- 北营
-
Ax+By+C=0坐标(Xo,Yo),那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)。
点到直线的距离公式
直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:
d=│AXo+BYo+C│/√(A²+B²)
公式描述:
公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。
连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。
扩展资料:
空间点到直线距离
点M(1,2,3)到直线{x+y-z=1,2x+z=3}的距离是____?
由两平面可得z=3-2x,y=4-3x。因此直线方程为:x/(-1)=(y-4)/3=(z-3)/2,
直线的方向向量为(-1,3,2) 。可设直线上一点N(-t,3t+4,2t+3),MN向量为(-t-1,3t+2,2t)
若MN垂直于直线,则(-1,3,2)*(-t-1,3t+2,2t)=0。可解得t=-1/2
MN的模长sqr(6)/2即为所求。
- 余辉
-
设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:
过程:
1.设直线l的方程为Ax+By+Cz+D=0 显然它与直线Ax+By+Cz=(A,B,C)(x,y,z)=0平行. 而后者从表达式可以看出它和向量(A,B,C)垂直.
2.考虑直线外一点P和直线上一点Q,则有向量PQ,如果它垂直于直线l,那么PQ的长度就是点到直线的距离。如果它不垂直于直线l,那么设P到直线l的垂足为R,由直角三角形的关系,PQcost=PR,cost是PQ与PR夹角的余弦,而PR与(A,B,C)都垂直于l,因此它俩平行。于是,夹角t可由PQ和(A,B,C)得出。
3.现在,P已知,Q可任取,(A,B,C)已知,故t已知。于是PR的长度已知,于是点到直线的距离已知。将以上过程用坐标写出来就得到了点到直线的距离公式了。
- hi投
-
点到线的距离公式如下:
设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:
定义法证明:
根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。
设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y_=(B/A)(x-x_)。
把l和l"联立得l与l"的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:
PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^2
点到直线的距离公式
点到直线的距离公式:d=│AXo+BYo+C│/√(A²+B²)。直线Ax+By+C=0,坐标(Xo,Yo)那么这点到这直线的距离就为:d=│AXo+BYo+C│/√(A²+B²)。公式描述:公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。推导点到直线的距离公式坐标方法、向量方法、其他方法。1、用坐标方法推导点到直线的距离公式求过P与直线l垂直的直线,且与直线l交于点Q。然后,求出两直线交点Q的坐标。最后,利用两点间距离公式求出线段PQ的长度。这是最常见的一种方法,也是基本方法。这种方法思路自然,但运算量较大。2、用向量方法推导点到直线的距离公式此种方法模仿教材33页,应用向量方法,求点到直线距离公式。此种方法采用直线的任意方向向量。3、其他推导方法为了得到PQ,考虑与坐标轴平行的线段,把它转化为与坐标轴平行的线段关系。这种方法充分借助面积,直角三角形面积两种不同表示方法。此种方法思路清晰,运算量依然很大,包括求交点的坐标,两条直角边的长度,斜边的长度等。2023-05-11 20:26:321
点到直线的距离公式是什么?
2023-05-11 20:26:452
数学里点到直线的距离公式是什么?
点到线的距离公式如下:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:定义法证明:根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y_=(B/A)(x-x_)。把l和l"联立得l与l"的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^22023-05-11 20:27:093
点到直线距离公式是什么?
距离公式:d=|C1-C2|/√(A^2+B^2)公式由来:设两条直线方程为Ax+By+C1=0、Ax+By+C2=0。两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,则满足Aa+Bb+C1=0,即Ab+Bb=-C1。由点到直线距离公式,P到直线Ax+By+C2=0距离为d=|Aa+Bb+C2|/√(A^2+B^2)=|-C1+C2|/√(A^2+B^2)=|C1-C2|/√(A^2+B^2)扩展资料:点到直线距离公式介绍:一、总公式:设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有s=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)d=√((x1-x0)²+(y1-y0)²+(z1-z0)²-s²)二、引申公式:公式①:设直线l1的方程为 ;直线l2的方程为 则 2条平行线之间的间距:公式②:设直线l1的方程为 ;直线l2的方程为 则 2条直线的夹角 ,2023-05-11 20:27:261
点到直线距离公式是什么?
