- 小菜G的建站之路
-
一、理解二次函数的内涵及本质 .
二次函数 y=ax2 + bx + c ( a ≠ 0 , a 、 b 、 c 是常数)中含有两个变量 x 、 y ,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形 .
二、熟悉几个特殊型二次函数的图象及性质 .
1 、通过描点,观察 y=ax2 、 y=ax2 + k 、 y=a ( x + h ) 2 图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式 .
2 、理解图象的平移口诀“加上减下,加左减右” .
y=ax2 → y=a ( x + h ) 2 + k “加上减下”是针对 k 而言的,“加左减右”是针对 h 而言的 .
总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移 .
3 、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征;
4 、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数 a 、 b 、 c 、△以及由系数组成的代数式的符号等问题 .
三、要充分利用抛物线“顶点”的作用 .
1 、要能准确灵活地求出“顶点” . 形如 y=a ( x + h ) 2 + K →顶点(- h,k ),对于其它形式的二次函数,我们可化为顶点式而求出顶点 .
2 、理解顶点、对称轴、函数最值三者的关系 . 若顶点为(- h , k ),则对称轴为 x= - h , y 最大(小) =k ;反之,若对称轴为 x=m , y 最值 =n ,则顶点为( m , n );理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果 .
3 、利用顶点画草图 . 在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象 .
四、理解掌握抛物线与坐标轴交点的求法 .
一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标 . 如果方程无实数根,则说明抛物线与 x 轴无交点 .
从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与 x 轴的交点个数 .
五、灵活应用待定系数法求二次函数的解析式 .
用待定系数法求二次函数的解析式是我们求解析式时最常规有效的方法,求解析式时往往可选择多种方法,如能综合利用二次函数的图象与性质,灵活应用数形结合的思想,不仅可以简化计算,而且对进一步理解二次函数的本质及数与形的关系大有裨益 .
二次函数y=ax2
学习要求:
1.知道二次函数的意义.
2.会用描点法画出函数y=ax2的图象,知道抛物线的有关概念.
重点难点解析
1.本节重点是二次函数的概念和二次函数y=ax2的图象与性质;难点是根据图象概括二次函数y=ax2的性质.
2.形如=ax2+bx+c(其中a、b、c是常数,a≠0)的函数都是二次函数.解析式中只能含有两
个变量x、y,且x的二次项的系数不能为0,自变量x的取值范围通常是全体实数,但在实际问题中应使实际量有意义。如圆面积S与圆半径R的关系式S=πR2中,半径R只能取非负数。
3.抛物线y=ax2的形状是由a决定的。a的符号决定抛物线的开口方向,当a>0时,开口向上,抛物线在y轴的上方(顶点在x轴上),并向上无限延伸;当a<0时,开口向下,抛物线在x轴下方(顶点在x轴上),并向下无限延伸。|a|越大,开口越小;|a|越小,开口越大.
4.画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。
本节命题主要是考查二次函数的概念,二次函数y=ax2的图象与性质的应用。
核心知识
规则1
二次函数的概念:
一般地,如果是常数,那么,y叫做x的二次函数.
规则2
抛物线的有关概念:
图13-14
如图13-14,函数y=x2的图象是一条关于y轴对称的曲线,这条曲线叫抛物线.实际上,二次函数的图象都是抛物线.抛物线y=x2是开口向上的,y轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点.
规则3
抛物线y=ax2的性质:
一般地,抛物线y=ax2的对称轴是y轴,顶点是原点,当a>0时,抛物线y=ax2的开口向上,当a<0时,抛物线y=ax2的开口向下.
规则4
1.二次函数的概念
(1)定义:一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的的二次函数. (2)二次函数y=ax2+bx+c的结构特征是:等号左边是函数y,右边是自变量x的二次式,x的最高次数是2.其中一次项系数b和常数项c可以是任意实数,而二次项系数a必须是非零实数,即a≠0.
2.二次函数y=ax2的图像
图13-1
用描点法画出二次函数y=x2的图像,如图13-1,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.
因为抛物线y=x2关于y轴对称,所以y轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线y=x2的顶点是图象的最低点.因为抛物线y=x2有最低点.所以函数y=x2有最小值,它的最小值就是最低点的纵坐标.
