汉邦问答 / 问答 / 问答详情

怎样学好数学

2023-05-18 13:56:18
TAG: 数学
西柚不是西游

如何学好数学1

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

如何学好数学2

高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。

有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。

至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。

l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。

2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。

3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。

4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。

答一送一:

如何在学习上占第一

学习上占第一,每个同学都可以做到。之所以你占不了第一,主要有两个原因:第一、生活方式、学习方法不正确,第二、没有坚强的毅力。在这里面毅力是第一重要的,学习方法是第二重要的。在现实生活中,全中国仍有70%以上的占第一的学生虽然占了第一,但他们并不是毅力最强的,或者说学习方法生活方式不是最好的。他们也许今天是第一,明天就不是了。也就是说,你如果按占第一的方法去学习、去锻炼,一般都会超过现有的第一。

辉煌的第一是不是要经过艰苦的努力才能得到呢?说它艰苦是因为“培养坚强的毅力”是世上最艰苦的工作,只有你具有了坚强的毅力才可能成为第一,当然正确的生活方式和学习方法也是特别重要的。在这里什么是坚强的毅力呢,只要你能按下面几点要求去做,而且每天都做记录,持之以恒,每天都不间断地坚持一个学期、一年、三年,那么你的毅力就足以达到占第一的要求了。在这项锻炼中就怕你中间有间断,风雨、心情、疾病、家务等等都不是你中断锻炼的理由。你要记住,学好学业是你学生生活中最重要的,没有什么工作的重要性会超过它。除了坚强的毅力,正确的学习方法和生活方式也是很重要的。

第一人人可以占,原来占第一的同学也不一定就比你更聪明多少,脑细胞也不一定比你多。爱迪生不是说过“天才是百分之九十九的汗水加上百分之一的灵感”吗?!所以你第一要过心理关,就是说:要坚信你一定能成功,一定会超过现有的第一,包括现在是第一的你自已。

第二、你要天天锻炼。没有一个健康的身体,你什么事也做不好,即使偶尔做好了,也不能长久。每天30分钟左右的锻炼一定要天天坚持。锻炼的形式多种多样,跑步、打乒乓球、打篮球、俯卧撑、立定跳远等等都可以。有些同学好面子,见到别人不跑步,怕自已跑别人看见了不好意思,那就错了,真正不好意思的是辛苦了几年考不上大学,是上了几年大学还要下岗。如果将来自已养活不了自已,那才是真正不好意思的。

第三、学习态度要端正。每次上课前,一定要把老师准备讲的内容预习好,把不好理解的、不会的内容做好标记,在老师讲到该处时认真听讲。如果老师讲了以后还不会,一定要再问老师,直到明白为止。当一个问题问了两遍三遍还不会时,一般的同学就不好意思问了,千万别这样,老师们最喜欢“不问明白誓不罢休”的性格了。上课时要认真听讲,认真思考,做好笔记。做笔记时一定要清楚,因为笔记的价值比课本还,将来的复习主要靠它。

课下首先要做的不是做作业,而是把笔记、课本上的知识点先学好,该记的内容一定把它背熟。这样会大大提高你做作业的速度,即平常说的“磨刀不误砍柴功”。做作业时应该独立思考,实在不能解决的问题,再和同学、老师商量。问同学时,不要问这道题结果是什么,而是要问“这道题究竟怎么做?”“这道题为什么这样做?”

第四、正确面对错误和失败。当有的知识你没有在课上学会、当你的练习做错时或者在考试中成绩太差时,你既不要报怨,也不要气馁,你应该正视这自已不愿得到的现实。没有学会不要紧,把该知识写到你的《备忘录》中,然后问同学问老师,再把正确的解释或结果,写到其它页上。错了题也是这样,考试失利不就是错的题多点吗,正确的方法是把原题抄到《备忘录》中,把正确的做法学会后,把做法和结果写到其它页上,如果能注上做该类题的注意事项,就会把你的学习效率又提高30%-60%。之所以把答案或解释写到其它页上,就是为了下次看知识点或错误的题目时,再动动脑筋,想想该知识点的理解和解释情况,再练练该题的做法和答案。错误和失败并不可怕,只要你能正视它,一切都会成为你成功的动力。