│AXo+BYo+C│/√(A²+B²)。连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)。从直线外一点到这直线的垂线段的长度叫做点到直线的距离。而这条垂线段的距离是任何点到直线中最短的距离。直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)。直线外一点与直线上各点连接的所有线段中,垂线段最短。点到直线的距离叫做垂线段。扩展资料1. 数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。2. 所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系。(2)函数与图象的对应关系。(3)曲线与方程的对应关系。(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等。(5)所给的等式或代数式的结构含有明显的几何意义。如等式 。3. 纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究"以形助数"。4. 数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。5、数形结合思想的论文数形结合思想简而言之就是把数学中"数"和数学中"形"结合起来解决数学问题的一种数学思想。数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过"数"与"形"之间的对应和转换来解决数学问题。在中学数学的解题中,主要有三种类型:以"数"化"形"、以"形"变"数"和"数""形"结合。参考资料:点到直线距离的百度百科2023-05-11 20:28:241
点到直线的距离公式
直线Ax+By+C=0 坐标P(Xo,Yo)那么这P点到这直线的距离就为:d=│AXo+BYo+C│/√(A²+B²)。从直线外一点到这直线的垂线段的长度叫做点到直线的距离。而这条垂线段的距离是任何点到直线中最短的距离。.。直线外一点与直线上各点连接的所有线段中,垂线段最短。扩展资料一、点线距离求法:1、距离公式2、在三角形中求3、转化为向量的摸长问题.二、点面距离有:1、直接法(即找出点面距离,在三角形中求),2、体积转换法,3、向量法,4、转化法(即转化为点线距离,线线距离,线面距离,面面距离)三、平面点到直线距离 :点(x0, y0),直线:A*x+B*y+C=0,距离d。 d=|A*x0+B*y0+C|/√(A*A+B*B)四、空间点到平面距离 :点(x0, y0, z0),平面:A*x+B*y+C*z+D=0,距离d。 d=|A*x0+B*y0+C*z0+D|/√(A*A+B*B+C*C)参考资料参考资料:点到直线距离-百度百科2023-05-11 20:28:561
点到直线的距离公式?
直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:公式描述:公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。扩展资料:点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。目标在于通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识。一、总公式:设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有s=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)d=√((x1-x0)²+(y1-y0)²+(z1-z0)²-s²)二、引申公式:公式①:设直线l1的方程为 ;直线l2的方程为 则 2条平行线之间的间距: 公式②:设直线l1的方程为 ;直线l2的方程为 则 2条直线的夹角 两点间距离公式常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一。两点间距离公式叙述了点和点之间距离的关系。直线上两点间的距离公式:设直线 的方程为 ,点 , 为该线上任意两点,则这一公式即所谓圆锥曲线的弦长公式。若记 为直线AB的倾斜角,则同时,若已知直线公式和其中一个点,并且给定了距离,可以反求另一个点的坐标。水平距离是指水平方向上的距离,也即没有高度差的距离。物理上是相对于地面作一平行线,分别过两点作垂线,垂足的距离就是水平距离。地理上,水平距离等高线就是在平面图纸上相邻等高线之间线与线之间的距离。利用经纬仪测定两点间的水平距离和高差,传统的方法是利用望远镜的视距丝进行视距测量,此法误差大,计算公式又是一近似推导式,测量精度较低。用钢尺、水准仪直接量测水平距离和高差又费工费时,工作量大,尤其在地形复杂、障碍物多、起伏多变的地区,同样也会带来较大的误差。本文推出一种利用经纬仪测量竖直角、间接测算水平距离和高差的新方法,既提高精度,又提高功效,此方法称为“倾角法”。2023-05-11 20:29:041
点到直线距离公式是什么?
点到直线距离公式是:d=│(Axo+Byo+C)/√(A²+B²)│设直线L的方程为Ax+By+C=0,点P的坐标为(Xo,Yo),则点P到直线L的距离为|AXo+BYo+C|/√(A²+B²)。考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有d=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)。解析:过点做直线的垂线,所得的垂线段即点到直线的距离。如若直线的方程为:ax+by+c=0,点坐标为:(x,y)则有距离公式|ax+by+c|/√(a^2+b^2)点到直线距离是指垂线段的长。求出过点M且与已知直线aX+bY+c=0(a、b均不为零)垂直的直线方程,而后联立方程组,求出垂足N点的坐标,然后利用两点间的距离公式求出点到直线的距离。2023-05-11 20:29:111
点到直线的距离公式是什么?
点到直线的距离公式为:证明方法:根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线bai段的长,设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y₀=(B/A)(x-x₀)把l和l"联立得l与l"的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2), (A^2y₀-ABx₀-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2=(Ax₀+By₀+C)^2/(A^2+B^2)所以PQ=|Ax+By+C|/√(A^2+B^2),公式得证。扩展资料点到直线的距离:在直线L上取两点A,B,设C为直线外一点,设C到AB的距离为d,CA在直线L上投影的长度为h,那么由勾股定理,h^2 + d^2 = |AC|^2,再把h = |AB*AC|/|AB| 代入即可。点到平面的距离:设平面方程为Ax + By + Cz + D = 0,则法向量n = (A,B,C),设P为平面上的一点,Q为平面外的一点,那么Q到平面的距离就是向量PQ在法向量n方向上的投影,即|n * PQ| / |n|2023-05-11 20:29:251
点到直线的距离公式是什么?