3.二次函数y=ax2的性质
函数
图像
开口方向
顶点坐标
对称轴
函数变化
最大(小)值
y=ax2
a>0
向上
(0,0)
Y轴
x>0时,y随x增大而增大;
x<0时,y随x增大而减小.
当x=0时,y最小=0.
y=ax2
a<0
向下
(0,0)
Y轴
x>0时,y随x增大而减小;
x<0时,y随x增大而增大.
当x=0时,y最大=0.
4.二次函数y=ax2的图像的画法
用描点法画二次函数y=ax2的图像时,应在顶点的左、右两侧对称地选取自变量x的值,然后计算出对应的y值,这样的对应值选取越密集,描出的图像越准确.
二次函数y=ax2+bx+c
学习要求:
1.会用描点法画出二次函数的图象.
2.能利用图象或通过配方确定抛物线的开口方向及对称轴、顶点、的位置.
*3.会由已知图象上三个点的坐标求出二次函数的解析式.
重点难点
1.本节重点是二次函数y=ax2+bx+c的图象和性质的理解及灵活运用,难点是二次函数y=ax2+bx+c的性质和通过配方把解析式化成y=a(x-h)2+k的形式。
2.学习本小节需要仔细观察归纳图象的特点以及不同图象之间的关系。把不同的图象联系起来,找出其共性。
一般地几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小(即形状)完全相同,只是位置不同.
任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过适当地平移得到,具体平移方法如下图所示:
注意:上述平移的规律是:“h值正、负,右、左移;k值正、负,上、下移”实际上有关抛物线的平移问题,不能死记硬背平移规律,只要先将其解析式化为顶点式,然后根据它们的顶点的位置关系,确定平移方向和平移的距离非常简便.
图13-11
例如,要研究抛物线L1∶y=x2-2x+3与抛物线L2∶y=x2的位置关系,可将y=x2-2x+3通过配方变成顶点式y=(x-1)2+2,求出其顶点M1(1,2),因为L2的顶点为M2(0,0),根据它们的顶点的位置,容易看出:由L2向右平移1个单位,再向上平移2个单位,即得L1;反之,由L1向左平移1个单位,再向下平移2个单位,即得L2.
二次函数y=ax2+bx+c的图象与y=ax2的图象形状完全一样,它们的性质也有相似之处。当a>0时,两条抛物线的开口都向上,并向上无限延伸,抛物线有最低点,y有最小值,当a<0时,开口都向下,并向下无限延伸,抛物线有最高点,y有最大值.
3.画抛物线时一定要先确定开口方向和对称轴、顶点位置,再利用函数对称性列表,这样描点连线后得到的才是完整的,比较准确的图象。否则画出的图象,往往只是其中一部分。例如画y=- (x+1)2-1的图象。
列表:
x
-3
-2
-1
0
1
2
3
y
-3
-1.5
-1
-1.5
-3
-5.5
-9
描点,连线成如图13-11所示不能反映其全貌的图象。
正解:由解析式可知,图象开口向下,对称轴是x=-1,顶点坐标是(-1,-1)
列表:
x
-4
-3
-2
-1
0
1
2
y
-5.5
-3
-1.5
-1
-1.5
-1.5
-5.5
描点连线:如图13-12
图13-12
4.用配方法将二次函数y=ax2+bx+c化成y=a(x-h)2+k的形式,首先要提出二次项系数a。常犯的错误只提第一项,后面漏提。如y=- x2+6x-21 写成y=- (x2+6x-21)或y=- (x2-12x-42)把符号弄错,主要原因是没有掌握添括号的规则。
本节命题主要考查二次函数y=ax2+bx+c的图象和性质及其在实际生活中的运用。既有填空题、选择题,又有解答题,与方程、几何、一次函数的综合题常作为中考压轴题。
核心知识
规则1
抛物线 y=a(x-h)2+k 的性质:
一般地,抛物线 y=a(x-h)2+k 与 y=ax2 形状相同,位置不同.抛物线 y=a(x-h)2+k 有如下特点:
(l) a>0时,开口向上;a<0时,开口向下;
(2) 对称轴是直线x=h;
(3) 顶点坐标是(h,k).
