- 铁血嘟嘟
-
欧拉1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.
欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".
欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.
欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."
欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了.
1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.
沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.
欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.
欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算".
欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。欧拉还发现 ,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有v-e+f=2这个关系。v-e+f被称为欧拉示性数,成为拓扑学的基础概念。在数论中,欧拉首先引进了重要的欧拉函数φ(n),用多种方法证明了费马小定理。以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.
奇数项的欧拉数皆为零,偶数项的欧拉数正负相间,开首为:
E0 = 1
E2 = -1
E4 = 5
E6 = -61
E8 = 1,385
E10 = -50,521
E12 = 2,702,765
E14 = -199,360,981
E16 = 19,391,512,145
E18 = -2,404,879,675,441
- 拌三丝
-
调和级数
∞
∑(1/n)
n=1
是发散的,而极限
n
lim [∑ (1/k)-ln n]
n→∞ k=1
却是收敛的,将该极限值称为欧拉(EULER)常数γ,
近似计算γ=0.5772156.......
(人家问的是欧拉常数,不是欧拉数啊)
欧拉常数用公式怎么计算?
利用“欧拉公式”1+1/2+1/3+……+1/n=ln(n)+C,(C为欧拉常数)Sn=1+1/2+1/3+…+1/n>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)扩展资料:欧拉常数(Euler-Mascheroni constant)欧拉-马歇罗尼常数(Euler-Mascheroni constant)是一个主要应用于数论的数学常数。它的定义是调和级数与自然对数的差值的极限。欧拉常数最先由瑞士数学家莱昂哈德·欧拉(Leonhard Euler)在1735年发表的文章 De Progressionibus harmonicus observationes 中定义。欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。1761年他又将该值计算到了16位小数。1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并将该常数计算到小数点后32位。但后来的计算显示他在第20位的时候出现了错误。欧拉数以世界著名数学家欧拉名字命名;还有一个鲜为人知的名字纳皮尔常数,用来纪念苏格兰数学家约翰·纳皮尔 (John Napier) 引进对数。参考资料:百度百科-欧拉常数2023-05-19 18:04:331
欧拉常数是多少?
这个问题是世界100个难题中,始终没有解决的最后的几个难题之一。在这一点上它和著名的“1+1”相当。但是它没有大的价值,这又和“1+1”不同。它已经有了近似公式:1+1/2+1/3+1/4++1/n~=lnn+C(其中lnn是n的自然对数;C=0.577216……是一个专门用来计算调和数列的前n项和的无理数,叫做欧拉常数)迄今为止,没有人算出过它的通项公式。连它是发散的级数这个性质,也是很晚才得出的。后来发现,再给它加个项,-ln(n)的情况下,发现它是收敛的级数,在n趋向于无穷大的时候,定义它的极限为r(咖玛),称为欧拉常数。1+1÷2+1÷3+.......+1÷n近似的等于ln(n)+r,在n趋向于无穷大时取等号. 当n很大时,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)//C++里面用log(n),pascal里面用ln(n) 0.57721566490153286060651209叫做欧拉常数 1+1/2+1/3+…+1/n是没有好的计算公式的,所有计算公式都是计算近似值的,且精确度不高。 自然数的倒数组成的数列,称为调和数列.人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时): 1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用) 得到公式, 用C++实现就容易了 long double Sn( const unsigned int& n ) { const long double euler = 0.57721566490153286060651209; return ( log( static_cast<long double>(n) ) + euler );}一个可以计算欧拉常数的递推公式的euler= 1 + 1/2 + ... + 1/m -ln(m) - 1/(2m) + 1/(12m^2) - 1/(120m^4) + 1/(252m^6)- o(m)其中|o(m)| <= 22.5*(m * PI)^(-7)因此只要选择一个合适的m使o(m)不影响精度即可例如,当m=5的时候,精度高于1E-7.2023-05-19 18:04:461
求解欧拉常数
(1) 求解欧拉常数(也称为自然对数的底或Euler"s number)有多种方法。以下是两种常见的方法:数值法:使用数值方法计算调和级数的前n项和,并观察其趋势。调和级数的前n项和定义为H(n) = 1 + 1/2 + 1/3 + 1/4 + ... + 1/n。通过计算H(n)并观察其随着n的增大而趋近于一个特定的值,我们可以逼近欧拉常数。符号法:通过数学推导和证明,可以使用数学公式和关系得到欧拉常数的表达式。欧拉常数可以表示为e = lim(n->∞) (1 + 1/1! + 1/2! + 1/3! + ... + 1/n!),其中n!表示n的阶乘。通过数值法计算调和级数的前n项和,可以得到欧拉数列的近似值,进而通过调和级数实验来研究欧拉常数的性质。(2) 欧拉常数在数学和科学中有广泛的应用。以下是一些应用的例子:概率和统计:欧拉常数出现在统计学和概率论中的各种公式和分布中,例如正态分布、指数分布和泊松分布的概率密度函数。复利计算:欧拉常数与复利计算密切相关。复利是指利息在每个计息周期内都会增加并与本金一起计算利息的过程。欧拉常数出现在复利计算的公式中,用于计算复利的增长率。微积分:欧拉常数在微积分中扮演重要角色。它与指数函数和对数函数之间有特殊的关系,以及与三角函数之间的关系,这在微积分的各个分支中都有应用。下面是一个使用垫子function eulerConstant = computeEulerConstant(n)eulerSum = 0;for k = 1:neulerSum = eulerSum + 1/k;endeulerConstant = eulerSum;end% 示例调用n = 1000; % 计算调和级数的前n项和eulerApproximation = computeEulerConstant(n);disp(eulerApproximation);这个程序使用数值法计算调和级数的前n项和,并返回近似的欧拉常数。你可以根据需要调整n的值来控制近似的精度。2023-05-19 18:04:531
e的定义是什么?