点到直线的距离常用公式:设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:d=│AXo+BYo+C│ / √(A²+B²)。点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。目标在于通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识。扩展资料距离=|kx1-y1+b|/√[k²+(-1)²] 点到直线距离公式的推导如下:对于点P(x0,y0)作PQ垂直直线Ax+By+C=0于Q作PM平行Y轴,交直线于M;作PN平行X轴,交直线于N设M(x1,y1)x1=x0,y1=(-Ax0+C)/B.PM=|y0-y1|=|y0+(Ax0+C)/B|=|(Ax0+By0+C)/B|同理,设N(x2,y2).y2=y0,x2=(-By0+C)/APN=|(Ax0+By0+C)/A|PM、PN为直角三角形PMN两直角边,PQ为斜边MN上的高PQ=PM×PN/MN=PM×PN/√(PM²+PN²)=|Ax0+By0+C|/√(A²+B²)参考资料:百度百科——点到直线距离2023-05-11 20:29:561
点到直线的距离公式是什么
想要了解点到直线的距离公式的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“点到直线的距离公式是什么”,本文仅供参考,持续关注本站将可以持续获取更多的资讯! 点到直线的距离公式 点到直线的距离,即过这一点做目标直线的垂线,由这一点至垂足的距离。 设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为: 考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有s=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)。 d=√((x1-x0)²+(y1-y0)²+(z1-z0)²-s²)。 拓展阅读:点到直线的距离定义 从直线外一点到这条直线的垂线段长度,叫点到直线的距离。 点和直线的位置关系 点与直线只有两种位置关系:一种是点在直线上,一种是点在直线外。点是最简单的形,是几何图形最基本的组成部分。在空间中作为1个零维的对象。在其它领域中,点也作为讨论的对象。直线由无数个点构成。直线是面的组成成分,并继而组成体。没有端点,向两端无限延长,长度无法度量。 过一点可以画几条直线 直线由无数个点构成。直线是面的组成成分,并继而组成体。没有端点,向两端无限延长,长度无法度量。经过一个点可以画无数条直线。经过两个点可以画一条直线。 直线与线段和射线的区别 1、直线无端点,长度无限,向两方无限延伸。 2、射线只有一个端点,长度无限,向一方无限延伸。 3、线段有两个端点,长度有限。2023-05-11 20:30:031
点到直线的距离公式是什么?
点到线的距离公式如下:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:定义法证明:根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y_=(B/A)(x-x_)。把l和l"联立得l与l"的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^22023-05-11 20:30:133
点到直线的距离计算公式是什么?
│AXo+BYo+C│/√(A²+B²)。从直线外一点到这直线的垂线段的长度叫做点到直线的距离。而这条垂线段的距离是任何点到直线中最短的距离。直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)。直线外一点与直线上各点连接的所有线段中,垂线段最短。[1]点到直线的距离叫做垂线段。知识与目标折叠编辑本段(1)理解点到直线距离公式的推导过程,并且会使用公式求出定点到定直线的距离;(2)了解两条平行直线的距离公式,并能推导过程与方法折叠编辑本段(1)通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识;(2)把两条平行直线的距离关系转化为点到直线的距离。公式推导折叠编辑本段设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:2023-05-11 20:30:331
点到直线的距离公式是什么?
直线Ax+By+C=0 坐标P(Xo,Yo)那么这P点到这直线的距离就为:d=│AXo+BYo+C│/√(A²+B²)。从直线外一点到这直线的垂线段的长度叫做点到直线的距离。而这条垂线段的距离是任何点到直线中最短的距离。.。直线外一点与直线上各点连接的所有线段中,垂线段最短。扩展资料一、点线距离求法:1、距离公式2、在三角形中求3、转化为向量的摸长问题.二、点面距离有:1、直接法(即找出点面距离,在三角形中求),2、体积转换法,3、向量法,4、转化法(即转化为点线距离,线线距离,线面距离,面面距离)三、平面点到直线距离 :点(x0, y0),直线:A*x+B*y+C=0,距离d。 d=|A*x0+B*y0+C|/√(A*A+B*B)四、空间点到平面距离 :点(x0, y0, z0),平面:A*x+B*y+C*z+D=0,距离d。 d=|A*x0+B*y0+C*z0+D|/√(A*A+B*B+C*C)参考资料参考资料:点到直线距离-百度百科2023-05-11 20:30:422
直线与点的距离公式
设点为(x0,y0) 直线为:Ax+By+C=0 ∴ 点到直线的距离公式: d=|Ax0+By0+C|/√A²+B²2023-05-11 20:30:501
点到直线的距离公式是什么公式?
