汉邦问答 / 问答 / 问答详情

傅里叶变换的定义是什么

2023-05-17 16:59:03
墨然殇

傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合,在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换,最初傅立叶分析是作为热过程的解析分析的工具被提出的;

傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号,许多波形可作为信号的成分,比如正弦波,方波,锯齿波等,傅立叶变换用正弦波作为信号的成分。

什么是傅里叶变换?

  公式如下图:  傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。  Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。  傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。   ①傅里叶变换  ②傅里叶逆变换  傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。
2023-05-17 11:23:332

傅里叶变换定义式

傅里叶变换(FT)傅里叶变换的目的是可将时域(即时间域)上的信号转变为频域(即频率域)上的信号,随着域的不同,对同一个事物的了解角度也就随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。傅里叶变换公式:(w代表频率,t代表时间,e^-iwt为复变函数)傅里叶变换认为一个周期函数(信号)包含多个频率分量,任意函数(信号)f(t)可通过多个周期函数(基函数)相加而合成。从物理角度理解傅里叶变换是以一组特殊的函数(三角函数)为正交基,对原函数进行线性变换,物理意义便是原函数在各组基函数的投影。
2023-05-17 11:25:111

傅里叶变换

离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,通过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。但是它的致命缺点是: 计算量太大,时间复杂度太高,当采样点数太高的时候,计算缓慢, 由此出现了DFT的快速实现,即下面的快速傅里叶变换FFT。 这里原始信号的三个正弦波的频率分别为,200Hz、400Hz、600Hz,最大频率为600赫兹。根据采样定理,fs至少是600赫兹的2倍,这里选择1400赫兹,即在一秒内选择1400个点。 1400 [-4.18864943e-12+0.j 9.66210986e-05-0.04305756j 3.86508070e-04-0.08611996j 8.69732036e-04-0.12919206j 1.54641157e-03-0.17227871j] 换之后的结果数据长度和原始采样信号是一样的 每一个变换之后的值是一个复数,为a+bj的形式下标为0和 N /2的两个复数的虚数部分为0,下标为i和 N - i 的两个复数共辄,也就是其虚部数值相同、符号相反。再用ifft()从频域转回时域之后,出现了由误差引起的很小的虚部,用np.real()取其实部即可.  由于一半是另一半的共轭,因此只需要关心一半数据.fft转换后下标为0的实数表示时域信号中的直流成分(不随时间变化) 振幅谱的纵坐标很大,而且具有对称性 Y=A1+A2 cos(2πω2+φ2)+A3 cos(2πω3+φ3)+A4*cos(2πω4+φ4) 经过FFT之后,得到的“振幅图”中, 第一个峰值(频率位置)的模是A1的N倍,N为采样点,本例中为N=1400,此例中没有,因为信号没有常数项A1 第二个峰值(频率位置)的模是A2的N/2倍,N为采样点, 第三个峰值(频率位置)的模是A3的N/2倍,N为采样点, 第四个峰值(频率位置)的模是A4的N/2倍,N为采样点, STFT短时傅里叶变换,实际上是对一系列加窗数据做FFT。有的地方也会提到DCT(离散傅里叶变换),而DCT跟FFT的关系就是:FFT是实现DCT的一种快速算法。 FFT有个参数N,表示对多少个点做FFT,如果一帧里面的点的个数小于N就会zero-padding到N的长度。每个点对应一个频率点,某一点n(n从1开始)表示的频率为: 第一个点(n=1,Fn等于0)表示直流信号,最后一个点N的下一个点(实际上这个点是不存在的)表示采样频率Fs。 FFT后我们可以得到N个频点,比如,采样频率为16000,N为1600,那么FFT后就会得到1600个点,FFT得到的1600个值的模可以表示1600个频点对应的振幅。因为FFT具有对称性,当N为偶数时取N/2+1个点,当N为奇数时,取(N+1)/2个点,比如N为512时最后会得到257个值。 scipy.signal.stft(x,fs = 1.0,window =‘hann",nperseg = 256,noverlap = None,nfft = None,detrend = False,return_oneside = True,boundary =‘zeros",padded = True,axis = -1 )
2023-05-17 11:25:341

傅立叶变换

傅立叶变换分类: 四种原信号图例:一般是从傅立叶级数开始导出傅立叶变换的。傅立叶级数很漂亮,物理意义相当清晰。它表示一个周期信号可以用一族正交完备的正弦波通过线性组合得到 正弦函数是简单的周期函数:y=Asin(wt+Φ),其中周期为2π/w,A为振幅,w为角频率,Φ为初相位。 1. 傅立叶级数公式 给定一个周期为T的函数x(t),那么它可以表示为无穷级数: 其中傅里叶系数为:2. 傅立叶级数性质 收敛性 在闭区间上满足 狄利克雷 条件的函数表示成的傅里叶级数都收敛。狄利克雷条件如下:正交性 所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性,例如,在三维欧式空间中,互相垂直的向量之间是正交的。三角函数族的正交性用公式表示出来就是: 奇偶性 奇函数f0可以表示为正弦级数,而偶函数fe则可以表示成余弦级数: 几种常见波形的傅里叶级数展开式: 1. 梯形波(奇函数)如上图所示,该梯形波是一个周期为T的奇函数,幅值为Amax,上升沿时间为d,在区间[0,PI/2]的函数表达式为: 由奇偶性可知,该波形在区间[-PI/2,PI/2]的傅里叶级数展开式为:其中傅里叶系数为:将f(t)函数代入傅里叶系数表达式中,可得:https://www.jianshu.com/p/be892506be75 计算机主要处理离散周期性信号,即周期性离散时间傅里叶变换(DFT)
2023-05-17 11:25:431

