- 西柚不是西游
-
对勾函数是一种类似于反比例函数的一般函数。所谓的对勾函数,是形如f(x)=ax+b/x的函数,是一种教材上没有但考试老喜欢考的函数,所以更加要注意和学习。一般的函数图像形似两个中心对称的对勾,故名。当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根)。同时它是奇函数,就可以推导出x<0时的性质。令k=sqrt(b/a),那么,增区间:{x|x≤-k}∪{x|x≥k};减区间:{x|-k≤x<0}∪{x|0<x≤k}。由单调区间可见,它的变化趋势是:在y轴左边,增减,在y轴右边,减增,是两个勾。
对勾函数性质的研究离不开均值不等式。说到均值不等式,其实也是根据二次函数得来的。我们都知道,(a-b)2≥0,展开就是a2-2ab+b2≥0,有a2+b2≥2ab,两边同时加上2ab,整理得到(a+b)2≥4ab,同时开根号,就得到了平均值定理的公式:a+b≥2sqrt(ab)。现在把ax+b/x套用这个公式,得到ax+b/x≥2sqrt(axb/x)=2sqrt(ab),这里有个规定:当且仅当ax=b/x时取到最小值,解出x=sqrt(b/a),对应的f(x)=2sqrt(ab)。我们再来看看均值不等式,它也可以写成这样:(a+b)/2≥sqrt(ab),前式大家都知道,是求平均数的公式。那么后面的式子呢?也是平均数的公式,但不同的是,前面的称为算术平均数,而后面的则称为几何平均数,总结一下就是算术平均数绝对不会小于几何平均数。这些知识点也是非常重要的。
其实用导数也可以研究对勾函数的性质。不过首先要会负指数幂的换算,这也很简单,但要熟练掌握。举几个例子:1/x=x-1,4/x2=4x-2。明白了吧,x为分母的时候可以转化成负指数幂。那么就有f(x)=ax+b/x=ax+bx-1,求导方法一样,求的的导函数为a+(-b)x-2,令f"(x)=0,计算得到b=ax2,结果仍然是x=sqrt(b/a),如果需要的话算出f(x)就行了。平时做题的时候用导数还是均值定理,就看你喜欢用那个了。不过注意均值定理最后的讨论,有时ax≠b/x,就不能用均值定理了。
上述研究都是建立在x>0的基础上的,不过对勾函数是奇函数,所以研究出正半轴图像的性质后,自然能补出对称的图像。如果出现平移了的问题(图像不再规则),就先用平移公式或我总结出的平移规律还原以后再研究,这个能力非常重要,一定要多练,争取做到特别熟练的地步。
对勾函数实际是反比例函数的一个延伸,至于它是不是双曲线还众说不一。
- 瑞瑞爱吃桃
-
x=√b/a时取最值
什么是对勾函数?
对勾函数知识点总结如下:1、对号函数又称“对勾函数”、“双勾函数”、“勾函数”。表达式:y=x+p/x当函数表达式为y=qx+p/x,我们可以提取出 q,使它成为y=q(x+p/qx),这样依旧可以由性质上去观察函数。2、函数性质:(1)奇偶性当p>0时,它的图象是分布在一、三象限的两条抛物线,都不能与X轴、Y轴相交,为奇函数。当p<0时,它的图象是分布在二、四象限的两条抛物线,都不能与X轴、Y轴相交,也为奇函数。(2)单调性对于第一象限的情况:以(√p,2√p)为顶点,在(0,√p]上是减函数,在[√p,+∞)上是增函数,开口向上; 第三象限内以(-√p,-2√p)为顶点,在(-∞,-√p],是增函数,在[-√p,0)是减函数,开口向下。其中顶点的纵坐标是由对函数使用均值不等式后得到的。3、值得注意的是:在第一象限的图像,当x越小,即越接近于0时,图像左侧就越趋向Y轴+∞,但不相交;当x越大,即越趋向+∞时,图像右侧就越接近直线y=x正半支,但不相交。4、同理,在第三象限的图像,当x越大,即越接近于0时,图像右侧就越趋向Y轴-∞,但不相交;当x越小,即越趋向-∞时,图像左侧就越接近直线y=x负半支,但不相交。即渐近线有Y轴,和直线y=x。5、最值:最值的求法一是利用函数的单调性,二是均值不等式,三是特殊的单调性如求函数Y=(X+5)/√(X+4)的最值。2023-07-06 05:52:171
对勾函数是什么?
对勾函数,是一种类似于反比例函数的一般双曲函数,是形如f(x)=ax+b/x(a>0,b>0)的函数。由图像得名,又被称为“双勾函数”、“勾函数”、"对号函数"、“双飞燕函数”等。因函数图像和耐克商标相似,也被形象称为“耐克函数”或“耐克曲线”。当x>0,有x=√b/√a,有最小值是2√ab。当x<0,有x=-√b/√a,有最大值是:-2√ab。含义f(x)=ax+b/x(a>0) 在高中文科数学中a多半仅为1,b值不定,理科数学变化更为复杂。定义域为(-∞,0)∪(0,+∞)。值域为(-∞,-2√ab]∪[2√ab,+∞)。对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。2023-07-06 05:52:381
对勾函数是什么?
