汉邦问答 / 问答 / 问答详情

常见的数列求和公式

2023-05-16 22:46:17
无尘剑

(1)公式求和法:①等差数列、等比数列求和公式②重要公式:1+2+…+n=12n(n+1);12+22+…+n2=16n(n+1)(2n+1);13+23+…+n3=(1+2+…+n)2=14n2(n+1)2;(2)裂项求和法:将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.用裂项法求和,需要掌握一些常见的裂项,如:an=1(an+b)(an+c)=1c?b(1an+b-1an+c);1n(n+1)=1n-1n+1;(3)错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错位相减法.an=bncn,其中{bn}是等差数列,{cn}是等比数列(4)倒序相加法:sn表示从第一项依次到第n项的和,然后又将sn表示成第n项依次反序到第一项的和,将所得两式相加,由此得到sn的一种求和方法.(5)通项分解法(分组求和法):有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.an=bn±cn(6)并项求和法:把数列的某些项放在一起先求和,然后再求sn.如:1002-992+982-972+…+22-12的和.(7)利用通项求和法:先求出数列的通项,然后进行求和

大鱼炖火锅

裂项求和法(用于求等差乘以等比的数列)

解:sn=1*1/3+3*1/3^2+5*/3^3+....+(2n-1)/3^n

........1

1/3*sn

=1*3^2+3*1/3^3+.......+(2n-3)/3^n+(2n-1)/3^(n

+1)..............2

由1-2得到

2/3*sn=1/3+2*(1/3^2+1/3^3+.......1/3^n)-(2n-1)/3^(n

+1)

=1/3+2*(1/2*(1-1/3^(n-1)))-(2n-1)/3^(n

+1)

=1/3+1-1/3^(n-1)-(2n-1)/3^(n

+1)

sn=2+2/3^(n-2)-(4n-2)/3^n

那点不明白可以继续问..过程写的不太详细

wpBeta

还有裂项法

an=1 (n+1)

有an=1 -1(n+1)

n个这样的式子相加可得前n项和

还有变形

an=1 (n+d)=1d(1 -1(n+d))

Chen

我是新来的,难懂!

数列求和公式

数列求和公式是(首项+末项)×项数/2。1、数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。2、常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。3、数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。数列公式的概念:1、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,且每一项都不为0(常数),这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。2、如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差通常用字母d表示。3、如果(cn),cn=an·bn,其中(an)为等差数列,(bn)为等比数列,那么这个数列就叫做差比数列。
2023-05-16 20:29:421

数列求和的基本方法

数列求和是按照一定规律排列的数进行求和。求Sn实质上是求{Sn}的通项公式,应注意对其含义的理解。以下便是几种数列求和的方法。 01 差比数列求和法。运用此公式从而求出数列。 a:等差数列首项 d:等差数列公差 e:等比数列首项 q:等比数列公比 02 错位相减法。适用于通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘) { an }、{ bn }分别是等差数列和等比数列. 03 等比数列求和公式,等差数列求和公式。运用公式套入题目。从而得到结果。 04 倒序相加法。这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an) 特别提示 以上为几种简单的数列求和方法。需加以实际数学题目进行实际运用。
2023-05-16 20:30:071

数列怎么求和?

并项求和常采用先试探后求和的方法。例:1-2+3-4+5-6+……+(2n-1)-2n方法一:(并项)求出奇数项和偶数项的和,再相减。方法二:(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]方法三:构造新的数列,可借用等差数列与等比数列的复合。an=n(-1)^(n+1)扩展资料:1、公式求和法:①等差数列、等比数列求和公式②重要公式:1+2+…+n=  1 2 n(n+1);1 2 +2 2 +…+n 2 =  1 6 n(n+1)(2n+1);1 3 +2 3 +…+n 3 =(1+2+…+n) 2 =  1 4 n 2 (n+1) 2 。2、裂项求和法:将数列的通项分成两个式子的代数和,即a n =f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.用裂项法求和,需要掌握一些常见的裂项,如:a n =  1 ( A n +B)( A n +C) =  1 C-B (  1 A n +B -  1 An+C );  1 n(n+1) =  1 n -  1 n+1 。3、错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错位相减法.a n =b n c n ,其中{b n }是等差数列,{c n }是等比数列。4、倒序相加法:S n 表示从第一项依次到第n项的和,然后又将S n 表示成第n项依次反序到第一项的和,将所得两式相加,由此得到S n 的一种求和方法。                           参考资料来源:百度百科-数列求和
2023-05-16 20:30:131

数列求和公式

数列求和公式:1、倒序相加法  等差数列:首项为a1,末项为an,公差为d,那么等差数列求和公式为Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。  2、分组求和法  分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。  3、错位相减法  适用于通项公式为等差的一次函数乘以等比的数列形式{an}、{bn}分别是等差数列和等比数列。  4、裂项相消法  裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。  5、乘公比错项相减(等差×等比)  这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。类似于错位相减法。
2023-05-16 20:30:292

怎样快速求一个数列的和?

