汉邦问答 / 问答 / 问答详情

对数函数的运算法则,速度

2023-07-23 12:45:13
TAG: 对数 函数
肖振

对数的运算法则如下:

1.a^(log(a)(b))=b (对数恒等式)

  2、log(a)(a^b)=b

  3、log(a)(MN)=log(a)(M)+log(a)(N);

  4、log(a)(M÷N)=log(a)(M)-log(a)(N);

  5、log(a)(M^n)=nlog(a)(M)

  6、log(a^n)M=1/nlog(a)(M)

大鱼炖火锅

1、对数的概念

如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.

由定义可得:

1)、负数和零没有对数;

2)、a>0且a≠1,N>0;

3)、loga1=0,logaa=1,alogaN=N,logaab=b.

注:以5为底的对数叫常用对数,记作log5N;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.

2、对数的运算法则

如果a>0,a≠1,M>0,N>0,那么:

1)、loga(MN)=logaM+logaN.

2)、logaMN=logaM-logaN.

3)、logaMn=nlogaM (n∈R).

对数函数的四则运算问题

对数的运算法则:一、四则运算法则:loga(AB)=loga A+loga B loga(A/B)=loga A-loga B logaN^x=xloga N 二、换底公式 logM N=loga M/loga N 三、换底公式导出:logM N=-logN M 四、对数恒等式 a^(loga M)=M
2023-07-21 17:40:471

对数函数的运算?

扩展资料:1、对数性质:在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)2、常用对数:lg(b)=log10b(10为底数)。自然对数:ln(b)=logeb(e为底数)。其中e为无限不循环小数,通常情况下只取e=2.71828。参考资料:百度百科_对数函数百度百科_对数公式
2023-07-21 17:41:013

对数函数的运算是什么?

对数函数的运算是对求幂的逆运算。正如除法是乘法的倒数反之亦然,这意味着一个数字的对数是必须产生另一个固定数字基数的指数,在简单的情况下,乘数中的对数计数因子,乘幂允许将任何正实数提高到任何实际功率。对数函数的特点总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数,对数函数是以幂真数为自变量,指数为因变量,底数为常量的函数,在实数域中真数式子没根号那就只要求真数式大于零,如果有根号要求真数大于零还要保证根号里的式子大于零。对数函数用公式y等于logaX计算,一般来说对数函数指的是以幂真数为自变量,指数为因变量,底数为常量的函数,对数函数是6类基本初等函数之一,一个正数的算术根的对数,等于被开方数的对数除以根指数。
2023-07-21 17:42:451

对数函数怎么运算

基本性质: 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、因为a^b=a^b 令t=a^b 所以a^b=t,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 换底公式的推导: 设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性质4可得 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]} 再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]
2023-07-21 17:43:021

关于对数函数计算的方法

1对数的概念如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运算性质am·an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①若a<0,则N的某些值不存在,例如log-28 ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④13m=573. (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:ab=NlogaN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=NlogaN=b.(2)①12-4=16.②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3
2023-07-21 17:43:241

对数函数运算,a怎么算的?求详细过程

a^(-1/4)=u221a2/2=2^(-1/2)=4^(-1/4)a=4
2023-07-21 17:43:345

对数函数的口诀

指数函数的定义知识口诀底是正数不为1,指数任意一实数。形如此幂等于y,指数函数要记住。底正非1指任意,指数函数要清楚。
2023-07-21 17:44:061

对数函数的运算法则

由指数和对数的互相转化关系可得出:1.两个正数的积的对数,等于同一底数的这两个数的对数的和,即 2.两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差,即3一个正数幂的对数,等于幂的底数的对数乘以幂的指数,即4.若式中幂指数则有以下的正数的算术根的对数运算法则:一个正数的算术根的对数,等于被开方数的对数除以根指数,即扩展资料:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。在一个普通对数式里a<0,或=1的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数。(比如log11也可以等于2,3,4,5,等等)如果不等于1的正实数,这个定义可以扩展到在一个域中的任何实数 (参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数 ,有一个对数函数和一个指数函数,它们互为反函数。参考资料:百度百科——对数运算法则
2023-07-21 17:44:162

对数函数底数是分数怎么提到前面

《唤鲨人》这本书是由英国的齐拉.贝瑟尔所写,王紫薇所翻译的。这本书的主题是友谊、悲伤、复仇和放下。这本书主要讲述了一个叫蓝翼和枫树的女孩,她们两个互诉忧伤和自己的秘密,修补对方的创伤的故事。通过阅读这本书,小读者会具有同理心、坚强品格,会有生命有新的理解。这本书值得一读哦!下面我将从三个方面来解读这本书。第一个方面是仇恨与愧疚,第二个方面是救赎与放下,第三个方面是家的意义。
2023-07-21 17:44:244