一、概念:对勾函数,是一种类似于反比例函数的一般双曲函数,是形如f(x)=ax+b/x(a>0,b>0)的函数。二、最值:当x>0时,有最小值(这里为了研究方便,规定a>0,b>0),也就是当时,f(x)取最小值。三、奇偶性、单调性:1、奇偶性,双勾函数是奇函数。2、单调性令k=,那么:1)增区间:{x|x≤-k}和{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k}2)变化趋势:在y轴左边先增后减,在y轴右边先减后增,是两个勾。2023-07-06 05:52:451
什么是对勾函数,详细
对勾函数是一种类似于反比例函数的一般函数,又被称为“双勾函数”、"勾函数"等.也被形象称为“耐克函数”或“耐克曲线” 所谓的对勾函数(双曲线函数),是形如f(x)=ax+b/x(a>0)的函数.由图像得名. 图像 对勾函数:图像,性质,单调性 第三行为f(x)=-(ax+b/y)大于等于2√ab 对勾函数是数学中一种常见而又特殊的函数,见图示,在作图时最好画出渐近线,y=ax. 奇偶性单调性 当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)时(sqrt表示求二次方根) 奇函数. 令k=sqrt(b/a),那么: 增区间:{x|x≤-k}和{x|x≥k}; 减区间:{x|-k≤x2023-07-06 05:53:101
什么是对勾函数,详细
对勾函数是一种类似于反比例函数的一般函数,又被称为“双勾函数”、"勾函数"等。也被形象称为“耐克函数”或“耐克曲线”所谓的对勾函数(双曲线函数),是形如f(x)=ax+b/x(a>0)的函数。由图像得名。图像对勾函数:图像,性质,单调性第三行为f(x)=-(ax+b/y)大于等于2√ab对勾函数是数学中一种常见而又特殊的函数,见图示,在作图时最好画出渐近线,y=ax。奇偶性单调性当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)时(sqrt表示求二次方根)奇函数。令k=sqrt(b/a),那么:增区间:{x|x≤-k}和{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k} 变化趋势:在y轴左边,增减,在y轴右边,减增,是两个勾。渐近线对勾函数的图像是分别以Y轴和y=ax为渐近线的两支双曲线。2023-07-06 05:53:321
对勾函数的定义域和值域分别是什么?
对勾函数的定义域和值域分别是什么?定义域:[-∞, ∞] 值域:{0, 1}2023-07-06 05:53:402
什么是对勾函数?怎么用对勾函数解答均值不等式不能解决的问题?
对勾函数就是 y=x+ 1/x 图像就像对勾一样,当x>=0时,在x=1点最小,值为22023-07-06 05:53:541
对勾函数是什么
对勾函数是一种类似于反比例函数的一般函数。所谓的对勾函数,是形如f(x)=ax+b/x的函数,是一种教材上没有但考试老喜欢考的函数,所以更加要注意和学习。学了打钩函数对于学习与考试都有很大的作用。一般的函数图像形似两个中心对称的对勾,故名。当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根)。同时它是奇函数,就可以推导出x<0时的性质。令k=sqrt(b/a),那么,增区间:{x|x≤-k}∪{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k}。由单调区间可见,它的变化趋势是:在y轴左边,增减,在y轴右边,减增,是两个勾。2023-07-06 05:54:101
什么是对勾函数
对勾函数是一种类似于反比例函数的一般函数,又被称为“双勾函数”、"勾函数"等。也被形象称为“耐克函数” 所谓的对勾函数(双曲线函数),是形如f(x)=ax+b/x的函数。由图像得名。 当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根) 奇函数。 令k=sqrt(b/a),那么: 增区间:{x|x≤-k}和{x|x≥k}; 减区间:{x|-k≤x<0}和{x|0<x≤k} 变化趋势:在y轴左边,增减,在y轴右边,减增,是两个勾。2023-07-06 05:54:191
什么是对勾函数
形如f(X)=x+a/x,有最小值在根号a处取到,在(-无穷,0),(0,+无穷)上各有一支,也叫耐克函数2023-07-06 05:54:442
对勾函数的详细推导
对勾函数是一种类似于反比例函数的一般函数。所谓的对勾函数,是形如f(x)=ax+b/x的函数,是一种教材上没有但考试老喜欢考的函数,所以更加要注意和学习。学了对钩函数对于学习与考试都有很大的作用。一般的函数图像形似两个中心对称的对勾,故名。当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根)。同时它是奇函数,就可以推导出x<0时的性质。令k=sqrt(b/a),那么,增区间:{x|x≤-k}∪{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k}。由单调区间可见,它的变化趋势是:在y轴左边,增减,在y轴右边,减增,是两个勾。 对勾函数性质的研究离不开均值不等式。说到均值不等式,其实也是根据二次函数得来的。我们都知道,(a-b)^2≥0,展开就是a^2-2ab+b^2≥0,有a^2+b^2≥2ab,两边同时加上2ab,整理得到(a+b)^2≥4ab,同时开根号,就得到了平均值定理的公式:a+b≥2sqrt(ab)。现在把ax+b/x套用这个公式,得到ax+b/x≥2sqrt(axb/x)=2sqrt(ab),这里有个规定:当且仅当ax=b/x时取到最小值,解出x=sqrt(b/a),对应的f(x)=2sqrt(ab)。我们再来看看均值不等式,它也可以写成这样:(a+b)/2≥sqrt(ab),前式大家都知道,是求平均数的公式。那么后面的式子呢?也是平均数的公式,但不同的是,前面的称为算术平均数,而后面的则称为几何平均数,总结一下就是算术平均数绝对不会小于几何平均数。这些知识点也是非常重要的。2023-07-06 05:54:591
数学对勾函数有什么特征
有极值,关于一三象限对称2023-07-06 05:55:202
对勾函数最值公式是什么?