(乘上公比)再用错位相减法。形如An=BnCn,其中{Bn}为等差数列,{Cn}为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比q,即q·Sn;然后错开一位,两个式子相减。这种数列求和方法叫做错位相减法。【典例】:求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)当x=1时,Sn=1+3+5+…+(2n-1)=n2当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn扩展资料:每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)。在等比数列中,首项A1与公比q都不为零。参考资料来源:百度百科--等差数列参考资料来源:百度百科--等比数列
2023-05-16 20:30:471

数列求和的方法

数列求和的方法如下:方法一:错位相减形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。这种数列求和方式叫做错位相减。备注:等差数列的通项常见形式为an=An+B(其中A、B为常数),等比数列通项常见的形式为an=Aqn-m(其中A、m为常数)。方法二:裂项相消把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。方法三:分组求和有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。
2023-05-16 20:30:551

数列求和的常用方法

数列求和的基本方法和技巧一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.六.并项求和法一个数列的前n项和中,若可两两结合求解,则称之为并项求和法.形如 类型,可采用两项合并求解.
2023-05-16 20:31:091

数列求和公式

数列求和公式:1、倒序相加法  等差数列:首项为a1,末项为an,公差为d,那么等差数列求和公式为Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。  2、分组求和法  分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。  3、错位相减法  适用于通项公式为等差的一次函数乘以等比的数列形式{an}、{bn}分别是等差数列和等比数列。  4、裂项相消法  裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。  5、乘公比错项相减(等差×等比)  这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。类似于错位相减法。
2023-05-16 20:31:171

数列求和的七种方法

常见的数列求和方式有7种,分别为:裂项相消法、错位相减法、倒序相加法、公式法、分组求和法、数学归纳法和观察法。这7种求解方法之间的联系如下图所示;在具体应用过程中,可根据每种方法的使用条件,灵活求解。若要熟练掌握数列求和方法,需要在掌握基本概念的基础上多加练习,熟能生巧,巧能成精。举例:1、裂项相消法顾名思义,就是将数列 an 通项拆分为若干项,一般为某数列 bn 相邻两项之差,这样求和时便可以抵消中间部分,只剩首尾两项。常见的能够裂项的数列如下所示。2、错位相减法适用于差比数列求和,即 an=bncn ,其中 bn 为等差数列, cn 为等比数列。3、倒序相加法
2023-05-16 20:31:311

数列求和有哪些方法?

一般数列的求和方法(1)直接求和法,如等差数列和等比数列均可直接求和.(2)部分求和法将一个数列分成两个可直接求和的数列,而后可求出数列的前n项的和.(3)并项求和法将数列某些项先合并,合并后可形成直接求和的数列.(4)裂项求和法将数列各项分裂成两项,然后求和.(5)错位相减求和法.用sn乘以q,若数列{an}为等差数列,{bn}为等比数列,则求数列{anbn}的前n项的和均可以采用此方法.(6)拟等差,写成一堆式子再相加。(叠加)(7)累乘法
2023-05-16 20:32:011

数列求和公式是什么?

等比数列求和公式:Sn=a1(1-q^n)/(1-q)(q≠1)拓展资料:(1) 等比数列:a (n+1)/an=q (n∈N)。 (2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m); (3) 求和公式:Sn=n*a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1) (q为比值,n为项数) (4)性质: ①若 m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. ③若m、n、q∈N,且m+n=2q,则am*an=aq^2 (5) "G是a、b的等比中项""G^2=ab(G ≠ 0)". (6)在等比数列中,首项a1与公比q都不为零.
2023-05-16 20:32:071

常用的数列求和公式

裂项求和法(用于求等差乘以等比的数列)解:sn=1*1/3+3*1/3^2+5*/3^3+....+(2n-1)/3^n........11/3*sn=1*3^2+3*1/3^3+.......+(2n-3)/3^n+(2n-1)/3^(n+1)..............2由1-2得到2/3*sn=1/3+2*(1/3^2+1/3^3+.......1/3^n)-(2n-1)/3^(n+1)=1/3+2*(1/2*(1-1/3^(n-1)))-(2n-1)/3^(n+1)=1/3+1-1/3^(n-1)-(2n-1)/3^(n+1) sn=2+2/3^(n-2)-(4n-2)/3^n那点不明白可以继续问..过程写的不太详细
2023-05-16 20:32:142