点到直线距离公式是Ax+By+C=0。直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。点到直线距离的知识与技能理解点到直线距离公式的推导过程,并且会使用公式求出定点到定直线的距离,了解两条平行直线的距离公式。并能推导平方过程与方法目标过程与方法目标通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用计算来处理图形的意识,把两条平行直线的距离关系转化为点到直线距离。2023-05-11 20:30:561
点到直线距离的公式
点到直线的距离,即过这一点做目标直线的垂线,由这一点至垂足的距离。证明方法函数法证:点P到直线上任意一点的距离的最小值就是点P到直线的距离。在上取任意点用两点的距离公式有,为了利用条件上式变形一下,配凑系数处理得:当且仅当时取等号所以最小值就是。不等式法证:点P到直线上任意一点Q的距离的最小值就是点P到直线的距离。由柯西不等式:当且仅当时取等号所以最小值就是。转化法证:设直线的倾斜角为过点P作PM∥轴交于M显然所以易得∠MPQ=或∠MPQ=在两种情况下都有所以 三角形法证:P作PM∥轴交于M,过点P作PN∥轴交于N由解法三知;同理得在Rt△MPN中,PQ是斜边上的高2023-05-11 20:31:091
点到直线的距离公式是怎么得出来的?
图里没题目,我估计给了那条斜线的解析式吧黄圈里的是分别把Xo, Yo代入斜线解析式中2023-05-11 20:31:543
怎样求点到直线的距离公式?
若有线为Ax+By+C=0,点坐标为(Xo,Yo),那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)过程与方法目标:(1)通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识;(2)把两条平行直线的距离关系转化为点到直线距离。扩展资料:定义法证:根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长,设点P到直线的垂线为l",垂足为Q则l"的斜率为B/A则l"的解析式为y-y₀=(B/A)(x-x₀)把l和l"联立得l与l"的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2),,(A^2y₀-ABx₀-BC)/(A^2+B^2))由两点间距离公式得PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2=(Ax₀+By₀+C)^2/(A^2+B^2)所以PQ=|Ax₀+By₀+C|/√(A^2+B^2),公式得证。2023-05-11 20:32:061
急 空间中的点到直线的距离公式是什么啊?
急 空间中的点到直线的距离公式是什么啊? 求解点到直线(或面)的距离,通常三种方案 【1】直接法,找直角三角形,这个点和直线都在直角三角形内。 【2】建立空间座标系,用向量法。 【3】等体积法。 希望我的回答能够帮助你 空间点到直线的距离公式啊,怎么推出 空间一般直线的方程是: (x-x0)/a=(y-y0)/b=(z-z0)/c, 这是一条过(x0,y0,z0),方向向量为{a,b,c}的直线. 假设已知点的座标是A(e,f,g),过A点,且与{a,b,c}垂直的平面是, a(x-e)+b(y-f)+c(z-g)=0,直线(x-x0)/a=(y-y0)/b=(z-z0)/c,与这个平面的交点是B, 再由两点的距离公式求出AB,即得. 学生,不懂可以问,满意。 空间中点到直线的距离等于点到直线的法向量的距离。 对吗? 您好 由两平面z=3-2xy=4-3x直执行绪:x/(-1)=(y-4)/3=(z-3)/2 直线向向量(-1,3,2) 设直线点N(-t,3t+4,2t+3)MN向量(-t-1,3t+2,2t) 若MN垂直于直线则(-1,3,2)*(-t-1,3t+2,2t)=0解t=-1/2 MN模sqr(6)/2即所求 空间点到直线的距离公式啊,怎么推出来 用向量的外积来做。 沿着直线的向量随便取一个设为a 在直线上任意取一个点,求出该点到已知点的向量b 那么axb得到的向量的模,等于|a||b|sinθ 其中|b|sinθ就是所求。 求助:点到空间任一直线的距离公式? 设直线为 AX+BY+CZ+D=0 距离l 定点(x1,y1,z1) l=abs(AX1+BY1+CZ1+D)/SQRT(A^2+B^2+C^2) ABS=绝对值 sqrt=平方根 空间向量点到直线的距离 已知该点和方向向量可以写出过该点与直线平行的的另一直线,用平行线间距离公式就能求出距离,设出垂足点座标,根据点在线上,两点距离为第一步所述距离,以及两点构成直线于方向向量垂直可列出方程求解。 两点间的距离和点到直线的距离和抛物线的公式 两点间距离公式:l=根号[(x1-x2)^2+(y1-y2)^2] 点到直线距离:l=|ax+by+c|/根号(A^2+B^2) 抛物线公式:x^2=2py; y^2=2px; 望采纳哈.. 符号手打不方便 点到直线的距离公式中直线Ax+By+C是什么意思 就是你把直线方程全部弄到一边去后得到的形式 如y=3x+4变成3x-y+4=0 A就是3 B是-1 C是4 在函式中“点到直线的线段的距离公式是什么?” 设点D(x0,y0)到直线的距离为d,线段所在直线的方程为:Ax+By+C=0.(一定要把直线的方程化为一般形式), 则 d=|Ax0+By0+C|/√(A^2+B^2). ----这就是平面上点到直线的距离公式。 点到直线的距离公式如何推导? 去这里: :wenku.baidu./view/9ef3a94d2b160b4e767fcfa9.2023-05-11 20:32:191
向量点到直线的距离公式?