傅里叶变换

原文1 2 先说一个最直接的用途。把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。但是在频域呢?则简单的很,无非就是几条竖线而已。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。 再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。 可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为0的正弦波。也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。 如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。时域的基本单元就是“1秒”,如果我们将一个角频率为 的正弦波 看作基础,那么频域的基本单元就是 有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢? 就是一个周期无限长的正弦波,也就是一条直线! 所以在频域,0频率也被称为直流分量 ,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。 上一章的关键词是:从侧面看。这一章的关键词是:从下面看。 通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。 基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可 ,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。 在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。 注意到,相位谱中的相位除了0,就是 。因为 ,所以实际上相位为 的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于 ,所以相位差是周期的, 和 都是相同的相位。人为定义相位谱的值域为 ,所以图中的相位差均为 。 傅里叶级数,在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数。 傅里叶变换是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。 虚数i我们只知道它是-1的平方根,可是它真正的意义是什么呢? 在数轴上有一个红色的线段,它的长度是1。当它乘以3的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了180度。我们知道乘-1其实就是乘了两次 i使线段旋转了180度,那么乘一次 i 呢——答案很简单——旋转了90度。 欧拉公式: 当x等于Pi的时候: 这个公式关键的作用,是将正弦波统一成了简单的指数形式。我们来看看图像上的涵义: 这里,我们可以用两种方法来理解正弦波: 第一种前面已经讲过了,就是螺旋线在实轴的投影。 另一种需要借助欧拉公式的另一种形式去理解: 将以上两式相加再除2,得到: 我们刚才讲过, 可以理解为一条逆时针旋转的螺旋线,那么 则可以理解为一条顺时针旋转的螺旋线。而 则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了! 从代数上看,傅立叶级数就是通过三角函数和常数项来叠加逼近周期为 的函数 在“代数细节”一文中解释了,实际上是把 当作了如下基的向量: 是基1下的坐标, 是对应基的坐标 比如刚才提到的, 的方波 ,可以初略的写作:
2023-05-17 11:25:521

什么是傅立叶变换?为什么要进行傅立叶变换?一些回忆

傅立叶变换表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。傅里叶变换可以将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。正是由于拥有良好的性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。扩展资料:在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1、傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子。2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。3、正弦基函数是微分运算的本征函数,从而使得线性微分方。参考资料来源:百度百科—傅立叶变换
2023-05-17 11:25:581

什么是傅里叶变换?

傅里叶变换的意义和理解:一、意义:从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。二、理解:傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。傅里叶变换的相关说明:1、图像经过二维傅里叶变换后,其变换系数矩阵表明:若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅里叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅里叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。以上内容参考:百度百科-傅里叶变换
2023-05-17 11:26:111

傅里叶变换的原理是什么?

傅立叶变换是数字信号处理领域一种很重要的算法,要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。傅立叶变换的提出:用正弦曲线来代替原来的曲线而不用方波或三角波来表示的原因在于,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。
2023-05-17 11:26:271

傅里叶变换公式是什么?

傅里叶变换公式公式描述:公式中F(ω)为f(t)的像函数,f(t)为F(ω)的像原函数。傅立叶变换在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。简介因FFT是为时序电路而设计的,因此,控制信号要包括时序的控制信号及存储器的读写地址,并产生各种辅助的指示信号。同时在计算模块的内部,为保证高速,所有的乘法器都须始终保持较高的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数,而这一切都需要控制信号的紧密配合。为了实现FFT的流形运算,在运算的同时,存储器也要接收数据。这可以采用乒乓RAM的方法来完成。这种方式决定了实现FFT运算的最大时间。对于4k操作,其接收时间为4096个数据周期,这样FFT的最大运算时间就是4096个数据周期。另外,由于输入数据是以一定的时钟为周期依次输入的,故在进行内部运算时,可以用较高的内部时钟进行运算,然后再存入RAM依次输出。
2023-05-17 11:26:411

傅里叶变换

1. 傅里叶变换的基本原理遥感图像像元 DN 值随空间位置变化的特性可用频率来进行描述。DN 值的空间变化频率特征可看作为由具有不同频率、振幅和相位的许多正弦波或余弦波叠合而成的复杂波形。一般而言,短距离内的亮度变化 ( 线条或边缘) 相当于高频波,而长距离或大范围内的变化 ( 背景) 则相当于低频波。图像的傅里叶 ( Fourier) 变换是空间频率的函数,构成一个描述组成该图像的所有正弦波的频率、振幅与相位关系的频谱 ( 傅里叶谱) 。图像的傅氏变换包含着原图像中的所有信息,不同的是量度的方式。通过傅氏变换,可对原图像数据从频率的角度进行频谱特征调整,并可通过傅氏反变换得到最终图像而实现预期目的。2. 傅里叶变换的基本性质傅里叶变换具有线性性质、比例变换性、位移性、周期性、共轭对称性,并服从卷积定理,同时,二维傅里叶变换具有可分离性,即二维傅里叶变换可先后分别沿 x 和 y ( μ和 ν) 两个方向进行运算。傅氏变换后的傅氏频谱 ( 振幅) 图像是以 | F ( 0,0) | ( 零频相,常称 DC 项) 为中心呈辐射对称的,傅氏频谱图像中任意一点到原点的距离代表该点空间频率的高低,而该点与原点连线的方位角反映了原图像中线性特征信息的方向。
2023-05-17 11:26:551

什么是函数的傅里叶变换呢?