规则2
二次函数 y=ax2+bx+c 的性质:
y=ax2+bx+c ( a,b,c 是常数,a≠0)是二次函数,图象是抛物线.利用配方,可以把二次函数表示成 y=a(x-h)2+k 的形式,由此可以确定这条抛物线的对称轴是直线 ,顶点坐标是 ,当a>0时,开口向上;a<0时,开口向下.
规则3
1.二次函数解析式的几种形式
(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).
(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).
(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点.
(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和
x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).
2.二次函数解析式的确定
确定二次函数解析式,一般仍用待定系数法.由于二次函数解析式有三个待定系数a、b、c(或a、h、k或a、x1、x2),因而确定二次函数解析式需要已知三个独立的条件.当已知抛物线上任意三个点的坐标时,选用一般式比较方便;当已知抛物线的顶点坐标时,选用顶点式比较方便;当已知抛物线与x轴两个点的坐标(或横坐标x1,x2)时,选用两根式较为方便.
注意:当选用顶点式或两根式求二次函数解析式时,最后一般都要化一般式.
3.二次函数y=ax2+bx+c的图像
二次函数y=ax2+bx+c的图像是对称轴平行于(包括重合)y轴的抛物线.
4.二次函数的性质
根据二次函数y=ax2+bx+c的图像可归纳其性质如下表:
函数
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)
图
像
a>0
a<0
(1)抛物线开口向上,并向上无限延伸.
(2)对称轴是x=- ,顶点坐标是(- , ).
(3)当x<- 时,y随x的增大而减小;当x>- 时,y随x的增大而增大.
(4)抛物线有最低点,当x=- 时,y有最小值,y最小值= .
(1) )抛物线开口向下,并向下无限延伸.
(2)对称轴是x=- ,顶点坐标是(- , ).
(3)当x<- 时,y随x的增大而增大;当x>- 时,y随x的增大而减小.
(4)抛物线有最高点,当x=- 时,y有最大值,y最大值= .
5.求抛物线的顶点、对称轴、最值的方法
①配方法:将解析式化为y=a(x-h)2+k的形式,顶点坐标(h,k),对称轴为直线x=h,若a>0,y有最小值,当x=h时,y最小值=k,若a<0,y有最大值,当x=h时,y最大值=k.
②公式法:直接利用顶点坐标公式(- , ),求其顶点;对称轴是直线x=- ,若a>0,y有最小值,当x=- 时,y最小值= ,若a<0,y有最大值,当x=- 时,y最大值= .
6.二次函数y=ax2+bx+c的图像的画法
因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是:
(1)先找出顶点坐标,画出对称轴;
(2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等);
(3)把上述五个点按从左到右的顺序用平滑曲线连结起来.
7.二次函数y=ax2+bx+c的图像的位置与a、b、c及Δ符号有密切的关系(见下表):
项
目
字
母
字母的符号
图像的位置
a
a>0
a<0
开口向上 开口向下
b
b=0 ab>0 ab<0
对称轴为y轴 对称轴在y轴左侧 对称轴在y轴右侧
c
c=0 c>0 c<0
经过原点 与y轴正半轴相交 与y轴负半轴相交
8.二次函数与一元二次方程的关系
二次函数y=ax2+bx+c的图像(抛物线)与x轴的两个交点的横坐标x1、x2,是对应的一元二次方程ax2+bx+c=0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:
Δ>0 抛物线与x轴有2个交点;
Δ=0 抛物线与x轴有1个交点;
Δ<0 物线与x轴有0个交点(没有交点).
- tt白
-
y=ax^2+bx+c是二次函数
顶点的坐标是(-b/2a,(4ac-b^2)/4a)
- 陶小凡
-
y=ax^2+bx+c
则顶点是[-b/(2a),(4ac-b^2)/(4a)
- gitcloud
-
如函数y=ax^2+bx+c,顶点为(-b/2a,(4ac-b^2)/4a)
什么是顶点坐标?