向量点到直线的距离公式是:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:同理可知,当P(x0,y0),直线L的解析式为y=kx+b时,则点P到直线L的距离为:考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有d=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)。证明方法把平面的直线方程Ax+By+C=0,看成是一个xyz空间的方程,它是一个无z方程,也就是个直线柱面(即平面)的方程。然后求点(x0,y0,0)到这个平面的距离(因为它就=(xy面中点(x0,y0)到Ax+By+C=0的距离,因为这相当于点到空中那个平面在xy的投影线的距离)。而根据空间中点(x0,y0,z0)到平面Ax+By+Cz+D=0的距离公式:d=|Ax0+By0+Cz0+D|/[√(A^2+B^2+C^2)]。2023-05-11 20:32:251
点到直线距离公式
画垂线段2023-05-11 20:32:514
点到直线的距离公式
点到线的距离公式如下:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:定义法证明:根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y_=(B/A)(x-x_)。把l和l"联立得l与l"的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^22023-05-11 20:33:075
点到直线的距离公式推导过程是怎么样的?
点到直线的距离公式推导过程.希望有用.2023-05-11 20:33:282
求点到直线的距离公式
axbyc=0x0,y0|ax0by0c|/√(a^2b^2)已知一点a(a,b)和一直线ly=k1xb1,直线my=k2xb2设直线过点a且垂直于已知直线l,则k1*k2=-1,把a带入m,求出m,再把l和m联立,求出交点b,求a到l的距离就是点a到点b的距离2023-05-11 20:33:512
点到直线距离公式?
直线Ax+By+C=0 坐标P(Xo,Yo)那么这P点到这直线的距离就为:d=│AXo+BYo+C│/√(A²+B²)。从直线外一点到这直线的垂线段的长度叫做点到直线的距离。而这条垂线段的距离是任何点到直线中最短的距离。.。直线外一点与直线上各点连接的所有线段中,垂线段最短。扩展资料一、点线距离求法:1、距离公式2、在三角形中求3、转化为向量的摸长问题.二、点面距离有:1、直接法(即找出点面距离,在三角形中求),2、体积转换法,3、向量法,4、转化法(即转化为点线距离,线线距离,线面距离,面面距离)三、平面点到直线距离 :点(x0, y0),直线:A*x+B*y+C=0,距离d。 d=|A*x0+B*y0+C|/√(A*A+B*B)四、空间点到平面距离 :点(x0, y0, z0),平面:A*x+B*y+C*z+D=0,距离d。 d=|A*x0+B*y0+C*z0+D|/√(A*A+B*B+C*C)参考资料参考资料:点到直线距离-百度百科2023-05-11 20:33:571
初三点到直线的距离公式是什么?
点到线的距离公式如下:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:定义法证明:根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y_=(B/A)(x-x_)。把l和l"联立得l与l"的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^22023-05-11 20:34:062
点到直线的距离公式是什么
(Ax+By+C)的绝对值/根号下(A的平方+B的平方)2023-05-11 20:34:383
怎样计算空间向量点到直线距离公式?
简单分析一下,答案如图所示2023-05-11 20:34:572
点到直线的距离公式?
点到线的距离公式如下:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:定义法证明:根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y_=(B/A)(x-x_)。把l和l"联立得l与l"的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^22023-05-11 20:37:332
如何用向量推出点到直线的距离公式
点到线的距离公式如下:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:定义法证明:根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y_=(B/A)(x-x_)。把l和l"联立得l与l"的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^22023-05-11 20:37:452
高中数学点到直线的距公式是怎么推导
高中数学点到直线的距公式的推导:在人教大纲版高二数学上册中,关于点到直线距离公式的推导方法,教材介绍了两种推导方法,并详细给出了利用直角三角形的面积公式推导得出点到直线的距离公式的具体过程。其实关于点到直线的距离公式的推导方法,除上述方法之外,还有其它很多方法,在这些方法中,向量法(利用平面向量的有关知识来推导的方法)是一种行之有效的推导方法。其推导思路简单明了、运算量也较小。上述推导方法利用了向量的数量积知识来进行推导出了点到直线的距离公式,这是一种比较重要有数学思想方法。我们还可将这种思想方法进一步推广到在立体几何中,如何利用空间向量解决求点到平面的距离问题。2023-05-11 20:37:581
直线与直线之间的距离公式是什么?