数列求和的方法

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1)1/n(n+1)=1/n-1/(n+1) (2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)] (3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)] (4)1/(√a+√b)=[1/(a-b)](√a-√b) (5) n·n!=(n+1)!-n! [例] 求数列an=1/n(n+1) 的前n项和. 解:设 an=1/n(n+1)=1/n-1/(n+1) (裂项) 则 Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和) = 1-1/(n+1) = n/(n+1) 小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。 注意: 余下的项具有如下的特点 1余下的项前后的位置前后是对称的。 2余下的项前后的正负性是相反的。 一、基本概念 1、 数列的定义及表示方法:按一定次序排列成的一列数叫数列 2、 数列的项an与项数n 3、 按照数列的项数来分,分为有穷数列与无穷数列 4、 按照项的增减规律分为:递增数列,递减数列,摆动数列和常数列 5、 数列的通项公式an 6、 数列的前n项和公式Sn 7、 等差数列、公差d、等差数列的结构:an=a1+(n-1)d 8、 等比数列、公比q、等比数列的结构:an=a1·q^(n-1) 二、基本公式: 9、一般数列的通项an与前n项和Sn的关系:an= Sn-Sn-1 10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 11、等差数列的前n项和公式:Sn=a1·n+1/2·n·(n+1)·d 当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。 12、等比数列的通项公式: an= a1·q^(n-1) an= ak·q^(n-k) (其中a1为首项、ak为已知的第k项,an≠0) 13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式); 当q≠1时,Sn=a1·(q^n-1)/(q-1) 三、有关等差、等比数列的结论 14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。 15、等差数列中,若m+n=p+q,则 am+an=ap+aq 16、等比数列中,若m+n=p+q,则 am·an=ap·aq 17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。 18、两个等差数列与的和差的数列{an+bn}仍为等差数列。 19、两个等比数列与的积、商、倒数组成的数列 {an·bn}、{an/bn} 、{1/(an·bn)} 仍为等比数列。 20、等差数列的任意等距离的项构成的数列仍为等差数列。 21、等比数列的任意等距离的项构成的数列仍为等比数列。 22、三个数成等差的设法:a-d,a,a+d; 四个数成等差的设法:a-3d,a-d,,a+d,a+3d 23、三个数成等比的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 四、数列求和的常用方法: 公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构) 24、分组法求数列的和:如an=2n+3n 25、错位相减法求和:如an=n·2^n 26、裂项法求和:如an=1/n(n+1) 27、倒序相加法求和:如an= n 28、求数列的最大、最小项的方法: ① an+1-an=…… 如an= -2n2+29n-3 ② (an>0) 如an= ③ an=f(n) 研究函数f(n)的增减性 如an= an^2+bn+c(a≠0) 29、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解: (1)当 a1>0,d<0时,满足的项数m使得Sm取最大值. (2)当 a1<0,d>0时,满足的项数m使得Sm取最小值. 在解含绝对值的数列最值问题时,注意转化思想的应用。
2023-05-16 20:32:222

数列并项怎样求和?

并项求和常采用先试探后求和的方法。例:1-2+3-4+5-6+……+(2n-1)-2n方法一:(并项)求出奇数项和偶数项的和,再相减。方法二:(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]方法三:构造新的数列,可借用等差数列与等比数列的复合。an=n(-1)^(n+1)扩展资料:1、公式求和法:①等差数列、等比数列求和公式②重要公式:1+2+…+n= 12n(n+1);12+22+…+n2= 16n(n+1)(2n+1);13+23+…+n3=(1+2+…+n)2= 14n2(n+1)2。2、裂项求和法:将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.用裂项法求和,需要掌握一些常见的裂项,如:an= 1(An+B)(An+C)= 1C-B( 1An+B- 1An+C); 1n(n+1)= 1n- 1n+1。3、错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错位相减法.an=bncn,其中{bn}是等差数列,{cn}是等比数列。4、倒序相加法:Sn表示从第一项依次到第n项的和,然后又将Sn表示成第n项依次反序到第一项的和,将所得两式相加,由此得到Sn的一种求和方法。 参考资料来源:百度百科-数列求和
2023-05-16 20:32:291

数列求和的方法有哪些?

http://jingyan.baidu.com/article/a17d52853509808098c8f2d2.html,一定够你学的,望采纳
2023-05-16 20:32:373

数列的求和

等差数列 首项为a1,公差为d,项数为n通项公式:an=a1+(n-1)d前n项和公式:sn=(a1+an)n/2=a1n+n(n+1)d/2等比数列 首项为a1,公比为q,项数为n通项公式:an=a1q^(n-1)前n项和公式:sn=(a1-anq)/(1-q)=a1(1-q^n)/(1-q)=a1(q^n-1)/(q-1)
2023-05-16 20:32:431

数列求和的公式是什么?

答案:假设;s(n)=1+1/2+1/3+1/4+..1/n,当 n很大时 sqrt(n+1),= sqrt(n*(1+1/n)),= sqrt(n)*sqrt(1+1/2n),≈ sqrt(n)*(1+ 1/(2n)),= sqrt(n)+ 1/(2*sqrt(n)),设 s(n)=sqrt(n),因为:1/(n+1)<1/(2*sqrt(n)),所以:s(n+1)=s(n)+1/(n+1)< s(n)+1/(2*sqrt(n)),即求得s(n)的上限。以下是数列求和的相关介绍:数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。该公式又叫作分部求和公式,是离散型的分部积分法,最早由数学家阿贝尔提出。这个方法也适合解决等差等比数列相乘的数列求和,但比起上面的错位相减法,该方法方便快捷并且证明十分容易,考试中先写出证明过程再直接代公式即可。以上资料参考百度百科——数列求和
2023-05-16 20:32:501

求数列求和的方法,越多越好!