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。当h>0时,y=a(x-h)² 的图象可由抛物线y=ax2;向右平行移动h个单位得到;当h<0时,则向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;当h>0,k<0时,将抛物线y=ax² 向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k 的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k 的图象;因此,研究抛物线y=ax²+bx+c (a≠0)的图象,通过配方,将一般式化为y=a(x-h)²+k 的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。扩展资料:抛物线y=ax²+bx+c 的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b²-4ac>0,图象与x轴交于两点A( ,0)和B( ,0),其中的 , 是一元二次方程y=ax²+bx+c(a≠0)的两根.这两点间的距离AB=| - |.当△=0,图象与x轴只有一个交点;当△<0,图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。用待定系数法求二次函数的解析式:(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0)。(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0)。(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0)。参考资料:百度百科——顶点坐标2023-05-16 09:21:371
顶点坐标公式是什么?
顶点坐标公式是y=a(x-h)²+k,a≠0,k为常数,顶点坐标(-b/2a,(4ac-b²)/4a)。顶点坐标是用来表示二次函数抛物线顶点的。解:y=ax+bx+c(a≠0)的顶点坐标公式是(-b/2a,(4ac-b²)/4a)海伦公式是:假设在平面,有一个三角形容,边长分别为a、b、c,三角形的面积s可由以下公式求得:s=√[p(p-a)(p-b)(p-c)]而公式里的p为半周长:p=(a+b+c)/2扩展资料:当h>0时,y=a(x-h) 的图象可由抛物线y=ax2;向右平行移动h个单位得到;当h<0时,则向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象;当h>0,k<0时,将抛物线y=ax 向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k 的图象;参考资料来源:百度百科-顶点坐标2023-05-16 09:22:221
函数的顶点坐标怎么求?
二次函数y=ax^2+bx+c的顶点坐标是(-b/2a,(4ac-b^2)/4a)。2023-05-16 09:22:304
顶点坐标公式 是如何推导出来的
1、顶点坐标(-b/2a,4ac-b²/4a)。(其中2a,4ac-b²,4a都是一个整体)。 2、推导过程如下: y=ax^2+bx+c; y=a(x^2+bx/a+c/a); y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2); y=a(x+b/2a)^2+c-b^2/4a; y=a(x+b/2a)^2+(4ac-b^2)/4a; 对称轴x=-b/2a; 顶点坐标(-b/2a,(4ac-b^2)/4a)。2023-05-16 09:22:371
顶点坐标公式
坐标公式:h=-b/2a,k=(4ac-b2)/4a。公式描述:公式中(h,k)为顶点坐标,二次函数的顶点式为y=a(x-h)2 k(a≠0)。 扩展资料 顶点坐标含义公式 顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)2 k(a≠0,k为常数)顶点坐标:[-b/2a,(4ac-b2)/4a]。 1.y=ax2 bx c(a≠0) 2.y=ax2(a≠0) 3.y=ax2 c(a≠0) 4.y=a(x-h)2(a≠0) 5.y=a(x-h)2 k(a≠0)←顶点式 6.y=a(x h)2 k 7.y=a(x-x?)(x-x?)(a≠0)←交点式 8.[-b/2a,(4ac-b2)/4a](a≠0,k为常数,x≠h) 二次函数顶点坐标公式来历 y=ax2 bx c y=a(x2 bx/a c/a) y=a(x2 bx/a b2/4a2 c/a-b2/4a2) y=a(x b/2a)2 c-b2/4a y=a(x b/2a)2 (4ac-b2)/4a 对称轴x=-b/2a 顶点坐标(-b/2a,(4ac-b2)/4a)2023-05-16 09:22:451
顶点坐标是什么
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k(a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。 直角坐标系的创建,在代数和几何上架起了一座桥梁。它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将先进的代数方法应用于几何学的研究。笛卡尔在创建直角坐标系的基础上,创造了用代数方法来研究几何图形的数学分支——解析几何。他的设想是:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的。2023-05-16 09:23:051
如何求抛物线的顶点坐标?
如果你知道抛物线方程,那它顶点横坐标就是-b╱2a,然后再把这个横坐标带入方程求出纵坐标啊。2023-05-16 09:23:133
顶点式的顶点坐标是什么?