是矩形函数。傅里叶变换具有对称性,矩形函数与Sa函数在时域和频域是相互对应的。傅立叶变换对有多种定义形式,如果采用下列变换对,即:F(ω)=∫(∞,-∞) f(t)e^(-iωt)dtf(t) = (1/2π) ∫(∞,-∞) F(ω)e^(iωt)dω令: f(t)=δ(t),那么: ∫(∞,-∞) δ(t)e^(-iωt)dt = 1而上式的反变换:(1/2π) ∫(∞,-∞)1 e^(iωt)dt = δ(t) //:Dirac δ(t) 函数;从而得到常数1的傅里叶变换等于:2πδ(t)根据原信号的不同类型,可以把傅里叶变换分为四种类别:1、非周期性连续信号傅里叶变换(Fourier Transform)2、周期性连续信号傅里叶级数(Fourier Series)3、非周期性离散信号离散时域傅里叶变换(Discrete Time Fourier Transform)4、周期性离散信号离散傅里叶变换(Discrete Fourier Transform)
2023-05-17 11:27:141

傅里叶变换简介

傅里叶级数得名于法国数学家约瑟夫·傅里叶,他提出任何函数都可以展开为三角级数。 考虑一个在区间 上可积的函数 ,其傅里叶级数为 其中由欧拉公式 得 代入(1)可得 令 则可以得到傅里叶级数的复数形式 其中傅里叶变换可以看作傅里叶级数的连续形式。 首先考虑定义在 上的函数的傅里叶级数展开: 其中 令 记 则当 时, , , (14) 中的求和变为积分 相应地,(12) 变为 (16) 称为傅里叶变换,记作 ;(15) 称为傅里叶变换的逆变换,记作 。在信号分析中, 称为信号的时域表示, 称为信号的频域表示。 需要明确的是,不管是用时域还是用频域来表示一个信号,它们代表的都是同一个信号。可以从线性空间的角度理解这一点。同一个信号在不同的表象(或者说基向量)下具有不同的坐标。同一个向量在不同表象下的坐标可以通过一个线性变换联系起来。如果是有限维的空间,这个线性变换可以表示为一个矩阵。而傅里叶变换则是无限维空间不同表象之间的一种变换。举例来说,在量子力学中,一个波函数的坐标表象到动量表象间的变换就是一个傅里叶变换。 也可以将角频率 替换为自然频率 ,有 ,则一般情况下,我们处理的信号都是离散的。取 在时间上的离散采样 是采样的时间间隔。傅里叶变换只能作用在连续函数上,为此我们引入 其中 为 Dirac 函数。 称为 Dirac 梳子,亦称 Shah 分布,是一个采样函数,常用在数字信号处理和离散时间信号分析中。 对 作傅里叶变换 这里利用了 Dirac 函数的性质 。(22) 即为离散时间傅里叶变换。 下面简单介绍一下采样定理。若原信号 不包含高于 的频率,即 ,则只要采样频率 ,时域采样就能完全重建原信号。 将 在 上展开为傅里叶级数 其中 注意到 时 ,而 ,故 时 ,因此 (24) 可改写为 代入 (23),得 这里 。(26) 说明原信号的傅里叶变换可以由采样信号确定,进而可以利用傅里叶逆变换重建原信号。 此外,不难发现 是一个周期为 的周期函数。离散傅里叶变换 可以看作原信号连续傅里叶变换 的周期延拓,时域的离散化造成了频域的周期化。 离散时间傅里叶变换在频域上仍然是连续的。如果把频域也离散化,就得到了离散傅里叶变换。 也可以写成矩阵形式 其中 。 离散傅里叶变换的逆变换为直接根据定义计算离散傅里叶变换的复杂度是 。快速傅里叶变换是快速计算离散傅里叶变换及其逆变换的一类数值算法。FFT 通过把 DFT 矩阵分解为稀疏矩阵之积,能够将复杂度降低到 。 在 Python 中可以利用 scipy.fftpack 进行快速傅里叶变换。
2023-05-17 11:27:271

关于傅里叶变换的理解

傅里叶分析可分为傅里叶级数和傅里叶变换。傅里叶分析可以将任何周期函数看作是不同振幅,不同相位正弦波的叠加,一个矩形波在傅里叶变换后在频域中变为一条条幅值。 例如收音机接收到的信号是多个电台的信号波叠加,如果直接播放我们不能听到任何声音。收音机通过傅里叶变换将信号波分解为特定频率的信号,从而听到某个电台的节目。 傅里叶空间中的每个向量都可以表示为其一组基的无限线性组合,这就是傅里叶展开。这一组基互相正交,称为傅里叶基。 傅里叶级数就是将傅里叶空间中的一个向量通过基的线性组合的方式写出来(一个基的线性组合),每一个基的系数可以通过内积计算得到。 傅里叶级数的指数形式,通过欧拉公式将三角函数转换为指数函数,同时引入虚数i。 exp(ix)=cos(x)+isin(x) ,复平面的向量 (cos(x), isin(x)) 与 exp(ix) 等价(上述公式可用泰勒级数证明)。当 exp(ix) 中的 x 变成时间 t 时,随着时间的流逝,该向量就会在 2π 秒后旋转一圈,即 T=2π 。因此, exp(iwt) 是一个旋转的向量。傅里叶级数就从以三角函数作为基的线性组合就变为指数函数为基的线性组合。 当周期函数的周期趋于无穷时,无穷级数转换为积分,此时实数轴上的每个点都对应一个基,该积分就是这无限个基的“线性组合”。 正空间的晶格做傅里叶变换得到倒易空间(傅里叶空间),在正空间具有周期性的晶格在倒易空间变为倒格子(透射电镜下投影为二维点阵),而在正空间混乱的晶格在倒空间也将是混乱的。正空间表示时域,倒易空间表示频域。由于晶格的周期性,因此关于晶格的所有性质都可以经过傅里叶变换进行计算。
2023-05-17 11:27:351

傅里叶变换有什么用?

可怜的娃,我就是被这个搞死的,呵呵。我只晓得FFT是将信号中各种成分以频率轴拉开的结果,就好比X坐标。。。。。
2023-05-17 11:27:456

什么是傅立叶变换?

