- Jm-R
-
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 �
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d wc呁/S∕ ?
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r �
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r) �
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公*弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
(还有一些,大家帮补充吧)
实用工具:常用数学公式
公式分类 公式表达式
乘法与因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b^2-4ac=0 注:方程有两个相等的实根
b^2-4ac>0 注:方程有两个不等的实根 �
b^2-4ac<0 注:方程没有实根,有*轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA �
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) �
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) �
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 ?
圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h
正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h"
圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h �
斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
回答者:13611358396 - 秀才 三级 12-18 18:05
初高中的数学公式定理大集中
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 �
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d wc呁/S∕ ?
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r �
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r) �
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公*弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边
- 苏萦
-
过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
(还有一些,大家帮补充吧)
实用工具:常用数学公式
公式分类 公式表达式
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h
正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h"
圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
- 西柚不是西游
-
数学高考基础知识、常见结论详解
一、集合与简易逻辑:
一、理解集合中的有关概念
(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。
集合元素的互异性:如: , ,求 ;
(2)集合与元素的关系用符号 , 表示。
(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。
注意:区分集合中元素的形式:如: ; ; ; ; ;
;
(5)空集是指不含任何元素的集合。( 、 和 的区别;0与三者间的关系)
空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为 ,在讨论的时候不要遗忘了 的情况。
如: ,如果 ,求 的取值。
二、集合间的关系及其运算
(1)符号“ ”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ;
符号“ ”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。
(2) ; ;
(3)对于任意集合 ,则:
① ; ; ;
② ; ;
; ;
③ ; ;
(4)①若 为偶数,则 ;若 为奇数,则 ;
②若 被3除余0,则 ;若 被3除余1,则 ;若 被3除余2,则 ;
三、集合中元素的个数的计算:
(1)若集合 中有 个元素,则集合 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。
(2) 中元素的个数的计算公式为: ;
(3)韦恩图的运用:
四、 满足条件 , 满足条件 ,
若 ;则 是 的充分非必要条件 ;
若 ;则 是 的必要非充分条件 ;
若 ;则 是 的充要条件 ;
若 ;则 是 的既非充分又非必要条件 ;
五、原命题与逆否命题,否命题与逆命题具有相同的 ;
注意:“若 ,则 ”在解题中的运用,
如:“ ”是“ ”的 条件。
六、反证法:当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立,
步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确。
矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题。
适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。
正面词语 等于 大于 小于 是 都是 至多有一个
否定
正面词语 至少有一个 任意的 所有的 至多有n个 任意两个
否定
二、函数
一、映射与函数:
(1)映射的概念: (2)一一映射:(3)函数的概念:
如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。
函数 的图象与直线 交点的个数为 个。
二、函数的三要素: , , 。
相同函数的判断方法:① ;② (两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
① ,则 ; ② 则 ;
③ ,则 ; ④如: ,则 ;
⑤含参问题的定义域要分类讨论;
如:已知函数 的定义域是 ,求 的定义域。
⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
求下列函数的值域:① (2种方法);
② (2种方法);③ (2种方法);
三、函数的性质:
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法, 图像法 ,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。
对称变换 y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x) ,关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
如: 的图象如图,作出下列函数图象:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) ;(8) ;
(9) 。
五、反函数:
(1)定义:
(2)函数存在反函数的条件: ;
(3)互为反函数的定义域与值域的关系: ;
(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。
(5)互为反函数的图象间的关系: ;
(6)原函数与反函数具有相同的单调性;
(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
如:求下列函数的反函数: ; ;
七、常用的初等函数:
(1)一元一次函数: ,当 时,是增函数;当 时,是减函数;
(2)一元二次函数:
一般式: ;对称轴方程是 ;顶点为 ;
两点式: ;对称轴方程是 ;与 轴的交点为 ;
顶点式: ;对称轴方程是 ;顶点为 ;
①一元二次函数的单调性:
当 时: 为增函数; 为减函数;当 时: 为增函数; 为减函数;
②二次函数求最值问题:首先要采用配方法,化为 的形式,
Ⅰ、若顶点的横坐标在给定的区间上,则
时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;
时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;
Ⅱ、若顶点的横坐标不在给定的区间上,则
时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;
时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;
有三个类型题型:
(1)顶点固定,区间也固定。如:
(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。
(3)顶点固定,区间变动,这时要讨论区间中的参数.
③二次方程实数根的分布问题: 设实系数一元二次方程 的两根为 ;则:
根的情况
等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根
充要条件
注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。
(3)反比例函数:
(4)指数函数:
指数运算法则: ; ; 。
指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。
(5)对数函数:
指数运算法则: ; ; ;
对数函数:y= (a>o,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。
注意:(1) 与 的图象关系是 ;
(2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。
(3)已知函数 的定义域为 ,求 的取值范围。
已知函数 的值域为 ,求 的取值范围。
六、 的图象:
定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数。
七、补充内容:
抽象函数的性质所对应的一些具体特殊函数模型:
① 正比例函数
② ; ;
③ ; ;
④ ;
三、导 数
1.求导法则:
(c)/=0 这里c是常数。即常数的导数值为0。
(xn)/=nxn-1 特别地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k•f(x))/= k•f/(x)
2.导数的几何物理意义:
k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。
V=s/(t) 表示即时速度。a=v/(t) 表示加速度。
3.导数的应用:
①求切线的斜率。
②导数与函数的单调性的关系
一 与 为增函数的关系。
能推出 为增函数,但反之不一定。如函数 在 上单调递增,但 ,∴ 是 为增函数的充分不必要条件。
二 时, 与 为增函数的关系。
若将 的根作为分界点,因为规定 ,即抠去了分界点,此时 为增函数,就一定有 。∴当 时, 是 为增函数的充分必要条件。
三 与 为增函数的关系。
为增函数,一定可以推出 ,但反之不一定,因为 ,即为 或 。当函数在某个区间内恒有 ,则 为常数,函数不具有单调性。∴ 是 为增函数的必要不充分条件。
函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点的讨论问题,要谨慎处理。
四单调区间的求解过程,已知 (1)分析 的定义域;(2)求导数 (3)解不等式 ,解集在定义域内的部分为增区间(4)解不等式 ,解集在定义域内的部分为减区间。
我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数 在某个区间内可导。
③求极值、求最值。
注意:极值≠最值。函数f(x)在区间[a,b]上的最大值为极大值和f(a) 、f(b)中最大的一个。最小值为极小值和f(a) 、f(b)中最小的一个。
f/(x0)=0不能得到当x=x0时,函数有极值。
但是,当x=x0时,函数有极值 f/(x0)=0
判断极值,还需结合函数的单调性说明。
4.导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
四、不等式
一、不等式的基本性质:
注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。
(2)注意课本上的几个性质,另外需要特别注意:
①若ab>0,则 。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。
②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。
③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。
④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小
二、均值不等式:两个数的算术平均数不小于它们的几何平均数。
若 ,则 (当且仅当 时取等号)
基本变形:① ; ;
②若 ,则 ,
基本应用:①放缩,变形;
②求函数最值:注意:①一正二定三取等;②积定和小,和定积大。
当 (常数),当且仅当 时, ;
当 (常数),当且仅当 时, ;
常用的方法为:拆、凑、平方;
如:①函数 的最小值 。
②若正数 满足 ,则 的最小值 。
三、绝对值不等式:
注意:上述等号“=”成立的条件;
四、常用的基本不等式:
(1)设 ,则 (当且仅当 时取等号)
(2) (当且仅当 时取等号); (当且仅当 时取等号)
(3) ; ;
五、证明不等式常用方法:
(1)比较法:作差比较:
作差比较的步骤:
⑴作差:对要比较大小的两个数(或式)作差。
⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。
⑶判断差的符号:结合变形的结果及题设条件判断差的符号。
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。
(2)综合法:由因导果。
(3)分析法:执果索因。基本步骤:要证……只需证……,只需证……
(4)反证法:正难则反。
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。
放缩法的方法有:
⑴添加或舍去一些项,如: ;
⑵将分子或分母放大(或缩小)
⑶利用基本不等式,如: ;
⑷利用常用结论:
Ⅰ、 ;
Ⅱ、 ; (程度大)
Ⅲ、 ; (程度小)
(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。如:
已知 ,可设 ;
已知 ,可设 ( );
已知 ,可设 ;
已知 ,可设 ;
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;
六、不等式的解法:
(1)一元一次不等式:
Ⅰ、 :⑴若 ,则 ;⑵若 ,则 ;
Ⅱ、 :⑴若 ,则 ;⑵若 ,则 ;
(2)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对 进行讨论:
(5)绝对值不等式:若 ,则 ; ;
注意:(1).几何意义: : ; : ;
(2)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:
⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;①若 则 ;②若 则 ;③若 则 ;
(3).通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(4).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。
(6)分式不等式的解法:通解变形为整式不等式;
⑴ ;⑵ ;
⑶ ;⑷ ;
(7)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。
(8)解含有参数的不等式:
解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:
①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.
②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.
③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要分 、 、 讨论。
五、数列
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.
②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;
③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整
体思想求解.
(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列{an}的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= Sn= Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn= Sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、 、 仍为等比数列。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
24、{an}为等差数列,则 (c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。
26. 在等差数列 中:
(1)若项数为 ,则
(2)若数为 则, ,
27. 在等比数列 中:
(1) 若项数为 ,则
(2)若数为 则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n
30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求数列{an}的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an=
33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
六、平面向量
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2. 加法与减法的代数运算:
(1) .
(2)若a=( ),b=( )则a b=( ).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = -
且有| |-| |≤| |≤| |+| |.
向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);
+0= +(- )=0.