(-b/2a,(4ac-b²)/4a)。二次函数y=ax²+bx+c(a≠0)。=a(x+b/2a)²+(4ac-b²)/4a。对称轴是x=-b/2a。顶点式的顶点坐标(-b/2a,(4ac-b²)/4a)。用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0)。(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a≠0)。(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0)。2023-05-16 09:23:201
抛物线顶点坐标是什么
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标。 在二次函数的图像上,顶点式是y=a(x-h)²+k抛物线的顶点P(h,k)同时,直线x=h为此二次函数的对称轴。 顶点坐标,对于二次函数y=ax²+bx+c(a不等于0)其顶点坐标为-b/2a,(4ac-b²)除以4a。2023-05-16 09:23:271
二次函数里顶点坐标指的是什么?
图像是抛物线,是轴对称图像,轴与抛物线的交点就是了.二次函数y=ax^2+bx+c的顶点坐标是(-b/2a,4ac-b^2/4a)2023-05-16 09:23:341
顶点坐标公式是什么哦,海伦公式是什么哦
解:y=ax²+bx+c(a≠0)的顶点坐标公式是 (-b/2a,(4ac-b²)/4a)请参考;http://baike.baidu.com/view/1895620.htm 海伦公式是:假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长:p=(a+b+c)/2 请参考:http://baike.baidu.com/view/1279.htm2023-05-16 09:23:421
配方法求顶点坐标
未完2023-05-16 09:23:513
二次函数两根式的顶点坐标
((X1-X2)/2)^22023-05-16 09:24:352
求顶点坐标过程
用配方法求顶点坐标f(x)= 2x^2-4x= 2(x^2-2x)= 2【(x-1)^2-1】= 2(x-1)^2-2 x∈【0,3】∴ 函数顶点坐标为(1,-2)希望你能采纳,不懂可追问。2023-05-16 09:24:421
顶点坐标公式
顶点坐标:对于一般二次函数 y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b²)/4a)2023-05-16 09:24:512
椭圆的顶点坐标怎么求
请2023-05-16 09:25:062
顶点式公式是什么
y=ax^2+bx+c=a[x-b/(2a)]^2+(4ac-b^2)/(4a)同学您好,如果问题已解决,记得采纳哦~~~您的采纳是对我的肯定~祝您策马奔腾哦~2023-05-16 09:25:262
椭圆的顶点坐标是什么?
椭圆的顶点坐标是。当椭圆的焦点在X轴上顶点坐标为(a,0)(-a,0)(0,b)(0,-b),当椭圆的焦点在y轴上顶点坐标为(0,a)(0,-a)(b,0)(-b,0)。椭圆的顶点坐标的定义椭圆上任意一点到F1,F2距离的和为2a,F1,F2之间的距离为2c。而公式中的b²=a²-c²。b是为了书写方便设定的参数。又及如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx²+ny²=1(m>0,n>0,m≠n),即标准方程的统一形式。椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是x=acosθ,y=bsinθ。2023-05-16 09:25:391
一般抛物线的顶点怎么求?
顶点坐标公式法2023-05-16 09:25:547
顶点坐标公式是什么?/
解:y=ax²+bx+c(a≠0)的顶点坐标公式是(-b/2a,(4ac-b²)/4a)请参考;http://baike.baidu.com/view/1895620.htm海伦公式是:假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积s可由以下公式求得:s=√[p(p-a)(p-b)(p-c)]而公式里的p为半周长:p=(a+b+c)/2请参考:http://baike.baidu.com/view/1279.htm2023-05-16 09:26:101
抛物线顶点坐标怎么看?
抛物线基本式y=ax^2+bx+c,定点横坐标为-b/2a。如果已知抛物线与x轴的两个交点(x1,0),(x2,0),那么顶点横坐标就是两个交点横坐标的和的一半,即(x1+x2)/2。如果已知抛物线上两个纵坐标相等的两个点,如(x1,y),(x2,y),那么顶点横坐标也是这两个点的横坐标的和的一半,即(x1+x2)/2。扩展资料:当h>0时,y=a(x-h) 的图象可由抛物线y=ax2;向右平行移动h个单位得到;当h<0时,则向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象;当h>0,k<0时,将抛物线y=ax 向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k 的图象;参考资料来源:百度百科-顶点坐标2023-05-16 09:26:302
初三数学顶点坐标怎么求
初三数学顶点坐标有三种求法也是求二次函数的解析式的三种方法:第一,一般式;第二,顶点式;第三,两点式。不过这都需要进行配方,之后就可以求出顶点坐标了,也可以直接带入顶点坐标公式来求。2023-05-16 09:26:481
三角形各个顶点的坐标是什么意思?