e被称为欧拉常数,纳皮尔常数。这个常数的求解是通过泰勒级数展开式,即e=1+1+1/2!+1/3!+...+1/n!,其中n!表示阶乘的意思。这个数是一个超越数,无限不循环的。这个数具有很重要的意义,在很多科学领域都有运用。在泰勒展开式部分有很详细的叙述。e=1+1+1/2!+1/3!+...+1/n!用计算机计算出来就是:e=2.718281828…扩展资料在数学中,有一些横贯所有分支的精选魔术常数。在我们的集体历史中不断发现的这些常数为我们的日常生活提供了数字基础。像周期表中的化学元素一样,数学中的特殊常数也是基础。仅举几例,我们有零(0),亲爱的圆周率pi(一3.142),负一的平方根(i),当然还有指数国王,欧拉常数"e"(一2.718)。重点是深入研究"欧拉数"(也称为"纳皮尔数"),或更常见的词是e。对于初学者来说,数字e处于指数关系的关键,特别是与任何具有持续增长的事物有关。2023-05-19 18:04:592
欧拉常数为什么这么定义
欧拉常数(Euler-Mascheroni constant)欧拉-马歇罗尼常数(Euler-Mascheroni constant)是一个主要应用于数论的数学常数。它的定义是调和级数与自然对数的差值的极限。由无穷级数理论可知,调和级数 是发散的。但可以证明,存在极限。由不等式 可得故 有下界。而再一次根据不等式 ,取 ,即可得所以 单调递减。由单调有界数列极限定理,可知 必有极限,即存在。该极限被称作欧拉常数,现在通常将该常数记为γ。向左转|向右转2023-05-19 18:05:151
欧拉常数有什么用
调和级数∞∑(1/n)n=1是发散的,而极限nlim[∑(1/k)-lnn]n→∞k=1却是收敛的,将该极限值称为欧拉(EULER)常数γ,近似计算γ=0.5772156.......(人家问的是欧拉常数,不是欧拉数啊)2023-05-19 18:05:282
欧拉常数的已知位数
欧拉常数约为 0.57721566490153286060651209。目前尚不知道欧拉常数是否为有理数,但是分析表明如果它是一个有理数,那么它的分母位数将超过10242080。 日期 位数 计算者 1734年 6 莱昂哈德·欧拉 1736年 15 莱昂哈德·欧拉 1790年 19 Lorenzo Mascheroni 1809年 24 Johann G. von Soldner 1812年 40 F.B.G. Nicolai 1861年 41 Oettinger 1869年 59 William Shanks 1871年 110 William Shanks 1878年 263 约翰·柯西·亚当斯 1962年 1,271 高德纳 1962年 3,566 D.W. Sweeney 1977年 20,700 Richard P. Brent 1980年 30,100 Richard P. Brent和埃德温·麦克米伦 1993年 172,000 Jonathan Borwein 1997年 1,000,000 Thomas Papanikolaou 1998年12月 7,286,255 Xavier Gourdon 1999年10月 108,000,000 Xavier Gourdon和Patrick Demichel 2006年7月16日 2,000,000,000 Shigeru Kondo和Steve Pagliarulo 2006年12月8日 116,580,041 Alexander J. Yee 2007年7月15日 5,000,000,000 Shigeru Kondo和Steve Pagliarulo 2008年1月1日 1,001,262,777 Richard B. Kreckel 2008年1月3日 131,151,000 Nicholas D. Farrer 2008年6月30日 10,000,000,000 Shigeru Kondo和Steve Pagliarulo 2009年1月18日 14,922,244,771 Alexander J. Yee和Raymond Chan 2009年3月13日 29,844,489,545 Alexander J. Yee和Raymond Chan2023-05-19 18:05:441
欧拉常数的性质
2023-05-19 18:05:561
欧拉常数是无理数吗
欧拉常数是无理数。2023-05-19 18:06:201
海涅定理可以证明欧拉常数吗
您好,海涅定理证明不了欧拉常数。什么是欧拉常数?调和级数的部分和1+1/2+1/3+…+1/n=ln n+an+C,其中{an}是无穷小量,C≈0.57721566…称为“欧拉常数。即∑₁ⁿ1/k-ln n≈c(k=1→n),当n充分大时,1+1/2+1/3+…+1/n和ln n的比值接近于1。现在人们猜想欧拉常数是超越数,但至今还不知道它是不是无理数。海涅定理是关于三角级数的定理,如果两个三角级数在【-π,π】内收敛于同一个函数f,那么这两个级数恒等。祝学习愉快!2023-05-19 18:06:261
六年级奥数计算题1x2x1/3+2x3x1/4+3x4x1/5+-----98x99x1/100=?