对勾函数最值公式是x+a/x>=2√(x*a/x)=2√a故f(x)的最小值为2√a。对于f(x)=x+a/x这样的形式(“√a”就是“根号下a”)当x>0时,有最小值,为f(√a)当x=2√ab[a,b都不为负])比如:当x>0是f(x)有最小值。对勾函数是一种类似于反比例函数的一般双曲函数,由图像得名,又被称为“双勾函数”、“勾函数”、“对号函数”、“双飞燕函数”等。常见a=b=1。定义域为(-∞,0)∪(0,+∞)值域为(-∞,-2√ab]∪[2√ab,+∞)当x>0,有x=根号b/根号a,有最小值是2√ab当x2023-07-06 05:55:321
如何求对勾函数的最小值?
对勾函数的最小值求法:对于f(x)=x+a/x这样的形式(“√a”就是“根号下a”)当x>0时,有最小值,为f(√a)当x=2√ab[a,b都不为负])比如:当x>0是f(x)有最小值,由均值定理得:x+a/x>=2√(x*a/x)=2√a故f(x)的最小值为2√a。扩展资料:对勾函数的一般形式是:(x)=ax+b/x(a>0) 不过在高中文科数学中a多半仅为1,b值不定。理科数学变化更为复杂。定义域为(-∞,0)∪(0,+∞)值域为(-∞,-2√ab]∪[2√ab,+∞)当x>0,有x=根号b/根号a,有最小值是2√ab当x<0,有x=-根号b/根号a,有最大值是:-2√ab对勾函数的解析式为y=x+a/x(其中a>0),对勾函数的单调性讨论如下:设x1<x2,则f(x1)-f(x2)=x1+a/x1-(x2+a/x2)=(x1-x2)+a(x2-x1)/(x1x2)=[(x1-x2)(x1x2-a)]/(x1x2)。参考资料来源:百度百科-对勾函数2023-07-06 05:55:451
对勾函数的性质如何证明?尽量详尽 谢谢
在纵坐标的两侧,分别用均值不等式((a+b)/2≥sqrt(ab)).所谓的对勾函数,是形如f(x)=ax+b/x的函数.一般的函数图像形似两个中心对称的对勾,故名.当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根).同时它是奇函数,就可以推导出x2023-07-06 05:55:571
对勾函数的值域公式.
对勾函数y=ax+b/x,a、b符号应该相同(同正同负),否则图形不是对勾. 只考虑a、b都大于0的情况,都小于0方法完全类似,而且最后的结果和都大于0一样,就不写了. 直接看出是奇函数,x>0时候用均值不等式y=ax+b/x≥(ax·b/x)^1/2=根号(ab) x2023-07-06 05:56:031
对勾函数什么时候学
对勾函数高三学的。对勾函数形如f(x)=ax+b/x(a>0),是一种类似于反比例函数的一般函数,又被称为双勾函数、勾函数、"对号函数"、双飞燕函数等,也被形象称为耐克函数或耐克曲线。在正规的数学书上是没有这个对勾函数的。在比较严格的、科学的解析几何学里,这是一个以直线y=kx、x=0为渐近线的双曲线y=x+k/x。用导数也可以研究对勾函数的性质,不过首先要会负指数幂的换算,利用将对勾函数进行选择可以得到标准的双曲线方程。2023-07-06 05:56:101
对勾函数的的定义性质是什么?