直线与直线的距离公式:Ax+By+C1=0,Ax+By+C2=0,设两平行直线是Ax+By+C1=0,Ax+By+C2=0。那么距离是d=|C1-C2|/√(A^2+B^2)。设两条直线方程为:Ax+By+C1=0,Ax+By+C2=0。点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。两点间距离公式:两点间距离公式常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一。两点间距离公式叙述了点和点之间距离的关系。2023-05-11 20:38:111
点到点的距离公式
两点之间的距离公式为 d=根号[(x1-x2)^2+(y1-y2)^2]。两点间距离公式常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一。两点间距离公式叙述了点和点之间距离的关系。两点的坐标是(x1,y1)和(x2,y2),则两点之间的距离公式为d=根号[(x1-x2)^2+(y1-y2)^2]。两点间距离公式推论已知AB两点坐标为A(x1,y1),B(x2,y2),过A做一直线与X轴平行,过B做一直线与Y轴平行,两直线交点为C,则AC垂直于BC(因为X轴垂直于Y轴),则三角形ACB为直角三角形。由勾股定理得AB^2=AC^2+BC^2,故AB=根号下AC^2+BC^2,即两点间距离公式,直线Ax+By+C=0坐标(x0,y0)那么这点到这直线的距离就为:d=│Ax0+By0+C│/根号(A^2+B^2)。公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0),连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。2023-05-11 20:38:321
点到直线的距离公式是什么?
距离=|kx1-y1+b|/√[k²+(-1)²] 点到直线距离公式的推导如下:对于点P(x0,y0)作PQ垂直直线Ax+By+C=0于Q作PM平行Y轴,交直线于M;作PN平行X轴,交直线于N设M(x1,y1)x1=x0,y1=(-Ax0+C)/B.PM=|y0-y1|=|y0+(Ax0+C)/B|=|(Ax0+By0+C)/B|同理,设N(x2,y2).y2=y0,x2=(-By0+C)/APN=|(Ax0+By0+C)/A|PM、PN为直角三角形PMN两直角边,PQ为斜边MN上的高PQ=PM×PN/MN=PM×PN/√(PM²+PN²)=|Ax0+By0+C|/√(A²+B²)祝你学习进步,望采纳2023-05-11 20:38:591
点到直线的距离公式是什么?
直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:公式描述:公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。扩展资料:公式整理:一、总公式:设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有s=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)d=√((x1-x0)²+(y1-y0)²+(z1-z0)²-s²)二、引申公式:公式①:设直线l1的方程为直线l2的方程为则 2条平行线之间的间距:公式②:设直线l1的方程为直线l2的方程为则 2条直线的夹角证明方法:1、函数法:证:点P到直线上任意一点的距离的最小值就是点P到直线的距离。在上取任意点用两点的距离公式有,为了利用条件上式变形一下,配凑系数处理得:当且仅当时取等号所以最小值就是。2、不等式法:证:点P到直线上任意一点Q的距离的最小值就是点P到直线的距离。由柯西不等式:当且仅当时取等号所以最小值就是。参考资料:百度百科-点到直线的距离2023-05-11 20:39:071
点到直线的距离公式是什么?
直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:公式描述:公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。扩展资料:公式整理:一、总公式:设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有s=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)d=√((x1-x0)²+(y1-y0)²+(z1-z0)²-s²)二、引申公式:公式①:设直线l1的方程为直线l2的方程为则 2条平行线之间的间距:公式②:设直线l1的方程为直线l2的方程为则 2条直线的夹角证明方法:1、函数法:证:点P到直线上任意一点的距离的最小值就是点P到直线的距离。在上取任意点用两点的距离公式有,为了利用条件上式变形一下,配凑系数处理得:当且仅当时取等号所以最小值就是。2、不等式法:证:点P到直线上任意一点Q的距离的最小值就是点P到直线的距离。由柯西不等式:当且仅当时取等号所以最小值就是。参考资料:百度百科-点到直线的距离2023-05-11 20:39:161
点到直线距离公式
点到直线的距离公式是:设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(x0,y0),则点 P 到直线 L 的距离为:同理可知,当P(x0,y0),直线L的解析式为y=kx+b时,则点P到直线L的距离为:唯猜禅考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有d=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²兆卖+n²)。证明方法:定义法证:根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长,设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y₀=(B/A)(x-x₀)把l和l"联立得l与l"的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2), (A^2y₀-ABx₀-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2+[(-ABx₀-B^2y₀指尘-BC)/(A^2+B^2)]^2=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2=(Ax₀+By₀+C)^2/(A^2+B^2)所以PQ=|Ax+By+C|/√(A^2+B^2),公式得证。2023-05-11 20:39:251
点到直线的距离公式?