第五、记帐。你的学习一定要有一本帐,你什么时候做得好,记下来,什么时候错了题,记下来(注:帐本上只记“今天错题为《备忘录》××页×题)。课下几点几分学了英语,记录好;几点几分至几点几分学了物理记下来。把你生活中锻炼、学习的分分秒秒记录在你的帐本上,把你每次作业和考试中的正确题数、错误题数和错误题号(《备忘录》上的页号题号)一一记录在你的帐本上。把你每天学会的知识点都记录在帐本上,以备明天、后天再检查一下自已是否真正掌握了这些知识点。在帐本上过去了几天的知识点,你一定要学会并能熟练掌握。

帐本记录的是你学习、锻炼中每一个细节。这样记下来,在校生活中,每天约有一页32开纸的记录量,不在校时可能有两页32纸的记录量。在星期和假期里千万不能间断。把你的帐一天天积累起来,这就是你所走过的第一之路。

虽说在素质教育的今天学校不排名次,但学习出类拔萃是我们努力的目标,是我们考上高一级学校的必要条件,也是我们走向社会后,做好每一件工作的资本。同学们,去争取第一吧。如果你一年年按上面的要求做,你一定能占第一。

如果大家都这样去做,即使你占不了第一,一定是中国出类拔萃的学生,因为中国大多数的同学没有这样的毅力,没有这样好的学习方法和生活方式。同学们,为美好的明天奋斗吧!

===============================================

首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必 的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以 略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。

有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。

知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习,定理公式学习以及解题学习三个方面。学习数学概念,要善于抓住它的本质属性,也就是区别于这个概念和其他概念的属性;学习定理公式,要紧紧抓住定理方向的内在联系,抓住定理公式适用的范围及题型,做到得心应手地应用这些定理公式,数学解题实№上是在熟练掌握概念与定理公式的基础上解决矛盾,完成从“未知”向“已知”的转化。要著重学习各种转化方式,培养转化的能力。总而言之,在学习数学基础知识中,要注意把握知识的整体精髓, 悟其中的规律和实质,形成一个紧密联系的整体认识体系,以促进各种形式间的相互迁移和转化。同时,还要注意知识形成过程无处不隐含著人们在教学活动中解决问题的途径、手段和策略,无处不以数学思想、方法为指南,而这也是我们学习知识时最希望要学到的东西。

数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。

在数学学习中,要特别重视运用数学知识解决实№问题能力的培养。数学社会化的趋势,使得“大众数学”的口号席卷整个世界,有人认为未来的工作岗位是为已作好数学准备的人才提供的,这里所说的“已作好了数学准备”并不仅指懂得了数学理论,更重要的是学会了数学思想,学会了将数学知识灵活运用于解决现实问题中。培养数学应用能力,首先要养成将实№问题数学化的习惯;其次,要掌握将实№问题数学化的一般方法,即建立数学模型的方法,同时,还要加强数学与其他学科的联系,除与传统学科如物理、化学联系外,可适当了解数学在经济学、管理学、工业等方面的应用。

如果我们在数学学习中,既扎扎实实地学好了数学知识和技能,又牢固地掌握了数学思想和方法,而且能灵活应用数学知识和技能解决实№问题,那么,我们就走在了一条数学学习成功的大道上。

hi投
一、全面复习,把书读薄
从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,在某一年可以在大题中出现,如98年数学一中,不但第三题是一道纯粹的解析几何题,而且还有两道题是与线性代数结合考了解析几何的内容,可见猜题的复习方法是靠不住的,而应当参照考试大纲,全面复习,不留遗漏。
全面复习不是生记硬背所有的知识,相反是要抓住问题的实质和各内容,各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠。事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们之间的联系而得到,这就是全面复习的含义。

二、突出重点,精益求精

在考试大纲要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌握,会(或者能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点。在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多。“猜题”的人,往往要在这方面下功夫。一般说来,也确能猜出几分来。但遇到综合题,这些题在主要内容中含有次要内容。这时,“猜题”便行不通了。