对勾函数是一种类似于反比例函数的一般函数。所谓的对勾函数,是形如f(x)=ax+b/x的函数,是一种教材上没有但考试老喜欢考的函数,所以更加要注意和学习。一般的函数图像形似两个中心对称的对勾,故名。当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根)。同时它是奇函数,就可以推导出x<0时的性质。令k=sqrt(b/a),那么,增区间:{x|x≤-k}∪{x|x≥k};减区间:{x|-k≤x<0}∪{x|0<x≤k}。由单调区间可见,它的变化趋势是:在y轴左边,增减,在y轴右边,减增,是两个勾。 对勾函数性质的研究离不开均值不等式。说到均值不等式,其实也是根据二次函数得来的。我们都知道,(a-b)2≥0,展开就是a2-2ab+b2≥0,有a2+b2≥2ab,两边同时加上2ab,整理得到(a+b)2≥4ab,同时开根号,就得到了平均值定理的公式:a+b≥2sqrt(ab)。现在把ax+b/x套用这个公式,得到ax+b/x≥2sqrt(axb/x)=2sqrt(ab),这里有个规定:当且仅当ax=b/x时取到最小值,解出x=sqrt(b/a),对应的f(x)=2sqrt(ab)。我们再来看看均值不等式,它也可以写成这样:(a+b)/2≥sqrt(ab),前式大家都知道,是求平均数的公式。那么后面的式子呢?也是平均数的公式,但不同的是,前面的称为算术平均数,而后面的则称为几何平均数,总结一下就是算术平均数绝对不会小于几何平均数。这些知识点也是非常重要的。 其实用导数也可以研究对勾函数的性质。不过首先要会负指数幂的换算,这也很简单,但要熟练掌握。举几个例子:1/x=x-1,4/x2=4x-2。明白了吧,x为分母的时候可以转化成负指数幂。那么就有f(x)=ax+b/x=ax+bx-1,求导方法一样,求的的导函数为a+(-b)x-2,令f"(x)=0,计算得到b=ax2,结果仍然是x=sqrt(b/a),如果需要的话算出f(x)就行了。平时做题的时候用导数还是均值定理,就看你喜欢用那个了。不过注意均值定理最后的讨论,有时ax≠b/x,就不能用均值定理了。 上述研究都是建立在x>0的基础上的,不过对勾函数是奇函数,所以研究出正半轴图像的性质后,自然能补出对称的图像。如果出现平移了的问题(图像不再规则),就先用平移公式或我总结出的平移规律还原以后再研究,这个能力非常重要,一定要多练,争取做到特别熟练的地步。 对勾函数实际是反比例函数的一个延伸,至于它是不是双曲线还众说不一。2023-07-06 05:56:171
对勾函数的单调性
y=ax+b,ab>0,俗称对勾函数,对号函数。y=ax+b,ab<0,俗称对勾函数。我更赞成叫海鸥函数。前者像在海面翱翔的一只海鸥及其倒影;后者像两只海鸥斜插海面。当a≠0,b≠0时,函数f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)=b/x“相加”而成的函数。这个观点,对于理解它的性质,绘制它的图象,非常重要。当a,b同号时,函数f(x)=ax+b/x的图象是由直线y=ax与双曲线y=b/x构成,形状酷似双勾。俗称“对勾函数”,也称“勾勾函数”、“海鸥函数”。当a,b异号时,函数f(x)=ax+b/x的图象发生了质的变化。首先,函数f(x)=ax+b/x是奇函数,图象关于原点对称。其次,函数f(x)=ax+b/x是定义域上分段的有相同单调性的单调函数。再次,函数f(x)=ax+b/x有两个零点x=±√(-b/a)。最后,函数f(x)=ax+b/x当x→0±时,y→干∞;当x→±∞时,y→±∞.2023-07-06 05:56:362
如何用对勾函数解题
其实对勾函数的一般形式是: f(x)=x+a/x(a0) 定义域是:{x|x不等于0} 值域是:{y|y∈(-∞,-2根号a)∪(2根号a,+∞)} 当x0,有x=根号a,有最小值是2根号a 当x<0,有x=-根号a,有最大值是:-2根号a 对钩函数的解析式为y=x+a/x(其中a0),它的单调性讨论如下: 设x1<x2,则f(x1)-f(x2)=x1+a/x1-(x2+a/x2)=(x1-x2)+a(x2-x1)/(x1x2)=(x1-x2)(x1x2-a)/(x1x2) 下面分情况讨论 (1)当x1<x2<-根号a时,x1-x2<0,x1x2-a0,x1x20,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数在(-∞,-根号a)上是增函数 (2)当-根号a<x1<x2<0时,x1-x2<0,x1x2-a<0,x1x20,所以f(x1)-f(x2)0,即f(x1)f(x2),所以函数在(-根号a,0)上是减函数 (3)当0<x1<x2<根号a时,x1-x2<0,x1x2-a<0,x1x20,所以f(x1)-f(x2)0,即f(x1)f(x2),所以函数在(0,根号a)上是减函数2023-07-06 05:56:451
如何求对勾函数的最小值?