三角形各个顶点的坐标,就是分别表示三角形三个顶点在直角坐标系中的具体位置。2023-05-16 09:26:563
怎么读顶点坐标
顶点坐标表示的就是横坐标和纵坐标,横坐标写在前面,纵坐标写在后面,先读横坐标,再读纵坐标2023-05-16 09:27:091
顶点坐标之间有什么关系
一、 图1与图2若关于原点对称,则对应"顶点"的坐标之间的关系是:横坐标与纵坐标都互为相反数。二、 图1与图2若关于x轴对称,则对应"顶点"的坐标之间的关系是:横坐标相同,纵坐标互为相反数。三、 图1与图2若关于y轴对称,则对应"顶点"的坐标之间的关系是:横坐标互为相反数,纵坐标相同。2023-05-16 09:27:171
已知三角形三个顶点的坐标如何求三角形外接圆的半径?
简单分析一下,答案如图所示2023-05-16 09:27:332
什么叫顶点坐标?
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。当h>0时,y=a(x-h)² 的图象可由抛物线y=ax2;向右平行移动h个单位得到;当h<0时,则向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;当h>0,k<0时,将抛物线y=ax² 向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k 的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k 的图象;因此,研究抛物线y=ax²+bx+c (a≠0)的图象,通过配方,将一般式化为y=a(x-h)²+k 的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。扩展资料:抛物线y=ax²+bx+c 的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b²-4ac>0,图象与x轴交于两点A( ,0)和B( ,0),其中的 , 是一元二次方程y=ax²+bx+c(a≠0)的两根.这两点间的距离AB=| - |.当△=0,图象与x轴只有一个交点;当△<0,图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。用待定系数法求二次函数的解析式:(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0)。(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0)。(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0)。参考资料:百度百科——顶点坐标2023-05-16 09:28:241
顶点坐标公式是什么
顶点坐标公式是y=a(x-h)2+k,a≠0,k为常数,顶点坐标(-b/2a,(4ac-b2)/4a)。顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标。当h>0时,y=a(x-h)2的图象可由抛物线y=ax2,向右平行移动h个单位得到。当h0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;2023-05-16 09:29:171
抛物线的顶点坐标是什么?
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。当h>0时,y=a(x-h) 的图象可由抛物线y=ax2;向右平行移动h个单位得到。当h<0时,则向左平行移动|h|个单位得到。当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。相关信息:一次项系数b和二次项系数a共同决定对称轴的位置。当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号。当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号。可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a<0,b<0);当对称轴在y轴右时,a与b异号(即a0或a>0,b<0)(ab<0)。事实上,b有其自身的几何意义:二次函数图象与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。2023-05-16 09:29:251
抛物线的顶点坐标是什么?