对数函数运算

括号里的对数化简,其实就是3的二分之一次方,也就是根号三
2023-07-21 17:44:332

数学对数怎么做

原式=(3×3^(2/3))^1/5=(3^5/3)^1/5=3^1/3这是指数,不是对数。AC选项都不对。就是这样,希望采纳!
2023-07-21 17:44:474

ln函数的运算法则是什么?

ln函数的运算法则是:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律,即对任意复数z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
2023-07-21 17:45:031

简单的对数函数运算怎么算(具体)

log2 12=log2(4x3)=log24+log23=log2 2^2+log2 3=2log 2 2+log2 3=2+log2 3 把真数化成n个因数的乘积,然后利用公式loga(x1*x2*x3*.......*xn)=logax1+logax2+logx3+.......logxn 再化简,把对数能开出来的开出来,如果不能开出来的就保留。
2023-07-21 17:45:191

对数函数的运算?

e的(-aln2)次方等于e的ln2次方括起来的-a次方,等于2的-a次方。
2023-07-21 17:45:261

对数函数运算法则是什么?

01 两正数的积的对数,等于同一底数的这两个数的对数的和。两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差。一个正数幂的对数,等于幂的底数的对数乘以幂的指数,。若式中幂指数则有以下的正数的算术根的对数运算法则:一个正数的算术根的对数,等于被开方数的对数除以根指数。 对数公式是数学中的一种常见公式,如果a^x=N(a>0,且au22601),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。 对数运算法则(rule of logarithmic operations)一种特殊的运算方法.指积、商、幂、方根的对数的运算法则。 由指数和对数的互相转化关系可得出:两个正数的积的对数,等于同一底数的这两个数的对数的和,两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差。
2023-07-21 17:45:521

对数函数的运算法则

对数函数的运算法则公式:1、a^log(a)(b)=b   2、log(a)(a)=1   3、log(a)(MN)=log(a)(M)+log(a)(N);   4、log(a)(M÷N)=log(a)(M)-log(a)(N);    5、log(a)(M^n)=nlog(a)(M)   6、log(a)[M^(1/n)]=log(a)(M)/n
2023-07-21 17:46:012

log公式的运算法则

log函数运算公式是y=logax(a>0 & a≠1)。一般地,如果a(a大于0,且a不等于1)的b次幂等于N(Nu003e0),那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=log(a)X,(其中a是常数,au003e0且a不等于1)叫做对数函数。Log函数的运算公式主要有运算法则、换底公式和推导公式。一、运算法则:1、Log a(MN)=log aM+logaN2、log a(M/N)=log aM-logaN3、logaNn=nlogaN4、(n,M,N∈R)如果a=em,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底,其为无限不循环小数。定义:若an=b(au003e0,a≠1)则n=log ab。二、换底公式(很重要)Log MN=log a M/log aN换底公式导出Log MN= -log NM三、推导公式Log (1/a) (1/b) = log (a^-1) (b^-1) = -1logab/-1 = log a(b)Log a(b)*log b(a) =1loge(x)= ln (x)lg(x)=log10(x)了解了log函数的运算公式,才能够对函数公式灵活地进行转化,从而进一步提高运算的效率和准确性。
2023-07-21 17:48:141

log函数运算公式

log函数运算公式是y=logax(a>0 & a≠1)。一般地,如果a(a大于0,且a不等于1)的b次幂等于N(Nu003e0),那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=log(a)X,(其中a是常数,au003e0且a不等于1)叫做对数函数。Log函数的运算公式主要有运算法则、换底公式和推导公式。一、运算法则:1、Log a(MN)=log aM+logaN2、log a(M/N)=log aM-logaN3、logaNn=nlogaN4、(n,M,N∈R)如果a=em,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底,其为无限不循环小数。定义:若an=b(au003e0,a≠1)则n=log ab。二、换底公式(很重要)Log MN=log a M/log aN换底公式导出Log MN= -log NM三、推导公式Log (1/a) (1/b) = log (a^-1) (b^-1) = -1logab/-1 = log a(b)Log a(b)*log b(a) =1loge(x)= ln (x)lg(x)=log10(x)了解了log函数的运算公式,才能够对函数公式灵活地进行转化,从而进一步提高运算的效率和准确性。
2023-07-21 17:48:551

对数的加减乘除运算规则

对数的加减乘除运算规则:1、a^(log(a)(b))=b2、log(a)(a^b)=b3、log(a)(MN)=log(a)(M)+log(a)(N);4、log(a)(M÷N)=log(a)(M)-log(a)(N);5、log(a)(M^n)=nlog(a)(M)6、log(a^n)M=1/nlog(a)(M)拓展资料:对数的运算(lg5)^2+lg2·lg50=?(log2 125+log4 25+log8 5)·(log125 8+log25 4+log5 2)=?解答:(lg5)^2+lg2·lg50=(lg5)^2+lg2*(lg5+1)=lg5*(lg5+lg2)+lg2=lg5*lg10+lg2=lg5+lg2=lg10=1(log2 125+log4 25+log8 5)·(log125 8+log25 4+log5 2)=((lg125/lg2)+(lg25/lg4)+(lg5/lg8))((lg8/lg125)+(lg4/lg25)+lg2/...
2023-07-21 17:49:168

对数函数有哪几种运算规则?

