n次方程有n个根这样一个令人满意的结果,此外对负数的平方根按数的运算法则进行运算,结果也是正确的。意大利数学家卡尔丹作出一个折中,表示他称负数的平方根为 “虚构的数”,意思是可以承认它为数,但不像实数那样可以表示实际存在的量,而是虚构的,到了1632年,法国数学家笛卡儿正式给了负数的平方根,一个大家乐于接受的名字——虚数。虚数的虚字,表示它不代表实际的数,而只存在于想象之中,尽管虚数是 “虚”的,但数学家却没有放松对它的研究。他们发现了关于虚数的许许多多的性质和应用,大数学家欧拉提出了 “虚数单位”的概念,他把U作为虚数单位,用符号i表示,相当于实数的单位1,虚数有了单位,就能像实数一样写成虚数单位倍数的形式了。从此数学家把实数与虚数同等对待,并合称为复数,于是数的家族得到了统一,任何一个复数可以写成a+bi的形式,当b=0时,a+bi=a,它就是实数当;b#0时,a+bi就是虚数了。以上内容参考:百度百科-虚数
2023-05-19 22:40:171

虚数是什么

虚数就是指数幂是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。
2023-05-19 22:40:323

虚数是什么

在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。下面是我整理的详细内容,一起来看看吧! 虚数定义 在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 虚数的由来 随着数学的发展,数学家发现一些 三次方程的实数根还非得用负数的平方根表示不可。而且,如果承认了负数的平方根,那么代数方程的有无根问题就可以得到解决,并且会得出n次方程有n个根这 样一个令人满意的结果。此外,对负数的 平方根按数的运算法则进行运算,结果也是正确的。 意大利数学家卡尔丹作出一个折中表示,他称负数的平方根为 “虚构的数”,意思是,可以承认它为数,但不像实数那样可以表示实际存在的 量,而是虚构的。到了 1632年,法国数学家笛卡儿,正式给了负数的平方根一个 大家乐于接受的名字——虚数。 虚数的虚字表示它不代表实际的 数,而只存在于想象之中。尽管虚数是 “虚”的,但数学家却没有放松对它的研 究,他们发现了关于虚数的许许多多的性 质和应用。大数学家欧拉提出了 “虚数单位”的概念,他把U 作为虚数单位,用符号i表示,相当于实数的单位1。虚数有了单位,就能像实数 一样,写成虚数单位倍数的形式了。 从此,数学家把实数与虚数同等对待,并合称为复数,于是,数的家族得到 了统一。任何一个复数可以写成a+bi的 形式,当b=0时a+bi=a,它就是实数,当 b#0时,a+bi就是虚数了。
2023-05-19 22:40:401

虚数是什么

就是复数。。。规定-1的平方根是i 就是一个虚数
2023-05-19 22:40:473

什么是虚数?虚数的定义又是什么

虚数可以指以下含义: (1)[unreliable figure]:虚假不实的数字。  (2)[imaginary part]:复数中a+bi,b不等于零时bi叫虚数。  (3)[imaginary number]:汉语中不表明具体数量的词。 [编辑本段]数学中的虚数  在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。  这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 [编辑本段]虚数的实际意义  我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 [编辑本段]起源  “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。  人们发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。   到了16世纪,意大利数学家卡当在其著作《大法》(《大衍术》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。  1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式:  形如:x^3+ax+b=0的三次方程解如下:x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)  当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3)  在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。   直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。  由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如  继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。 [编辑本段]i的性质  i 的高次方会不断作以下的循环:  i^1 = i  i^2 = - 1  i^3 = - i  i^4 = 1  i^5 = i  i^6 = - 1...  由于虚数特殊的运算规则,出现了符号i  当ω=(-1+√3i)/2或ω=(-1-√3i)/2时:  ω^2 + ω + 1 = 0  ω^3 = 1  许多实数的运算都可以推广到i,例如指数、对数和三角函数。  一个数的ni次方为:  x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)).  一个数的ni次方根为:  x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))).  以i为底的对数为:  log_i(x) = 2 ln(x)/ i*pi.  i的余弦是一个实数:  cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064.  i的正弦是虚数:  sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i.  i,e,π,0和1的奇妙关系:  e^(i*π)+1=0  i^I=e^(-π÷2) [编辑本段]符号来历  1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。  通常,我们用符号C来表示复数集,用符号R来表示实数集。 [编辑本段]相关描述  虚数 原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院)   翻译:徐国强  虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。  IMAGINARY by Lawrence Mark LesserArmstrong Atlantic State University  Imaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i."   [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致[1]参考资料: 《人文数学网络期刊》22期48页开放分类: 词语,数学,词汇,数词,复数
2023-05-19 22:40:531

什么叫虚数

在实数界无法找到的数。如根号负一得多少?这就引进了全新的数——虚数。虚数单位为i。
2023-05-19 22:41:154

虚数定义是什么

虚数是相对于实数域而言,新扩充的一个数域。联合实数域一起,构成了更大复数域。这里首先要介绍虚数单位i, 规定 i²=-1;复数的一般形式为 z=a+bi, 其中a,b均为实数;当a=0,z表示纯虚数;当b=0, z表示实数。
2023-05-19 22:41:211

虚数是什么?

与实数相反的数,就是除了 有理数、无理数、0,外的数
2023-05-19 22:41:314

虚数的表示形式是什么?

虚数可以表示为z=a+bi(a、b∈R),当a=0,b≠0时就表示的是纯虚数。【扩展】虚数就是其平方是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。1777年瑞士数学家欧拉(或译为欧勒)开始使用符号i[其中i=√(-1)]表示虚数的单位,后来人们将虚数和实数有机地结合起来,写成a+bi形式,其中a称为该虚数的实部,b称为该虚数的虚部,且a、b均为实数,当复数的实部为0且虚部不为0时,平方是负数的数定义为纯虚数即为已知:当b=0时,z=a,这时复数成为实数 当a=0且b≠0时,z=bi,我们就将其称为纯虚数。负数是纯虚数的充要条件:1:z=a+bi(a,b∈R)是纯虚数<=>a=0且b≠02:z是纯虚数<=>z+z"=0且z≠03: z是纯虚数<=>z²<0
2023-05-19 22:41:371