中文译名Transformée de Fourier有多种中文译名,常见的有“傅里叶变换”、“傅立叶变换”、“付立叶变换”、“富里叶变换”、“富里哀变换”等等。为方便起见,本文统一写作“傅里叶变换”。应用傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。概要介绍* 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的(参见:林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974)。 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; * 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)). 基本性质线性性质两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f left( x ight )和g left(x ight)的傅里叶变换mathcal[f]和mathcal[g]都存在,α 和 β 为任意常系数,则mathcal[alpha f+eta g]=alphamathcal[f]+etamathcal[g];傅里叶变换算符mathcal可经归一化成为么正算符;频移性质若函数f left( x ight )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i omega_ x}也存在傅里叶变换,且有mathcal[f(x)e^{i omega_ x}]=F(omega + omega _0 ) 。式中花体mathcal是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位sqrt;微分关系若函数f left( x ight )当|x| ightarrowinfty时的极限为0,而其导函数f"(x)的傅里叶变换存在,则有mathcal[f"(x)]=-i omega mathcal[f(x)] ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 �6�1 iω 。更一般地,若f(pminfty)=f"(pminfty)=ldots=f^{(k-1)}(pminfty)=0,且mathcal[f^{(k)}(x)]存在,则mathcal[f^{(k)}(x)]=(-i omega)^ mathcal[f] ,即 k 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子( �6�1 iω)k。卷积特性若函数f left( x ight )及g left( x ight )都在(-infty,+infty)上绝对可积,则卷积函数f*g=int_{-infty}^{+infty} f(x-xi)g(xi)dxi的傅里叶变换存在,且mathcal[f*g]=mathcal[f]cdotmathcal[g] 。卷积性质的逆形式为mathcal^[F(omega)G(omega)]=mathcal^[F(omega)]*mathcal^[G(omega)] ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积。Parseval定理若函数f left( x ight )可积且平方可积,则int_{-infty}^{+infty} f^2 (x)dx = frac{2pi}int_{-infty}^{+infty} |F(omega)|^domega 。其中 F(ω) 是 f(x) 的傅里叶变换。傅里叶变换的不同变种连续傅里叶变换主条目:连续傅立叶变换 一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。f(t) = mathcal^[F(omega)] = frac{sqrt{2pi}} intlimits_{-infty}^infty F(omega) e^{iomega t},domega. 上式其实表示的是连续傅里叶变换的逆变换,即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。反过来,其正变换恰好是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。当f(t)为奇函数(或偶函数)时,其余弦(或正弦)分量将消亡,而可以称这时的变换为余弦转换(cosine transform) 或 正弦转换(sine transform).另一个值得注意的性质是,当f(t) 为纯实函数时,F(�6�1ω) = F(ω)*成立.
2023-05-17 11:29:051

傅里叶变换的公式表

傅里叶变换的公式表如下:关于傅里叶变幻的介绍如下:傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。傅里叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅里叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。
2023-05-17 11:29:121

什么是傅里叶变换?

1、门函数F(w)=2w w sin=Sa() w。2、指数函数(单边)f(t)=e-atu(t) F(w)=1,实际上是一个低通滤波器a+jw。3、单位冲激函数F(w)=1,频带无限宽,是一个均匀谱。4、常数1 常数1是一个直流信号,所以它的频谱当然只有在w=0的时候才有值,体现为(w)。F(w)=2(w) 可以由傅里叶变换的对称性得到。5、正弦函数F(ejw0t)=2(w-w0),相当于是直流信号的移位。F(sinw0t)=F((ejw0t-e-jw0t)/2)=((w-w0)-(w+w0))F(sinw0t)=F((e。6、单位冲击序列jw0t-e-jw0t)/2j)=j((w-w0)-(w+w0)) T(t)=(t-Tn) -这是一个周期函数,每隔T出现一个冲击,周期函数的傅里叶变换是离散的F(T(t))=w0(w-nw0)=w0,w0(w) n=-单位冲击序列的傅里叶变换仍然是周期序列,周期是w0=2T。傅立叶变换:傅立叶变换是指将满足一定条件的某个函数表示成三角函数的积分。傅立叶变换是在对傅立叶级数的研究中产生的。在不同的研究领域,傅立叶变换具有不同的作用。在分析信号的时候 主要考虑的频率、幅值、相位。傅里叶变换的作用主要是将函数转化成多个正弦组合(或e指数)的形式,本质上变换之后信号还是原来的信号只是换了一种表达方式 这样可以更直观的分析一个函数里的频率、幅值、相位成分。所以分析一个复杂的信号只需经过傅里叶变换后可以轻易的看出其频率和相位、幅度分量。
2023-05-17 11:29:361

傅里叶变换通俗理解

通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,是将函数向一组正交的正弦、余弦函数展开。傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换,最初傅立叶分析是作为热过程的解析分析的工具被提出的。
2023-05-17 11:29:491

傅里叶变换

您对于傅里叶变换恐怕并不十分理解 傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的 所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度 对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示 已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。 傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。 我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。但浙大校训“求是”时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》,会有所帮助。
2023-05-17 11:30:191

傅里叶变换的本质是什么

1的傅里叶变换是2πδ(t)。傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合,在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换,最初傅立叶分析是作为热过程的解析分析的工具被提出的。定义:f(t)是t的周期函数,如果t满足狄里赫莱条件在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数。且在这些间断点上,函数是有限值,在一个周期内具有有限个极值点绝对可积,称为积分运算f(t)的傅立叶变换。
2023-05-17 11:30:261

傅里叶变换性质

傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 扩展资料   傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。   定义:   f(t)是t的"周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。
2023-05-17 11:30:521

常见函数的傅立叶变换

傅立叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。折叠变换提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。
2023-05-17 11:30:591

傅里叶变换性质

傅里叶变换性质有线性、位移、微分、积分。(1)线性性质:函数线性组合的傅里叶变换=各函数傅里叶变换的线性组合(2)位移性质(shift信号偏移,时移性):如:f(t-t0)表示时间函数f(t)沿t轴向右平移t0,其傅里叶变换=f(t)的傅里叶变换乘以因子exp(-iwt0),类似f(t+t0)的傅里叶变换=f(t)的傅里叶变换乘以因子exp(iwt0)而F(w-w0)的表示频谱函数沿w轴向右平移w0,其傅里叶逆变换=F(w)的傅里叶逆变换乘以因子exp(iw0t),反之乘以exp(-iw0t)3)微分性质:一个函数导数的傅里叶变换等于这个函数傅里叶变换乘以因子iw(4)积分性质:一个函数积分后的傅里叶变换等于这个函数傅里叶变换除以因子iw利用傅氏变换的这四条性质,可以将线性常系数微分方程转化成为代数方程,通过求解代数方程和求傅氏逆变换,可得到微 分方程的解。
2023-05-17 11:31:071

如何计算傅里叶变换?求公式?