对数的加减乘除运算规则:1、a^(log(a)(b))=b2、log(a)(a^b)=b3、log(a)(MN)=log(a)(M)+log(a)(N);4、log(a)(M÷N)=log(a)(M)-log(a)(N);5、log(a)(M^n)=nlog(a)(M)6、log(a^n)M=1/nlog(a)(M)对数在数学内外有许多应用。这些事件中的一些与尺度不变性的概念有关。例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。Benford关于领先数字分配的定律也可以通过尺度不变性来解释。对数也与自相似性相关。例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题。自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数。对数刻度对于量化与其绝对差异相反的值的相对变化是有用的。此外,由于对数函数log(x)对于大的x而言增长非常缓慢,所以使用对数标度来压缩大规模科学数据。
2023-07-21 17:50:071

对数的运算法则是什么?

对数的运算法则:1、log(a) (M·N)=log(a) M+log(a) N2、log(a) (M÷N)=log(a) M-log(a) N3、log(a) M^n=nlog(a) M4、log(a)b*log(b)a=15、log(a) b=log (c) b÷log (c) a对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。以上内容参考:百度百科-对数函数
2023-07-21 17:50:161

对数函数的积分怎么计算?

对数函数没有特定的积分公式,一般按照分部积分来计算。例如:积分ln(x)dx原式=xlnx-∫xdlnx=xlnx-∫x*1/xdx=xlnx-∫dx=xlnx-x+C一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂为自变量,指数为因变量,底数为常量的函数,叫对数函数。积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
2023-07-21 17:50:451

两个不同底数不同指数的对数加起来怎么运算

首先根据对数的运算公式,换算成底数相同的函数,然后用对数函数的性质比较大小,把图形画出来即可。对数换底公式:在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。扩展资料:1、对数运算法则:2、对数的推导公式:log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)loga(b)*logb(a)=1loge(x)=ln(x)lg(x)=log10(x)
2023-07-21 17:50:531

对数函数运算题

1、a^log(a)(b)=b 2、log(a)(a)=1 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N);   5、log(a)(M^n)=nlog(a)(M) 6、log(a)[M^(1/n)]=log(a)(M)/n 扩展资料:一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。有理和无理指数如果 是正整数, 表示等于 的 个因子的加减: 但是,如果是 不等于1的正实数,这个定义可以扩展到在一个域中的任何实数 (参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数 ,有一个对数函数和一个指数函数,它们互为反函数。对数可以简化乘法运算为加法,除法为减法,幂运算为乘法,根运算为除法。所以,在发明电子计算机之前,对数对进行冗长的数值运算是很有用的,它们广泛的用于天文、工程、航海和测绘等领域中。它们有重要的数学性质而在今天仍在广泛使用中。复对数复对数计算公式复数的自然对数,实部等于复数的模的自然对数,虚部等于复数的辐角。
2023-07-21 17:51:511

高中数学之对数函数的运算

2023-07-21 17:52:001

log怎么运算?

对数的加减乘除运算规则:1、a^(log(a)(b))=b2、log(a)(a^b)=b3、log(a)(MN)=log(a)(M)+log(a)(N);4、log(a)(M÷N)=log(a)(M)-log(a)(N);5、log(a)(M^n)=nlog(a)(M)6、log(a^n)M=1/nlog(a)(M)对数在数学内外有许多应用。这些事件中的一些与尺度不变性的概念有关。例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。Benford关于领先数字分配的定律也可以通过尺度不变性来解释。对数也与自相似性相关。例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题。自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数。对数刻度对于量化与其绝对差异相反的值的相对变化是有用的。此外,由于对数函数log(x)对于大的x而言增长非常缓慢,所以使用对数标度来压缩大规模科学数据。
2023-07-21 17:52:411

指数函数和对数函数的运算公式

对数的概念如果a(a>0,且a≠1)的b次幂等于n,即ab=n,那么数b叫做以a为底n的对数,记作:logan=b,其中a叫做对数的底数,n叫做真数.由定义知:①负数和零没有对数;②a>0且a≠1,n>0;③loga1=0,logaa=1,alogan=n,logaab=b.特别地,以10为底的对数叫常用对数,记作log10n,简记为lgn;以无理数e(e=2.71828…)为底的对数叫做自然对数,记作logen,简记为lnn.2对数式与指数式的互化式子名称abn指数式ab=n(底数)(指数)(幂值)对数式logan=b(底数)(对数)(真数)3对数的运算性质如果a>0,a≠1,m>0,n>0,那么(1)loga(mn)=logam+logan.(2)logamn=logam-logan.(3)logamn=nlogam(n∈r).问:①公式中为什么要加条件a>0,a≠1,m>0,n>0?②logaan=?(n∈r)③对数式与指数式的比较.(学生填表)式子ab=nlogan=b名称a—幂的底数b—n—a—对数的底数b—n—运算性质am·an=am+nam÷an=(am)n=(a>0且a≠1,n∈r)logamn=logam+loganlogamn=logamn=(n∈r)(a>0,a≠1,m>0,n>0)难点疑点突破对数定义中,为什么要规定a>0,,且a≠1?理由如下:①若a<0,则n的某些值不存在,例如log-28②若a=0,则n≠0时b不存在;n=0时b不惟一,可以为任何正数③若a=1时,则n≠1时b不存在;n=1时b也不惟一,可以为任何正数为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数。
2023-07-21 17:52:522