我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容。主要内容理解透了,其它的内容和方法迎刃而解,要抓住主要内容,不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容。如微分中值定理,有罗尔定理,拉格朗日定理,柯西定理和泰勒公式。由于罗尔定理是拉格朗日定理的特殊情况,而柯西定理和泰勒公式又是拉格朗日定理的推广。比较这些关系,便自然得到拉格朗日定理是核心,这这个定理搞深搞透,并从联系中掌握好其它几个定理,在考试大纲中,罗尔定理与拉格朗日定理都是要求理解的内容,都是考试重点,我们更突出拉氏定理,可谓是精益求精。

三、基本训练反复进行
学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张“题海”战术,而是提倡精练,即反复做一些典型的题,做致电一题多解,一题多变。要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题, 要作到不用书写,就象棋手下“盲棋”一样,只需用脑子默想,即能得到下确答案。这就是我们在前言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,“熟能生巧”,基本功扎实的人,遇到难题办法也多,不易被难倒。相反,作练习时,眼高手低,总找难题作,结果上了考场,遇到与自己曾经作过的类似的题目都有可能不会。不少考生把会作的题算错了,归为粗心大意,确实人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会“粗心”地出错。

参考资料
http://www.hongen.com/proedu/wyky/kcfd/ksxd/html/kd042404.htm
ardim

首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必 的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以 略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。

有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。

知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习,定理公式学习以及解题学习三个方面。学习数学概念,要善于抓住它的本质属性,也就是区别于这个概念和其他概念的属性;学习定理公式,要紧紧抓住定理方向的内在联系,抓住定理公式适用的范围及题型,做到得心应手地应用这些定理公式,数学解题实№上是在熟练掌握概念与定理公式的基础上解决矛盾,完成从“未知”向“已知”的转化。要著重学习各种转化方式,培养转化的能力。总而言之,在学习数学基础知识中,要注意把握知识的整体精髓, 悟其中的规律和实质,形成一个紧密联系的整体认识体系,以促进各种形式间的相互迁移和转化。同时,还要注意知识形成过程无处不隐含著人们在教学活动中解决问题的途径、手段和策略,无处不以数学思想、方法为指南,而这也是我们学习知识时最希望要学到的东西。

数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。

在数学学习中,要特别重视运用数学知识解决实№问题能力的培养。数学社会化的趋势,使得“大众数学”的口号席卷整个世界,有人认为未来的工作岗位是为已作好数学准备的人才提供的,这里所说的“已作好了数学准备”并不仅指懂得了数学理论,更重要的是学会了数学思想,学会了将数学知识灵活运用于解决现实问题中。培养数学应用能力,首先要养成将实№问题数学化的习惯;其次,要掌握将实№问题数学化的一般方法,即建立数学模型的方法,同时,还要加强数学与其他学科的联系,除与传统学科如物理、化学联系外,可适当了解数学在经济学、管理学、工业等方面的应用。

如果我们在数学学习中,既扎扎实实地学好了数学知识和技能,又牢固地掌握了数学思想和方法,而且能灵活应用数学知识和技能解决实№问题,那么,我们就走在了一条数学学习成功的大道上。

meira

作为一名现任初三的数学教师,我想说的是,从你的这份心情可以看出,你是名有前途的好学生,因为你并不自暴自弃,而是积极的想办法。凭着你的这份心,相信你能学好的。在这里我提议些小建议希望对你的学习有些帮助

1、复习资料上的题目没有必要都做,因为你没有那么多时间,留点时间给自己

2、买一本去年的中考题集,要那种成套的,而不是把知识点都罗列在一起的那种,拿出时间好好做完,有不会的应立即问老师,不要怕问问题

3、建立一本错题档案,收集好你平时的错题,要找出出错的知识点

4、把课本上得习题和练习题弄明白,有些中考题都是从习题,例题变化得来的

只要你认真做到这几点,相信你的成绩会有提高的,为你的父母感到高兴,他们有这样一个好孩子。

tt白

1.选题要精:我记得我高考时有一套叫做优化设计的书,高三上和高三下各一本,那套书不错。初中应该也有相应的。2.不会的题一定要问,不然跟没做一样。3.你说基础题还会做,这很好啊,考试中基础题总是占较大比重的,基础题要保证不丢分,以我的经验看来,很多人光凭这一条就取得了很好的分数。花费大量的时间去做那些在考试中占分很少的难题是很不值得的。4.各科实力平均,这点也很重要,有些人每门都不突出,但每门都没有明显的劣势,最后考完了一看,总分还挺高,最后去了好学校。