3.实数与向量的积:实数 与向量 的积是一个向量。
(1)| |=| |·| |;
(2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0.
(3)若 =( ),则 · =( ).
两个向量共线的充要条件:
(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .
(2) 若 =( ),b=( )则 ‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2.
4.P分有向线段 所成的比:
设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。
当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0;
分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1), 中点坐标公式: .
5. 向量的数量积:
(1).向量的夹角:
已知两个非零向量 与b,作 = , =b,则∠AOB= ( )叫做向量 与b的夹角。
(2).两个向量的数量积:
已知两个非零向量 与b,它们的夹角为 ,则 ·b=| |·|b|cos .
其中|b|cos 称为向量b在 方向上的投影.
(3).向量的数量积的性质:
若 =( ),b=( )则e· = ·e=| |cos (e为单位向量);
⊥b ·b=0 ( ,b为非零向量);| |= ;
cos = = .
(4) .向量的数量积的运算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
七、立体几何
1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
能够用斜二测法作图。
2.空间两条直线的位置关系:平行、相交、异面的概念;
会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。
3.直线与平面
①位置关系:平行、直线在平面内、直线与平面相交。
②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。
③直线与平面垂直的证明方法有哪些?
④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900}
⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.
4.平面与平面
(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)
(2)掌握平面与平面平行的证明方法和性质。
(3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。
(4)两平面间的距离问题→点到面的距离问题→
(5)二面角。二面角的平面交的作法及求法:
①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;
②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。
③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?
具体的公式
http://www.ggjy.net/xspd/xsbk/200408/815.html
高中数学公式大全
http://www.xyjy.cn/Article/UploadFiles/200510/20051013100307519.doc
高中数学常用公式及常用结论
高中数学常用公式及常用结论
高中数学常用公式及常用结论
1. 元素与集合的关系
, .
2.德摩根公式
.
3.包含关系
4.容斥原理
.
5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.
6.二次函数的解析式的三种形式
(1)一般式 ;
(2)顶点式 ;
(3)零点式 .
7.解连不等式 常有以下转化形式
.
8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .
9.闭区间上的二次函数的最值
二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:
(1)当a>0时,若 ,则 ;
, , .
(2)当a<0时,若 ,则 ,若 ,则 , .
10.一元二次方程的实根分布
依据:若 ,则方程 在区间 内至少有一个实根 .
设 ,则
(1)方程 在区间 内有根的充要条件为 或 ;
(2)方程 在区间 内有根的充要条件为 或 或 或 ;
(3)方程 在区间 内有根的充要条件为 或 .
- 水元素sl
-
用的比较多的是三角形的公式,SSS SSA AAS SAS 和等腰三角形的知识,考试中这些都比较常用,其他的圆的就和三角形结合用,就非常麻烦了
- 苏州马小云
-
额额额额额额
- 善士六合
-
什么公式啊????????
- 小菜G的建站之路
-
what???
平面向量 的所有公式
设a=(x,y),b=(x",y").1、向量的加法 向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x",y+y").a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c).2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y").4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.数与向量的乘法满足下面的运算律 结合律:(λa)•b=λ(a•b)=(a•λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.2023-05-14 14:13:433
关于平面向量的公式
就这些基础的了 打得很麻烦的~~+法 a代表a向量 b代表b向量1、三角形法则 2、平行四边形法则设a=(x1,y1),b=(x2,y2),则:a+b=(x1+x2,y1+y2)-法三角形法则:设a=(x1+y1),b=(x2,y2),则:a+b=(x1-x2,y1-y2)a*b=b*a1)a·b=xm+yn 2)a+b=(x+m,y+n)a⊥b时,a*b=xm+yn=0a‖b时,a*b=xn-ym=0 模的算法会吧!就和直角三角形球直角边一样的2023-05-14 14:13:533
求有关平面向量的所有公式,越详细越好,谢谢!
1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a•b=x•x"+y•y"。 向量的数量积的运算律 a•b=b•a(交换律); (λa)•b=λ(a•b)(关于数乘法的结合律); (a+b)•c=a•c+b•c(分配律); 向量的数量积的性质 a•a=|a|的平方。 a⊥b 〈=〉a•b=0。 |a•b|≤|a|•|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。 2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。 3、|a•b|≠|a|•|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 4、定比分点 定比分点公式(向量P1P=λ•向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 5、三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy"-x"y=0。 零向量0平行于任何向量。 向量垂直的充要条件 a⊥b的充要条件是 a•b=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量.亲。。。可以给个满意么2023-05-14 14:14:071
平面向量数量积所有公式
已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b,两个向量数量积等于它们对应坐标的乘积的和。即若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。向量的数量积公式:a*b=|a||b|cosθ,a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。扩展资料:数量积的性质设a、b为非零向量,则1、设e是单位向量,且e与a的夹角为θ,则e·a=a·e=|a||e|cosθ2、a⊥b等价于a·b=03、当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b| ;a·a=|a|2=a2或|a|=√a·a4、|a·b|≤|a|·|b|,当且仅当a与b共线时,即a∥b时等号成立5、cosθ=a·b╱|a||b|(θ为向量a.b的夹角)6、零向量与任意向量的数量积为0。参考资料来源:百度百科-平面向量数量积2023-05-14 14:14:161
平面向量的所有公式
设a=(x,y),b=(x",y").1、向量的加法 向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x",y+y").a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c).2、向量的减法 如果a、b是互为...2023-05-14 14:14:321
平面向量做功公式。
做的。平面向量做功公式,平面向量的所有公式设a=(x,y),b=(x,y)。平行向量(共线向量),方向相同或相反的非零向量,零向量与任一向量平行。相等向量,长度相等且方向相同的向量。2023-05-14 14:14:381
求全部的平面向量的计算公式
9.平面向量 (1)平面向量基本定理,如果e1、e2是同一平面内非共线向量,那么该平面内的任一向量a,有且只有一对实数λ1、λ2使a=λ1e1+λ2e2. ①两个向量平行的充要条件 a∥b⇔a=λb 设a=(x1,y1),b=(x2,y2) a∥b=x1x2-y1y2=0 ②两个非零向量垂直的充要条件 a⊥b⇔a·b=0 设a=(x1,y1),b=(x2,y2) a⊥b=x1x2+y1y2=0 θ=〈a,b〉. cosθ=x1x2+y1y2/x21+y21 x22+y22 (2)数量积的性质:设e是单位向量,〈a,e〉=θ ①a·e=e·a=|a|cosθ;②当a,b同向时,a·b=|a||b|,特别地,a2=a·a=|a|2,|a|=;当a与b反向时,a·b=-|a||b|;③a⊥b⇔a·b=0;④非零向量a,b夹角θ的计算公式:cosθ=,当θ为锐角时,a·b>0,且ab不同向,a·b>0是θ为锐角的必要非充分条件;当θ为钝角时,a·b<0,且ab不反向,a·b<0是θ为钝角的必要非充分条件;⑤|a·b|≤|a||b|.2023-05-14 14:14:471
平面向量的所有公式定理,解题技巧
设a=(x,y),b=(x",y")。1、向量的加法向量的加法满足平行四边形法则和三角形法则。AB+BC=AC。a+b=(x+x",y+y")。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y)b=(x",y")则a-b=(x-x",y-y").4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣2023-05-14 14:14:562
高一向量所有公式
向量加法与减法的几何表示:平行四边形法则、三角形法则. 向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律); +0= +(- )=0. 1.实数与向量的积:实数 与向量 的积是一个向量. (1)| |=| |��| |; (2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0. (3)若 =( ),则 �� =( ). 两个向量共线的充要条件: (1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= . (2) 若 =( ),b=( )则 ‖b . 平面向量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2. 2.P分有向线段 所成的比: 设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比. 当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0; 分点坐标公式: 3. 向量的数量积: (1).向量的夹角: (2).两个向量的数量积: (3).向量的数量积的性质: (4) .向量的数量积的运算律: 4.主要思想与方法: 本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等.由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点.2023-05-14 14:15:021
平面向量数量积所有公式
已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b,两个向量数量积等于它们对应坐标的乘积的和。即若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。向量的数量积公式:a*b=|a||b|cosθ,a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。扩展资料:数量积的性质设a、b为非零向量,则1、设e是单位向量,且e与a的夹角为θ,则e·a=a·e=|a||e|cosθ2、a⊥b等价于a·b=03、当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b| ;a·a=|a|2=a2或|a|=√a·a4、|a·b|≤|a|·|b|,当且仅当a与b共线时,即a∥b时等号成立5、cosθ=a·b╱|a||b|(θ为向量a.b的夹角)6、零向量与任意向量的数量积为0。参考资料来源:百度百科-平面向量数量积2023-05-14 14:15:221
|a|=? 此处“a”指向量a 若能告诉我关于平面向量的所有公式那就更好了
正向a2023-05-14 14:15:352
向量a‖b的公式有哪些?