对勾函数的最小值求法:对于f(x)=x+a/x这样的形式(“√a”就是“根号下a”)当x>0时,有最小值,为f(√a)当x=2√ab[a,b都不为负])比如:当x>0是f(x)有最小值,由均值定理得:x+a/x>=2√(x*a/x)=2√a故f(x)的最小值为2√a。扩展资料:对勾函数的一般形式是:(x)=ax+b/x(a>0) 不过在高中文科数学中a多半仅为1,b值不定。理科数学变化更为复杂。定义域为(-∞,0)∪(0,+∞)值域为(-∞,-2√ab]∪[2√ab,+∞)当x>0,有x=根号b/根号a,有最小值是2√ab当x<0,有x=-根号b/根号a,有最大值是:-2√ab对勾函数的解析式为y=x+a/x(其中a>0),对勾函数的单调性讨论如下:设x1<x2,则f(x1)-f(x2)=x1+a/x1-(x2+a/x2)=(x1-x2)+a(x2-x1)/(x1x2)=[(x1-x2)(x1x2-a)]/(x1x2)。参考资料来源:百度百科-对勾函数2023-07-06 05:56:521
对勾函数的性质如何证明?
在纵坐标的两侧,分别用均值不等式((a+b)/2≥sqrt(ab))。所谓的对勾函数,是形如f(x)=ax+b/x的函数。一般的函数图像形似两个中心对称的对勾,故名。当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根)。同时它是奇函数,就可以推导出x<0时的性质。令k=sqrt(b/a),那么,增区间:{x|x≤-k}∪{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k}。由单调区间可见,它的变化趋势是:在y轴左边,增减,在y轴右边,减增,是两个勾。2023-07-06 05:57:061
对号函数怎么导数
基本不等式2023-07-06 05:57:142
对勾函数的最值怎么求的啊?关于其最值的证明,我现在求的是f(x)=x+1/x答案...
“NIKE”函数最大值:对于f(x)=x+a/x这样的形式(“√a”就是“根号下a”)当x>0时,有最小值,为f(√a)当x=2√ab[a,b都不为负])比如:当x>0是f(x)有最小值,由均值定理得:x+a/x>=2√(x*a/x)=2√a故f(x)的最小值为2√a同理也可以证明最大值其实把图像做出来就一目了然了2023-07-06 05:57:211
对勾函数?
基本不等式知道么2023-07-06 05:57:293
对勾函数的性质有哪些
对于形如y=x+a/x (其中a>0,x>0)的函数,当x取√a时,函数取到最小值为2√a2023-07-06 05:57:371
对勾函数的定义域要怎么求
对勾函数就是f(x)=x+a/x, 其中a>0定义域就是使分母x≠0的所有实数。可写为:(-∞,0)U(0,+∞)值域为:(-∞, -2√a]U[2√a, +∞)2023-07-06 05:58:281
函数知识 关于对勾函数
函数(function)表示每个输入值对应唯一输出值的一种对应关系。函数f中对应输入值x的输出值的标准符号为 f(x)。包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域。若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数。一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logaX,(其中a是常数,a>0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。………………(亲~可到百度百科中查找)2023-07-06 05:58:351
什么是对勾函数?求其定义,特点及解法,谢了!
型如X+1/X的函数,2023-07-06 05:58:441
对勾函数顶点坐标和最值怎么求啊 详细一些
解设一般地对勾函数为f(x)=x+k/x (k>0)函数的顶点坐标为(√k,2√k),和(-√k,-2√k),当x>0时,函数的最小值为2√k,当x<0时,函数的最大值为-2√k。2023-07-06 05:58:521
对勾函数的相关知识
对勾函数y=x+a/x(a>0)1.定义域:x≠02.值域:(-∞,-2√a]U[2√a,+∞)在正数部分仅当x=√a取最小值2√a在负数部分仅当x=-√a取最大值-2√a3.奇偶性:奇函数,关于原点对称4.单调区间:(-∞,-√a] 单调递增 [-√a,0)] 单调递减 (0,√a] 单调递减 [√a,+∞) 单调递增2023-07-06 05:59:001
对勾函数的定义是什么啊
y=ax+b/x这是对勾函数。你的函数只能是符合对勾函数特点的函数。令x+1=u,原函数可化为y=u+1/u这即是对勾函数。当u>0时,由均值不等式u+1/u≥2根号u*(1/u)=2当且仅当u=1时取等号,并且当0<u<1时y单调递减,当1<u时单调递增。u=1即为其拐点。也即x=0.2023-07-06 05:59:081
介绍一下对勾函数。越全越好,不要全部从网上搜。
①设对勾函数f(x)=a/x+bx,(其中a>0,b>0且x≠0)。图像是y轴与直线y=bx相夹的双曲线。关于原点(0,0)中心对称,关于直线y=[b+√(b^2+1)]x和直线y=-{1/[b+√(b^2+1)]}x分别成镜面对称。f(x)为奇函数,即满足f(-x)=a/(-x)+b(-x)=-(a/x+bx)=-f(x)。当x∈(-∞,-a/b]∩[a/b,+∞)时,f(x)单调递增,当x∈[-a/b,a/b]且x≠0时,f(x)单调递减。当x=a/b时,f(x)=a+b为极小值(正值域),当x=-a/b时,f(x)=-(a+b)为极大值(负值域)。②设f"(x)=a/x+bx,(其中a<0,b<0且x≠0)。f"(x)图像与 ①中f(x)图像关于x轴对称。单调性递增与递减互换即可,仍为奇函数。当x∈(-∞,-a/b]∩[a/b,+∞)时,f"(x)单调递减,当x∈[-a/b,a/b]且x≠0时,f"(x)单调递增。当x=a/b时,f(x)=a+b为极大值(负值域),当x=-a/b时,f(x)=-(a+b)为极小值(正值域)。2023-07-06 05:59:161
对勾函数如何求最小值?