一点建议,根据你的情况看吧。如果对你有帮助,我是很高兴的!

mlhxueli

没有扎实的根基是造不出高楼的,看你的情况,在最后100天,应该对于数学公式、定理的本质进行复习。此外,中考注重“数形结合”,理解函数中的交点,图形与解析式的联系,这是中考中灵活题的源泉。

不妨购买邵翼如老师编写的那本数,他是我的老师,我们班级去年中考的平均分为119点12(满分120)。那会对你很有帮助。

最后本人作为华罗庚金杯赛一等奖得主祝你中考成功。

小白

我23了 刚上社会 我记得我中考的时候也和你差不多 惟独比你好点的就是 我是数学里面偏

我的数学 代数好与几何

记得那时侯 我首先巩固好代数部分 接着去学习几何

把重要的章节分门别类 要知道分细的话就不会像一整块吞那么呛人了 找个好点的老师 最好是有中考"经验"的 在最后的时候突击来个复习 这个虽然说不怎么好 但是还是有点效果的

对于代数部分 给你的建议就是被公式 然后不急着运用 现反过来做题 慢慢的推敲 在全部理解的情况下 在做些难度适中的题目 然后再加上大量的题海 题海是没办法的 中国教育就是这样的 题目是死的 公式是死的 拐来拐去最后还是要饶到公式上的

好了我的解释到这里了 不知道对你有没有帮助 最后祝你成功!GOOD LUCK!!

康康map

把概念细背一遍,尤其是公式,最后这一阶段上课要把老师说的全弄懂,回顾一下自己以前做过的题,找往年中考题做,压力不要过大,把它当成平时考试,只要认真对待就行,你会成功的~!!

再也不做站长了

听课注意听 练习要多练! 仅仅这样就可以了 课堂是最主要的 听进去吸收了 对你来说比你复习N遍的效果要好的多 做题是巩固你的知识 可以让你灵活的掌握方法

韦斯特兰

保持一个良好的心态!大的考试往往不是考能力,而是考心态.只要能有一个好心态,就一定能考好!

虽然本人是保送进的重点高中,但在那里同样有很多初中成绩并不突出的人考进了!无疑他们的心态是正确的!

Ntou123

像你这样时间很紧迫,应该去请个家教,以应付考试。

如果到了高中就要自己掌握学习方法。慢慢修炼。

阿啵呲嘚

我想说,你一定要把概念搞明白,搞透彻,理解的学习,根本不需要背啊记啊的。数学关键在理解。

我的qq:4754653

希望能帮助你。

苏州马小云

把一本书反复做,很有效果的

请问射影定理是什么?怎样理解?

在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:BD²=AD·CDAB²=AC·ADBC²=CD·AC此外,当这个三角形不是直角三角形但是角ABC等于角CDB时也成立。可以使用相似进行证明。扩展资料:验证推导:①CD²=AD·BD;②AC²=AD·AB;③BC²=BD·AB;④AC·BC=AB·CD在△BAD与△BCD中,∵∠ABD+∠CBD=90°,且∠CBD+∠C=90°,∴∠ABD=∠C,又∵∠BDA=∠BDC=90°∴△BAD∽△CBD∴ AD/BD=BD/CD即BD^2=AD·DC。其余同理可得可证注:由上述射影定理还可以证明勾股定理。有射影定理如下:AB^2=AD·AC,BC^2=CD·CA两式相加得:AB^2+BC^2=AD·AC+CD·AC =(AD+CD)·AC=AC^2 .即AB^2+BC^2=AC^2(勾股定理结论)。参考资料来源:百度百科——射影定律
2023-05-18 12:59:524

射影定律是啥?