根据欧拉公式,cosω0t=[exp(jω0t)+exp(-jω0t)]/2。直流信号的傅里叶变换是2πδ(ω)。根据频移性质可得exp(jω0t)的傅里叶变换是2πδ(ω-ω0)。再根据线性性质,可得cosω0t=[exp(jω0t)+exp(-jω0t)]/2的傅里叶变换是πδ(ω-ω0)+πδ(ω+ω0)。扩展资料计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。时间抽取算法  令信号序列的长度为N=2,其中M是正整数,可以将时域信号序列x(n)分解成两部分,一是偶数部分x(2n),另一是奇数部分x(2n+1),于是信号序列x(n)的离散傅里叶变换可以用两个N/2抽样点的离散傅里叶变换来表示和计算。考虑到和离散傅里叶变换的周期性,式⑴可以写成⑶其中(4a)(4b)由此可见,式⑷是两个只含有N/2个点的离散傅里叶变换,G(k)仅包括原信号序列中的偶数点序列,H(k)则仅包括它的奇数点序列。虽然k=0,1,2,…,N-1,但是G(k)和H(k)的周期都是N/2,它们的数值以N/2周期重复。
2023-05-17 11:31:291

傅里叶变换公式

如图
2023-05-17 11:31:362

傅里叶变换公式是什么

F(jw)=[πδ(w-w0)-πδ(w+w0)]/j。求f(x)=sinw0t的傅里叶变换(w0为了与w区分)。根据欧拉公式得sinw0t=(e^jw0t-e^(-jw0t)/(2j)。因为直流信号1的傅里叶变换为2πδ(w)。而e^jw0t是直流信号傅里叶变换的频移。所以e^jw0t的傅里叶变换为2πδ(w-w0),同理e^(-jw0)的傅里叶变换为2πδ(w+w0)。所以F(jw)=[πδ(w-w0)-πδ(w+w0)]/j。傅里叶变换:Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
2023-05-17 11:31:501

傅里叶变换的意义 什么是傅里叶变换的意义

1、傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 2、傅里叶级数和傅里叶变换其实就是我们之前讨论的特征值与特征向量的问题。分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。
2023-05-17 11:31:571

常数1的 傅里叶变换 为什么=2pi Dirac

傅立叶变换对有多种定义形式,如果采用下列变换对,即: F(ω)=∫(∞,-∞) f(t)e^(-iωt)dt f(t) = (1/2π) ∫(∞,-∞) F(ω)e^(iωt)dω 令:f(t)=δ(t), 那么:∫(∞,-∞) δ(t)e^(-iωt)dt = 1 而上式的反变换:(1/2π) ∫(∞,-∞)1 e^(iωt)dt = δ(t) //:Dirac δ(t) 函数; 从而得到常数1的傅里叶变换等于:2πδ(t)
2023-05-17 11:32:052