在平面中,向量a平行于向量b,则两向量的夹角为零度或一百八十度,只有两个非零向量才有夹角,所以向量a和向量b为非零向量,由共线向量定理可得,向量a=λ向量b。在空间中,向量a平行于向量b,因为向量a和向量b为非零向量,所以向量a可设为(x,y,z),向量b可设为(l,m,n),若向量a平行于向量b,则x=λl,y=λm,z=λn,高中阶段关于向量a平行于向量b的所有公式如上2023-05-14 14:15:443
平面向量夹角公式是怎么计算的 上下分别怎么算 细讲
如果是坐标形式;a=(x1,y1)b=(x2,y2)a*b=x1x2+y1y2|a|=√(x1^2+y1^2)|b|=√(x2^2+y2^2)cos=[x1y1+x2y2] / [√(x1^2+y1^2)√(x2^2+y2^2)]2023-05-14 14:16:094
向量坐标运算公式总结
若向量a=(x,y) 向量b=(m,n) 1)a·b=xm+yn 2)a+b=(x+m,y+n)2023-05-14 14:16:221
求高一数学必修一的所有公式
高一数学必修一公式必修一一、集合一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。u 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c……}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xÎR| x-3>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。AÍA②真子集:如果AÍB,且A¹ B那就说集合A是集合B的真子集,记作AB(或BA)③如果 AÍB, BÍC ,那么 AÍC④ 如果AÍB 同时 BÍA 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+b(a>0,a、b属于Q)(a^a)^b=a^ab(a>0,a、b属于Q)(ab)^a=a^a*b^a(a>0,a、b属于Q)指数函数对称规律:1、函数y=a^x与y=a^-x关于y轴对称2、函数y=a^x与y=-a^x关于x轴对称3、函数y=a^x与y=-a^-x关于坐标原点对称&对数函数y=loga^x如果,且,,,那么:1 ·+;2 -;3 .注意:换底公式(,且;,且;).幂函数y=x^a(a属于R)1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:1 (代数法)求方程的实数根;2 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.三、平面向量向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为的向量.单位向量:长度等于个单位的向量.相等向量:长度相等且方向相同的向量&向量的运算加法运算AB+BC=AC,这种计算法则叫做向量加法的三角形法则。已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。对于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。向量的加法满足所有的加法运算定律。减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。向量的加法运算、减法运算、数乘运算统称线性运算。向量的数量积已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。四、三角函数1、善于用“1“巧解题2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法2023-05-14 14:16:363
高中数学投影向量公式是什么?
向量投影公式为:向量a·向量b=| a |*| b |*cosΘ (Θ为两向量夹角)。平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。相关信息:物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。2023-05-14 14:17:011
爪子定理 平面向量
平面向量的爪子定理如下:我们在向量部分经常会遇到一个模型,叫做 爪子模型,很多同学对于结论记忆非常熟悉,但是对于 爪子模型的实质,并不是非常理解。同时,很多同学对于 爪子模型的应用,并不熟悉。其实爪子模型来源于 平面向量三点共线定理。爪子定理:设O为面上一点,过平面外一点B的直线BO在面上的射影为AO,OC为面上的一条直线,那么∠COB,∠AOC,∠AOB三角的余弦关系为:cos∠BOC=cos∠AOBcos∠AOC(∠AOC,∠AOB只能是锐角),又名三余弦定理。爪子模型来源于平面向量三点共线定理:经典例题:对于此题目,我们可以根据爪子模型, EGF三点共线,DEC三点共线,CFD三点共线直接得到这个题目的答案。公式特点:辅助记忆:这三个角中,∠COB是最大的,其余弦值最小,等于另外两个角的余弦值之积。斜线与平面所成∠AOB是斜线与平面内所有直线所成的角中最小的角。(运用时可以背诵成,横的角乘以竖的角等于斜的角。)2023-05-14 14:17:091
高一数学平面向量知识点总结
平面向量是高中数学中基本内容,也是联系代数与几何的一种工具,为高考的重点内容。下面我给大家带来 高一数学 平面向量知识点,希望对你有帮助。 目录 高一数学平面向量知识点 高一数学知识点 高一数学学习方法 高一数学平面向量知识点 向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为的向量. 单位向量:长度等于个单位的向量. 相等向量:长度相等且方向相同的向量 &向量的运算 加法运算 AB+BC=AC,这种计算法则叫做向量加法的三角形法则。 已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a,有:0+a=a+0=a。 |a+b|≤|a|+|b|。 向量的加法满足所有的加法运算定律。 减法运算 与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。 (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。 数乘运算 实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ< 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。 设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。 向量的加法运算、减法运算、数乘运算统称线性运算。 向量的数量积 已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。 a.b的几何意义:数量积a.b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。 两个向量的数量积等于它们对应坐标的乘积的和。 <<< 高一数学知识点 1、柱、锥、台、球的结构特征 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底 面相 似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点: ①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 <<< 高一 数学 学习 方法 认真听课做笔记 在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。 把握教材去理解 要提高数学能力,当然是通过课堂来提高,要充分利用好课堂这块阵地,学习高一数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。 提高思维敏捷力 如果数学课没有一定的速度,那是一种无效学习。慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。 避免遗留问题 在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。 <<< 高一数学平面向量知识点 总结 相关 文章 : ★ 高一数学平面向量知识点总结 ★ 高一数学平面向量知识点 ★ 高中数学必修4平面向量知识点总结 ★ 数学必修4向量公式归纳 ★ 高一数学平面向量知识点分析 ★ 高中高一数学知识点总结 ★ 数学必修4平面向量公式总结 ★ 高中数学必修4平面向量知识点 ★ 高一数学知识点总结归纳 ★ 高中数学平面解析几何知识点归纳 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?1fc3c5445c1ba79cfc8b2d8178c3c5dd"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();2023-05-14 14:17:531
找数学平面向量总结
平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数(x 、y) ,使a= xe1+ ye2。 这里{e1,e2}称为这一平面内所有向量的一组基底 特别的,我们取垂直的单位向量e1,e2,这样就得到了一组正交基底{e1,e2}。 以这个基底为基础建立直角坐标系xoy,这是对任意平面内的向量a,都存在唯一的实数对(a1,a2),使得a=a1e1+a2e2,(a1,a2)就是向量a在基底{e1,e2},下的坐标,即a=(a1,a2),其中a1叫做向量a在x轴上的坐标分量,a2叫做a在y轴上的坐标分量。 在直角坐标系中,一点A的位置被点A的位置向量OA所唯一确定,由于基底{e1,e2}中的两个向量分别是x轴,y轴上的单位向量,所以e1=(1,0) e2=(0,1) 对于任意的一点A,设其坐标是(x,y) A相对于O点的位置向量OA 在x轴上的坐标分量是a1,y轴上的坐标分量是a2, OA=a1+a2 a1=xe1,a2=ye2 即OA=xe1+ye2,由此可知直角坐标系中点的坐标即使这一点相对于坐标原点的位置向量的坐标。对于始点不在坐标原点的向量AB A(x1,y1) B(x2,y2) AB=(x2-x1,y2-y1),若存在一点D 相对于原点的位置向量OD=AB,则有D=(x2-x1,y2-y1)2023-05-14 14:18:001
高中数学必修4平面向量知识点总结
平面向量是高中数学中基本内容,必修四课本的难点,有哪些知识点需要学习?下面是我给大家带来的高中数学必修4平面向量知识点,希望对你有帮助。 高中数学必修4平面向量知识点 坐标表示法 平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量 作为基底。由平面向量的基本定理知,该平面内的任一向量可表示成 ,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y轴上的坐标。 来表示平面内的各个方向 在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用 向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示. 向量 的大小,也就是向量 的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量. 方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行. 长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关. 向量的运算 1、向量的加法: AB+BC=AC 设a=(x,y) b=(x",y") 则a+b=(x+x",y+y") 向量的加法满足平行四边形法则和三角形法则。 向量加法的性质: 交换律: a+b=b+a 结合律: (a+b)+c=a+(b+c) a+0=0+a=a 2、向量的减法 AB-AC=CB a-b=(x-x",y-y") 若a//b 则a=eb 则xy`-x`y=0 若a垂直b 则ab=0 则xx`+yy`=0 3、向量的乘法 设a=(x,y) b=(x",y") a·b(点积)=x·x"+y·y"=|a|·|b|*cos夹角 4、向量有关概念: (1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A(1,2),B(4,2),则把向量 按向量 =(-1,3)平移后得到的向量是_____(答:(3,0)) (2)零向量:长度为0的向量叫零向量,记作: ,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与 共线的单位向量是 ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量 、 叫做平行向量,记作: ‖ ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有 );④三点 共线。 高中数学必修4平面向量例题 1.已知点A(1,1),B(-1,5)及AC向量=1/2AB向量,AD向量=2AB向量,AE向量=-1/2AB向量,求点C,D,E的坐标。 设C点(x,y),则AB=(-2,4),AC=(x-1,y-1). 由AC=1/2AB得: x-1=1/2×(-2)=-1, y-1=1/2×4=2 设D点(x,y),则AD=(x-1,y-1). 由AD=2AB得: x-1=2×(-2)=-4, y-1=2×4=8 设E点(x,y),则AE=(x-1,y-1). 由AE=-1/2AB得: 所以,x=-3,y=9,所以点C的坐标是(-3,9)所以,x=0,y=3,所以点C的坐标是(0,3) x-1=-1/2×(-2)=1, y-1=-1/2×4=-2 所以,x=2,y=-1,所以点C的坐标是(2,-1) 高中数学学习方法 课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 适当多做题,养成良好的解题习惯。 要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。2023-05-14 14:18:281