公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。。1、公式法:等差数列求和公式:Sn=n(a1+an)/2=na1+n(n-1)d/2等比数列求和公式:Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)其他1+2+3+.......+n=n(n+1)/21+2^2+3^2+4^2+........+n^2=n(n+1)(2n+1)/61+2^3+3^3+4^3+........+n^3=[n(n+1)/2]^22、错位相减法适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式和等差等比数列相乘{an}、{bn}分别是等差数列和等比数列.Sn=a1b1+a2b2+a3b3+...+anbn3、倒序相加法这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)Sn=a1+a2+a3+......+anSn=an+a(n-1)+a(n-2)......+a1上下相加得到2Sn即Sn=(a1+an)n/24、裂项法适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。常用公式:(1)1/n(n+1)=1/n-1/(n+1),1/(n-1)-1/n>1/n2>1/n-1/n+1(n≥2)(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)](3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)](4)1/(√a+√b)=[1/(a-b)](√a-√b)(5)n·n!=(n+1)!-n!(6)1/(√n+√(n+a))=1/a(√(n+a)-√n)5、数学归纳法一般地,证明一个与正整数n有关的命题,有如下步骤:(1)证明当n取第一个值时命题成立;(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
2023-05-16 20:33:021

数列求和的基本方法和技巧

1 数列求和的基本方法和技巧   一.公式法   如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.   二.倒序相加法   如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.   三.错位相减法   如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.   四.裂项相消法   把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.   五.分组求和法   若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.   六.并项求和法   一个数列的前n项和中,若可两两结合求解,则称之为并项求和法.形如 类型,可采用两项合并求解.   数列知识整合   1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。   2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。   进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。   3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。 1 数列求和例题讲解
2023-05-16 20:33:201

数列求和的公式法

前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。在等差数列中,若Sn为该数列的前n项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。扩展资料:高考对数列求和问题的考查主要有两种形式:一种是直接利用等差、等比数列的前n项和公式考查等差、等比数列的前n项和的问题;另一种是利用错位相减法、倒序相加法、裂项法、分组求和法考查非等差、等比数列的求和问题。如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。
2023-05-16 20:33:271

数列求和公式七个方法

数列求和的七种方法:                                    1、公式法:如数列是等差数列或等比数列,可以使用对应的求和公式来求解。2、分组求和法:所有子数列的和相加即可得到整个数列的和。3、递推公式法:使用递推公式求解数列的和。4、几何意义法:通过计算图形面积或体积来求解数列的和。5、差分法:对数列做差分操作,得到一个新的数列,然后对新数列求和。6、换元法。7、特殊技巧法。                                    
2023-05-16 20:33:351

数列和的公式是什么

首先要看是什么数列。如果是高中学的等差数列和等比数列,这两种数列有通项公式,前n项和公式。如果是别的数列,没有可以背的公式,只有求和方法。等差数列和等比数列公式见图。
2023-05-16 20:33:572

我想问一下数列求和的基本方法和技巧

1、公式法2、列项相消法3、错位相减法4、分解法5、分组法6、倒序相加法7、特殊数列求和经验步骤:1公式法。含义:使用已知求和公式求和的方法2列项相消法。含义:把数列的通项拆分为两项之差,使之在求和时产生前后相互抵消的项的求和方法。3错位相减法。适用于{等差*等比}这类数列。4分解法。含义:分解为基本数列求和5分组法。含义:分为若干组整体求和。6倒序相加法。含义:把求和式倒序后两式相加7特殊数列求和更多关于数列求和的基本方法和技巧,进入:https://m.abcgonglue.com/ask/60e7bf1615829949.html?zd查看更多内容
2023-05-16 20:34:141

数列n^2求和

设S=1^2+2^2+....+n^2(n+1)^3-n^3=3n^2+3n+1n^3-(n-1)^3=3(n-1)^2+3(n-1)+1........2^3-1^3=3*1^2+3*1+1把上面n个式子相加得:(n+1)^3-1=3*[1^2+2^2+...+n^2]+3*[1+2+....+n]+n所以S=(1/3)*[(n+1)^3-1-n-(1/2)*n(n+1)]=(1/6)n(n+1)(2n+1)
2023-05-16 20:34:232

数列求和公式七个方法

  数列求和公式七个方法:公式法、列项相消法、错位相减法、分解法、分组法、倒序相加法、特殊数列求和。推导等差数列的前n项和公式的方法是倒序相加法。而且这个方法可以类推到一般情况,只要前n项具有与两端等距离项的和相等的数列这种特征都可用这种方法求和。
2023-05-16 20:34:481

数列求和有哪些公式?

解答:Sn=1-1/2+1/3-1/4+1/5-1/6+1/7-1/8+.+1/(2n-1)-1/2n没有求和公式,但是如果 n 趋于 +∞ 时,lim(n->∞) sn = ln2如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和。扩展资料:求Sn实质上是求{an}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。
2023-05-16 20:34:541

数列求和问题

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
2023-05-16 20:35:143

调和数列怎么求和?