射影定理 定理:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,直角边是这条直角边在斜边的射影和斜边的比例中项. 其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影.一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影. 射影定理; 设直角三角形ABC,AB是斜边,CD是高, 则 AC的平方=AD×AB CB的平方=BD×BA CD的平方=AD×DB 等积式; AD×AC=AB×AC 推出;AC/AB=AC/AD(比例式) ∠ACB=90°,CD⊥AB, 则AC^2=AD×AB,BC^2=BD×AB,CD^2=AD×BD. 以上比例式合称射影定理.主要用于解决直角三角形斜边及定点与斜边的连线的问题,比如说给出AD和BD的长度求AC:BC.
2023-05-18 13:01:191

射影定律公式?

1、初中在双垂直的基本图形(即:直角三角形中有一个垂直,斜边的高一个垂直)中:设直角三角形ABC,AB是斜边,CD是高,则AC的平方=AD×ABCB的平方=BD×BACD的平方=AD×DB2、高中解三角型中:设三角形ABC的三边是abc,它们所对的角分别是ABC,则a=b*cosC+c*cosBb=c*cosA+a*cosCc=b*cosA+a*cosB
2023-05-18 13:01:272

立体几何 射影定理

可以的,射影定律正推逆推都可以的额,就是在一个平面中,有一条直线l,(直线不在平面内)在该平面内的射影和平面内的直线a垂直,则l与a垂直
2023-05-18 13:01:351

求相似三角形射影定律是啥

在直角三角形中若角c=90度,cd为斜边上的高,则ac的平方等于ad乘以ab,cd的平方等于ad乘以bd,bc的平方等于bd乘以ba,这些统称射影定律.
2023-05-18 13:01:421

谁能告诉我射影定律公式只要三角形的射影定律公式就行

1、初中在双垂直的基本图形(即:直角三角形中有一个垂直,斜边的高一个垂直)中:设直角三角形ABC,AB是斜边,CD是高,则AC的平方=AD×ABCB的平方=BD×BACD的平方=AD×DB2、高中解三角型中:设三角形ABC的三边是abc,它们所对的角分别是ABC,则a=b*cosC+c*cosBb=c*cosA+a*cosCc=b*cosA+a*cosB
2023-05-18 13:01:491

谁能告诉我射影定律公式

JLAFF你实在太聪明了
2023-05-18 13:01:564

影子的方向和太阳的位置的关系

影子的产生是由于光照在不透明的物体身上,物体与阳光接触的那一面挡住了光线的传播,使得后方的光照强度小于周围的光照强度,产生了对比。我们从而看到了影子,影子是没有方向的,可以把靠近物体一端的影子看作原点,也可以把另一端看做原点。这个可以由自己设定,但是我们习惯的把靠近物体一端的看做原点,所以说影子的方向与光照的方向一致!
2023-05-18 13:02:032

射影定律 射影定律

图见:http://hi.baidu.com/%CC%EC%D1%C4%C0%CF%C0%C7/album/item/c835fd8d7e7e571eb31bba29.html在Rt△ABC中,AB是斜边,CD⊥AB,则有 AC^2=AD×AB CB^2=BD×BA CD^2=AD×DB
2023-05-18 13:02:111

在三角形ABC中,c=根号2,则bcosA+acosB等于?

解;bcosA+acosB=b*(b^2+c^2-a^2)/(2bc)+a*(a^2+c^2-b^2)/(2ac)=(b^2+c^2-a^2)/(2c)+(a^2+c^2-b^2)/(2c)=(2c^2)/(2c)=c=√2. (这是射影定律:在三角形ABC中,A,B,C所对边为a b c,则有、 a=bcosc+ccosB b=acosc+ccosA c=acosB+bcosA
2023-05-18 13:02:303

欧几里得定理什么时候学

欧几里德(Euclid)定理(又叫直角三角形射影定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。人教A选修4-1,看各个地方高中的教学计划吧。
2023-05-18 13:02:371

在RT三角形ABC中,角ACB=90°,CD⊥AB,BC=3,AC=4.