log函数的运算公式是什么?

log函数运算公式是y=logax(a>0 & a≠1)。一般地,如果a(a大于0,且a不等于1)的b次幂等于N(Nu003e0),那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=log(a)X,(其中a是常数,au003e0且a不等于1)叫做对数函数。Log函数的运算公式主要有运算法则、换底公式和推导公式。一、运算法则:1、Log a(MN)=log aM+logaN2、log a(M/N)=log aM-logaN3、logaNn=nlogaN4、(n,M,N∈R)如果a=em,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底,其为无限不循环小数。定义:若an=b(au003e0,a≠1)则n=log ab。二、换底公式(很重要)Log MN=log a M/log aN换底公式导出Log MN= -log NM三、推导公式Log (1/a) (1/b) = log (a^-1) (b^-1) = -1logab/-1 = log a(b)Log a(b)*log b(a) =1loge(x)= ln (x)lg(x)=log10(x)了解了log函数的运算公式,才能够对函数公式灵活地进行转化,从而进一步提高运算的效率和准确性。
2023-07-21 17:52:581

对数函数的运算和指数函数的运算

[log(a)(x)表示a为底x的对数]log(a)(x)+log(a)(y)=log(a)(xy);log(a)(x)-log(a)(y)=log(a)(x/y)log(a^m)(x^n)=(n/m)log(a)(x)换底公式log(a)(x)=log(b)(x)/log(b)(a)=lg(x)/lg(a)=ln(x)/ln(a)
2023-07-21 17:53:181

对数函数的运算

2023-07-21 17:53:293

函数对数的底数是什么意思?

当对数函数的底数大于0小于1时,函数图像过点(1,0),从左向右逐渐下降,从右向左逐渐逼近y轴;当对数函数的底数大于1时,函数图像过点(1,0),从左向右逐渐上升,从右向左逐渐逼近y轴。对数函数的一般形式为y=㏒(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。因此指数函数里对于a的规定(a>0且a≠1),同样适用于对数函数。对数函数的运算性质一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。对数函数化简问题,底数则要>0且≠1真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越大,函数值越小。(0<a<1时)
2023-07-21 17:53:551

对数计算。

一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数.一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数 它实际上就是指数函数的反函数,可表示为x=a^y.因此指数函数里对于a的规定,同样适用于对数函数. 举个例子: log函数就是次方函数的逆运算的。y=2^x,这就是一个次方函数。y=2^x的逆函数就是x=log2y。拓展资料:以下是对数函数运算的公式: 对数——百度百科
2023-07-21 17:54:141

对数函数运算题

1、a^log(a)(b)=b 2、log(a)(a)=1 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N);   5、log(a)(M^n)=nlog(a)(M) 6、log(a)[M^(1/n)]=log(a)(M)/n 扩展资料:一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。有理和无理指数如果 是正整数, 表示等于 的 个因子的加减: 但是,如果是 不等于1的正实数,这个定义可以扩展到在一个域中的任何实数 (参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数 ,有一个对数函数和一个指数函数,它们互为反函数。对数可以简化乘法运算为加法,除法为减法,幂运算为乘法,根运算为除法。所以,在发明电子计算机之前,对数对进行冗长的数值运算是很有用的,它们广泛的用于天文、工程、航海和测绘等领域中。它们有重要的数学性质而在今天仍在广泛使用中。复对数复对数计算公式复数的自然对数,实部等于复数的模的自然对数,虚部等于复数的辐角。
2023-07-21 17:54:231