定义1:自然数的倒数组成的数列,称为调和数列.  定义2:若数列{an}满足1/a(n+1)-1/an=d(n∈N*,d为常数),则称数列{an}调和数列  人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时):  1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......称作欧拉初始,专为调和级数所用,至今不知是有理数还是无理数)  人们倾向于认为它没有一个简洁的求和公式.  但是,不是因为它是发散的,才没有求和公式.相反的,例如等差数列是发散的,公比的绝对值大于1的等比数列也是发散的,它们都有求和公式.  当n→∞时  1+1/2+1/3+1/4+…+1/n  这个级数是发散的。简单的说,结果为∞  ------------------  用高中知识也是可以证明的,如下:  1/2≥1/2  1/3+1/4>1/2  1/5+1/6+1/7+1/8>1/2  ……  1/[2^(k-1)+1]+1/[2^(k-1)+2]+…+1/2^k>[2^(k-1)](1/2^k)=1/2  对于任意一个正数a,把a分成有限个1/2  必然能够找到k,使得  1+1/2+1/3+1/4+…+1/2^k>a  所以n→∞时,1+1/2+1/3+1/4+…+1/n→∞
2023-05-16 20:35:331

数列等差数列怎么求和?

等差数列求和公式有:①等差数列公式an=a1+(n-1)d、②前n项和公式为:Sn=na1+n(n-1)d/2、③若公差d=1时:Sn=(a1+an)n/2、④若m+n=p+q则:存在am+an=ap+aq、⑤若m+n=2p则:am+an=2ap,以上n均为正整数。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2 。等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
2023-05-16 20:35:401

数列求和有哪些方法?

关于数列求和有下列几种常用方法:叠加法、叠乘法、错位相减法、倒序相加法!希望可以帮到你!
2023-05-16 20:35:571

n项和求和公式

n项和求和公式Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。n项求和公式:n=n+1*h。n项是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差。数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
2023-05-16 20:36:042

数列求和

高中生:利用放缩法。主要是考虑到1/2+1/2^2+...+1/2^n+...=1(利用数列所有项求和公式s=a1/(1-q))。由此可以得到1/2+1/2^2+...+1/2^n<1。现在关键是证明:1/(2!)+1/(3!)+......+1/[(n+1)!]<1/2+1/2^2+...+1/2^n<1。很明显:1/(2!)=1/2;1/(3!)<1/2^2;1/(4!)<1/2^3...只要能证明当n>2时,所有的1/[(n+1)!]<1/2^n都成立,那么问题就OK了。(1/[(n+1)!]=1/[(n+1)*n*(n-1)*...*2]<1/[2*2*2*...*2]),所要证明结论1/(2!)+1/(3!)+......+1/[(n+1)!]<1就成立了!大学生:1+1/1!+1/2!+1/3!+...=e<31/2!+1/3!+...=e-2<11/2!+1/3!+...+1/[(n+1)!]<1/2!+1/3!+...1/[(n+1)!]+...=e-2<1(主要是利用e的展开级数!由泰勒定理可证!)参考资料:计算近似值e=limx→∞(1+1/x)^x。解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项:e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n!当x=1时,e≈1+1+1/2!+1/3!+……+1/n!取n=10,即可算出近似值e≈2.7182818。
2023-05-16 20:36:311

数列求和的公式是什么?

答案:假设;s(n)=1+1/2+1/3+1/4+..1/n,当 n很大时 sqrt(n+1),= sqrt(n*(1+1/n)),= sqrt(n)*sqrt(1+1/2n),≈ sqrt(n)*(1+ 1/(2n)),= sqrt(n)+ 1/(2*sqrt(n)),设 s(n)=sqrt(n),因为:1/(n+1)<1/(2*sqrt(n)),所以:s(n+1)=s(n)+1/(n+1)< s(n)+1/(2*sqrt(n)),即求得s(n)的上限。以下是数列求和的相关介绍:数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。该公式又叫作分部求和公式,是离散型的分部积分法,最早由数学家阿贝尔提出。这个方法也适合解决等差等比数列相乘的数列求和,但比起上面的错位相减法,该方法方便快捷并且证明十分容易,考试中先写出证明过程再直接代公式即可。以上资料参考百度百科——数列求和
2023-05-16 20:36:491

数列的求和公式

数列求和公式有七个方法:公式法、列项相消法、错位相减法、分解法、分组法、倒序相加法、乘公比错项相减等。具体介绍如下:1、公式法。公式法是解一元二次方程的一种方法,也指套用公式计算某事物。另外还有配方法、十字相乘法、直接开平方法与分解因式法等解方程的方法。公式表达了用配方法解一般的一元二次方程的结果。根据因式分解与整式乘法的关系,把各项系数直接带入求根公式,可避免配方过程而直接得出根,这种解一元二次方程的方法叫做公式法。2、裂项相消法。裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。 3、 错位相减法。  适用于通项公式为等差的一次函数乘以等比的数列形式{an}、{bn}分别是等差数列和等比数列。 4、分解法。数学中用以求解高次一元方程的一种方法。把方程的一侧的数(包括未知数),通过移动使其值化成0,把方程的另一侧各项化成若干因式的乘积,然后分别令各因式等于0而求出其解的方法叫因式分解法。5、分组求和法。  分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。   6、倒序相加法。等差数列:首项为a1,末项为an,公差为d,那么等差数列求和公式为Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。  7、乘公比错项相减(等差×等比)。这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。类似于错位相减法。
2023-05-16 20:37:021