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。当h>0时,y=a(x-h) 的图象可由抛物线y=ax2;向右平行移动h个单位得到;当h<0时,则向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。抛物线的点和线。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。与对称轴相交的抛物线上的点被称为“顶点”,并且是抛物线最锋利弯曲的点。沿着对称轴测量的顶点和焦点之间的距离是“焦距”。 “直线”是抛物线的平行线,并通过焦点。抛物线可以向上,向下,向左,向右或向另一个任意方向打开。任何抛物线都可以重新定位并重新定位,以适应任何其他抛物线 - 也就是说,所有抛物线都是几何相似的。2023-05-16 09:29:391
圆的顶点坐标怎么求
顶点坐标公式是y=ax-ah_+k,a≠0,k为常数。顶点坐标-b/2a,4ac-b_/4a。顶点坐标是用来表示二次函数抛物线顶点的。当h>0时,y=ax-ah的图象可由抛物线y=ax2;向右平行移动h个单位得到;当h<0时,则向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=ax-ah+k的图象;当h>0,k<0时,将抛物线y=ax 向右平行移动h个单位,再向下移动|k|个单位可得到y=ax-ah+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到的图象。2023-05-16 09:29:511
顶点坐标怎么画
-b/2a,(4ac-b2)/4a在坐标上标注即可。顶点式:y=a(x-h)2+k(a≠0,k为常数)顶点坐标:-b/2a,(4ac-b2)/4a。求出顶点坐标在坐标轴上标注即可。坐标,数学名词。是指为确定天球上某一点的位置,在天球上建立的球面坐标系。2023-05-16 09:29:581
顶点坐标公式 是如何推导出来的
1、顶点坐标(-b/2a,4ac-b²/4a)。(其中2a,4ac-b²,4a都是一个整体)。 2、推导过程如下: y=ax^2+bx+c; y=a(x^2+bx/a+c/a); y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2); y=a(x+b/2a)^2+c-b^2/4a; y=a(x+b/2a)^2+(4ac-b^2)/4a; 对称轴x=-b/2a; 顶点坐标(-b/2a,(4ac-b^2)/4a)。2023-05-16 09:30:051
抛物线的顶点坐标公式是什么?
顶点坐标公式是y=a(x-h)²+k,a≠0,k为常数,顶点坐标(-b/2a,(4ac-b²)/4a),顶点坐标是用来表示二次函数抛物线顶点的。解:y=ax+bx+c(a≠0)的顶点坐标公式是(-b/2a,(4ac-b²)/4a)。海伦公式是:假设在平面,有一个三角形容,边长分别为a、b、c,三角形的面积s可由以下公式求得:s=√[p(p-a)(p-b)(p-c)]。而公式里的p为半周长:p=(a+b+c)/2。抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c)。(2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0。(a≠0)的两根.这两点间的距离AB=|x₂-x₁|。当△=0,图象与x轴只有一个交点。当△<0,图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a。顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。2023-05-16 09:30:231
抛物线顶点坐标公式是什么?
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。当h>0时,y=a(x-h) 的图象可由抛物线y=ax2;向右平行移动h个单位得到;当h<0时,则向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。扩展资料抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。与对称轴相交的抛物线上的点被称为“顶点”,并且是抛物线最锋利弯曲的点。沿着对称轴测量的顶点和焦点之间的距离是“焦距”。 “直线”是抛物线的平行线,并通过焦点。抛物线可以向上,向下,向左,向右或向另一个任意方向打开。任何抛物线都可以重新定位并重新定位,以适应任何其他抛物线 - 也就是说,所有抛物线都是几何相似的。2023-05-16 09:30:371
顶点坐标公式
1、顶点坐标(-b/2a,4ac-b²/4a)。(其中2a,4ac-b²,4a都是一个整体)。 2、推导过程如下: y=ax^2+bx+c; y=a(x^2+bx/a+c/a); y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2); y=a(x+b/2a)^2+c-b^2/4a; y=a(x+b/2a)^2+(4ac-b^2)/4a; 对称轴x=-b/2a; 顶点坐标(-b/2a,(4ac-b^2)/4a)。2023-05-16 09:30:451
求顶点坐标的公式是什么
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k(a≠0,k为常数),顶点坐标:[-b/2a,(4ac-b²)/4a]。能利用图象或配方法确定抛物线的开口方向及对称轴、顶点的位置。 公式 1.y=ax²+bx+c(a≠0)←一般式 2.y=ax²(a≠0) 3.y=ax²+c(a≠0) 4.y=a(x-h)²(a≠0) 5.y=a(x-h)²+k,y=a(x+h)²+k(a≠0)←顶点式 6.y=a(x-x₁)(x-x₂)(a≠0)←交点式 7.【-b/2a,(4ac-b²)/4a】(a≠0,k为常数,x≠h)←求顶点坐标的公式2023-05-16 09:30:521
顶点坐标的基本含义
在二次函数的图像上顶点式:y=a(x-h)²+k 抛物线的顶点P(h,k)【同时,直线x=h为此二次函数的对称轴】顶点坐标:对于二次函数y=ax²+bx+c(a≠0)其顶点坐标为 [-b/2a,(4ac-b²)/4a]2023-05-16 09:31:011
抛物线顶点坐标公式是什么?