数学中的log

编辑本段对数的概念 英语名词:logarithms 如果a^b=n,那么log(a)(n)=b。其中,a叫做“底数”,n叫做“真数”,b叫做“以a为底的n的对数”。 log(a)(n)函数叫做对数函数。对数函数中n的定义域是n>0,零和负数没有对数;a的定义域是a>0且a≠1。编辑本段对数的历史 对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵。在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子: n 0、1、2、3、 4、 5、 6、 7 、 8 、 9 、 10 、 11 、 12 、 13 、 14 、…… 2^n 1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、…… 这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384。纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国著名的数学家、天文学家拉普拉斯(PierreSimonLaplace,1749-1827)曾说对数可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。编辑本段对数的性质及推导 定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1、a^(log(a)(b))=b 2、log(a)(MN)=log(a)(M)+log(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nlog(a)(M) 5、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3、与(2)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 4、与(2)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 换底公式的推导: 设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性质4可得 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]} 再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完)编辑本段函数图象 1.对数函数的图象都过(1,0)点. 2.对于y=log(a)(n)函数, ①,当0<a<1时,图象上函数显示为(0,+∞)单减.随着a 的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1. ②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1. 3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.编辑本段其他性质 性质一:换底公式 log(a)(N)=log(b)(N)÷log(b)(a) 推导如下: N = a^[log(a)(N)] a = b^[log(b)(a)] 综合两式可得 N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N) / log(b)(a) 公式二:log(a)(b)=1/log(b)(a) 证明如下: 由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数 log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)×log(b)(a)=1 在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数。例如lg10=1,lg100=lg102=2,lg4000=lg(103×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号 loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代。
2023-07-21 17:54:331

计算对数函数的方法

log2 12=log2(4x3)=log24+log23=log2 2^2+log2 3=2log 2 2+log2 3=2+log2 3把真数化成n个因数的乘积,然后利用公式loga(x1*x2*x3*.......*xn)=logax1+logax2+logx3+.......logxn再化简,把对数能开出来的开出来,如果不能开出来的就保留。
2023-07-21 17:54:421

什么叫东道主

东道主现在一般指会议或活动的主办方,比如2008年北京奥运会,中国就是东道主。
2023-07-21 17:42:183

提出的英文短语

关于提出的英文短语如下:提出put forward提出come up with提出bring forward提出辞星send in one"s resignation提出反诉act performed by way of counterclaim提出费用清单bill、提出附带条件提出抗议lodge a protest提出理论advance a theory提出履行(合同)tender performance提出索赔lodge claims提出请愿memorialize提出物abstract关于提出的相关短句put forward a proposal 提出建议give a warning 提出警告make policy decisions 提出决策advance a new theory 提出一种新的理论apply for Party membership 提出入党申请set an even higher demand on oneself 向自己提出更高的要求
2023-07-21 17:42:431

什么叫东道主?

主办方
2023-07-21 17:43:049

提出用英语怎么说?

put forward come up with
2023-07-21 17:43:153

词组“想出;提出”的英文

come up with
2023-07-21 17:43:257

东道主东道指的是什么

  东道主东道指的是方向。东道主本指东道的主人,出自《左传-僖公三十年》:“若舍郑以为东道主,行李之往来,共其乏困,君亦无所害。”郑国在秦国的东边,故自称东道主,东道指的是方向。后来东道主泛指接待或宴客的主人。   【出处】: 春秋·鲁·左丘明《左传·僖公三十年》:“若舍郑以为东道主,行李之往来,共其乏困,君亦无所害。”   “东道主”或“东道国”,典故出自《左传·烛之武退秦师》。秦国在西方(今陕西),郑国在东方(今河南),晋国在秦郑之间(今山西)。 《左传》僖公三十年九月,秦、晋包围郑国,郑国派烛之武去游说秦穆公,说郑国如果生存下去,可以成为秦国在东方道路上的主人,为秦国提供服务,而灭亡郑国对秦国无利有害。   原文:   九月甲午,晋侯秦伯围郑,以其无礼於晋,且贰於楚也。晋军函陵,秦军氾南。佚之狐言於郑伯曰:“国危矣!若使烛之武见秦君,师必退。”公从之。辞曰:“臣之壮也,犹不如人;今老矣,无能为也已。”公曰:“吾不能早用子,今急而求子,是寡人之过也。然郑亡,子亦有不利焉。”许之。夜缒而出,见秦伯曰:“秦晋围郑,郑既知亡矣。若郑亡而有益於君,敢以烦执事。越国以鄙远,君知其难也;焉用亡郑以倍邻?邻之厚,君之薄也。若舎郑以为东道主,行李之往来,共其乏困,君亦无所害。且君尝为晋君赐矣,许君焦、瑕,朝济而夕设版焉,君之所知也。夫晋何厌之有?既东封郑,又欲肆其西封,若不阙秦,将焉取之?阙秦以利晋,唯君图之。”秦伯说,与郑人盟,使杞子、逄孙、杨孙戍之,乃还。
2023-07-21 17:43:391

提出英文短语怎么说

put forward。英文是西日耳曼语的一种语言,最早是在中世纪早期的英格兰使用的,该语言最终成为21世纪国际话语的主要语言。它以Angles的名字命名,Angles是古老的日耳曼人民之一,后来移居到大不列颠地区,后来以他们的名字英格兰命名。这两个名字都源于波罗的海半岛的安格利亚(Anglia)。英语与弗里斯兰语和下撒克森语最相关,但其词汇已受到其他日耳曼语语言(尤其是北挪威语(北挪威语))以及拉丁语和法语的很大影响。
2023-07-21 17:43:431

为什么在奥赛中都称“东道主”?具体代表什么意思?