数列求和公式

1、等差数列求和公式:(首项+末项)×项数/2举例:1+2+3+4+5+6+7+8+9=(1+9)×9/2=452、等比数列求和公式:3、差比数列求和公式:a:等差数列首项d:等差数列公差e:等比数列首项q:等比数列公比数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。
2023-05-16 20:37:161

数列求和公式

数列求和公式是 Sn=(a1+an)n/2(等差), Sn=a1(1−qn)1−q(等比)。数列求和对按照一定规律排列的数进行求和。求Sn实质上是求Sn的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。数列:数列(sequence of number)是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。著名的数列有斐波那契数列,三角函数,卡特兰数,杨辉三角等。数列中的项必须是数,它可以是实数,也可以是复数。用符号{an}表示数列,只不过是“借用”集合的符号,它们之间有本质上的区别:1、集合中的元素是互异的,而数列中的项可以是相同的。2、集合中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。
2023-05-16 20:37:411

数列求和怎么求?

并项求和常采用先试探后求和的方法。例:1-2+3-4+5-6+……+(2n-1)-2n方法一:(并项)求出奇数项和偶数项的和,再相减。方法二:(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]方法三:构造新的数列,可借用等差数列与等比数列的复合。an=n(-1)^(n+1)扩展资料:1、公式求和法:①等差数列、等比数列求和公式②重要公式:1+2+…+n= 12n(n+1);12+22+…+n2= 16n(n+1)(2n+1);13+23+…+n3=(1+2+…+n)2= 14n2(n+1)2。2、裂项求和法:将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.用裂项法求和,需要掌握一些常见的裂项,如:an= 1(An+B)(An+C)= 1C-B( 1An+B- 1An+C); 1n(n+1)= 1n- 1n+1。3、错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错位相减法.an=bncn,其中{bn}是等差数列,{cn}是等比数列。4、倒序相加法:Sn表示从第一项依次到第n项的和,然后又将Sn表示成第n项依次反序到第一项的和,将所得两式相加,由此得到Sn的一种求和方法。 参考资料来源:百度百科-数列求和
2023-05-16 20:38:111

数列求和怎么做?

并项求和常采用先试探后求和的方法。例:1-2+3-4+5-6+……+(2n-1)-2n方法一:(并项)求出奇数项和偶数项的和,再相减。方法二:(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]方法三:构造新的数列,可借用等差数列与等比数列的复合。an=n(-1)^(n+1)扩展资料:1、公式求和法:①等差数列、等比数列求和公式②重要公式:1+2+…+n=  1 2 n(n+1);1 2 +2 2 +…+n 2 =  1 6 n(n+1)(2n+1);1 3 +2 3 +…+n 3 =(1+2+…+n) 2 =  1 4 n 2 (n+1) 2 。2、裂项求和法:将数列的通项分成两个式子的代数和,即a n =f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.用裂项法求和,需要掌握一些常见的裂项,如:a n =  1 ( A n +B)( A n +C) =  1 C-B (  1 A n +B -  1 An+C );  1 n(n+1) =  1 n -  1 n+1 。3、错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错位相减法.a n =b n c n ,其中{b n }是等差数列,{c n }是等比数列。4、倒序相加法:S n 表示从第一项依次到第n项的和,然后又将S n 表示成第n项依次反序到第一项的和,将所得两式相加,由此得到S n 的一种求和方法。                           参考资料来源:百度百科-数列求和
2023-05-16 20:38:181

数列求和的七种方法

数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。1、倒序相加法 倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。 2、分组求和法 分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。 3、错位相减法 错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。 4、裂项相消法 裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。 5、乘公比错项相减(等差×等比) 这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。 6、公式法 对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 7、迭加法 主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。
2023-05-16 20:38:331

数列求和有哪五种方法?

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式: 2、 等比数列求和公式: 自然数方幂和公式: 3、 4、 5、 [例] 求和1+x2+x4+x6+…x2n+4(x≠0) ∴该数列是首项为1,公比为x2的等比数列而且有n+3项 当x2=1 即x=±1时 和为n+3 评注: (1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x是否为0进行讨论. (2)要弄清数列共有多少项,末项不一定是第n项. 对应高考考题:设数列1,(1+2),…,(1+2+ ),……的前顶和为 ,则 的值. 二、错位相减法求和 错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容.需要我们的学生认真掌握好这种方法.这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an�� bn}的前n项和,其中{ an }、{ bn }分别是等差数列和等比数列.求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比 ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法. [例] 求和:( )………………………① 由题可知,{ }的通项是等差数列{2n-1}的通项与等比数列{ }的通项之积 设 ……………………….② (设制错位) ①-②得 (错位相减) 再利用等比数列的求和公式得: ∴ 注意、1 要考虑 当公比x为值1时为特殊情况 2 错位相减时要注意末项 此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘. 对应高考考题:设正项等比数列 的首项 ,前n项和为 ,且 .(Ⅰ)求 的通项; (Ⅱ)求 的前n项和 . 三、反序相加法求和 这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个 . [例] 求证: 证明:设 …………………………..① 把①式右边倒转过来得 (反序) 又由 可得 …………..……..② ①+②得 (反序相加) ∴ 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 若数列 的通项公式为 ,其中 中一个是等差数列,另一个是等比数列,求和时一般用分组结合法. [例]:求数列 的前n项和; 分析:数列的通项公式为 ,而数列 分别是等差数列、等比数列,求和时一般用分组结合法; [解] :因为 ,所以 (分组) 前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此 五、裂项法求和 这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如: (1) (2) (3) (4) (5) [例] 求数列 的前n项和. 设 (裂项) 则 (裂项求和) = = 小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项. 注意:余下的项具有如下的特点 1余下的项前后的位置前后是对称的. 2余下的项前后的正负性是相反的. [练习] 在数列{an}中,,又 ,求数列{bn}的前n项的和.
2023-05-16 20:38:401