2019高一数学所有公式和知识点汇总
高一数学所有公式和知识点有哪些,我整理了相关信息,希望会对大大家有所帮助! 高一数学所有公式有哪些 1. 集合与常用逻辑用语 2. 平面向量 3. 函数、基本初等函数的图像与性质 4. 函数与方程、函数模型及其应用 5.三角函数的图形与性质 6.三角恒等变化与解三角形 7.空间几何体 8.空间点、直线、平面位置关系 9.空间向量与立体几何 10. 直线与圆的方程 高一数学的知识点:立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点: ①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 高一数学知识点总结:直线与方程 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。 ②过两点的直线的斜率公式: 注意下面四点: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与P1、P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 高一数学知识点总结:幂函数 定义: 形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域: 当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域 性质: 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 高一数学知识点总结:指数函数 (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。2023-05-14 14:18:351
高中数学中涉及的全部数学公式
http://wenku.baidu.com/view/d54f8484b9d528ea81c77901.html2023-05-14 14:20:162
全面解析向量
首先先给向量来个教科书的定义. 在数学中,几何向量(也称为欧几里得向量,通常简称向量、矢量),指具有大小(magnitude)和方向的量。 向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。 从定义中可以看出,向量的两个重要属性是 长度 (也称为大小或模 )和 方向。 知道定义后,我们再理解下向量在3D空间中的应用场景 在粒子系统中,通常用向量来表示粒子的速度和加速度。光的走向,多边形的朝向以及3D场景中的摄像机观察方向等许多地方都会用到向量。 下面来详细了解下向量的基础知识 向量相等:向量的属性中不包含位置信息,所以两个向量只要长度和方向相同,无论七点是否相同,我们就认为向量相等,很容易理解,这样的两个向量也彼此平行。 向量在坐标系中的如何表示 因为向量的的位置并不影响其属性,所以我们可以将所有彼此平行的向量进行平移,使其起点与坐标原点重合。当某一向量的起始端与坐标原点重合时,我们撑改箱量处于标准位置。这样,我们就可以用向量的重点坐标来描述一个处于标准位置的向量。用于描述向量的坐标称为分量(component)。 因为处于标准位置的向量都是用重点坐标来描述,这样当我们描述某一点时,很容易将点和向量混淆,为了突出二者的差别,我们来区分想点和向量的定义,点只描述坐标系中的一个位置,而向量描述了长度和方向 向量的长度 在几何学中,向量的模就是邮箱线段的长度,根据向量的各分量,我们可以通过代数方法计算该向量的大小,公式如下: 空间向量 (x,y,z),其中x,y,z分别是三轴上的坐标,模长是: 平面向量 (x,y),模长是: 向量的规范化(normalizing) 向量的规范化就是使向量的模变为1,即变为单位向量。我们通过将向量的每个分量都除以向量的模来实现向量的规范化 向量坐标都除于向量的长度 {1,2,3},长度是√1²+2²+3²=√14 标准化之后是 {1/√14,2/√14,3/√14} 新向量的长度恰好为1 标准化完毕 向量加法 向量的加法定义为两个向量对应的分量分别相加。注意,只有维数相等的两个向量才能进行加法运顺。 向量减法 向量的加法也是在两个向量的对应分量上进行的。同样,参与运算的向量维数必须一致。向量加法几何解释 向量减法返回一个自V的末端指向U的末端的向量,如果我们把U和V的分量理解为点的坐标,便可使用向量减法求得自一点指向另一点的向量。 数乘 标量可以与向量相乘,该运算可以对向量进行缩放,该运算不改变向量的方向,除非该向量与负数相乘,这是向量的方向与原来的方向相反。 点积 设二维空间内有两个向量 向量a=(x1,y1) 向量b=(x2,y2).定义它们的数量积(又叫内积、点积)为以下实数: 向量a乘以向量b 等于x1x2+y1y2. 几何定义 AB=|A||B|cos 其运算结果是一个常量。 该定义只对二维和三维空间有效。 上述公式并不具有明显的集合意义。但由预先定理可以发现,两个向量的点积等于二者夹角的余弦再乘以两个向量的模的乘积。由此可以得知,如果u和v都是单位向量,则u乘以v就等于u,v夹角的余弦。 下面是点积的一些有用的性质: 向量这部分真的不少,时间不早了,今天就写到这里。2023-05-14 14:20:251
高一数学平面向量知识点分析
平面向量是高一的知识点,想要学习好需要学生把握好概念和运算,下面是我给大家带来的有关于高中数学平面向量知识点的具体介绍,希望能够帮助到大家。 高一数学平面向量知识点 向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为的向量. 单位向量:长度等于个单位的向量. 相等向量:长度相等且方向相同的向量 &向量的运算 加法运算 AB+BC=AC,这种计算法则叫做向量加法的三角形法则。 已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a,有:0+a=a+0=a。 |a+b|≤|a|+|b|。 向量的加法满足所有的加法运算定律。 减法运算 与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。 (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。 数乘运算 实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ< 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。 设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。 向量的加法运算、减法运算、数乘运算统称线性运算。 向量的数量积 已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。 a.b的几何意义:数量积a.b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。 两个向量的数量积等于它们对应坐标的乘积的和。 高一必修二数学平面的基本性质知识点 平面的基本性质 教学目标 1、知识与能力: (1)巩固平面的基本性质即四条公理和三条推论. (2)能使用公理和推论进行解题. 2、过程与方法: (1)体验在空间确定一个平面的过程与方法; (2)掌握利用平面的基本性质证明三点共线、三线共点、多线共面的方法。 3、情感态度与价值观: 培养学生认真观察的态度,慎密思考的习惯,提高学生的审美能力和空间想象的能力。 教学重点 平面的三条基本性质即三条推论. 教学难点 准确运用三条公理和推论解题. 教学过程 一、问题情境 问题1:空间共点的三条直线能确定几个平面?空间互相平行的三条直线呢? 问题2:如何判断桌子的四条腿的底端是否在一个平面内? 二、温故知新 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们还有其它公共点,这些公共点的集合是经过这个公共点的一条直线. 公理3 经过不在同一条直线上的三点,有且只有一个平面. 推论1 经过一条直线和这条直线外的一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 公理 4(平行公理) 平行于同一条直线的两条直线互相平行. 把以上各公理及推论进行对比: 三、数学运用 基础训练:(1)已知: ;求证:直线AD、BD、CD共面. 证明: ——公理3推论1 ——公理1 同理可证, , 直线AD、BD、CD共面 【解题反思1】1。逻辑要严谨 2.书写要规范 3.证明共面的步骤: (1)确定平面——公理3及其3个推论 (2)证线“归” 面(线在面内如: )——公理1 (3)作出结论。 变式1、如果直线两两相交,那么这三条直线是否共面?(口答) 变式2、已知空间不共面的四点,过其中任意三点可以确定一个平面,由这四个点能确定几个平面? 变式3、四条线段顺次首尾连接,所得的图形一定是平面图形吗?(口答) (2)已知直线 满足: ;求证:直线 证明: ——公理3推论3 ——公理1 直线 共面 提高训练:已知 ,求证: 四条直线在同一平面内. 思路分析:考虑由直线a,b确定一个平面,再证明直线c,l在此平面上,但十分困难。因而可以开放思路,考虑确定两个平面,再证明两个平面重合,问题迎刃而解。 证明: ——公理3推论3 ——公理3推论3 ——公理1 因此,平面 同时经过两条相交直线 所以平面 重合。——公理3推论2 直线 共面 上面方法称为同一法 拓展训练:如图,三棱锥A-BCD中,E、G分别是BC、AB的中点,F在CD上,H在AD上,且有DF:FC=DH:HA=2:3;求证:EF、GH、BD交于一点.[渗透空间问题平面化思想] 思路分析:思路1:开放思路,考虑三个平面,首先证明两条直线在一个面内,并且相交,然后证明交点在两个平面上,据公理2知它在两面唯一的交线——第三条直线上,因此证得三线共点。 证法1:连接 , 因 E、G分别是BC、AB的中点,故 因DF:FC=DH:HA=2:3,故 ——公理4 共面,由上知, 相交,设交点为O,则 平面 , 平面 , 所以 直线 所以EF、GH、BD交于一点。 思路2:首先证明直线 GH、BD交于一点P,直线EF 、BD交于一点Q,然后证明两点P、Q重合,进而得出EF、GH、BD交于一点。 证法法2:提示:过点H作HO,使得 ,交点为O,连接OF,证明 , 延长GH,EF,使它们与直线BD分别交于点P、Q,由三角形相似可以得出OP=OQ.所以点P、Q重合。 链接生活:在正方体木头中,试画出过其中三条棱的中点P、Q、R的平面截得木头的截面形状. 【解题反思2】1。逻辑要严谨 2.书写要规范 3.方法要掌握 (1)证明共面的步骤: 1)确定平面——公理3及其3个推论——公理3及3个推论 2)证线“归” 面(线在面内如: )——公理1 3)作出结论。 (2)证明共线的步骤: ①证所有点在第一个面内(如平面 )——公理1 ②证所有点在第二个面内(如平面 ) ——公理1 ③结论1:所有点在两个平面的交线上 ④结论2:所有点共线——公理2 (3)证明共点的步骤: 1)证交于一个点——公理3及3个推论 2)证此点在二个面内(如平面 ) ——公理1 3)结论1:此点在两个平面的交线上——————公理2 4)结论2:三条线共点 四、回顾小结 本节主要复习了平面三个公理和三个推论,学会了如何使用公理及其推论解题. 五、课外作业(见所发的前置作业) 反馈练习 [ 1.2.1 平面的基本性质(2)] 1、经过同一直线上的3个点的平面( ) A、有且只有1个 B、有且只有3个 C、有无数个 D、有0个 2、若空间三个平面两两相交,则它们的交线条数是( ) A、1或2 B、2或3 C、1或3 D、1或2或3 3、与空间四点距离相等的平面共有( ) A、3个或7个 B、4个或10个 C、4个或无数个 D、7个或无数个 4、四条平行直线最多可以确定( ) A、三个平面 B、四个平面 C、五个平面 D、六个平面 5、四条线段首尾顺次相连,它们最多可确定的平面个数有 个. 6、给出以下四个命题: ①若空间四点不共面,则其中无三点共线; ②若直线l上有一点在平面 外,则l在 外; ③若直线 、 、 中, 与 共面且 与 共面,则 与 共面; ④两两相交的三条直线共面. 其中所有正确的命题的序号是 . 7.点P在直线l上,而直线l在平面 内,用符号表示为( ) A. B. C. D. 8.下列推理,错误的是( ) A. B. C. D. 9.下面是四个命题的叙述语(其中A、B表示点, 表示直线, 表示平面) ① ② ③ ④ 其中叙述方法和推理过程都正确的命题的序号是_______________. 10、已知A、B、C不在同一条直线上,求证:直线AB、BC、CA共面. 11、求证:如果一条直线与两条平行线都相交,那么这三条直线在同一个平面内. 已知:直线 、 、 且 , , ; 求证:直线 、 、 共面. 12、在正方体ABCD-A1B1C1D1中, ①AA1与CC1能否确定一个平面?为什么? ②点B、C1、D能否确定一个平面?为什么? ③画出平面ACC1A1与平面BC1D的交线,平面ACD1与平面BDC1的交线.2023-05-14 14:20:451