傅里叶变换的应用

尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅里叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子; 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 著名的卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。有关傅里叶变换的FPGA实现傅里叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅里叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。 一般情况下,N点的傅里叶变换对为:其中,WN=exp(-2pi/N)。X(k)和x(n)都为复数。与之相对的快速傅里叶变换有很多种,如DIT(时域抽取法)、DIF(频域抽取法)、Cooley-Tukey和Winograd等。对于2n傅里叶变换,Cooley-Tukey算法可导出DIT和DIF算法。本文运用的基本思想是Cooley-Tukey算法,即将高点数的傅里叶变换通过多重低点数傅里叶变换来实现。虽然DIT与DIF有差别,但由于它们在本质上都是一种基于标号分解的算法,故在运算量和算法复杂性等方面完全一样,而没有性能上的优劣之分,所以可以根据需要任取其中一种,本文主要以DIT方法为对象来讨论。N=8192点DFT的运算表达式为:式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可取0,1,...,2047,k1和n2可取0,1,2,3。由式(3)可知,8k傅里叶变换可由4×2k的傅立叶变换构成。同理,4k傅立叶变换可由2×2k的傅里叶变换构成。而2k傅里叶变换可由128×16的傅立叶变换构成。128的傅里叶变换可进一步由16×8的傅里叶变换构成,归根结底,整个傅里叶变换可由基2、基4的傅里叶变换构成。2k的FFT可以通过5个基4和1个基2变换来实现;4k的FFT变换可通过6个基4变换来实现;8k的FFT可以通过6个基4和1个基2变换来实现。也就是说:FFT的基本结构可由基2/4模块、复数乘法器、存储单元和存储器控制模块构成,其整体结构如图1所示。图1中,RAM用来存储输入数据、运算过程中的中间结果以及运算完成后的数据,ROM用来存储旋转因子表。蝶形运算单元即为基2/4模块,控制模块可用于产生控制时序及地址信号,以控制中间运算过程及最后输出结果。 基4和基2的信号流如图2所示。图中,若A=r0+j*i0,B=r1+j*i1,C=r2+j*i2,D=r3+j*i3是要进行变换的信号,Wk0=c0+j*s0=1,Wk1=c1+j*s1,Wk2=c2+j*s2,Wk3=c3+j*s3为旋转因子,将其分别代入图2中的基4蝶形运算单元,则有:A′=[r0+(r1×c1-i1×s1)+(r2×c2-i2×s2)+(r3×c3-i3×s3)]+j[i0+(i1×c1+r1×s1)+(i2×c2+r2×s2)+(i3×c3+r3×s3)]? (4)B′=[r0+(i1×c1+r1×s1)-(r2×c2-i2×s2)-(i3×c3+r3×s3)]+j[i0-(r1×c1-i1×s1)-(i2×c2+r2×s2)+(r3×c3-i3×s3)] (5)C′=[r0-(r1×c1-i1×s1)+(r2×c2-i2×s2)-(r3×c3-i3×s3)]+j[i0-(i1×c1+r1×s1)+(i2×c2+r2×s2)-(i3×c3+r3×s3)] (6)D′=[r0-(i1×c1+r1×s1)-(r2×c2-i2×s2)+(i3×c3+r3×s3)]+j[i0+(r1×c1-i1×s1)-(i2×c2+r2×s2)-(r3×c3-i3×s3)]? (7)而在基2蝶形中,Wk0和Wk2的值均为1,这样,将A,B,C和D的表达式代入图2中的基2运算的四个等式中,则有:A′=r0+(r1×c1-i1×s1)+j[i0+(i1×c1+r1×s1)]? (8)B′=r0- (r1×c1-i1×s1)+j[i0-(i1×c1+r1×s1)] (9)C′=r2+(r3×c3-i3×s3)+j[i0+(i3×c3+r3×s3)]? (10)D′=r2-(r3×c3-i3×s3)+j[i0-(i3×c3+r3×s3)]? (11)在上述式(4)~(11)中有很多类同项,如i1×c1+r1×s1和r1×c1-i1×s1等,它们仅仅是加减号的不同,其结构和运算均类似,这就为简化电路提供了可能。同时,在蝶形运算中,复数乘法可以由实数乘法以一定的格式来表示,这也为设计复数乘法器提供了一种实现的途径。以基4为例,在其运算单元中,实际上只需做三个复数乘法运算,即只须计算BWk1、CWk2和DWk3的值即可,这样在一个基4蝶形单元里面,最多只需要3个复数乘法器就可以了。在实际过程中,在不提高时钟频率下,只要将时序控制好?便可利用流水线(Pipeline)技术并只用一个复数乘法器就可完成这三个复数乘法,大大节省了硬件资源。图2 基2和基4蝶形算法的信号流图 FFT变换后输出的结果通常为一特定的倒序。因此,几级变换后对地址的控制必须准确无误。倒序的规律是和分解的方式密切相关的,以基8为例,其基本倒序规则如下:基8可以用2×2×2三级基2变换来表示,则其输入顺序则可用二进制序列(n1 n2 n3)来表示,变换结束后,其顺序将变为(n3 n2 n1),如:X?011 → x?110 ,即输入顺序为3,输出时顺序变为6。更进一步,对于基16的变换,可由2×2×2×2,4×4,4×2×2等形式来构成,相对于不同的分解形式,往往会有不同的倒序方式。以4×4为例,其输入顺序可以用二进制序列(n1 n2 n3n4)来表示变换结束后,其顺序可变为((n3 n4)(n1 n2)),如:X?0111 → x?1101 。即输入顺序为7,输出时顺序变为13。在2k/4k/8k的傅里叶变换中,由于要经过多次的基4和基2运算,因此,从每次运算完成后到进入下一次运算前,应对运算的结果进行倒序,以保证运算的正确性。 N点傅里叶变换的旋转因子有着明显的周期性和对称性。其周期性表现为:FFT之所以可使运算效率得到提高,就是利用了对称性和周期性把长序列的DFT逐级分解成几个序列的DFT,并最终以短点数变换来实现长点数变换。根据旋转因子的对称性和周期性,在利用ROM存储旋转因子时,可以只存储旋转因子表的一部分,而在读出时增加读出地址及符号的控制,这样可以正确实现FFT。因此,充分利用旋转因子的性质,可节省70%以上存储单元。实际上,由于旋转因子可分解为正、余弦函数的组合,故ROM中存的值为正、余弦函数值的组合。对2k/4k/8k的傅里叶变换来说,只是对一个周期进行不同的分割。由于8k变换的旋转因子包括了2k/4k的所有因子,因此,实现时只要对读ROM的地址进行控制,即可实现2k/4k/8k变换的通用。 因FFT是为时序电路而设计的,因此,控制信号要包括时序的控制信号及存储器的读写地址,并产生各种辅助的指示信号。同时在计算模块的内部,为保证高速,所有的乘法器都须始终保持较高的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数,而这一切都需要控制信号的紧密配合。为了实现FFT的流形运算,在运算的同时,存储器也要接收数据。这可以采用乒乓RAM的方法来完成。这种方式决定了实现FFT运算的最大时间。对于4k操作,其接收时间为4096个数据周期,这样FFT的最大运算时间就是4096个数据周期。另外,由于输入数据是以一定的时钟为周期依次输入的,故在进行内部运算时,可以用较高的内部时钟进行运算,然后再存入RAM依次输出。为节省资源,可对存储数据RAM采用原址读出原址写入的方法,即在进行下一级变换的同时,首先应将结果回写到读出数据的RAM存贮器中;而对于ROM,则应采用与运算的数据相对应的方法来读出存储器中旋转因子的值。在2k/4k/8k傅里叶变换中,要实现通用性,控制器是最主要的模块。2k、4k、8k变换具有不同的内部运算时间和存储器地址,在设计中,针对不同的点数应设计不同的存储器存取地址,同时,在完成变换后,还要对开始输出有用信号的时刻进行指示。
2023-05-17 11:32:131

什么叫傅立叶变换?

傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,是将函数向一组正交的正弦、余弦函数展开,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。如减速机故障时,通过傅里叶变换做频谱分析,根据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤。
2023-05-17 11:32:293

傅里叶变换常用公式是什么?

如下图:傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。相关信息:尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅里叶变换具有非常好的性质,使得它如此的好用和有用。
2023-05-17 11:32:481

u(t)的傅里叶变换怎么证明(过程 谢谢)

这里的u(t)是指单位阶跃函数吗?如果是,那么按傅里叶变换的定义F[u(t)] = ∫(-∞→∞)u(t)exp(-jωt)dt = ∫(0→∞)exp(-jωt)dt = 1/(jω)
2023-05-17 11:33:032

为什么要进行傅里叶变换,其物理意义是什么?

傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。 因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。任意的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;5. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;4. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 2、图像傅立叶变换的物理意义 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数 傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰 另外我还想说明以下几点: 1、图像经过二维傅立叶变换后,其变换系数矩阵表明: 若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。 2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大) 傅里叶变换意义另解: 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。 理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话 ,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。   傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 傅立叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。也就是说,用无数的正弦波,可以合成任何你所需要的信号。 答案是要两个条件,一个是每个正弦波的幅度,另一个就是每个正弦波之间的相位差。 所以现在应该明白了吧,频域上的相位,就是每个正弦波之间的相位。 傅立叶变换用于信号的频率域分析,一般我们把电信号描述成时间域的数学模型,而数字信号处理对信号的频率特性更感兴趣,而通过傅立叶变换很容易得到信号的频率域特性。   傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。 如减速机故障时,通过傅里叶变换做频谱分析,根据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤。
2023-05-17 11:33:121

用MATLAB 如何实现傅里叶变换

matlab傅里叶变换代码:I=imread("1.jpg");I=rgb2gray(I);I=im2double(I);F=fft2(I);F=fftshift(F);F=abs(F);T=log(F+1);figure;imshow(T,[]);
2023-05-17 11:33:334

求f(x)的傅里叶变换?!

求f(x)=sinw0t的傅里叶变换(w0为了与w区分)根据欧拉公式得sinw0t=(e^jw0t-e^(-jw0t)/(2j)因为直流信号1的傅里叶变换为2πδ(w)而e^jw0t是直流信号傅里叶变换的频移所以e^jw0t的傅里叶变换为2πδ(w-w0),同理e^(-jw0)的傅里叶变换为2πδ(w+w0)所以F(jw)=[πδ(w-w0)-πδ(w+w0)]/j
2023-05-17 11:33:401

傅里叶变换的物理意义是什么为什么需要进行傅里叶变换

傅里叶变换的物理意义,无需多讲,就是把非周期信号,用无限的周期正余弦函数进行叠加,来表示所需要的时域的函数。做傅里叶变换的目的是因为 很多在时域内看不见的特性在频域内能很清楚的得到。比如说,矩形波,在时域内就一直线,当用傅里叶变换后在频域内,我们就能看见像各谐波的频率,相位,振幅,能量等等信息。会给我们分析问题带来很大的方便。同时,傅里叶变换把函数变换为正弦或余弦,正余弦函数的好处就是其微分和积分也是正余弦,计算起来很方便。同时,根据欧拉公式,正余弦函数是指数为复数的指数函数,指数函数的微分积分也是它本身,这也给我们提供了非常方便的计算途径。
2023-05-17 11:33:461

图像傅里叶变换的步骤是什么? java

首先把图像转换成二维矩阵,对二维矩阵进行傅里·叶变换后傅立叶变化后,会是虚数,求模,就是变换后的幅度谱
2023-05-17 11:33:552

傅里叶变换中的ℱ是什么字母?

只是一个符号而已,代表一个函数。一般写作F。
2023-05-17 11:34:532

窗口傅里叶变换基本思想

为了获得关于时间定位的信息,可以用一个具有适当宽度的窗函数从信号中截取一段来作傅氏分析,这样可得到信号在这段时间内的局部频谱。如果再让窗函数沿时间轴不断移动,那么就能够对信号逐段进行频谱分析。这就是1946年D.Gabor提出的窗口傅氏变换WFT(Windowed Fourier Transform)或称短时傅氏变换 STFT(Short-Time Fourier Transform)的基本思想。模拟信号f(t)∈L2(R)以w(t)作为窗函数的短时傅氏变换定义为地球物理信息处理基础式中 ,为了与小波分析所使用的符号一致,本章及下一章均用i表虚数单位;ω和b分别表示频率和时移;w(t)是实函数,下标w说明同一信号对不同窗函数的WFT是不同的。对于某个确定的b值,WFT给出的是信号在局部时间范围内[b-0.5Dt,b+0.5Dt]的频谱信息,这里Dt是w(t)的有效宽度。令wω,b(t)=w(t-b)eiωt (6-4)于是,式(6-3)可写成地球物理信息处理基础即信号f(t)关于窗函数w(t)的窗口傅氏变换等于信号与wω,b(t)的内积。设w(t)、wω,b(t)的傅氏变换分别为用W(η)、Wω,b(η)表示,那么,二者具有如下关系式地球物理信息处理基础如图6-1 所示,为 f(t)=sin(πt2)的 WFT,我们选择了海明窗函数(Hamming)为w(t)。当时窗分别采用w(t-2)、w(t-3.5)和w(t-5)时,f(t)w(t-2)、f(t)w(t-3.5)和f(t)w(t-5)都有时域局部化表现,此时(WFTwf)(ω,2)、(WFTwf)(ω,3.5)和(WFTwf)(ω,5)的能量分别集中在[10,30]、[20,40]和[35,55]之间。
2023-05-17 11:35:071

什么是傅里叶变换?

常见的傅里叶变换表如下:傅里叶变换,是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。或者我们也可以换一个角度理解:傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。傅里叶变换的本质,就是用各种频率不同的周期函数(频域)线性表示原始函数(时域),必然具有线性性。这与积分的线性性是一致的。傅里叶变换的目的是可将时域(即时间域)上的信号转变为频域(即频率域)上的信号,随着域的不同,对同一个事物的了解角度也就随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。
2023-05-17 11:35:251

傅里叶变换的物理意义是什么?为什么需要进行傅里叶变换?

傅立叶变换是数字信号处理领域一种很重要的算法,要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。傅立叶变换的提出:用正弦曲线来代替原来的曲线而不用方波或三角波来表示的原因在于,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。
2023-05-17 11:35:441

什么是傅里叶变换?

傅里叶变换的意义和理解:一、意义:从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。二、理解:傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。傅里叶变换的相关说明:1、图像经过二维傅里叶变换后,其变换系数矩阵表明:若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅里叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅里叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。以上内容参考:百度百科-傅里叶变换
2023-05-17 11:35:561

傅立叶变换是什么?