图啊,亲~
2023-05-18 13:02:505

一个直角三角形的高4.5m,底边6.3m,求斜边

步骤一:先求出以4.5和6.3和部分未知长度斜边组成的直角三角形的斜边长度.用勾股定律.设定长度为A.即A*A+4.5*4.5=6.3*6.3 步骤二:用射影定律,设所求斜边长度为B则6.3*6.3=A*B 所以可求得B.
2023-05-18 13:03:301

麻烦帮我解解这道题。要过程要讲解的、还有请问这类的题有什么运算方法没有。各个点到直线的距离有什么关

前边三个不用算 你懂得 垂直定理 6 8 10 C到AB的距离是4.8 解:过C点作CD垂直于AB于D点,∵AD⊥AB,AC⊥BC,∠B=∠B,∴△ACB∽△CDB ∴CD∶AC=AC∶AB ∵AC=6 AB=10∴CD=4.8自己划一下 你就懂了
2023-05-18 13:03:385

托兰定理,有人知道吗?

我知射影定律
2023-05-18 13:03:523

如图,在三角形ABC中,AB=AC=5厘米,BC=8厘米

由题意D向c运动只能与AB垂直则三角形ABC中,AB=AC=5厘米,BC=8厘米有三角形的高为3设t s会和AB垂直则结合图形和射影定律有 3的平方=4(2t-4)则t=25/8
2023-05-18 13:03:581

请问一下,有没有人知道高中数学点线距离公式,线线距离公式,线面距离公式,点面距离公式

书上都有吧,去查书,在这给你打上你也看不懂,高中好象没有学点面距离公式 线面距离公式 这两个大学才学呢
2023-05-18 13:04:052

如右图所示,在三角形ABC中,角ACB=90度,AC=2根号5,斜边AB在X轴上,点C在Y轴

方法1解:由勾股定理得OC=4,所以C(0,4)令直线方程为y=kx+4三角形AOC相似于三角形COB所以AO/OC=OC/BO 所以BO=8所以B点坐标为(-8,0)代入y=kx+4 得k=1/2
2023-05-18 13:04:122

欧几里得定理是什么?

如果一个正整数整除另外两个正整数的乘积,第一个整数与第二个整数互质,那么第一个整数整除第三个整数。可以这样表达这个引理:如果a|bc ,gcd(a,b)=1 那么 a|c。命题30是这样说的:如果一个素数整除两个正整数的乘积,那么这个素数可以至少整除这两个正整数中的一个。如果 p|bc,那么p|b或者p|c。表述如果一个正整数整除另外两个正整数的乘积,第一个整数与第二个整数互质,那么第一个整数整除第三个整数。或说:如果一个素数整除两个正整数的乘积,那么这个素数可以至少整除这两个正整数中的一个。
2023-05-18 13:04:191

关于直角三角形的定律!也许是公式吧!忘了叫什么!

这就是直角三角形的射影定律吧。
2023-05-18 13:04:433

影子的方向和太阳的位置有什么关系?

是向北但不是永远的正北
2023-05-18 13:04:515

这道题怎么写啊,

直说方法,射影定律
2023-05-18 13:06:243

3角形的所有定律是什么

那就比较多了 说不清楚 举几个简单的内角和定律,相似定律,射影定律,正余弦定律等等
2023-05-18 13:06:431

如何测量金字塔高度

拿竹干量
2023-05-18 13:06:504

在RT三角形中,角C=90度,CD是斜边上的高,求证BC^2=BD*BA

相似三角形的射影定律!不知道查一下!
2023-05-18 13:06:572

在三角形ABC中,D是三角形ABC内的任意一点,连接BD,CD,则AB+AC大于BD+CD吗?

因为AB+AC>BC, BD+CD>BC,所以AB+AC-(BD+CD)>0 AB+AC>BD+CD证毕。
2023-05-18 13:07:263

65问题:第五题 勾股 巧用“连环勾”列方程 数学

AC^2=AD^2+CD^2BC^2=DC^2+BD^2AC^2+BC^2=AB^2AD^2+CD^2+CD^2+BD^2=AB^2CD^2=4AC^2=AD^2+CD^2=1+4=5AC=√5
2023-05-18 13:07:354

如图,已知AB//CD,AE//CF,量一量,猜一猜角BAE与角DCF有什么数量关系?说明理由

相等嘛
2023-05-18 13:07:424

  一个直角三角形,三条边的长度分别是6.8.10厘米,这个三角形斜边上的高是( )厘米

2.4
2023-05-18 13:07:5013

初二的,不要用根号,求解答,高悬赏

看不见
2023-05-18 13:08:125

求点初中数学压轴题小窍门

中考压轴题一般有三或四小题,每一题的答案基本与下一题有关,前面的解题很可能正好为最后一小题提供了思路,要善于利用前几题结论。
2023-05-18 13:08:251

给你一把尺子,让你去量泰山有多高,多长时间能做到?怎么做?