急求高中数学选修2-3全部公式
高中数学必修1~5、选修2-1~2-3、选修4-4~4-5公式、定理1.集合的子集个数共有 个/真子集有 –1个/非空子集有 –1个/非空的真子集有 –2个.2.常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有 个至多有( )个小于不小于至多有 个至少有( )个对所有 ,成立存在某 ,不成立或且对任何 ,不成立存在某 ,成立且或3.偶函数 f(-x)=f(x) 奇函数f(-x)=-f(x),f(0)=0,二次项系数为04.指数函数y= (a>0,且a≠1) 3.对数函数y= (a>0,且a≠1)0<a<1a>1图像定义域R值域(0,+∞)性质(1)过定点(0,1),即x=0,y=1(2)在R上是减函数 (2)在R上是增函数0<a<1a>1图像定义域(0,+∞)值域R性质(1)过定点(1,0),即x=1,y=0(2)在(0,+∞)是减函数 (2)在(0,+∞)是增函数5.6.柱体、锥体、台体的体积公式:= h ( 为底面积, 为柱体高) = ( 为底面积, 为柱体高)= ( "+ + ) ( ", 分别为上、下底面积, 为台体高)球体: = =7.两点P1(x1,y1),P2(x2,y2)间的距离公式:| P1 P2|=点P0(x0,y0)到直线L:Ax+By+C=0的距离: =两平行线间的距离: =空间两点P1(x1,y1,z1),P2(x2,y2, z2)间的距离公式:| P1 P2|=8. P(x,y)关于点Q(a,b)对称,P`(2a-x,2b-y)P(x,y)关于原点O(0,0)对称,P`(-x, -y) P(x,y)关于点Q(a,y)对称,P`(2a-x, y)P(x,y)关于点Q(x,b)对称,P`(x,2b-y) 9.向量平行的坐标表示 设a= ,b= ,且b 0,则a∥b(b 0) .10. 平面向量的坐标运算(1)设 = , = ,则 + = .(2)设 = , = ,则 - = . (3)设 = , = ,则 · =11. 向量的平行与垂直 设 = , = ,且 0,则:∥=. ( 0) · =0 .12.sin( )= , cos( )= , tan( )=tansin( )= , cos( )= , tan( )=sin( )= , cos( )= , tan( )=sin( )= , cos( )= , sin( + )= , cos( + )=13.cos( )=cos cos +sin sin cos( + )=cos cos -sin sinSin( + )=sin cos +cos sin Sin( )=sin cos -cos sintan( + )= tan( )= sin2 =2sin cos cos2 =cos2 -sin2 =2cos2 = tan2 =tan +tan = tan( + )( ) tan -tan = tan( - )( )sin2 = cos2 = tan2 =14.辅助角公式:asinx+bcosx= ( sinx+ cosx)15.余弦定理 16.等差数列的通项公式: ;等差数列的前n项和:17.等比数列的通项公式:等比数列的前n项和:18.椭圆:焦点的位置焦点在x轴上焦点在y轴上图形标准方程( > >0)( > >0)顶点(± ,0) (0, ± )(± ,0) (0, ± )轴长长轴长2 ,短轴长2焦点(± ,0)(0, ± )离心率19.双曲线:标准方程( >0, >0)( >0, >0)图形几何性质顶点(± ,0)(0, ± )轴长实轴长|A1A2|=2 ,虚轴长|B1B2|=2离心率>1焦点(± ,0)(0, ± )渐近线20.抛物线: 21.导数公式:图形标准方程焦点坐标准线方程( >0)( >0)( >0)( >0)基本初等函数的导数公式1.若f(x)= ( 为常数),则f"(x)=02.若f(x)= ( ),则f"(x)= 3.若f(x)=sinx,则f"(x)=cosx4.若f(x)=cosx,则f"(x)=sinx5.若f(x)= ,则f"(x)= ln6.若f(x)= ,则f"(x)=7.若f(x)= ,则f"(x)=8.若f(x)=lnx,则f"(x)= 瞬时速度.瞬时加速度.22. 推理与证明1.归纳推理:由部分到整体,由个别到一般 2.类比推理:由特殊到特殊 3.演绎推理:由一般到特殊的推理23.排列组合:24.二项式定理: 二项式系数的和:25.离散型随机变量的均值与方差:若X服从两点分布,则 ,若 ,则 ,26.正态分布: ,< =0.6826 < =0.9544 < =0.997427.统计案例: 越大,意味着残差平方和越小拟合的效果越好; 越接近于1表示回归效果越好。|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.28.极坐标和直角坐标的互化:, ,29.圆 的参数方程可表示为 .经过点 ,倾斜角为 的直线l的参数方程可表示为30.基本不等式:定理1:如果 ,那么 ,当且仅当 时,等号成立。定理2:如果 ,那么 ,当且仅当 时,等号成立。定理3:如果 ,那么 ,当且仅当 时,等号成立。31.绝对值不等式:定理1:如果 ,则 ,当且仅当 时,等号成立。定理2:如果 ,那么 ,当且仅当 时,等号成立。32.二维式的柯西不等式:定理:若 ,则 ,当且仅当 时,等号成立。一般形式的柯西不等式:定理:设 , 是实数,则,当且仅当。2023-05-14 14:20:553
高中求高中数学全部公式
http://wenku.baidu.com/view/5279d9333968011ca300914f.html免费的2023-05-14 14:21:255
求高中数学向量知识点
2023-05-14 14:21:566
求高中文科数学的全部公式 今年高三了
全在课本,自己记好。2023-05-14 14:22:1310
急求文科生需要掌握的平面向量的知识 最好有典型例题和详细解答 谢谢了
一、向量的基本概念 1.向量的定义:既有大小又有方向的量。(注意与前面我们所讲的量的区别) 2.向量的表示: 。(注意印刷体与手写体的关系) 向量的长度(模)表示为: 3.特殊向量: (1)零向量:长度为0的向量,方向为任意。记作: 。 (2)单位向量:长度为1的向量。 (3)相等向量:长度相等,方向一致的两个向量。 向量不能比较大小,向量的长度可以比较大小。 (4)平行向量(共线向量):方向相同或相反的两个非零向量叫做平行向量,规定零向量与任一向量平行,平行向量也叫做共线向量。 (5)相反向量:长度相同,方向相反的向量。 例题:判断下列命题的对错: 1.零向量与任意非零向量平行;(对) 2.长度相等方向相反的向量共线;(对) 3.若 是两个单位向量,则 相同 ; (错) 4.若向量 不共线,则 都是非零向量;(对) 5.若两个向量相等,则它们的起点、方向、长度必须相等;(错) 6.“两个向量共线”是“这两个向量相等”的充分不必要条件;(错) 7.若非零向量 是共线向量,则A、B、C、D四点共线;(错) 8.“四边形ABCD是平行四边形”的充要条件是“ ”;(错) 9.共线的向量一定相等;(错) 10.相等的向量一定共线;(对) 二、向量的基本运算 1.加法运算、减法运算: 向量的加法运算满足平行四边形法则和三角形法则。 (1)平行四边形法则 (2)三角形法则 即首尾相接的两个向量的和是由第一个向量的起点指向第二个向量的终点的有向线段所示的向量。由此,可推广到n个首尾相接的向量的和是由第一个向量的起点指向第n个向量的终点的有向线段所表示的向量。 规定:零向量与向量 的和等向量 向量加法的运算率: (1) 两个向量的模的和、差与两向量和的模的关系:2.实数与向量的积: 对于非零向量 及实数λ, 表示一个向量,其长度和方向规定如下: (1)长度: ,即等于的λ绝对值与 的长度的乘积。 (2)方向: ①当λ>0时, 的方向相同; ②当λ<0时, 的方向相反; ③当λ=0时, 规定:零向量与任意实数相乘仍为零向量。 实数与向量的积的运算律 (1) 3.平面向量的数量积: (1)两个向量的夹角: 过平面内一点O作向量 ,∠AOB=θ叫做向量 的夹角(0°≤θ≤180°) (2)数量积的定义:如果两个非零向量 的夹角是θ,那么就称数量 的数量积, 即: 规定:零向量与任意向量的数量积为零。 (3)非零向量 的数量积的性质: ① 的几何意义是: 的方向上的投影 的乘积; ② (4)向量的数量积的运算律4.定比分点运算: (1)有向线段定比分点的定义: 设P1、P2是直线l上的两点,点P是l上不同于P1、P2的任意一点,则向量 共线,由上一节我们学习的向量共线的充要条件可知,必然存在一个实数λ,使 ,则定义:点P叫做有向线段 的定比分点,λ叫做P分有向线段 所成的比。 点P分有向线面 所成的比λ的取值范围是λ∈(-∞,-1)∪(-1,0)∪(0,+∞) ,此公式叫做有向线段 的定比分点的向量公式。 例题选讲: 例1.三角形两边中点的连线平行与第三边并且等与第三边的一半。 已知:如图3--1,△ABC中,D,E分别是边AB,AC的中点。 求证:DE‖BC且 证明: ∵D、E分别是边AB,AC的中点, ∵D,B不共点, 例2.求证:三角形的三条高线交于一点。 证明:如图:设△ABC中,AB、AC边上的高BE、CF相交于H∴ ⊥ ,即三角形ABC的三条高线交于一点H。 例3.已知:O为△ABC的外心,H为垂心,求证: 证明:根据向量加法的三角形法则: 连接BO并延长交圆于D,连接DC,则DC⊥BC, ∵AH⊥BC,∴DC‖AH,同理,DA‖CH, ∴四边形ADCH为平行四边形, 三、重要定理: 1.共线向量定理:向量 共线的充要条件是有且只有一个实数λ使 2.平面向量基本定理:如果 是同一平面内两个不共线的向量,那么对于这一平面内的任意一个向量 ,有且只有一对实数 , 称为表示这一平面内所有向量的一组基底(基础)向量。 四、向量的坐标表示: 我们选择互相垂直的两个单位向量 作为基底向量,即: ,从而把向量与平面直角坐标系中的坐标联系在一起。 平面中任意一个向量都可以用向量的起点与终点坐标表示,由于向量是可以自由移动的,因此,平面中存在着无穷多个向量(这些向量都相等)对应一个坐标,而只有从原点出发的向量,才与终点的坐标一一对应。 向量 ①加法运算: ②减法运算: ③实数与向量的积: 向量平行的坐标表示: ④向量的数量积: 向量垂直的坐标表示: 两个向量的夹角的余弦: 设点P1(x1,y1)、P(x,y)、P2(x2,y2),点P分有向线段 ,则 例题选讲: 例1.直角△ABC中, 解: 当A=90°, 当B=90°, 当C=90°, 例2.已知:O为坐标原点,直线l经过点A、B, ,直线l上一点P(x,6),求:点P分有向线段 所成的比λ及P点坐标。 解:P点作为分点,确定P分 所成比λ及x,需要先确定起点A,终点B的坐标。∴ 由 五、向量的应用 向量运算的两种形式实际上是数形结合的体现,这两种形式结合起来使用,无论是解决代数问题还是几何问题都有独特的优势。 例1.求证: 证明: 设: C为角α终边上一点,则 B为角-β终边上一点,则 则: 同时: 即 [评述]:本题是利用坐标形式的运算得到两角和的余弦公式,实质上两种运算形式的综合应用。 例2.已知:a2+b2+c2=1,x2+y2+z2=1,求证:-1≤ax+cy+cz≤1 证明:构造向量: 设 [评述]:本题是用向量的方法来解决不等式的证明,十分方便,但想到构造向量并不容易。 例3.求证:点P(x0,y0)到直线Ax+By+C=0的距离 证明:考虑应用向量的方法解决问题:与直线l:Ax+By+C=0垂直的向量为 设 , 当θ为锐角时, 当θ为钝角时, [评述]:向量本来就是解析几何中的内容,用其解决解析几何的问题是非常方便的。这种点到直线的距离的解决方法也是立体几何中点到平面的距离的解决方法。 六、向量在高考中出现的题型 例1.(北京卷)若 (A)30° (B)60° (C)120° (D)150° 例2.(湖北卷)向量 不超过5,则k的取值范围是( C ) A.[-4,6] B.[-6,4] C.[-6,2] D.[-2,6] 例3.