对勾函数的最小值求法:对于f(x)=x+a/x这样的形式(“√a”就是“根号下a”)当x>0时,有最小值,为f(√a)当x=2√ab[a,b都不为负])比如:当x>0是f(x)有最小值,由均值定理得:x+a/x>=2√(x*a/x)=2√a故f(x)的最小值为2√a。扩展资料:对勾函数的一般形式是:(x)=ax+b/x(a>0) 不过在高中文科数学中a多半仅为1,b值不定。理科数学变化更为复杂。定义域为(-∞,0)∪(0,+∞)值域为(-∞,-2√ab]∪[2√ab,+∞)当x>0,有x=根号b/根号a,有最小值是2√ab当x<0,有x=-根号b/根号a,有最大值是:-2√ab对勾函数的解析式为y=x+a/x(其中a>0),对勾函数的单调性讨论如下:设x1<x2,则f(x1)-f(x2)=x1+a/x1-(x2+a/x2)=(x1-x2)+a(x2-x1)/(x1x2)=[(x1-x2)(x1x2-a)]/(x1x2)。参考资料来源:百度百科-对勾函数2023-07-06 05:59:241
什么是对勾函数?
对勾函数,是一种类似于反比例函数的一般双曲函数,是形如f(x)=ax+b/x(a>0,b>0)的函数。由图像得名,又被称为“双勾函数”、“勾函数”、"对号函数"、“双飞燕函数”等。因函数图像和耐克商标相似,也被形象称为“耐克函数”或“耐克曲线”。当x>0,有x=√b/√a,有最小值是2√ab。当x<0,有x=-√b/√a,有最大值是:-2√ab。含义f(x)=ax+b/x(a>0) 在高中文科数学中a多半仅为1,b值不定,理科数学变化更为复杂。定义域为(-∞,0)∪(0,+∞)。值域为(-∞,-2√ab]∪[2√ab,+∞)。对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。2023-07-06 06:00:231
对勾函数是什么?
y=x分之k,其中k是常数2023-07-06 06:00:324
对勾函数是什么函数?
对勾函数是一种类似于反比例函数的一般双曲函数,是形如f(x)=ax+b/x(ab>0)的函数。由图像得名,又被称为“双勾函数”、“勾函数”、"对号函数"、“双飞燕函数”等。常见a=b=1。因函数图像和耐克商标相似,也被形象称为“耐克函数”或“耐克曲线”。对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。若a>0,b>0, 在第一象限内,其转折点为【(b/a)^(1/2),2(ab)^(1/2)】。对勾函数一阶导数:y"=-b/x^2+a。奇偶性:奇函数。2023-07-06 06:01:241
对勾函数拐点公式是什么?
对勾函数拐点公式是加减√b/a,加减2√aby,对勾函数是一种类似于反比例函数的一般双曲函数,是形如f(x)=ax+b/x(ab>0)的函数。由图像得名又被称为双勾函数、勾函数、对号函数、双飞燕函数等。对勾函数的拐点如何求因函数图像和耐克商标相似,也被形象称为耐克函数或耐克曲线。常见a=b=1。对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。对勾函数y=x+a/x(a>0),当x>0时,a/x>0,且x乘以a/x等于a,根据基本不等式x+a/x≥2√a,当且仅当x=a/x=√a时等号成立,也就是说当x=√a时取到函数最小值,也就是它的拐点。因为对勾函数y=x+a/x(a>0)是奇函数,另一个拐点为x=-√a。2023-07-06 06:02:081
对勾函数的定义
对勾函数的定义对勾函数(Nike function)是一种类似于反比例函数的一般双曲函数,是形如f(x)=ax+b/x(a>0,b>0)的函数。 由图像得名,又被称为“双勾函数”、“勾函数”、"对号函数"、“双飞燕函数”等。因函数图像和耐克商标相似,也被形象称为“耐克函数”或“耐克曲线”。中文名对勾函数别称勾函数、鱼钩函数、耐克函数、双勾函数、对号函数、双飞燕函数等表达式f(x)=ax+b/x (ab>0)应用学科数学适用领域范围代数学 函数函数定义对勾函数对勾函数是指形如(ab>0)的函数.性质对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积.2023-07-06 06:02:242
什么是对勾函数 性质都有什么
对勾函数是一种类似于反比例函数的一般双曲函数,是形如f(x)=ax+b/x(a>0,b大于0)的函数。 其实对勾函数的一般形式是: f(x)=ax+b/x(a>0) 不过在高中文科数学中a多半仅为1,b值不定。理科数学变化更为复杂。 定义域为(-∞,0)∪(0,+∞) 值域为(-∞,-2√ab]∪[2√ab,+∞) 当x>0,有x=根号b/根号a,有最小值是2根号ab 当x<0,有x=-根号b/根号a,有最大值是:-2根号ab 对勾函数的解析式为y=x+a/x(其中a>0),它的单调性讨论如下: 设x1<x2,则f(x1)-f(x2)=x1+a/x1-(x2+a/x2)=(x1-x2)+a(x2-x1)/(x1x2)=[(x1-x2)(x1x2-a)]/(x1x2)2023-07-06 06:02:344
谁能讲解一下对勾函数?