点到直线的距离常用公式:设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:d=│AXo+BYo+C│ / √(A²+B²)。点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。目标在于通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识。扩展资料距离=|kx1-y1+b|/√[k²+(-1)²] 点到直线距离公式的推导如下:对于点P(x0,y0)作PQ垂直直线Ax+By+C=0于Q作PM平行Y轴,交直线于M;作PN平行X轴,交直线于N设M(x1,y1)x1=x0,y1=(-Ax0+C)/B.PM=|y0-y1|=|y0+(Ax0+C)/B|=|(Ax0+By0+C)/B|同理,设N(x2,y2).y2=y0,x2=(-By0+C)/APN=|(Ax0+By0+C)/A|PM、PN为直角三角形PMN两直角边,PQ为斜边MN上的高PQ=PM×PN/MN=PM×PN/√(PM²+PN²)=|Ax0+By0+C|/√(A²+B²)参考资料:百度百科——点到直线距离2023-05-11 20:39:541
点到直线的距离公式
点到直线的距离公式为:证明方法:根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线bai段的长,设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y₀=(B/A)(x-x₀)把l和l"联立得l与l"的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2), (A^2y₀-ABx₀-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2=(Ax₀+By₀+C)^2/(A^2+B^2)所以PQ=|Ax+By+C|/√(A^2+B^2),公式得证。扩展资料点到直线的距离:在直线L上取两点A,B,设C为直线外一点,设C到AB的距离为d,CA在直线L上投影的长度为h,那么由勾股定理,h^2 + d^2 = |AC|^2,再把h = |AB*AC|/|AB| 代入即可。点到平面的距离:设平面方程为Ax + By + Cz + D = 0,则法向量n = (A,B,C),设P为平面上的一点,Q为平面外的一点,那么Q到平面的距离就是向量PQ在法向量n方向上的投影,即|n * PQ| / |n|2023-05-11 20:40:031
点到直线的距离公式是什么
│AXo+BYo+C│/√(A²+B²)。连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)。从直线外一点到这直线的垂线段的长度叫做点到直线的距离。而这条垂线段的距离是任何点到直线中最短的距离。直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)。直线外一点与直线上各点连接的所有线段中,垂线段最短。点到直线的距离叫做垂线段。扩展资料1. 数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。2. 所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系。(2)函数与图象的对应关系。(3)曲线与方程的对应关系。(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等。(5)所给的等式或代数式的结构含有明显的几何意义。如等式 。3. 纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究"以形助数"。4. 数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。5、数形结合思想的论文数形结合思想简而言之就是把数学中"数"和数学中"形"结合起来解决数学问题的一种数学思想。数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过"数"与"形"之间的对应和转换来解决数学问题。在中学数学的解题中,主要有三种类型:以"数"化"形"、以"形"变"数"和"数""形"结合。参考资料:点到直线距离的百度百科2023-05-11 20:40:231
点到直线的距离公式
距离公式:d=│(Axo+Byo+C)/√(A²+B²)│公式描述:公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。点到直线的距离,即过这一点做目标直线的垂线,由这一点至垂足的距离。过点做直线的垂线,所得的垂线段即点到直线的距离。 如若直线的方程为:ax+by+c=0,点坐标为:(x,y) 则有距离公式|ax+by+c|/√(a^2+b^2) 点到直线距离是指垂线段的长。求出过点M且与已知直线aX+bY+c=0(a、b均不为零)垂直的直线方程,而后联立方程组,求出垂足N点的坐标,然后利用两点间的距离公式求出点到直线的距离。2023-05-11 20:40:321
点到直线距离公式
点到线的距离公式如下:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:定义法证明:根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y_=(B/A)(x-x_)。把l和l"联立得l与l"的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^22023-05-11 20:40:423
点到线的距离公式
点到线的距离公式如下:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:定义法证明:根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y_=(B/A)(x-x_)。把l和l"联立得l与l"的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^22023-05-11 20:41:061
点到直线的距离公式有哪些?