(湖南卷)若直线ax+by+c=0与圆O:x2+y2=1相交于A、B两点,且 例4.(上海卷)直角坐标平面xoy中,若定点A(1,2)与动点P(x,y)满足 ,则点P的轨迹方程是_____。(x+2y-4=0) 例5.(本小题满分12分)(湖北卷) 如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1 (Ⅰ)求BF的长; (Ⅱ)求点C到平面AEC1F的距离 解: (Ⅰ)建立如图所示的空间直角坐标系,则D(0,0,0),B(2,4,0), A(2,0,0),C(0,4,0),E(2,4,1),C1(0,4,3), 设F(0,0,,z) ∵AEC1F为平行四边形, (Ⅱ) 设∴C到平面AEC1F的距离为 例6.(本小题满分12分)(湖北卷) 已知:向量 ,函数 在区间(-1,1)上是增函数,求:t的取值范围。 解:依定义f(x)=x2(1-x)+t(x+1)=-x3+x2+tx+t,则f′(x)=-3x2+2x+t 在区间(-1,1)上是增函数,∴在区间(-1,1)上f′(x)≥0 即t≥3x2-2x在区间(-1,1)上恒成立,设g(x)=3x2-2x 则在区间(-1,1)上g(x)max=g(-1)=5,∴当t≥g(-1),即t≥5时,满足题目的要求。 七.课后练习 1.为得到函数y=cosx的图象,可用来对函数 作平移的向量是 A. 2.直角三角形ABC中,若∠A=90°,AB=1,则 (A)1 (B)-1 (C)1或-1 (D)不能确定 3.平面中,点A(2,1),B(0,2),C(-2,1),O(0,0)。给出下面的结论: ①直线OC与直线BA平行; ② ③ ④ , 其中正确结论的个数是( ) (A)1个 (B)2个 (C)3个 (D)4个 4.△ABC中,若 (A)13 (B)26 (C) (D)24 5.若 ,则∠AOB平分线上的向量 为( ) (A) 6.若 A. 7.若将函数y=f(x)的图象按向量 平移,使图象上点P的坐标由(1,0)变为(2,2),则平移后图象的解析式为 A. y=f(x+1)-2 B. y=f(x-1)-2 C. y=f(x-1)+2 D. y=f(x+1)+2 8.若 的夹角为30°,则 9.已知: 的夹角为120°,当k为何值时, (1) 垂直; (2) 取得最小值?并求出最小值。 10.已知:二次函数f(x)对任意x∈R,都有f(1-x)=f(1+x)成立,设向量 ,当x∈[0,π]时,求:不等式 的解集。 参考答案: C B C B B B C 9. (1) (2) =(3k+2)2+12, ∴当 时, 取得最小值为 10.解析:设f(x)的二次项系数为m,其图象上两点为(1-x,y1)、B(1+x,y2) ∵ ,又∵f(1-x)=f(1+x) ∴y1=y2, 由x的任意性得f(x)的图象关于直线x=1对称, 若m>0,则x≥1时,f(x)是增函数,若m<0,则x≥1时,f(x)是减函数。当m<0时,同理可得2023-05-14 14:22:381
求人教版高中数学A版全部公式大全
http://wenku.baidu.com/view/082951f5f61fb7360b4c65eb.htmlhttp://wenku.baidu.com/view/c3157e0bf78a6529647d53eb.htmlhttp://wenku.baidu.com/view/50ac3a6c1eb91a37f1115ceb.html这是文库里面个人觉得不错的 希望采纳、。2023-05-14 14:22:482
高中数学必修一到五所有公式和定理?谢谢
留下你邮箱,我给你发一份。 最好从书店去买,现在书店总结好的比较多。2023-05-14 14:22:594
解释一下向量
名称定义[编辑本段]我们知道,位移是既有大小又有方向的量.事实上,现实世界中,这种量是很多的,如力、速度、加速度等.我们把既有大小又有方向的量叫做向量.亦称矢量.在线性代数中的向量是指,n个实数组成的有序数组称为n维向量.一般用α,β,γ等希腊字母表示.有时也用a,b,c,o,u,v,x,y等拉丁字母表示.α=(a1,a2,…,an)称为n维向量.其中ai称为向量α的第i个分量.("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)坐标表示法[编辑本段]平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量 作为基底。由平面向量的基本定理知,该平面内的任一向量可表示成 ,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y轴上的坐标。反义词[编辑本段]标量和向量是一对反义词.标量是只有大小但没有方向的量.例如距离.向量的来源[编辑本段]规定了方向和大小的量称为向量.向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.向量的由来 向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿. 课本上讨论的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型. 从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系. 向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学. 但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析. 三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪8O年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具.向量的运用[编辑本段]在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用来表示平面内的各个方向向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.向量 的大小,也就是向量 的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.平行向量与相等向量[编辑本段]方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行.长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.向量的运算[编辑本段]1、向量的加法:AB+BC=AC设a=(x,y) b=(x",y")则a+b=(x+x",y+y")向量的加法满足平行四边形法则和三角形法则。向量加法的性质:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)a+0=0+a=a2、向量的减法AB-AC=CBa-b=(x-x",y-y")若a//b则a=eb则xy`-x`y=0若a垂直b则ab=0则xx`+yy`=03、向量的乘法设a=(x,y) b=(x",y")a·b(点积)=x·x"+y·y"=|a|·|b|*cos夹角设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使向量p1p=λ向量pp2,λ叫做点P分有向线段P1P2所成的比。若P1(x1,y1),P2(x2,y2),P(x,y) x=(x1+λx2)/(1+λ)则有{ y=(y1+λy2)/(1+λ)我们把上面的式子叫做有向线段P1P2的定比分点公式4、数乘向量实数∮和向量a的乘积是一个向量,记作∮a,且∣∮a∣=∣∮∣*∣a∣,当∮>0时,与a同方向;当∮<0时,与a反方向。实数∮叫做向量a的系数,乘数向量的几何意义时把向量a沿着的方向或反方向放大或缩小。向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿. 课本上讨论的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型. 从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系. 向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学. 但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析. 三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪8O年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具.2023-05-14 14:23:061
必修四数学第二章知识点
必修四数学第二章知识点1 1、平面向量基本概念 有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB; 向量的模:有向线段AB的长度叫做向量的模,记作|AB|; 零向量:长度等于0的向量叫做零向量,记作或0。(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆); 相等向量:长度相等且方向相同的向量叫做相等向量; 平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a; 单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。 相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,—(—a)=a,零向量的相反向量仍然是零向量。 2、平面向量运算 加法与减法的代数运算: (1)若a=(x1,y1),b=(x2,y2)则a b=(x1+x2,y1+y2)。 向量加法与减法的几何表示:平行四边形法则、三角形法则。 向量加法有如下规律:+ = +(交换律);+(+c)=(+)+c(结合律); 实数与向量的积:实数与向量的积是一个向量。 (1)| |=| |·| |; (2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0。 两个向量共线的充要条件: (1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= 。 (2)若=(),b=()则‖b 。 3、平面向量基本定理 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得= e1+ e2。 4、平面向量有关推论 三角形ABC内一点O,OA·OB=OB·OC=OC·OA,则点O是三角形的垂心。 若O是三角形ABC的外心,点M满足OA+OB+OC=OM,则M是三角形ABC的垂心。 若O和三角形ABC共面,且满足OA+OB+OC=0,则O是三角形ABC的重心。 三点共线:三点A,B,C共线推出OA=μOB+aOC(μ+a=1) 必修四数学第二章知识点2 一、两个定理 1、共线向量定理: 两向量共线(平行)等价于两个向量满足数乘关系(与实数相乘的向量不是零向量),且数乘系数唯一。用坐标形式表示就是两向量共线则两向量坐标的“内积等于外积”。此定理可以用来证向量平行或者使用向两平行的条件。此定理的延伸是三点共线!三点共线可以向两个向量的等式转化:1.三个点中任意找两组点构成的两个向量共线,满足数乘关系;2.以同一个点为始点、三个点为终点构造三个向量,其中一个可由另外两个线性表示,且系数和为1。 2、平面向量基本定理: 平面内两个不共线的向量可以线性表示任何一个向量,且系数唯一。这两个不共线的向量构成一组基底,这两个向量叫基向量。此定理的作用有两个:1.可以统一题目中向量的形式;2.可以利用系数的唯一性求向量的系数(固定的算法模式)。 二、三种形式 平面向量有三种形式,字母形式、几何形式、坐标形式。字母形式要注意带箭头,多考虑几何形式画图解题,特别是能得到特殊的三角形和四边形的情况,向量的坐标和点的坐标不要混淆,向量的坐标是其终点坐标减始点坐标,特殊情况下,若始点在原点,则向量的坐标就是终点坐标。 选择合适的向量形式解决问题是解题的一个关键,优先考虑用几何形式画图做,然后是坐标形式,最后考虑字母形式的变形运算。 三、四种运算 加、减、数乘、数量积。前三种运算是线性运算,结果是向量(0乘以任何向量结果都是零向量,零向量乘以任何实数都是零向量);数量积不是线性运算,结果是实数(零向量乘以任何向量都是0)。线性运算符合所有的实数运算律,数量积不符合消去律和结合律。 向量运算也有三种形式:字母形式、几何形式和坐标形式。 加减法的字母形式注意首尾相接和始点重合。数量积的字母形式公式很重要,要能熟练灵活的使用。 加减法的几何意义是平行四边形和三角形法则,数乘的几何意义是长度的伸缩和方向的共线,数量积的几何意义是一个向量的模乘以另一个向量在第一个向量方向上的射影的数量。向量的夹角用尖括号表示,是两向量始点重合或者终点重合时形成的角,首尾相接形成的角为向量夹角的补角。射影数量有两种求法:1.向量的模乘以夹角余弦;2.两向量数量积除以另一向量的模。 