东道主一般是指比赛或者会议的主办的国家,东道主的出处楼上都说的比较详细了,就不多说了~~~
2023-07-21 17:43:561

东道主中的东道是指什么 东道的寓意

1、东道指的是方向。 2、东道主指的是古时中国民间宴请款留宾客的主人。客人由西来,则称主人为东道主,客人由南来,则称主人为北道主。泛指接待或宴客的主人。 3、现在,它也可以指举办活动的国家、城市或组织。主办国2008年夏季奥运会的主办国是中华人民共和国,所以中华人民共和国被称为主办国。
2023-07-21 17:42:101

东道主的东道是什么意思?

方向 东道主本指东道的主人,出自《左传僖公三十年》:若舍郑以为东道主,行李之往来,共其乏困,君亦无所害。郑国在秦国的东边,故自称东道主,东道指的是方向。后来东道主泛指接待或宴客的主人。 东道主是指古时中国民间宴请款留宾客的主人。客人由西来,则称主人为东道主,客人由南来,则称主人为北道主。此词泛指接待或宴客的主人。出自春秋鲁左丘明《左传僖公三十年》:若舍郑以为东道主,行李之往来,共其乏困,君亦无所害。郑国在秦国的东边,故自称东道主,东道指的是方向。 故事: 春秋时期,晋国公子重耳重回国执政,为报复郑国,与秦国联合出兵伐郑。郑文公派烛之武去劝秦穆公退兵,说郑国与秦国不相连,让郑国作为秦国的东道主去对付晋国,牵制晋国对秦国有好处。秦穆公认为有道理就立即撤军。 公元前630年(鲁僖公三十年)9月13日,晋文公和秦穆公的联军包围了郑国国都。郑文公在走投无路的情况下,只得向老臣烛之武请教,设法解围。当夜,烛之武乘着天黑叫人用粗绳子把他从城头上吊下去,私下会见秦穆公。 晋国和秦国是两个大国,他们之间本不和谐,常常明争暗斗。烛之武巧妙地利用他们的矛盾,对秦穆公说:秦晋联军攻打郑国,郑国怕是保不住了。但郑国灭亡了,对贵国也许并无一点好处。因为从地理位置上讲,秦国和咱郑国之间隔着一个晋国,贵国要越过晋国来控制郑国,恐怕是难于做到的吧?到头来得到好处的还是晋国。晋国的实力增加一分,就是秦国的实力相应地削弱一分啊!秦穆公觉得烛之武说得有理,烛之武于是进一步说:要是你能把郑国留下,让他作为你们东方道路的主人。你们使者来往经过郑国,万一缺少点什么,郑国一定供应,作好充分的安排,这有什么不好? 秦穆公终于被说服了,他单方面跟郑国签订了和约,晋文公无奈,也只得退兵了。秦国在西,郑国在东,所以郑国对秦国来说自称东道主。 一般人们把接待宾客的当地主人称为东道主。 后东道主泛指接待或宴客的主人,或指请客的人。朋友相聚,来了客人,主人常自称为东道主,客人说主人你是东道主等。东道主一词用的很广泛,赛事的主办国或者主办城市也称为东道主;举办各种会议,主办方也被称作东道主。
2023-07-21 17:42:031

提出英文

"提出"的英文翻译可以是 "propose" 或者 "put forward",具体使用哪一个词汇取决于上下文和句子结构。1. "Propose":"Propose" 这个词通常用来表示提议、提出建议或计划。它可以用于各种情况,包括在会议、讨论或书面文档中向他人提出主意或建议。例如:- He proposed a new marketing strategy to increase sales.(他提出了一项新的市场营销策略以增加销售额)- She proposed a toast to celebrate their achievements.(她提议举杯庆祝他们的成就)2. "Put forward":"Put forward" 这个词组也可以表示提出、提议或引入某个观点、想法或方案。它也可以用于会议、讨论或辩论中,表达自己的观点或建议。例如:- The team put forward a proposal for cost reduction.(团队提出了一个降低成本的方案)- He put forward his ideas during the brainstorming session.(他在头脑风暴会议上提出了自己的想法)需要根据具体的语境和句子要求来选择适当的翻译。如果是在正式场合或书面文档中使用,"propose" 是一个常见且正式的词汇;而在口语或非正式场合中,"put forward" 更常见。
2023-07-21 17:42:001

在世界杯里总听到东道主,它具体指什么哈!

举办世界杯的那个国家就是东道主。比如这届时德国举办世界杯,所以这届的东道主是德国~~~
2023-07-21 17:41:443

东道主什么意思?有什么历史典故?反义词和近义词是什么?