对勾函数:图像,性质,单调性对勾函数是数学中一种常见而又特殊的函数,对勾函数是一种类似于反比例函数的一般函数。所谓的对勾函数,是形如f(x)=ax+b/x的函数,是一种教材上没有但考试老喜欢考的函数,所以更加要注意和学习。学了对钩函数对于学习与考试都有很大的作用。一般的函数图像形似两个中心对称的对勾,故名。当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根)。同时它是奇函数,就可以推导出x<0时的性质。令k=sqrt(b/a),那么,增区间:{x|x≤-k}∪{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k}。由单调区间可见,它的变化趋势是:在y轴左边,增减,在y轴右边,减增,是两个勾。对勾函数性质的研究离不开均值不等式。说到均值不等式,其实也是根据二次函数得来的。我们都知道,(a-b)^2≥0,展开就是a^2-2ab+b^2≥0,有a^2+b^2≥2ab,两边同时加上2ab,整理得到(a+b)^2≥4ab,同时开根号,就得到了平均值定理的公式:a+b≥2sqrt(ab)。现在把ax+b/x套用这个公式,得到ax+b/x≥2sqrt(axb/x)=2sqrt(ab),这里有个规定:当且仅当ax=b/x时取到最小值,解出x=sqrt(b/a),对应的f(x)=2sqrt(ab)。我们再来看看均值不等式,它也可以写成这样:(a+b)/2≥sqrt(ab),前式大家都知道,是求平均数的公式。那么后面的式子呢?也是平均数的公式,但不同的是,前面的称为算术平均数,而后面的则称为几何平均数,总结一下就是算术平均数绝对不会小于几何平均数。这些知识点也是非常重要的。2023-07-06 06:02:501
对勾函数……
你上高中说的对勾函数应该是f(x)=x+a/x2023-07-06 06:03:003
对勾函数知识点总结
对勾函数知识点总结如下:1、对号函数又称“对勾函数”、“双勾函数”、“勾函数”。表达式:y=x+p/x当函数表达式为y=qx+p/x,我们可以提取出 q,使它成为y=q(x+p/qx),这样依旧可以由性质上去观察函数。2、函数性质:(1)奇偶性当p>0时,它的图象是分布在一、三象限的两条抛物线,都不能与X轴、Y轴相交,为奇函数。当p<0时,它的图象是分布在二、四象限的两条抛物线,都不能与X轴、Y轴相交,也为奇函数。(2)单调性对于第一象限的情况:以(√p,2√p)为顶点,在(0,√p]上是减函数,在[√p,+∞)上是增函数,开口向上; 第三象限内以(-√p,-2√p)为顶点,在(-∞,-√p],是增函数,在[-√p,0)是减函数,开口向下。其中顶点的纵坐标是由对函数使用均值不等式后得到的。3、值得注意的是:在第一象限的图像,当x越小,即越接近于0时,图像左侧就越趋向Y轴+∞,但不相交;当x越大,即越趋向+∞时,图像右侧就越接近直线y=x正半支,但不相交。4、同理,在第三象限的图像,当x越大,即越接近于0时,图像右侧就越趋向Y轴-∞,但不相交;当x越小,即越趋向-∞时,图像左侧就越接近直线y=x负半支,但不相交。即渐近线有Y轴,和直线y=x。5、最值:最值的求法一是利用函数的单调性,二是均值不等式,三是特殊的单调性如求函数Y=(X+5)/√(X+4)的最值。2023-07-06 06:03:211
对勾函数是什么函数?
一、概念:对勾函数,是一种类似于反比例函数的一般双曲函数,是形如f(x)=ax+b/x(a>0,b>0)的函数。二、最值:当x>0时,有最小值(这里为了研究方便,规定a>0,b>0),也就是当时,f(x)取最小值。三、奇偶性、单调性:1、奇偶性,双勾函数是奇函数。2、单调性令k=,那么:1)增区间:{x|x≤-k}和{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k}2)变化趋势:在y轴左边先增后减,在y轴右边先减后增,是两个勾。2023-07-06 06:03:401
对勾函数的性质是什么?