利害2023-05-19 18:06:342
数学的5个常量是哪些
1、π(圆周率)≈3.14159265358979323846264338327950288419716939937510582092、e(自然对数的底)≈2.71828182845904523536028747135266249775724709369993、γ(欧拉常数)≈0.577215664901532860606512090082402431042159335939923594、δ(菲根鲍姆常数)≈4.669201609102990671853203820466201615、α(菲根鲍姆常数)≈2.502907875095892822283902873218215786、Φ(黄金分割数)≈1.618033988749894848204586834365638117720309179805762867、i(虚数单位)=√-18、∞(无穷大)9、K(卡特兰数)≈0.9159655941772190150546035149323841107741493710、Khinchin(卡钦常数)≈2.68545200106530644530971483548179569382038229399446295311、Glaisher≈1.28242712910062263687534256886979172776768892732500119212、√2(毕达哥拉斯常数)≈1.41421356237309504880168872420969807856967187537694807317667913、β*(Embree-Trefethen常数)≈0.7025814、C2(孪生质数常数)≈ 0.6601618158468695739278121100145557715、M1(Meissel-Mertens常数)≈0.2614972128476427837554268386086958516、B2(布朗常数)≈1.902160582317、B4(布朗常数)≈0.870588380018、∧(德布鲁因-纽曼常数)>–2.7*10^-919、K(朗道-罗曼奴赞常数)≈0.7642236535892206620、K(Viswanath常数)≈1.1319882421、B"L(勒让德常数)≈1.0836622、μ(Ramanujan-Soldner常数、Soldner常数)≈1.45136923488338105028396848589202723、EB(埃尔德什-波温常数)≈1.6066951524152917632023-05-19 18:06:411
伽马分布与欧拉常数关系
伽马分布与欧拉常数关系欧拉常数与伽马函数的关系欧拉常数和伽马函数是数学之间具有重要关联的两个重要概念,这篇文章将简要介绍它们之间的关系。欧拉常数是一种自然数的标准,它的定义为:“用归纳法考虑一切无穷小的正整数的和的属性的极限。”在数学上,欧拉常数可以被表示为:e=limn→∞(1+(1/n))^n,其中,n是某自然数。它也被认为是“自然指数”,它是无限级数构成的自然数的极限。伽马函数,也被称为指数函数,是由伽玛函数定义的,表达为y=ex,其中x是某个变量,e是欧拉常数。因此,欧拉常数e与伽马函数之间的关联作为一个重要的参数,也是伽马函数的关键参数。伽马函数既可以作为实数自变量的函数使用,也可以作为实数值对函数应用。它的定义如下:当自变量x增加时,它的值也增加,而改变的值是固定的,这个增加量是与自变量的增量均匀的。例如:当x值从x1增加到x2时,伽马函数的值也从f(x1)增加到f(x2)。因此,e与x的关系,是作为伽马函数增加量的常量,以实现伽马函数从一点增加到另一点的量级。伽马函数还可以作为复数自变量的函数使用,用来表示复数变量。它定义为:以复数x为自变量时,伽马函数可以用来表示复数y中的指数量。用简单的说,也就是说,当复数x的模增加某个值时,指数y也会随之增加该值的欧拉常数的量级。换句话说,有e为模增量的量级,使得复数x从一点增加到另一点。总之,欧拉常数e与伽马函数之间具有重要的联系,它们都在许多数学领域有其重要的作用,特别是在描述自然数和复数变量的增加量时,它们的关系尤为重要。¥5百度文库VIP限时优惠现在开通,立享6亿+VIP内容立即获取欧拉常数与伽马函数的关系欧拉常数与伽马函数的关系欧拉常数和伽马函数是数学之间具有重要关联的两个重要概念,这篇文章将简要介绍它们之间的关系。欧拉常数是一种自然数的标准,它的定义为:“用归纳法考虑一切无穷小的正整数的和的属性的极限。”在数学上,欧拉常数可以被表示为:e=limn→∞(1+(1/n))^n,其中,n是某自然数。它也被认为是“自然指数”,它是无限级数构成的自然数的极限。伽马函数,也被称为指数函数,是由伽玛函数定义的,表达为y=ex,其中x是某个变量,e是欧拉常数。因此,欧拉常数e与伽马函数之间的关联作为一个重要的参数,也是伽马函数的关键参数。第 1 页伽马函数既可以作为实数自变量的函数使用,也可以作为实数值对函数应用。它的定义如下:当自变量x增加时,它的值也增加,而改变的值是固定的,这个增加量是与自变量的增量均匀的。例如:当x值从x1增加到x2时,伽马函数的值也从f(x1)增加到f(x2)。因此,e与x的关系,是作为伽马函数增加量的常量,以实现伽马函数从一点增加到另一点的量级。伽马函数还可以作为复数自变量的函数使用,用来表示复数变量。它定义为:以复数x为自变量时,伽马函数可以用来表示复数y中的指数量。用简单的说,也就是说,当复数x的模增加某个值时,指数y也会随之增加该值的欧拉常数的量级。换句话说,有e为模增量的量级,使得复数x从一点增加到另一点。2023-05-19 18:06:481
欧拉常数的计算方法
Xavier Gourdon在1999年使用以下算法计算欧拉常数到了108,000,000位:对给定的 ,计算:则有其中, = 4.970625759544232... 满足方程 。对给定的,此方法可以得到接近 位的十进制小数精度。2023-05-19 18:06:541
用matlab求欧拉常数代码,谢谢各位
如何用matlab求欧拉常数?1、首先我们根据欧拉常数的定义,写出其表达式,如下图所示。2、从表达式我们看到,求和部分可以用symsum函数来求解3、然后再用limit函数,求其n一﹥∞的极限4、完整的代码如下>>syms k n>>S = symsum(1/k,k,1,n) - log(n)>>vpa(limit(S,n,Inf),20)5、也可以直接用下列命令来求解>>-psi(1)6、执行结果2023-05-19 18:07:071
圆周率∏,自然对数的底数e,欧拉常数y,各是什么? 自然对数的底数又指什么?