用影子的比例啊!
2023-05-18 13:08:3315

射影定律是啥?

射影定理 定理:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,直角边是这条直角边在斜边的射影和斜边的比例中项。 其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影。 射影定理;设直角三角形ABC,AB是斜边,CD是高,则 AC的平方=AD×AB CB的平方=BD×BA CD的平方=AD×DB等积式;AD×AC=AB×AC 推出;AC/AB=AC/AD(比例式)∠ACB=90°,CD⊥AB,则AC^2=AD×AB,BC^2=BD×AB,CD^2=AD×BD。以上比例式合称射影定理。主要用于解决直角三角形斜边及定点与斜边的连线的问题,比如说给出AD和BD的长度求AC:BC。
2023-05-18 13:09:072

求数学学霸帮我解释一下《射影定理》!我看了好几遍还是消化不了啊~~

有木有看到三个相似三角形?把它们对应边之比列出来,对角相乘就推出来了或者你学过三角函数的话,这里面有很多等角用sin cos tan随便怎么列都能推出来
2023-05-18 13:09:215

射影定律公式?

射影  射影就是正投影,从一点到过顶点垂直于底边的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影,即射影定理。 [编辑本段]直角三角形射影定理  </B>直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。  公式 如图,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:  (1)(BD)^2;=AD·DC,  (2)(AB)^2;=AD·AC ,  (3)(BC)^2;=CD·AC 。  证明:在 △BAD与△BCD中,∠A+∠C=90°,∠DBC+∠C=90°,∴∠A=∠DBC,又∵∠BDA=∠BDC=90°,∴△BAD∽△CBD相似,∴ AD/BD=BD/CD,即(BD)²=AD·DC。其余类似可证。(也可以用勾股定理证明)  注:由上述射影定理还可以证明勾股定理。由公式(2)+(3)得:  (AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,  即 (AB)^2;+(BC)^2;=(AC)^2;。  这就是勾股定理的结论。 [编辑本段]任意三角形射影定理  </B>任意三角形射影定理又称“第一余弦定理”:  设⊿ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有  a=b·cosC+c·cosB,  b=c·cosA+a·cosC,  c=a·cosB+b·cosA。  注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理。  证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且  BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB. 同理可证其余。     证明2:由正弦定理,可得:b=asinB/sinA,c=asinC/sinA=asin(A+B)/sinA=a(sinAcosB+cosAsinB)/sinA  =acosB+(asinB/sinA)cosA=a·cosB+b·cosA. 同理可证其它的。
2023-05-18 13:09:561

欧几里德

欧几里德如下:欧几里德定理是指射影定律。欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。其计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) (a>b 且a mod b 不为0) 证明:a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d也是(b,a mod b)的公约数 因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证直角三角形射影定理,又称“欧几里德定理”,定理内容是直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。证明思路因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的平方比。所以就是图形的长度(三角形中称高)的比。那么这个比值应该是平面所成角的余弦值。在两平面中作一直角三角形,并使斜边和一直角边垂直于棱(即原多边形图的平面和射影平面的交线),那么三角形的斜边和另一直角边的比值就是其多边形的长度比,即为平面多边形的面积比,而将这个比值放到该平面三角形中去运算即可。
2023-05-18 13:10:031

射影定律定义

定理:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,直角边是这条直角边在斜边的射影和斜边的比例中项。其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影。射影定理;设直角三角形ABC,AB是斜边,CD是高,则AC的平方=AD×ABCB的平方=BD×BACD的平方=AD×DB等积式;AD×AC=AB×AC推出;AC/AB=AD/AC(比例式)如图,∠ACB=90°,CD⊥AB,则AC^2=AD×AB,BC^2=BD×AB,CD^2=AD×BD。以上比例式合称射影定理。主要用于解决直角三角形斜边及定点与斜边的连线的问题,比如说给出AD和BD的长度求AC:BC。
2023-05-18 13:10:231