编号 1677 成语 东道主 注音 ㄉㄨㄥ ㄉㄠˋ ㄓㄨˇ 汉语拼音 dōng dào zhǔ 释义 郑国作为招待秦国出使东方使节的主人。 语出《左传.僖公三十年》。 后用「东道主」泛称接待或宴请宾客的主人。 典源 《左传.僖公三十年》九月甲午,晋侯、秦伯围郑,以其无礼于晋,且贰于楚也。 晋军函陵,秦军汜南。 佚之狐言于郑伯曰:「国危矣!若使烛之武见秦君,师必退。」 公从之。 辞曰:「臣之壮也,犹不如人;今老矣,无能为也已。」 公曰:「吾不能早用子,今急而求子,是寡人之过也,然郑亡,子亦有不利焉。」 许之。 夜,缒而出。 见秦伯曰:「秦1>、晋2>围郑3>,郑既知亡矣。 若亡郑而有益于君,敢以烦执事4>。 越国以鄙远5>,君知其难也,焉用亡郑以倍6>邻?邻之厚,君之薄也。 若舍7>郑以为东道主8>,行李9>之往来,共10>其乏困,君亦无所害,且君尝为晋君赐矣,许君焦、瑕,朝济而夕设版焉,君之所知也。 夫晋,何厌之有?既东封郑,又欲肆其西封。 若不阙秦,将焉取之?阙秦以利晋,唯君图之。」 秦伯说,与郑人盟,使杞子、逢孙、杨孙戍之,乃还。 〔注解〕(1)秦:秦国。 周孝王封伯益之后于秦,约今甘肃省天水县。 庄公时徙居大丘,今之陕西省兴平县东南的槐里城。 孝公时定都咸阳,得商鞅变法图强,积极东侵。 惠王时重用张仪,以连横政策离间六国。 昭襄王用范雎采远交近攻之策向东扩展。 秦王政二十六年(西元前221)统一天下,建立我国历史上第一个大一统的帝国。 (2)晋:晋国,周代诸侯国。 春秋时据有今山西省大部分与河北省西南地区,地跨黄河两岸。 后为韩、赵、魏三家所分,遂亡。 (3)郑:周朝诸侯国之一。 故址位于今河南省新郑县。 (4)执事:执掌事务的人。 (5)鄙远:指秦国若得郑地以为国,则须越过晋国之地。 (6)倍:增加。 阮元之校勘记言此字当作「陪」。 (7)舍:通「舍」,放弃、舍弃。 (8)东道主:东边道路上寄寓之所的主人。 此指郑国可以作为秦国东方寄寓之所的主人,以招待秦国往来的使者。 (9)行李:即「行理」,掌管外交之使臣。 (10)共:音ㄍㄨㄥ,通「供」,供给。 典故说明 「东」有东家、主人的意思。 古时主位在东,客位在西,所以称主人为「东」,如「店东」、「房东」。 「东道」,本来是设宴待客的意思,后常用为「东道主」,指请客的主人。 《左传.僖公三十年》提到在这一年的九月,晋文公、秦穆公合军包围郑国,是因为郑国曾对晋国无礼,并且有二心而与楚国亲近。 此时郑国危难当前,派了烛之武去见秦国国君,希望能化解这次的危险。 烛之武见了秦穆公,说:「秦、晋两国包围郑国,郑国已经知道自己要灭亡了,如果灭了郑国对您有好处,那就劳烦您了。 但是,必须隔着晋国才能占领遥远的郑国,来作为秦国的边邑,您知道这是很困难的,用灭亡郑国来增加邻国的实力,就等于您本身力量的削弱。 如果赦免郑国,让它作为秦国在东边道路上寄寓之所的主人,负责招待秦国使臣的往来,供应所需的一切,这对您是没有害处的。 晋国哪有满足的时候?等占领了郑国作为东边的疆界,势必又要扩张它西边的领土,到时晋国不损害秦国,还能从哪里取得土地呢?」秦穆公听了很高兴,就和郑国结盟,派了杞子、逢孙、杨孙在郑国戍守,自己则撤军回国了。 后来「东道主」被用来泛指接待或宴请宾客的主人。 书证 01.《左传.僖公三十年》:「若舍郑以为东道主,行李之往来,共其乏困,君亦无所害。」 (源)02.唐.李白〈望九华赠青阳韦仲堪〉诗:「君为东道主,于此卧云松。」 03.《聊斋志异.卷二.巧娘》:「女曰:『倘之琼也,有尺一书,烦便道寄里门。 老母在家,亦可为东道主。 』廉出本无定向,念浮海亦得,因诺之。」 04.《聊斋志异.卷四.狐谐》:「国王见使臣乘一骡,甚异之。 使臣告曰:『此马之所生。 』……举坐又大笑。 众知不敌,乃相约:后有开谑端者,罚作东道主。」 用法说明 【语义说明】泛指接待或宴请宾客的主人。 【使用类别】用在「宴客主人」的表述上。 【例  句】<01>今天我请客,下次就由你当东道主了。 <02>这次宴会办得十分成功,处处展现了东道主的盛情和殷勤。 <03>大专院校的篮球比赛,一直是由各个学校轮流担任东道主的脚色。 <04>既要让每个客人宾至如归,又要顾虑到每个人特殊的喜好和兴趣,这个东道主可真不好当。 <05>本届的运动会,我国身为东道主,自然应该好好招待各国的运动员,使他们留下深刻的好印象。 近义词: 北道主人 反义词: 座上客 辨识 参考语词 东道主人,做东道
2023-07-21 17:41:371