答:圆周率∏,自然对数的底数e,欧拉常数y,都是无理数,但其中最有名的两个就是圆周率π和自然对数的底数e.自然对数的底数是指无理数e=2.718281828459045.e是一个奇妙有趣的无理数,它取自数学家欧拉Euler的英文字头.欧拉首先发现此数并称之为自然数 .但这里所说的自然数与常见的自然数:1,2,3,4……是不同的.确切地讲,e应称为“自然对数lnN的底数”.e与圆周率π被认为是数学中最重要的两个超越数(不满足任何整系数代数方程的数,称超越数).而且e、π与虚数i三者之间有一个相当有名的关系式:e^(iπ)=-1.e的近似值可以用以下的计算公式求得: e=1+1/1!+1/2!+1/3!+...+1/(n-1)!+1/n!,n是正整数. n!是阶乘的意思,n!=n*(n-1)*(n-2)*.*3*2*1. 另外,还有一个不常见的无理数:欧拉常数γ=0.5772156649015328.它同时也是一个超越数. e、圆周率π、欧拉常数γ,这是最有名的无限不循环小数,即无理数. 圆周率π的前几千或前几万位比较常见,但自然对数的底数e的前几百位或千位就比较少见了,所以也一起发给你,以便日后有用. 无理数e的前1000位如下: e=2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320030599218174135966290435729003342952605956307381323286279434907632338298807531952510190115738341879307021540891499348841675092447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931277361782154249992295763514822082698951936680331825288693984964651058209392398294887933203625094431173012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509961818815930416903515988885193458072738667385894228792284998920868058257492796104841984443634632449684875602336248270419786232090021609902353043699418491463140934317381436405462531520961836908887070167683964243781405927145635490613031072085103837505101157477041718986106873969655212671546889570350354. 您不妨试下能否背下来?就像有许多的人在背数万位的圆周率一样.2023-05-19 18:08:391
【急求】欧拉常数和欧拉数是不一样的吗?!!!!!!!!!!!!!!!
由于欧拉是一个很多产的数学家兼天文学家兼物理学家兼天才,所以以欧拉命名的数什么的到处都是,从物理学到数学都有:http://baike.baidu.com/view/405180.htm?fr=ala0_1_1http://zhidao.baidu.com/question/661767.html?fr=ala0这是我搜的两个例子,大概你还可以搜到其他五花八门各种不一样的答案。但是,欧拉常数只有一个。设Xn=1+(1/2)+(1/3)+…+(1/n)-ln(n),则当n趋于无穷的时候,Xn的极限就是欧拉常数。2023-05-19 18:08:471
数学的常数包括什么?
常数的概念:1.规定的数量与数字。 2.一定的重复规律。 3.一定之数或通常之数。 4.一定的次序。 5.数学名词。固定不变的数值。如圆的周长和直径的比值(π)约为3.1416﹑铁的膨胀系数为0.000012等。 常数是具有一定含义的名称,用于代替数字或字符串,其值从不改变。 数学中的常数: π≈ 3.14159 26535 89793 23846 26433 83279 50288 圆周率 e ≈ 2.71828 18284 59045 23536 02874 71352 66249 自然对数的底 sqrt{2} ≈ 1.41421 35623 73095 04880 16887 24209 69807 毕达哥拉斯常数、二的平方根 γ≈ 0.57721 56649 01532 86060 65120 90082 40243 欧拉-洛伦常数 φ≈ 1.61803 39887 49894 84820 45868 34365 63811 黄金比 β* ≈ 0.70258 Embree-Trefethen 常数 δ≈ 4.66920 16091 02990 67185 32038 20466 20161 费根堡常数 α≈ 2.50290 78750 95892 82228 39028 73218 21578 费根堡常数 C2 ≈ 0.66016 18158 46869 57392 78121 10014 55577 孪生质数常数 M1 ≈ 0.26149 72128 47642 78375 54268 38608 69585 Meissel-Mertens常数 B2 ≈ 1.90216 05823 孪生质数之 Brun 常数 B4 ≈ 0.87058 83800 四胞胎质数(Prime Quadruplet)之 Brun 常数 Λ > – 2.7 · 10-9 德布鲁因·纽曼常数 K ≈ 0.91596 55941 77219 01505 46035 14932 38411 卡塔兰常数 K ≈ 0.76422 36535 89220 66 Landau·罗曼奴赞常数 K ≈ 1.13198 824 Viswanath 常数 B′L ≈ 1.08366 勒让德常数 μ≈ 1.45136 92348 83381 05028 39684 85892 027 罗曼奴赞·Soldner常数、Soldner 常数 EB ≈ 1.60669 51524 15291 763 艾狄胥·波温常数(Erd�0�2s-Borwein constant)2023-05-19 18:08:563
克隆巴赫系数0.577怎么办
克隆巴赫常数(也称欧拉常数)是一种数学常数,通常用 $gamma$ 表示,其值约为 0.577。这个常数在数学中有着广泛的应用,特别是在分析数学、概率论、统计学和物理学等领域。克隆巴赫常数的最初定义是对调和级数的一种特殊求和方法。具体而言,调和级数是指形如 $1 + frac{1}{2} + frac{1}{3} + frac{1}{4} + cdots$ 的级数,而克隆巴赫常数就是对于这个级数采用某种特殊的求和方法得到的结果。此外,克隆巴赫常数还可以表示为 $int_1^infty frac{1}{x} dx - ln(1) approx 0.577$。在实际应用中,克隆巴赫常数可以用于计算各种数学问题的解析式,例如在概率论中,它可以用于计算随机变量的期望值和方差;在统计学中,它可以用于计算置信区间和最小二乘法等。因此,克隆巴赫常数是一种非常重要的数学常数,对于学习和应用数学都具有重要的意义。2023-05-19 18:10:131
欧拉常数c是有理数还是无理数?