什么是射影定律,怎么证明;关于等积式的题目看不懂怎么办

展开  射影定理  定理:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,直角边是这条直角边在斜边的射影和斜边的比例中项。   其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影。射影定理;  设直角三角形ABC,AB是斜边,CD是高,则   AC的平方=AD×AB   CB的平方=BD×BA   CD的平方=AD×DB  等积式;  AD×AC=AB×AC  推出;AC/AB=AC/AD(比例式)  ∠ACB=90°,CD⊥AB,则AC^2=AD×AB,BC^2=BD×AB,CD^2=AD×BD。以上比例式合称射影定理。主要用于解决直角三角形斜边及定点与斜边的连线的问题,比如说给出AD和BD的长度求AC:BC。希望能帮到你,麻烦给“好评”
2023-05-18 13:10:291

求相似三角形射影定律是啥

在直角三角形中若角c=90度,cd为斜边上的高,则ac的平方等于ad乘以ab,cd的平方等于ad乘以bd,bc的平方等于bd乘以ba,这些统称射影定律。
2023-05-18 13:10:361

射影定律公式?

1、初中在双垂直的基本图形(即:直角三角形中有一个垂直,斜边的高一个垂直)中: 设直角三角形ABC,AB是斜边,CD是高,则 AC的平方=AD×AB CB的平方=BD×BA CD的平方=AD×DB 2、高中解三角型中: 设三角形ABC的三边是abc,它们所对的角分别是ABC,则 a=b*cosC+c*cosB b=c*cosA+a*cosC c=b*cosA+a*cosB
2023-05-18 13:10:421

射影定律是什么 详细点

应该要画图的,这样不好解释
2023-05-18 13:10:492

大家谁能告诉我什么是射影定律吗? 谢谢

1、初中在双垂直的基本图形(即:直角三角形中有一个垂直,斜边的高一个垂直)中: 设直角三角形ABC,AB是斜边,CD是高,则 AC的平方=AD×AB CB的平方=BD×BA CD的平方=AD×DB 2、高中解三角型中: 设三角形ABC的三边是abc,它们所对的角分别是ABC,则 a=b*cosC+c*cosB b=c*cosA+a*cosC c=b*cosA+a*cosB
2023-05-18 13:11:061

在三角形ABC中,c=根号2,则bcosA+acosB等于?

解;bcosA+acosB=b*(b^2+c^2-a^2)/(2bc)+a*(a^2+c^2-b^2)/(2ac)=(b^2+c^2-a^2)/(2c)+(a^2+c^2-b^2)/(2c)=(2c^2)/(2c)=c=√2.(这是射影定律:在三角形ABC中,A,B,C所对边为abc,则有、a=bcosc+ccosBb=acosc+ccosAc=acosB+bcosA
2023-05-18 13:11:121

影子的方向和太阳的位置的关系

影子是太阳的光线被物体所遮挡,既然是光线就应该是直的,也就是在一条直线或平面上。
2023-05-18 13:11:204

古埃及是如何测量金字塔的高度的故事

利用了影子与身高的比例。
2023-05-18 13:11:273

在矩形ABCD中,DE⊥AC于点E,且AE:EC=3:1,若AB=6cm,求AC的长和∠DAC的度数

由射影定律得,DC^2=EC×AC,又AE:EC=3:1所以,36=3EC^2。 EC=2被根号3。AC=8被根号3。sin∠DAC=四分之一被根号3。所以,∠DAC=arcsin四分之一被根号3
2023-05-18 13:11:331

有好评,就一道题,说过程和思路都可以的

运用射影定律比较好解决这类题目
2023-05-18 13:11:403

欧几里得定理是勾股定理吗

欧几里得定理是勾股定理。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
2023-05-18 13:11:531

一个直角三角形的高4.5m,底边6.3m,求斜边

斜边=4.5的平方加上6.3的平方,再把和开平方
2023-05-18 13:12:002

这题怎么做

这题解答如下:
2023-05-18 13:12:194