δ(t)是单位冲激响应,当a趋于0时,F(jw)在w=0时为无穷大,在w≠0时为0,但不是单位冲激响应。傅立叶变换对有多种定义形式,如果采用下列变换对,即:F(ω)=∫(∞,-∞) f(t)e^(-iωt)dtf(t) = (1/2π) ∫(∞,-∞) F(ω)e^(iωt)dω令: f(t)=δ(t),那么: ∫(∞,-∞) δ(t)e^(-iωt)dt = 1而上式的反变换:(1/2π) ∫(∞,-∞)1 e^(iωt)dt = δ(t) //:Dirac δ(t) 函数;从而得到常数1的傅里叶变换等于:2πδ(t)扩展资料;f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。参考资料来源:百度百科-傅立叶变换
2023-05-17 11:36:101

傅里叶变换是什么函数

是矩形函数。傅里叶变换具有对称性,矩形函数与Sa函数在时域和频域是相互对应的。傅立叶变换对有多种定义形式,如果采用下列变换对,即:F(ω)=∫(∞,-∞) f(t)e^(-iωt)dtf(t) = (1/2π) ∫(∞,-∞) F(ω)e^(iωt)dω令: f(t)=δ(t),那么: ∫(∞,-∞) δ(t)e^(-iωt)dt = 1而上式的反变换:(1/2π) ∫(∞,-∞)1 e^(iωt)dt = δ(t) //:Dirac δ(t) 函数;从而得到常数1的傅里叶变换等于:2πδ(t)根据原信号的不同类型,可以把傅里叶变换分为四种类别:1、非周期性连续信号傅里叶变换(Fourier Transform)2、周期性连续信号傅里叶级数(Fourier Series)3、非周期性离散信号离散时域傅里叶变换(Discrete Time Fourier Transform)4、周期性离散信号离散傅里叶变换(Discrete Fourier Transform)
2023-05-17 11:36:211

傅里叶变换的定义是什么?

中文名称:快速傅里叶变换 英文名称:fast Fourier transform;FFT 定义:离散傅里叶变换的一种快速算法,能克服时间域与频率域之间相互转换的计算障碍,在光谱、大气波谱分析、数字信号处理等方面有广泛应用。 所属学科: 大气科学(一级学科) ;动力气象学(二级学科) 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换(FFT). 1965年,Cooley和Tukey提出了计算离散傅里叶变换(DFT)的快速算法,将DFT的运算量减少了几个数量级。从此,对快速傅里叶变换(FFT)算法的研究便不断深入,数字信号处理这门新兴学科也随FFT的出现和发展而迅速发展。根据对序列分解与选取方法的不同而产生了FFT的多种算法,基本算法是基2DIT和基2DIF。FFT在离散傅里叶反变换、线性卷积和线性相关等方面也有重要应用。
2023-05-17 11:36:351

傅里叶变换公式是什么?

傅立叶变换的公式为:即余弦正弦和余弦函数的傅里叶变换如下:傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。扩展资料如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值。在一个周期内具有有限个极值点、绝对可积。傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数定义在离散点上而非连续域内,且须满足有限性或周期性条件。参考资料来源:百度百科-傅里叶变换
2023-05-17 11:36:431

傅里叶变换有哪些?

常见的傅里叶变换表如下:傅里叶变换,是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。或者我们也可以换一个角度理解:傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。傅里叶变换的本质,就是用各种频率不同的周期函数(频域)线性表示原始函数(时域),必然具有线性性。这与积分的线性性是一致的。傅里叶变换的目的是可将时域(即时间域)上的信号转变为频域(即频率域)上的信号,随着域的不同,对同一个事物的了解角度也就随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。
2023-05-17 11:37:121

傅里叶变换的作用?

通过飞秒检测发现傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。用正弦曲线来代替原来的曲线而不用方波或三角波来表示的原因在于,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。为什么 偏偏选择三角函数而不用其他函数进行分解?我们从物理系统的特征信号角度来解释。我们知道:大自然中很多现象可以抽象成一个线性时不变系统来研究,无论你用微分方程还是传递函数或者状态空间描述。线性时不变系统可以这样理解:输入输出信号满足线性关系,而且系统参数不随时间变换。对于大自然界的很多系统,一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。也就是说正弦信号是系统的特征向量!当然,指数信号也是系统的特征向量,表示能量的衰减或积聚。自然界的衰减或者扩散现象大多是指数形式的,或者既有波动又有指数衰减(复指数形式),因此具有特征的基函数就由三角函数变成复指数函数。但是,如果输入是方波、三角波或者其他什么波形,那输出就不一定是什么样子了。所以,除了指数信号和正弦信号以外的其他波形都不是线性系统的特征信号。用正弦曲线来代替原来的曲线而不用方波或三角波或者其他什么函数来表示的原因在于:正弦信号恰好是很多线性时不变系统的特征向量。于是就有了傅里叶变换。对于更一般的线性时不变系统,复指数信号(表示耗散或衰减)是系统的“特征向量”。于是就有了拉普拉斯变换。z变换也是同样的道理,这时是离散系统的“特征向量”。这里没有区分特征函数和特征向量的概念,主要想表达二者的思想是相同的,只不过一个是有限维向量,一个是无限维函数。傅里叶级数和傅里叶变换其实就是我们之前讨论的特征值与特征向量的问题。分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。这样,用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。且只有正弦曲线才拥有这样的性质。这也解释了为什么我们一碰到信号就想方设法的把它表示成正弦量或者复指数量的形式;为什么方波或者三角波如此“简单”,我们非要展开的如此“麻烦”;为什么对于一个没有什么规律的“非周期”信号,我们都绞尽脑汁的用正弦量展开。就因为正弦量(或复指数)是特征向量。
2023-05-17 11:37:461

tx(t)的傅里叶变换是什么

傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。
2023-05-17 11:38:031

傅里叶变换的定义是什么

傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合,在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换,最初傅立叶分析是作为热过程的解析分析的工具被提出的; 傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号,许多波形可作为信号的成分,比如正弦波,方波,锯齿波等,傅立叶变换用正弦波作为信号的成分。
2023-05-17 11:38:101