加减法的坐标形式是横纵坐标分别加减,数乘的坐标形式是实数乘以横、纵坐标,数量积的坐标形式是横坐标的乘积加纵坐标的乘积。 四、五个应用 求长度、求夹角、证垂直、证平行、向量和差积的模与模的和差积的关系。前三个应用是数量积的运算性质,证平行的数乘运算性质,零向量不能说和哪个向量方向相同或相反,规定零向量和任意向量都平行且都垂直;一个向量乘以自己再开方就是长度;两个向量数量积除以模的乘积就是夹角的余弦;两个向量满足数乘关系则必定共线(平行)。一个向量除以自己的模得到和自己同方向的单位向量,加符号是反方向的单位向量 数学函数的值域与最值知识点 1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下: (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域. (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元. (3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得. (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法. (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧. (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式. (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域. (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域. 2、求函数的最值与值域的区别和联系 求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的`角度不同,因而答题的方式就有所相异. 如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响. 3、函数的最值在实际问题中的应用 函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值. 必修四数学第二章知识点3 1.向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。 2.规定若线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。具有方向和长度的线段叫做有向线段。 3.向量的模:向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。 注:向量的模是非负实数,是可以比较大小的。因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。 4.单位向量:长度为一个单位(即模为1)的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0。 5.长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。 向量的计算 1.加法 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2.减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 加减变换律:a+(-b)=a-b 3.数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π 向量的数量积的运算律 a·b=b·a(交换律) (λa)·b=λ(a·b)(关于数乘法的结合律) (a+b)·c=a·c+b·c(分配律) 向量的数量积的性质 a·a=|a|的平方。 a⊥b〈=〉a·b=0。 |a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|) 高中学好数学的方法是什么 数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。 数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。 数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。 数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。 数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。 数学函数的奇偶性知识点 1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数). 正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质). 2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式。2023-05-14 14:23:131
平面向量的所有公式
这怎么可能呢,太多了,你还是到高一数学教材上找吧,上面全都有的2023-05-14 14:23:354
平面向量的所有公式
1、加法向量加法的三角形法则,已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。-(-a)=a、a+(-a)=(-a)+a=0、a-b=a+(-b)。3、数乘实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)。4、数量积已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。5、向量积向量a与向量b的夹角:已知两个非零向量,过O点做向量OA=a,向量OB=b,向量积示意图则∠AOB=θ 叫做向量a与b的夹角,记作<a,b>。已知两个非零向量a、b,那么a×b叫做a与b的向量积或外积。向量积几何意义是以a和b为边的平行四边形面积,即S=|a×b|。6、混合积给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c。扩展资料物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。参考资料来源:百度百科-平面向量2023-05-14 14:24:031
平面向量的所有公式
1、加法向量加法的三角形法则,已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。-(-a)=a、a+(-a)=(-a)+a=0、a-b=a+(-b)。3、数乘实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)。扩展资料:物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。参考资料来源:百度百科-平面向量2023-05-14 14:24:171
平面向量所有的公式
设a=(x,y),b=(x",y")。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣�6�1∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)�6�1b=λ(a�6�1b)=(a�6�1λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a�6�1b。若a、b不共线,则a�6�1b=|a|�6�1|b|�6�1cos〈a,b〉;若a、b共线,则a�6�1b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a�6�1b=x�6�1x"+y�6�1y"。 向量的数量积的运算律 a�6�1b=b�6�1a(交换律); (λa)�6�1b=λ(a�6�1b)(关于数乘法的结合律); (a+b)�6�1c=a�6�1c+b�6�1c(分配律); 向量的数量积的性质 a�6�1a=|a|的平方。 a⊥b 〈=〉a�6�1b=0。 |a�6�1b|≤|a|�6�1|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a�6�1b)�6�1c≠a�6�1(b�6�1c);例如:(a�6�1b)^2≠a^2�6�1b^2。 2、向量的数量积不满足消去律,即:由 a�6�1b=a�6�1c (a≠0),推不出 b=c。 3、|a�6�1b|≠|a|�6�1|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|�6�1|b|�6�1sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点 定比分点公式(向量P1P=λ�6�1向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ�6�1向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy"-x"y=0。 零向量0平行于任何向量。 [编辑本段]向量垂直的充要条件 a⊥b的充要条件是 a�6�1b=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量.2023-05-14 14:24:311
平面向量 的所有公式
1、向量的加法满足平行四边形法则和三角形法则AB+BC=AC;a+b=(x+x",y+y");a+0=0+a=a2、向量加法的运算律:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)3、向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0;AB-AC=CB,即“共同起点,指向被减”;a=(x,y) b=(x",y") 则 a-b=(x-x",y-y")。扩展资料:1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;① 当且仅当a、b反向时,左边取等号;② 当且仅当a、b同向时,右边取等号。2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.① 当且仅当a、b同向时,左边取等号;② 当且仅当a、b反向时,右边取等号。2023-05-14 14:24:401
平面向量的所有公式
1、加法向量加法的三角形法则,已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。-(-a)=a、a+(-a)=(-a)+a=0、a-b=a+(-b)。3、数乘实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)。向量的运用。物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。2023-05-14 14:24:481
平面向量的所有公式定理,解题技巧
哈哈哈 我也想问 向量学的特别差2023-05-14 14:25:032
高一向量所有公式
向量加法与减法的几何表示:平行四边形法则、三角形法则. 向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律); +0= +(- )=0. 1.实数与向量的积:实数 与向量 的积是一个向量. (1)| |=| |��| |; (2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0. (3)若 =( ),则 �� =( ). 两个向量共线的充要条件: (1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= . (2) 若 =( ),b=( )则 ‖b . 平面向量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2. 2.P分有向线段 所成的比: 设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比. 当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0; 分点坐标公式: 3. 向量的数量积: (1).向量的夹角: (2).两个向量的数量积: (3).向量的数量积的性质: (4) .向量的数量积的运算律: 4.主要思想与方法: 本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等.由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点.2023-05-14 14:25:231
那位高手把关于向量的所有公式列出来!越详细越好!最好每一条公式都解释!