什么是东道主

  亦称“东道主人”,原指东路上的主人,春秋时晋秦合兵围郑,郑文公使烛之武说秦穆公,曰:“若舍郑以为东道主,行李之往来,共其乏困,君亦无所害。”事见春秋·左丘明《左传·僖公三十年》。郑国在秦国东面,接待秦国出使东方的使节,故称“东道主”。  后“东道主”因以泛指接待或宴客的主人,或指请客的人。朋友相聚,来了客人,主人常自称为“东道主”,客人说主人“你是东道主”等。现在“东道主”一词用的很广泛,赛事的主办国或者主办城市也称为东道主;举办各种会议,主办方也被称作东道主。
2023-07-21 17:41:301

为之侧目的意思

问题一:为之侧目是什么意思,怎么用 出处:“满坐宾客无不伸颈,侧目,微笑,默叹,以为妙绝。” 含义:表示被吸引程度之深,后来也有让人害怕的意思 示例:例如战场上的某将领让人~ 问题二:为之侧目,,,是什么意思?他的适用对象呢? 侧目,cè mù,眼睛不正视对方的意思,形容敬畏。也指斜着眼睛看人,形容愤恨。 问题三:“令人侧目”是什么意思,是褒义还是贬义 令人侧目,是个贬义词 解释: 侧:斜着。斜着眼睛看人。形容憎恨或又怕又愤恨。 出处: 《史记u30fb汲郑列传》:“今天下重足而立,侧目而视矣。” 示例 诸君记得当年常肃剥皮做衮州府的时候,何尝不是这样?总是做得人人~就完了。(清u30fb刘鹗《老残游记》第三回) 问题四:侧目是什么意思 侧目,汉语词汇。 拼音:cè mù 指斜眼看人,不以正眼看人。有敬畏、戒惧、怒恨、愤怒等不同的含意。 出自《战国策u30fb秦策一》:“妻侧目而视,侧耳而听。” 1. 不敢正视,形容畏惧。 唐 李白《武昌宰韩君去思颂碑序》:“惠如春风,三月大化,奸吏束手,豪宗侧目。” 唐杨炯《序》:“先鸣楚o,孤峙齐宫,乘忌侧目,应刘失步。” 沙汀《淘金记》第一章:“在他身后一席上,一共有五个茶客,全是江湖上的朋友,曾经凭着手枪或者骰子使人侧目,但是现在已经规矩起来了。” 2. 斜目而视,形容愤恨。 《汉书u30fb邹阳传》:“今 爰盎 事即穷竟, 梁王恐诛。如此,则太后怫郁泣血,无所发怒,切齿侧目於贵臣矣。” 宋欧阳修 《书简u30fb与孙威敏公》:“至於辨谗谤,判忠邪,上不损朝廷事体,下不避怨仇侧目,如此下笔,抑又艰哉!” 陈天华 《中国革命史论》:“ 始皇 之暴戾恣睢,虽人皆侧目,而卒无敢发难者,必待其死而后反侧四起。” 吴组缃 《山洪》三十:“ 长庆儿 的笑嚷引起全堂的侧目。” 3. 斜眼旁视。 夏D尊叶圣陶 《文心》十五:“ 乐华侧目凝想,同时把收据藏进衣袋里。” 4.表示被吸引程度之深。 林嗣环《口技》:“满坐宾客无不伸颈,侧目,微笑,默叹,以为妙绝。” 问题五:为之侧目到底什么意识?褒义或则贬义还是中性?感觉好多新闻媒体不地道啊,说什么他解决了10几亿人吃饭的问 为之侧目 weí zhī cè mù 出处:“满坐宾客无不伸颈,侧目,微笑,默叹,以为妙绝。” 含义:表示被吸引程度之深,后来也有让人害怕的意思 示例:例如战场上的某将领让人为之侧目 整体偏中性吧,表示吸引人的意思也可以理解为有褒义。不存在贬义。 很高兴伐你解答,希望能够帮助到你。基础教育团队祝你学习进步! 不理解就追问,理解了请采纳! 问题六:“为之侧目”的意思是什么?拜托了各位 谢谢 出处:“满坐宾客无不伸颈,侧目,微笑,默叹,以为妙绝。”表示被吸引程度之深,后来也有让人害怕的意思.例如战场上的某将领让人侧目
2023-07-21 17:41:301