点到直线的距离常用公式:设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:d=│AXo+BYo+C│ / √(A²+B²)。点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。目标在于通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识。扩展资料距离=|kx1-y1+b|/√[k²+(-1)²] 点到直线距离公式的推导如下:对于点P(x0,y0)作PQ垂直直线Ax+By+C=0于Q作PM平行Y轴,交直线于M;作PN平行X轴,交直线于N设M(x1,y1)x1=x0,y1=(-Ax0+C)/B.PM=|y0-y1|=|y0+(Ax0+C)/B|=|(Ax0+By0+C)/B|同理,设N(x2,y2).y2=y0,x2=(-By0+C)/APN=|(Ax0+By0+C)/A|PM、PN为直角三角形PMN两直角边,PQ为斜边MN上的高PQ=PM×PN/MN=PM×PN/√(PM²+PN²)=|Ax0+By0+C|/√(A²+B²)参考资料:百度百科——点到直线距离2023-05-11 20:41:191
如何用距离公式计算点到两直线间的距离?
设两条直线方程为Ax+By+C1=0Ax+By+C2=0则其距离公式为|C1-C2|/√(A²+B²)推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,则满足Aa+Bb+C1=0,即Ab+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为d=|Aa+Bb+C2|/√(A^2+B^2)=|-C1+C2|/√(A^2+B^2)=|C1-C2|/√(A^2+B^2)2023-05-11 20:41:261
点到一直线的距离公式是怎样的?
设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:过程:1.设直线l的方程为Ax+By+Cz+D=0 显然它与直线Ax+By+Cz=(A,B,C)(x,y,z)=0平行. 而后者从表达式可以看出它和向量(A,B,C)垂直.2.考虑直线外一点P和直线上一点Q,则有向量PQ,如果它垂直于直线l,那么PQ的长度就是点到直线的距离。如果它不垂直于直线l,那么设P到直线l的垂足为R,由直角三角形的关系,PQcost=PR,cost是PQ与PR夹角的余弦,而PR与(A,B,C)都垂直于l,因此它俩平行。于是,夹角t可由PQ和(A,B,C)得出。3.现在,P已知,Q可任取,(A,B,C)已知,故t已知。于是PR的长度已知,于是点到直线的距离已知。将以上过程用坐标写出来就得到了点到直线的距离公式了。2023-05-11 20:41:332
点到直线的距离公式是什么?
点到直线的距离公式是:设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(x0,y0),则点 P 到直线 L 的距离为:同理可知,当P(x0,y0),直线L的解析式为y=kx+b时,则点P到直线L的距离为:考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有d=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)。证明方法:定义法证:根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长,设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y₀=(B/A)(x-x₀)把l和l"联立得l与l"的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2), (A^2y₀-ABx₀-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2=(Ax₀+By₀+C)^2/(A^2+B^2)所以PQ=|Ax+By+C|/√(A^2+B^2),公式得证。2023-05-11 20:41:521
点到直线的距离公式是?
│AXo+BYo+C│/√(A²+B²)。连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)。从直线外一点到这直线的垂线段的长度叫做点到直线的距离。而这条垂线段的距离是任何点到直线中最短的距离。直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)。直线外一点与直线上各点连接的所有线段中,垂线段最短。点到直线的距离叫做垂线段。扩展资料1. 数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。2. 所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系。(2)函数与图象的对应关系。(3)曲线与方程的对应关系。(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等。(5)所给的等式或代数式的结构含有明显的几何意义。如等式 。3. 纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究"以形助数"。4. 数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。5、数形结合思想的论文数形结合思想简而言之就是把数学中"数"和数学中"形"结合起来解决数学问题的一种数学思想。数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过"数"与"形"之间的对应和转换来解决数学问题。在中学数学的解题中,主要有三种类型:以"数"化"形"、以"形"变"数"和"数""形"结合。参考资料:点到直线距离的百度百科2023-05-11 20:42:161
怎样求点到直线的距离公式
距离=|kx1-y1+b|/√[k²+(-1)²] 点到直线距离公式的推导如下:对于点P(x0,y0)作PQ垂直直线Ax+By+C=0于Q作PM平行Y轴,交直线于M;作PN平行X轴,交直线于N设M(x1,y1)x1=x0,y1=(-Ax0+C)/B.PM=|y0-y1|=|y0+(Ax0+C)/B|=|(Ax0+By0+C)/B|同理,设N(x2,y2).y2=y0,x2=(-By0+C)/APN=|(Ax0+By0+C)/A|PM、PN为直角三角形PMN两直角边,PQ为斜边MN上的高PQ=PM×PN/MN=PM×PN/√(PM²+PN²)=|Ax0+By0+C|/√(A²+B²)祝你学习进步,望采纳2023-05-11 20:42:241