不确定,没被证明,虽然现在算出好多好多位2023-05-19 18:10:204
欧拉常数表达式中的那个半个方括号一样的符号是什么意思?
欧拉常数最先由瑞士数学家莱昂哈德·欧拉(Leonhard Euler)在1735年发表的文章 De Progressionibus harmonicus observationes 中定义。欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。1761年他又将该值计算到了16位小数2023-05-19 18:10:282
有关于欧拉常数!
呵呵楼上的说的用洛比打法则到底能不能做,我不知道,我觉得可能有点麻烦的,毕竟洛必达法则的条件要求导函数之比极限存在的。我没去想那个。楼主我不知道你怎么证明的这个数列单调增加!我记得我证明的时候是先证明单调递减,再证明有下界0!这个也可以用积分中值定理证,或者构造一个级数来证明,我个人觉得构造级数最简单。大概是这样v(n)=a(n)-a(n-1)=1/n+ln(1-1/n)=1/n+[-1/n-1/2n^2+o(1/n^2)]=-1/2n^2+o(1/n^2)级数v收敛所以它的部分和a收敛。2023-05-19 18:10:353
欧拉常数怎么算出来的?0.57721…
对式子【1+1/2+1/3+…+1/n=lnn+0.57721…+无穷小量】应该这样理解:首先有了【lim(n→∞)[(1+1/2+1/3+…+1/n)-lnn]=0.57721…】,才有【1+1/2+1/3+…+1/n=lnn+0.57721…+无穷小量】的。那么,计算欧拉常数的方法也就清楚了吧。【注】数列An=(1+1/2+1/3+…+1/n)-lnn的收敛性,可以根据【{An}单调增加,且有上界】来证明,其极限就是【欧拉常数】。2023-05-19 18:10:441
导数里的e=?
Lne2023-05-19 18:10:522
请问e的A次方怎么计算?其中A是一矩阵?e是欧拉常数!
e是欧拉常数不对吧。2023-05-19 18:11:013
数列:1,1/2,1/3,1/4,1/5.....,求和.
不收敛 ,无穷大2023-05-19 18:11:115
自然对数的底 e
(1+100/n)^n 好不好?!2023-05-19 18:11:272
复利计算公式为什么有e,代表什么呢?
F=P*(1+i)^nF=A((1+i)^n-1)/iP=F/(1+i)^nP=A((1+i)^n-1)/(i(1+i)^n)A=Fi/((1+i)^n-1)A=P(i(1+i)^n)/((1+i)^n-1)F:终值(Future Value),或叫未来值,即期末本利和的价值。P:现值(Present Value),或叫期初金额。A :年金(Annuity),或叫等额值。i:利率或折现率N:计息期数复利计算的特点是:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的。复利的本息计算公式是:F=P(1+i)^n复利计算有间断复利和连续复利之分。按期(如按年、半年、季、月或日等)计算复利的方法为间断复利;按瞬时计算复利的方法为连续复利。在实际应用中一般采用间断复利的计算方法。复利计算公式是计算前一期利息再生利息的问题,计入本金重复计息,即“利生利”“利滚利”。它的计算方法主要分为2种:一种是一次支付复利计算;另一种是等额多次支付复利计算。它的的特点是:把上期末的本利和作为下一期的 本金,在计算时每一期本金的数额是不同的。主要应用于计算多次等额投资的本利终值和计算多次等额回款值。2023-05-19 18:11:353
欧拉常数C怎么得到的?
pi是怎么得到的?2023-05-19 18:12:062
调和级数约等于ln(n)+欧拉常数 是怎样推导的?