数列求和的几种方法

1. 公式法:等差数列求和公式: Sn=n(a1+an)/2=na1+n(n-1)d/2 等比数列求和公式: Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q) (q≠1)2.错位相减法适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式 { an }、{ bn }分别是等差数列和等比数列. Sn=a1b1+a2b2+a3b3+...+anbn 例如: an=a1+(n-1)d bn=a1·q^(n-1) Cn=anbn Tn=a1b1+a2b2+a3b3+a4b4....+anbn qTn= a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1) Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1) Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn) =a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q) Tn=上述式子/(1-q)3.倒序相加法这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an) Sn =a1+ a2+ a3+...... +an Sn =an+ a(n-1)+a(n-3)...... +a1 上下相加 得到2Sn 即 Sn= (a1+an)n/24.分组法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 例如:an=2^n+n-15.裂项法适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。 常用公式: (1)1/n(n+1)=1/n-1/(n+1) (2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)] (3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)] (4)1/(√a+√b)=[1/(a-b)](√a-√b) (5) n·n!=(n+1)!-n! [例] 求数列an=1/n(n+1) 的前n项和. 解:an=1/n(n+1)=1/n-1/(n+1) (裂项) 则Sn =1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)= 1-1/(n+1)= n/(n+1) 小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。 注意: 余下的项具有如下的特点 1余下的项前后的位置前后是对称的。 2余下的项前后的正负性是相反的。6.数学归纳法一般地,证明一个与正整数n有关的命题,有如下步骤: (1)证明当n取第一个值时命题成立; (2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。 例:求证:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5 证明: 当n=1时,有: 1×2×3×4 + 2×3×4×5 = 2×3×4×5×(1/5 +1) = 2×3×4×5×6/5 假设命题在n=k时成立,于是: 1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5 则当n=k+1时有: 1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4) = 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4) = [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4) = (k+1)(k+2)(k+3)(k+4)*(k/5 +1) = [(k+1)(k+2)(k+3)(k+4)(k+5)]/5 即n=k+1时原等式仍然成立,归纳得证7.通项化归 先将通项公式进行化简,再进行求和。 如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。8.并项求和:例:1-2+3-4+5-6+……+(2n-1)-2n (并项) 求出奇数项和偶数项的和,再相减。
2023-05-16 20:38:481

数列求和公式

数列求和公式:1、倒序相加法  等差数列:首项为a1,末项为an,公差为d,那么等差数列求和公式为Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。  2、分组求和法  分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。  3、错位相减法  适用于通项公式为等差的一次函数乘以等比的数列形式{an}、{bn}分别是等差数列和等比数列。  4、裂项相消法  裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。  5、乘公比错项相减(等差×等比)  这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。类似于错位相减法。
2023-05-16 20:38:571

求数列求和的几种方法!最好有具体例子

一般数列的求和方法 (1)直接求和法,如等差数列和等比数列均可直接求和. (2)部分求和法将一个数列分成两个可直接求和的数列,而后可求出数列的前n项的和. (3)并项求和法将数列某些项先合并,合并后可形成直接求和的数列. (4)裂项求和法将数列各项分裂成两项,然后求和. (5)错位相减求和法.用Sn乘以q,若数列{an}为等差数列,{bn}为等比数列,则求数列{anbn}的前n项的和均可以采用此方法. (6)拟等差,写成一堆式子再相加.(叠加) (7)累乘法 例子就看下面的链接吧
2023-05-16 20:39:201

归纳数列求和的方法

先说两种简单的数列——等差数列,等比数列——公式法:等差数列Sn=(a1+an)*n/2,等比数列Sn=a1(1-q^n)/(1-q);一般数列:(1)an=1/n*(n+1)型——裂项相消,因为an=1/n*(n+1)=1/n-1/n+1,所以Sn=a1+a2+...+an=1/1*2+1/2*3+...+1/n*(n+1)=1-1/n+1=n/n+1;(2)an=n*q^n型(等差×等比型)——错位相减,因为Sn=1*q^1+2*q^2+3*q^3+......+n*q^n,所以qSn=0+1*q^2+2*q^3+...+(n-1)q^n+n*q^(n+1),作差得(1-q)Sn=1*q^1+1*q^2+1*q^3+...+1*q^n-n*q^(n+1),这个式子的前n项可求和(用等比数列求和公式),这样就可以求Sn了。(3)还有些不常见数列会用到倒序相加以及倒序相乘的方法,还有更难的就是会用到数学归纳法(采用归纳原理),这些题目不常见
2023-05-16 20:39:272