向量加法与减法的几何表示:平行四边形法则、三角形法则。 向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律); +0= +(- )=0. 1.实数与向量的积:实数 与向量 的积是一个向量。 (1)| |=| |•| |; (2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0. (3)若 =( ),则 • =( ). 两个向量共线的充要条件: (1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= . (2) 若 =( ),b=( )则 ‖b . 平面向量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2. 2.P分有向线段 所成的比: 设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。 当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0; 分点坐标公式: 3. 向量的数量积: (1).向量的夹角: (2).两个向量的数量积: (3).向量的数量积的性质: (4) .向量的数量积的运算律: 4.主要思想与方法: 本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。2023-05-14 14:25:291
向量角度计算公式是什么?
平面向量夹角公式:cos=(ab的内积)/(|a||b|)(1)上部分:a与b的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2(2)下部分:是a与b的模的乘积:设a=(x1,y1),b=(x2,y2),则(|a||b|)=根号下(x1平方+y1平方)*根号下(x2平方+y2平方)向量的夹角就是向量两条向量所成角。这里应当注意,向量是具有方向性的。BC与BD是同向,所以夹角应当是60°。BC和CE可以把两条向量移动到一个起点看,它们所成角为一个钝角,120°。余弦公式A1X+B1Y+C1=0........(1)A2X+B2Y+C2=0........(2)则(1)的方向向量为u=(-B1,A1),(2)的方向向量为v=(-B2,A2)由向量数量积可知,cosφ=u·v/|u||v|,即:两直线夹角公式:cosφ=A1A2+B1B2/[√(A1^2+B1^2)√(A2^2+B2^2)]注:k1,k2分别L1,L2的斜率,即tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)2023-05-14 14:25:361
高中数学全部公式有哪些?
由于高中数学公式很难在这里打出来,现提供一个网站,里面有高中所有的数学公式和概念http://www.study168.net/UploadFiles/200584143559207.doc2023-05-14 14:25:523
【高考】有没有哪位大哥能整理一个高考数学(文科)会用到的所有公式给我。。。麻烦了。。。拜托了。。
小兄弟,你的提问证明你不喜看书,也不懂看书的重要性,因为你的问题答案就在高中数学5本书里,你认认真真的把课本看看应付高考足矣,因为书上的公式都全着呢,你又何必在这求人帮你总结呢?我不是说你不该在这提问,而是怕你不好好看书,却老想着走捷径成功,这是很不现实的,“与其临渊羡鱼,不如退而结网。”当你塌下心来把书看透时,就是你功德圆满时!祝你学好数学!2023-05-14 14:26:023
高中阶段所有详细数学公式及例题
特别说明由于各方面情况的不断调整与变化,新课程教育在线提供的考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。2023-05-14 14:26:122
投影向量的计算公式是什么?
投影向量的计算公式:向量a·向量b=|a|*|b|*cosΘ。平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。向量投影:投影指图形的影子投到一个面或一条线上。投影就是物体在太阳光的照射下在地面形成的影子。当太阳光与地面垂直时是正投影,这就是线性代数中研究的投影。当物体与地面垂直时,影子长度为0。设两个非零向量a与b的夹角为θ,则将|b|·cosθ叫作向量b在向量a方向上的投影或称标投影。一个向量在另一个向量方向上的投影是一个数量称投影向量。向量积,别称外积、叉积、矢积、叉乘,是在向量空间中向量的二元运算。它的运算结果是一个向量而不是一个标量,并且两个向量的叉积与这两个向量和垂直。其通常应用于物理学光学和计算机图形学中。2023-05-14 14:26:191
高中平面向量
向量的概念 既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。向量的几何表示 具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。(AB是印刷体,也就是粗体字母,书写体是上面加个→) 有向线段AB的长度叫做向量的模,记作|AB|。 有向线段包含3个因素:起点、方向、长度。 相等向量、平行向量、共线向量、零向量、单位向量: 长度相等且方向相同的向量叫做相等向量。 两个方向相同或相反的非零向量叫做平行向量, 向量a、b平行,记作a//b,零向量与任意向量平行,即0//a, 在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量) 长度等于0的向量叫做零向量,记作0。 零向量的方向是任意的;且零向量与任何向量都垂直。 长度等于1个单位长度的向量叫做单位向量。平面向量的坐标表示 在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得 a=λ1i+λ2j 我们把(x,y)叫做向量a的(直角)坐标,记作 a=(x,y), 其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。 在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。向量的运算 加法运算 向量加法的定义 已知向量a、b,在平面上任意取一点A,作AB=a,BC=b,再作向量AC,则向量AC叫做a与b的和,记做a+b,即a+b=AB+BC=AC AB+BC=AC,这种计算法则叫做向量加法的三角形法则。(首尾相连,连接首尾,指向终点) 已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a,有:0+a=a+0=a。 |a+b|≤|a|+|b|。 向量的加法满足所有的加法运算定律。 减法运算 AB-AC=CB,这种计算法则叫做向量减法的三角形法则。(共起点,连终点,方向指向被减向量) 与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。 (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。 数乘运算 实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。 设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。 向量的加法运算、减法运算、数乘运算统称线性运算。坐标运算 已知a=(x1,y1),b=(x2,y2),则 a+b=(x1i+y1j)+(x2i+y2j) =(x1+x2)i+(y1+y2)j 即 a+b=(x1+x2,y1+y2)。 同理可得 a-b=(x1-x2,y1-y2)。 这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。 由此可以得到: 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。 根据上面的结论又可得 若a=(x,y),则λa=(λx,λy) 这就是说,实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。向量的数量积 已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a•b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。 a•b的几何意义:数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。 两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2 向量的数量积的性质 (1)a·a=∣a∣^2≥0 (2)a·b=b·a (3)k(ab)=(ka)b=a(kb) (4)a·(b+c)=a·b+a·c (5)a·b=0<=>a⊥b (6)a=kb<=>a//b (7)e1·e2=|e1||e2|cosθ=cosθ 如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数λ、μ,使a= λ*e1+ μ*e2,(λ+μ=1)。2023-05-14 14:26:343
谁能教教我有关向量的知识?
向量 在初中课改教材初三课本中学习 高一必修4里学到[编辑本段]数量的定义 数学中,把只有大小但没有方向的量叫做数量(或纯量),物理中常称为标量。[编辑本段]向量的定义 数学中,既有大小又有方向的量叫做向量(亦称矢(shi 3声)量)。 注:在线性代数中的向量是指n个实数组成的有序数组,称为n维向量。α=(a1,a2,…,an) 称为n维向量.其中ai称为向量α的第i个分量。 ("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)。[编辑本段]向量的表示 1、代数表示:一般印刷用黑体小写字母α、β、γ … 或a、b、c … 等来表示,手写用在a、b、c…等字母上加一箭头表示。 2、几何表示:向量可以用有向线段来表示。有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。(若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。这种具有方向和长度的线段叫做有向线段。) 3、坐标表示:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。[编辑本段]向量的模和向量的数量 向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。 注: 1、向量的模是非负实数,是可以比较大小的。 2、因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。例如,“向量AB>向量CD”是没有意义的。[编辑本段]特殊的向量 单位向量 长度为单位1的向量,叫做单位向量.与向量a同向且长度为单位1的向量,叫做a方向上的单位向量,记作a0,a0=a/|a|。 零向量 长度为0的向量叫做零向量,记作0.零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。 相等向量 长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b. 规定:所有的零向量都相等. 当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。 自由向量 始点不固定的向量,它可以任意的平行移动,而且移动后的向量仍然代表原来的向量。 在自由向量的意义下,相等的向量都看作是同一个向量。 数学中只研究自由向量。 滑动向量 沿着直线作用的向量称为滑动向量。 固定向量 作用于一点的向量称为固定向量(亦称胶着向量)。 位置向量 对于坐标平面内的任意一点P,我们把向量OP叫做点P的位置向量,记作:向量P。[编辑本段]相反向量 与a长度相等、方向相反的向量叫做a的相反向量,记作-a。有 -(-a)=a; 零向量的相反向量仍是零向量。 平行向量 方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a‖b. 零向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定:零向量与任一向量平行. 平行于同一直线的一组向量是共线向量。 共面向量 平行于同一平面的三个(或多于三个)向量叫做共面向量。 空间中的向量有且只有一下两种位置关系:⑴共面;⑵不共面。 只有三个或三个以上向量才谈共面不共面。[编辑本段]向量的运算 设a=(x,y),b=(x",y")。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a·b=x·x"+y·y"。 向量的数量积的运算律 a·b=b·a(交换律); (λa)·b=λ(a·b)(关于数乘法的结合律); (a+b)·c=a·c+b·c(分配律); 向量的数量积的性质 a·a=|a|的平方。 a⊥b 〈=〉a·b=0。 |a·b|≤|a|·|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。 2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。 3、|a·b|≠|a|·|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点 定比分点公式(向量P1P=λ·向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ·向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心[编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy"-x"y=0。 零向量0平行于任何向量。[编辑本段]向量垂直的充要条件 a⊥b的充要条件是 a·b=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量.[编辑本段]向量的来源 向量(或矢量),最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿. 课本上讨论的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型. 从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系. 向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学. 但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析. 三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪8O年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具.习题:http://www.zbjy.cn/content/200804/40485.shtmlhttp://www.ttshopping.net/Soft/softdown.asp?softid=1174442023-05-14 14:26:521
谁知道所有高中数学公式大全,网址啊
高中数学合集百度网盘下载链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ?pwd=1234提取码:1234简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。2023-05-14 14:27:024