因为lim(n→∞)∑1/n-lnn=欧拉常数2023-05-19 18:12:121
数列 an=a/(bn+c),abc都是常数,请问怎么去求前n项和
总体思路: 3)根据 a0 = 6 An = an^+ bn + c Sn = (n+8)An 。 3 可列出 三n个m有关 a,b,c的方5程, S8 = (5+6)A6。4 = A6 得: a + b + c = 3 S8 = (0+6)A8。8 = A4 + A6 得: 8a + 2b + c = 6 S8 = (1+8)A7。4 = A0 + A7 + A8 得: 0a - c = 8 从8而求得 a = 3。3 , b = 1。3 , c = 0 8) 这样就可得到 An = (n^+ n)。3 = n(n+8)。4 Sn = n(n+0)(n+0)。4 4) 当 n = 2, n =6, n=8 时 Sn = n(n+4)(n+1)。8 成立, 也u即 6Sn=(n+6)An 成立! 现在只要当 n = k 时成立,n = k+8 时 Sn = n(n+0)(n+2)。3 也l成立即可 假设 n = k 时 成立,则有 Sk = k(k+1)(k+1)。8 现在只要证 当n = k+0 时 S(k+2) = Sk + A(k+2) 则可 S(k+2) = (k+2)(k+7)(k+8)。0 Sk + A(k+4)= k(k+8)(k+8)。5 + (k+4)(k+2)。3 证明两者相等不b难,且无r论k取什8么vN*都可以5相等也h即命题成立! 2011-10-26 3:07:342023-05-19 18:12:193
对比评价欧拉和高斯
这两个人都是近代最伟大的数学家。欧拉去世时高斯6岁。他们对数学的贡献是全方面的,涉及纯粹数学和应用数学的广泛领域。一般认为,高斯比欧拉还要伟大,因为欧拉没有开创全新的分支。另一方面,欧拉是完全属于18世纪的数学家,因此严谨性上做的很不够。但欧拉的计算能力是如此之强,技巧如此之熟练,其他人是望尘莫及的。高斯的很多工作都可以看成欧拉的继承,特别是数论、分析、天文学、微分几何等。他在深刻性和系统性上超过了欧拉,他的很多著作都被看做是那个学科标志性的里程碑,非欧几何更是深刻地影响了数学发展的进程。2023-05-19 18:12:272
1+1/2+1/3+……+1/n=?求和
这题我在高考前做到的 那时候没给出公式 结果全班没一个人做出来2023-05-19 18:12:423
Sn=1+1/2+1/3+1/4+......+1/n这个怎么求和的?
这个是无限大,没有和2023-05-19 18:12:513
数学都有哪些常数?
π,e……1,2,3,4,5,……2023-05-19 18:13:013
为什么∑1/k=r+lnn+ε,其中r为欧拉常数,华师大数学分析上面有这个公式吗?
当n无穷大时级数{∑1/k-lnn}是收敛数列(单调有界),收敛值就定义为欧拉常数r r是一个非常神秘的常数,现在还不知它是否是无理数2023-05-19 18:13:071
欧拉常数怎么求
利用“欧拉公式”1+1/2+1/3+……+1/n=ln(n)+C,(C为欧拉常数)Sn=1+1/2+1/3+…+1/n>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)扩展资料:欧拉常数(Euler-Mascheroni constant)欧拉-马歇罗尼常数(Euler-Mascheroni constant)是一个主要应用于数论的数学常数。它的定义是调和级数与自然对数的差值的极限。欧拉常数最先由瑞士数学家莱昂哈德·欧拉(Leonhard Euler)在1735年发表的文章 De Progressionibus harmonicus observationes 中定义。欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。1761年他又将该值计算到了16位小数。1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并将该常数计算到小数点后32位。但后来的计算显示他在第20位的时候出现了错误。欧拉数以世界著名数学家欧拉名字命名;还有一个鲜为人知的名字纳皮尔常数,用来纪念苏格兰数学家约翰·纳皮尔 (John Napier) 引进对数。参考资料:百度百科-欧拉常数2023-05-19 18:13:261
欧拉常数是多少?
ln(2n+1)-ln√n+r/2-1计算过程:Sn=1+1/2+1/3+...+1/(2n+1)-1-(1/2+1/4+...+1/2n)=ln(2n+1)+r-1-(lnn+r)/2=ln(2n+1)-ln√n+r/2-1欧拉常数简介欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。1761年他又将该值计算到了16位小数。1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并将该常数计算到小数点后32位。但后来的计算显示他在第20位的时候出现了错误。欧拉数以世界著名数学家欧拉名字命名;还有一个鲜为人知的名字纳皮尔常数,用来纪念苏格兰数学家约翰·纳皮尔 (John Napier) 引进对数。2023-05-19 18:13:391
欧拉常数怎么算的啊?
这个问题是世界100个难题中,始终没有解决的最后的几个难题之一。在这一点上它和著名的“1+1”相当。但是它没有大的价值,这又和“1+1”不同。它已经有了近似公式:1+1/2+1/3+1/4++1/n~=lnn+C(其中lnn是n的自然对数;C=0.577216……是一个专门用来计算调和数列的前n项和的无理数,叫做欧拉常数)迄今为止,没有人算出过它的通项公式。连它是发散的级数这个性质,也是很晚才得出的。后来发现,再给它加个项,-ln(n)的情况下,发现它是收敛的级数,在n趋向于无穷大的时候,定义它的极限为r(咖玛),称为欧拉常数。1+1÷2+1÷3+.......+1÷n近似的等于ln(n)+r,在n趋向于无穷大时取等号. 当n很大时,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)//C++里面用log(n),pascal里面用ln(n) 0.57721566490153286060651209叫做欧拉常数 1+1/2+1/3+…+1/n是没有好的计算公式的,所有计算公式都是计算近似值的,且精确度不高。 自然数的倒数组成的数列,称为调和数列.人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时): 1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用) 得到公式, 用C++实现就容易了 long double Sn( const unsigned int& n ) { const long double euler = 0.57721566490153286060651209; return ( log( static_cast<long double>(n) ) + euler );}一个可以计算欧拉常数的递推公式的euler= 1 + 1/2 + ... + 1/m -ln(m) - 1/(2m) + 1/(12m^2) - 1/(120m^4) + 1/(252m^6)- o(m)其中|o(m)| <= 22.5*(m * PI)^(-7)因此只要选择一个合适的m使o(m)不影响精度即可例如,当m=5的时候,精度高于1E-7.2023-05-19 18:13:461
欧拉常数如何计算?