数列的求和公式

1、前n项和公式为:Sn=n*a1+ n(n-1)d/2或Sn=n(a1+an)/2。在等差数列中,若Sn为该数列的前n项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。2、如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫作等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9…...(2n-1)。
2023-05-16 20:39:351

数列求和方法

数列求和方法:数列求和公式有七个方法:公式法、列项相消法、错位相减法、分解法、分组法、倒序相加法、乘公比错项相减等。具体介绍如下:1、公式法。公式法是解一元二次方程的一种方法,也指套用公式计算某事物。另外还有配方法、十字相乘法、直接开平方法与分解因式法等解方程的方法。公式表达了用配方法解一般的一元二次方程的结果。根据因式分解与整式乘法的关系,把各项系数直接带入求根公式,可避免配方过程而直接得出根,这种解一元二次方程的方法叫做公式法。2、裂项相消法。裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。 3、 错位相减法。  适用于通项公式为等差的一次函数乘以等比的数列形式{an}、{bn}分别是等差数列和等比数列。 4、分解法。数学中用以求解高次一元方程的一种方法。把方程的一侧的数(包括未知数),通过移动使其值化成0,把方程的另一侧各项化成若干因式的乘积,然后分别令各因式等于0而求出其解的方法叫因式分解法。5、分组求和法。  分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。  6、倒序相加法。等差数列:首项为a1,末项为an,公差为d,那么等差数列求和公式为Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。  7、乘公比错项相减(等差×等比)。这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。类似于错位相减法。
2023-05-16 20:39:561

数列求和的七种方法 分别是什么

数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。 数列求和的七种方法 1、数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。 2、倒序相加法。倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。 3、分组求和法。分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。 4、错位相减法。错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。 5、裂项相消法。裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。 6、乘公比错项相减(等差×等比)。这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。 7、公式法。对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 数列求和怎么求 公式型求和顾名思义有现成的公式可用,这样的数列是等差数列和等比数列,因为它们有直接的公式可以使用,所以也是最简单的。 分组求和顾名思义是分开进行的,这种数列的通项公式一般是an=bn+cn。 其中bn是等差数列,首相为b1,公差为d,cn是等比数列,首相c1,公比q。 设an的前n项和为sn,首先列出前 n 项和的表达式形式,红色线条内分别是等差数列的前 n 项和和等比数列前 n 项和,直接用公式即可求解。
2023-05-16 20:40:181

数列求和的常用方法

(1)公式求和法:①等差数列、等比数列求和公式②重要公式:1+2+…+n= 1 2 n(n+1);1 2 +2 2 +…+n 2 = 1 6 n(n+1)(2n+1);1 3 +2 3 +…+n 3 =(1+2+…+n) 2 = 1 4 n 2 (n+1) 2 ;(2)裂项求和法:将数列的通项分成两个式子的代数和,即a n =f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.用裂项法求和,需要掌握一些常见的裂项,如:a n = 1 ( A n +B)( A n +C) = 1 C-B ( 1 A n +B - 1 An+C ); 1 n(n+1) = 1 n - 1 n+1 ;(3)错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错位相减法.a n =b n c n ,其中{b n }是等差数列,{c n }是等比数列(4)倒序相加法:S n 表示从第一项依次到第n项的和,然后又将S n 表示成第n项依次反序到第一项的和,将所得两式相加,由此得到S n 的一种求和方法.(5)通项分解法(分组求和法):有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.a n =b n ±c n (6)并项求和法:把数列的某些项放在一起先求和,然后再求S n .如:100 2 -99 2 +98 2 -97 2 +…+2 2 -1 2 的和.(7)利用通项求和法:先求出数列的通项,然后进行求和
2023-05-16 20:40:251

数列求和有哪五种方法?

2023-05-16 20:40:331

数列怎么求和?

并项求和常采用先试探后求和的方法。例:1-2+3-4+5-6+……+(2n-1)-2n方法一:(并项)求出奇数项和偶数项的和,再相减。方法二:(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]方法三:构造新的数列,可借用等差数列与等比数列的复合。an=n(-1)^(n+1)扩展资料:1、公式求和法:①等差数列、等比数列求和公式②重要公式:1+2+…+n=  1 2 n(n+1);1 2 +2 2 +…+n 2 =  1 6 n(n+1)(2n+1);1 3 +2 3 +…+n 3 =(1+2+…+n) 2 =  1 4 n 2 (n+1) 2 。2、裂项求和法:将数列的通项分成两个式子的代数和,即a n =f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.用裂项法求和,需要掌握一些常见的裂项,如:a n =  1 ( A n +B)( A n +C) =  1 C-B (  1 A n +B -  1 An+C );  1 n(n+1) =  1 n -  1 n+1 。3、错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错位相减法.a n =b n c n ,其中{b n }是等差数列,{c n }是等比数列。4、倒序相加法:S n 表示从第一项依次到第n项的和,然后又将S n 表示成第n项依次反序到第一项的和,将所得两式相加,由此得到S n 的一种求和方法。                           参考资料来源:百度百科-数列求和
2023-05-16 20:40:403