对勾函数的性质如下:1、对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。2、对勾函数是奇函数。3、增区间:{x|x≤-k}和{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k}。4、变化趋势:在y轴左边先增后减,在y轴右边先减后增。对勾函数简介:对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。若a>0,b>0,在第一象限内,其转折点为【(b/a)^(1/2),2(ab)^(1/2)】。对勾函数一阶导数:y"=-b/x^2+a。奇偶性:奇函数。2023-07-06 06:04:041
对勾函数的图像 定义域 值域 单调性
我们可以画出双勾函数y=f(x)=x+b/x (b>0)的草图,并列举出它的一些性质. 这些性质在后续学习中经常应用,尤其是第一象限部分,望读者引起重视.(1)定义域 (-∞,0)∪(0,+∞).(2)值域 (-∞,-2√b]∪[2√b,+∞).当x=√b时,f(x)在(0,+∞)上取得最小值2.当x=-√b时,f(x)在(-∞,0)上取得最大值-2.(3)奇偶性.奇函数.(4)单调性.单调递增区间(-∞,-√b],[√b,+∞);单调递减区间 [-√b,0),(0,√b].2023-07-06 06:04:222
对勾函数的定义是什么?
对勾函数知识点总结如下:1、对号函数又称“对勾函数”、“双勾函数”、“勾函数”。表达式:y=x+p/x当函数表达式为y=qx+p/x,我们可以提取出 q,使它成为y=q(x+p/qx),这样依旧可以由性质上去观察函数。2、函数性质:(1)奇偶性当p>0时,它的图象是分布在一、三象限的两条抛物线,都不能与X轴、Y轴相交,为奇函数。当p<0时,它的图象是分布在二、四象限的两条抛物线,都不能与X轴、Y轴相交,也为奇函数。(2)单调性对于第一象限的情况:以(√p,2√p)为顶点,在(0,√p]上是减函数,在[√p,+∞)上是增函数,开口向上; 第三象限内以(-√p,-2√p)为顶点,在(-∞,-√p],是增函数,在[-√p,0)是减函数,开口向下。其中顶点的纵坐标是由对函数使用均值不等式后得到的。3、值得注意的是:在第一象限的图像,当x越小,即越接近于0时,图像左侧就越趋向Y轴+∞,但不相交;当x越大,即越趋向+∞时,图像右侧就越接近直线y=x正半支,但不相交。4、同理,在第三象限的图像,当x越大,即越接近于0时,图像右侧就越趋向Y轴-∞,但不相交;当x越小,即越趋向-∞时,图像左侧就越接近直线y=x负半支,但不相交。即渐近线有Y轴,和直线y=x。5、最值:最值的求法一是利用函数的单调性,二是均值不等式,三是特殊的单调性如求函数Y=(X+5)/√(X+4)的最值。2023-07-06 06:04:401
什么是对勾函数及其性质
y=ax+b/x(ab≠0)首先这样的函数是奇函数所以只研究x>0的情况,对x<0,由奇函数性质可得出a>0,b>0函数在(0,√b/a]单减,在[√b/a,+∞)单增在x=√b/a取得最小值2√aba<0,b<0y=ax+b/x=-(-ax-a/x)函数在(0,√b/a]单增,在[√b/a,+∞)单减在x=√b/a取得最大值-2√aba>0,b<0ax与b/x在(0,+∞)上都单增,所以y=ax+b/x在(0,+∞)上单增a<0,b>0y=ax+b/x在(0,+∞)上单减对于y=519-4x+130/x在(-∞,0)单减,在(0,+∞)上单减无最值2023-07-06 06:05:002
如何理解函数“对勾函数”的意义?
对勾函数的性质如下:1、对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。2、对勾函数是奇函数。3、增区间:{x|x≤-k}和{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k}。4、变化趋势:在y轴左边先增后减,在y轴右边先减后增。对勾函数简介:对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。若a>0,b>0,在第一象限内,其转折点为【(b/a)^(1/2),2(ab)^(1/2)】。对勾函数一阶导数:y"=-b/x^2+a。奇偶性:奇函数。2023-07-06 06:05:071
什么是对勾函数 性质都有什么
对勾函数是一种类似于反比例函数的一般函数,又被称为“双勾函数”、“勾函数”、"对号函数"、“双飞燕函数”等。也被形象称为“耐克函数”或“耐克曲线”。所谓的对勾函数(双曲线函数),是形如f(x)=ax+b/x(a>0)的函数。由图像得名。图像对勾函数的图像性质:对勾函数是数学中一种常见而又特殊的函数,见图示,在作图时最好画出渐近线y=ax。奇偶性单调性当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)时(sqrt表示求二次方根)2023-07-06 06:05:221