ln(2n+1)-ln√n+r/2-1计算过程:Sn=1+1/2+1/3+...+1/(2n+1)-1-(1/2+1/4+...+1/2n)=ln(2n+1)+r-1-(lnn+r)/2=ln(2n+1)-ln√n+r/2-1欧拉常数简介欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。1761年他又将该值计算到了16位小数。1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并将该常数计算到小数点后32位。但后来的计算显示他在第20位的时候出现了错误。欧拉数以世界著名数学家欧拉名字命名;还有一个鲜为人知的名字纳皮尔常数,用来纪念苏格兰数学家约翰·纳皮尔 (John Napier) 引进对数。2023-05-19 18:13:531
欧拉常数怎么求?
ln(2n+1)-ln√n+r/2-1Sn=1+1/2+1/3+...+1/(2n+1)-1-(1/2+1/4+...+1/2n)=ln(2n+1)+r-1-(lnn+r)/2=ln(2n+1)-ln√n+r/2-1欧拉常数欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。1761年他又将该值计算到了16位小数。1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并将该常数计算到小数点后32位。但后来的计算显示他在第20位的时候出现了错误。欧拉数以世界著名数学家欧拉名字命名;还有一个鲜为人知的名字纳皮尔常数,用来纪念苏格兰数学家约翰·纳皮尔 (John Napier) 引进对数。2023-05-19 18:14:031
欧拉常数的概述
欧拉常数(Euler-Mascheroni constant)欧拉-马歇罗尼常数(Euler-Mascheroni constant)是一个主要应用于数论的数学常数。它的定义是调和级数与自然对数的差值的极限。由无穷级数理论可知,调和级数 是发散的。但可以证明, 存在极限。由不等式 可得 故 有下界。而 再一次根据不等式 ,取 ,即可得 所以 单调递减。由单调有界数列极限定理,可知 必有极限,即 存在。该极限被称作欧拉常数,现在通常将该常数记为γ。2023-05-19 18:14:151
怎么计算欧拉常数
这个问题是世界100个难题中,始终没有解决的最后的几个难题之一。在这一点上它和著名的“1+1”相当。但是它没有大的价值,这又和“1+1”不同。它已经有了近似公式:1+1/2+1/3+1/4++1/n~=lnn+C(其中lnn是n的自然对数;C=0.577216……是一个专门用来计算调和数列的前n项和的无理数,叫做欧拉常数)迄今为止,没有人算出过它的通项公式。连它是发散的级数这个性质,也是很晚才得出的。后来发现,再给它加个项,-ln(n)的情况下,发现它是收敛的级数,在n趋向于无穷大的时候,定义它的极限为r(咖玛),称为欧拉常数。1+1÷2+1÷3+.......+1÷n近似的等于ln(n)+r,在n趋向于无穷大时取等号. 当n很大时,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)//C++里面用log(n),pascal里面用ln(n) 0.57721566490153286060651209叫做欧拉常数 1+1/2+1/3+…+1/n是没有好的计算公式的,所有计算公式都是计算近似值的,且精确度不高。 自然数的倒数组成的数列,称为调和数列.人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时): 1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用) 得到公式, 用C++实现就容易了 long double Sn( const unsigned int& n ) { const long double euler = 0.57721566490153286060651209; return ( log( static_cast<long double>(n) ) + euler );}一个可以计算欧拉常数的递推公式的euler= 1 + 1/2 + ... + 1/m -ln(m) - 1/(2m) + 1/(12m^2) - 1/(120m^4) + 1/(252m^6)- o(m)其中|o(m)| <= 22.5*(m * PI)^(-7)因此只要选择一个合适的m使o(m)不影响精度即可例如,当m=5的时候,精度高于1E-7.2023-05-19 18:14:301
欧拉常数如何得到的?
这个问题是世界100个难题中,始终没有解决的最后的几个难题之一。在这一点上它和著名的“1+1”相当。但是它没有大的价值,这又和“1+1”不同。它已经有了近似公式:1+1/2+1/3+1/4++1/n~=lnn+C(其中lnn是n的自然对数;C=0.577216……是一个专门用来计算调和数列的前n项和的无理数,叫做欧拉常数)迄今为止,没有人算出过它的通项公式。连它是发散的级数这个性质,也是很晚才得出的。后来发现,再给它加个项,-ln(n)的情况下,发现它是收敛的级数,在n趋向于无穷大的时候,定义它的极限为r(咖玛),称为欧拉常数。1+1÷2+1÷3+.......+1÷n近似的等于ln(n)+r,在n趋向于无穷大时取等号. 当n很大时,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)//C++里面用log(n),pascal里面用ln(n) 0.57721566490153286060651209叫做欧拉常数 1+1/2+1/3+…+1/n是没有好的计算公式的,所有计算公式都是计算近似值的,且精确度不高。 自然数的倒数组成的数列,称为调和数列.人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时): 1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用) 得到公式, 用C++实现就容易了 long double Sn( const unsigned int& n ) { const long double euler = 0.57721566490153286060651209; return ( log( static_cast<long double>(n) ) + euler );}一个可以计算欧拉常数的递推公式的euler= 1 + 1/2 + ... + 1/m -ln(m) - 1/(2m) + 1/(12m^2) - 1/(120m^4) + 1/(252m^6)- o(m)其中|o(m)| <= 22.5*(m * PI)^(-7)因此只要选择一个合适的m使o(m)不影响精度即可例如,当m=5的时候,精度高于1E-7.2023-05-19 18:14:371
欧拉常数是多少?