顶点坐标公式是y=a(x-h)²+k,a≠0,k为常数,顶点坐标(-b/2a,(4ac-b²)/4a),顶点坐标是用来表示二次函数抛物线顶点的。解:y=ax+bx+c(a≠0)的顶点坐标公式是(-b/2a,(4ac-b²)/4a)。海伦公式是:假设在平面,有一个三角形容,边长分别为a、b、c,三角形的面积s可由以下公式求得:s=√[p(p-a)(p-b)(p-c)]。而公式里的p为半周长:p=(a+b+c)/2。抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c)。(2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0。(a≠0)的两根.这两点间的距离AB=|x₂-x₁|。当△=0,图象与x轴只有一个交点。当△<0,图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a。顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。2023-05-16 09:31:151
顶点坐标是什么公式
y=ax^2+bx+c=a[(x-b/2a)^2+(4ac-b^2)/4a^2]。根据查询作业帮显示顶点坐标的公式为,y=ax^2+bx+c=a[(x-b/2a)^2+(4ac-b^2)/4a^2],顶点坐标为[-b/(2a),(4ac-b^2)/4a]。2023-05-16 09:31:391
抛物线的顶点坐标公式
(-b/2a,(4ac-b²)/4a)2023-05-16 09:31:485
抛物线顶点坐标公式
富2A/b逗号-4 AC/2A减b平方2023-05-16 09:33:2913
顶点公式是什么呢?
顶点公式是y=a(x-h)²+k。顶点坐标公式:h=b/2a,k=(4ac-b3 ) / 4a)。公式描述:公式中(h, k)为顶点坐标,二次函数的顶点式为y=a(x-h)2 +k(a≠0)。顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)3 +k(a≠0,k为常数)。顶点公式定义:函数解析式顶点式公式即为二次函数顶点公式:y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。二次函数(顶点式):通过将函数解析式y=ax^2的函数图象平移可以得到二次函数的顶点式y=a(x-h)^2+k;通过顶点式可以确定抛物线的顶点坐标为(h,k)。2023-05-16 09:34:291
怎么算顶点坐标
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。2023-05-16 09:34:471
抛物线顶点的坐标公式是什么?
顶点坐标公式是y=a(x-h)²+k,a≠0,k为常数,顶点坐标(-b/2a,(4ac-b²)/4a),顶点坐标是用来表示二次函数抛物线顶点的。解:y=ax+bx+c(a≠0)的顶点坐标公式是(-b/2a,(4ac-b²)/4a)。海伦公式是:假设在平面,有一个三角形容,边长分别为a、b、c,三角形的面积s可由以下公式求得:s=√[p(p-a)(p-b)(p-c)]。而公式里的p为半周长:p=(a+b+c)/2。抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c)。(2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0。(a≠0)的两根.这两点间的距离AB=|x₂-x₁|。当△=0,图象与x轴只有一个交点。当△<0,图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a。顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。2023-05-16 09:34:541
顶点坐标的公式
x等于负2a分子之b y等于4a分之4ac2023-05-16 09:35:192
如何求椭圆的顶点坐标?
就是对称轴和椭圆的交点所以把对称轴方程代入,然后解方程就行了2023-05-16 09:35:363
怎样求二次函数解析式
1、条件为已知抛物线过三个已知点,用一般式:Y=aX^2+bX+c , 分别代入成为一个三元一次方程组,解得a、bc的值,从而得到解析式,2、已知顶点坐标及另外一点,用顶点式:Y=a(X-h)^2+K , 点坐标代入后,成为关于a的一元一次方程,得a的值,从而得到 解析式,3、已知抛物线过三个点中,其中两点在X轴上,可用交点式(两根式):Y=a(X-X1)(X-X2) , 第三点坐标代入求a,得抛物线解析式。2023-05-16 09:36:093
顶点坐标y轴公式
对于二次函数y=ax^2+bx+c其顶点坐标为 (-b/2a,(4ac-b^2)/4a)2023-05-16 09:36:231
二次函数最值公式??
(4ac-b^2)/4a2023-05-16 09:36:325