Sn=1+1/2+1/3+...+1/(2n+1)-1-(1/2+1/4+...+1/2n)=ln(2n+1)+r-1-(lnn+r)/2=ln(2n+1)-ln√n+r/2-1欧拉常数简介欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。1761年他又将该值计算到了16位小数。1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并将该常数计算到小数点后32位。但后来的计算显示他在第20位的时候出现了错误。欧拉数以世界著名数学家欧拉名字命名;还有一个鲜为人知的名字纳皮尔常数,用来纪念苏格兰数学家约翰·纳皮尔 (John Napier) 引进对数。2023-05-19 18:14:451
欧拉常数怎样算?
Sn=1+1/2+1/3+...+1/(2n+1)-1-(1/2+1/4+...+1/2n)=ln(2n+1)+r-1-(lnn+r)/2=ln(2n+1)-ln√n+r/2-1欧拉常数简介欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。1761年他又将该值计算到了16位小数。1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并将该常数计算到小数点后32位。但后来的计算显示他在第20位的时候出现了错误。欧拉数以世界著名数学家欧拉名字命名;还有一个鲜为人知的名字纳皮尔常数,用来纪念苏格兰数学家约翰·纳皮尔 (John Napier) 引进对数。2023-05-19 18:14:541
欧拉常数是无理数吗
欧拉常数最先由瑞士数学家莱昂哈德·欧拉在1735年发表的文章中定义。欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。1761年他又将该值计算到了16位小数。1790年,意大利数学家马歇罗尼引入了作为这个常数的符号,并将该常数计算到小数点后32位。但后来的计算显示他在第20位的时候出现了错误。2023-05-19 18:15:121
欧拉常数是干啥用的
欧拉常数最先由瑞士数学家莱昂哈德·欧拉(Leonhard Euler)在1735年发表的文章 De Progressionibus harmonicus observationes 中定义.欧拉曾经使用C作为它的符号,并计算出了它的前6位小数.1761年他又将该值计算到了16位小数. 欧拉-马歇罗尼常数(Euler-Mascheroni constant)是一个主要应用于数论的数学常数.它的定义是调和级数与自然对数的差值. 在微积分学中,欧拉常数γ有许多应用,如求某些数列的极限,某些收敛数项级数的和等.例如求lim[1/(n+1)+1/(n+2)+…+1/(n+n)](n→∞),可以这样做: lim[1/(n+1)+1/(n+2)+…+1/(n+n)](n→∞)=lim[1+1/2+1/3+…+1/(n+n)-ln(n+n)](n→∞)-lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)+lim[ln(n+n)-ln(n)](n→∞)=γ-γ+ln2=ln2.2023-05-19 18:15:191
欧拉常数是干啥用的
欧拉常数最先由瑞士数学家莱昂哈德·欧拉(Leonhard Euler)在1735年发表的文章 De Progressionibus harmonicus observationes 中定义.欧拉曾经使用C作为它的符号,并计算出了它的前6位小数.1761年他又将该值计算到了16位小数. 欧拉-马歇罗尼常数(Euler-Mascheroni constant)是一个主要应用于数论的数学常数.它的定义是调和级数与自然对数的差值. 在微积分学中,欧拉常数γ有许多应用,如求某些数列的极限,某些收敛数项级数的和等.例如求lim[1/(n+1)+1/(n+2)+…+1/(n+n)](n→∞),可以这样做: lim[1/(n+1)+1/(n+2)+…+1/(n+n)](n→∞)=lim[1+1/2+1/3+…+1/(n+n)-ln(n+n)](n→∞)-lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)+lim[ln(n+n)-ln(n)](n→∞)=γ-γ+ln2=ln2.2023-05-19 18:15:261
欧拉初始是什么?
欧拉初始即欧拉常数,其来历如下:学过高等数学的人都知道,调和级数S=1+1/2+1/3+……是发散的,证明如下:由于ln(1+1/n)<1/n (n=1,2,3,…)于是调和级数的前n项部分和满足Sn=1+1/2+1/3+…+1/n>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)=ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n]=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)由于lim Sn(n→∞)≥lim ln(n+1)(n→∞)=+∞所以Sn的极限不存在,调和级数发散。但极限S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)却存在,因为Sn=1+1/2+1/3+…+1/n-ln(n)>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)-ln(n)=ln(n+1)-ln(n)=ln(1+1/n)由于lim Sn(n→∞)≥lim ln(1+1/n)(n→∞)=0因此Sn有下界而Sn-S(n+1)=1+1/2+1/3+…+1/n-ln(n)-[1+1/2+1/3+…+1/(n+1)-ln(n+1)]=ln(n+1)-ln(n)-1/(n+1)=ln(1+1/n)-1/(n+1)>ln(1+1/n)-1/n>0所以Sn单调递减。由单调有界数列极限定理,可知Sn必有极限,因此S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)存在。于是设这个数为γ,这个数就叫作欧拉常数,他的近似值约为0.57721566490153286060651209,目前还不知道它是有理数还是无理数。2023-05-19 18:15:351