汉邦问答 / 问答 / 问答详情

科学家牛顿的故事

2023-07-01 13:30:53
gitcloud

牛顿在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。

在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。

扩展资料:

牛顿的主要成就:

1、力学成就

1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。

2、数学成就

大多数现代历史学家都相信,牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。

3、光学成就

牛顿曾致力于颜色的现象和光的本性的研究。1666年,他用三棱镜研究日光,得出结论:白光是由不同颜色(即不同波长)的光混合而成的,不同波长的光有不同的折射率。在可见光中,红光波长最长,折射率最小;紫光波长最短,折射率最大。牛顿的这一重要发现成为光谱分析的基础,揭示了光色的秘密。

参考资料来源:百度百科-牛顿

阿啵呲嘚

牛顿的故事

牛顿是世界闻名的科学家。牛顿小时候很喜欢动物。有一次,他的朋友送给他一只狗和一只猫,牛顿收到礼物非常高兴,无微不至地照顾着他的新朋友,为了便于狗和猫出入房间,牛顿在门边挖了两个洞,一个大一个小,有人问他,你为什么要挖一大一小两个洞呢,牛顿回答说:“狗从猫洞里能过去吗?”

牛顿的童年是不幸的,出世前三个月爸爸就去世了。两岁时,妈妈又改嫁到邻村。牛顿只好与外婆相依为命。他从不乱花钱,唯一的爱好就是搞一些小工艺,把零用钱聚起来,买了锯子、钉锤等一类工具,一放学就躲在房子里敲敲打打。

牛顿学习时精神很专注。有一次煮鸡蛋,心里想着数学公式,竟误把手表当作鸡蛋丢进了锅里。还有一次,从早晨起就计算一个问题,中饭都忘了吃。当他感到肚子饿时,已暮色苍茫。他步出书房,一阵清风,感到异常的清新。突然想到:我不是去吃饭吗?怎么走到庭院中来了!于是他立即回头,又走进了书房。当他看到桌上摊开的算稿时,又把吃饭的事忘得一干二净,立即又伏案紧张地计算起来。

扩展资料:

艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。

他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。

在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律 [1] 。在光学上,他发明了反 射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。

在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。

在经济学上,牛顿提出金本位制度。

参考资料:百度百科-艾萨克·牛顿

九万里风9

二百多年以前,英国有一位科学家叫牛顿,他做起实验来,就把什么事儿都忘了.今天我来讲牛顿的两个小故事.煮蛋有一次,牛顿在工作室里做实验,吃饭的时间早就过了,可是他还没吃饭呢.牛顿的助手,就是帮助牛顿工作的人,心里想:这个牛顿呀,准是忘了吃饭了。他拿了几个鸡蛋,送到工作室里去,在牛顿的耳朵旁边轻轻地说:“瞧您,到现在还没吃饭。这里有几个鸡蛋,您自己煮一煮吃吧。”“啊,谢谢您,您把鸡蛋搁着吧!”牛顿还是一个劲儿在做实验.不知道过了多少时候,牛顿觉得肚子在咕噜咕噜叫,这才想起来,自己还没吃过饭呢。他随手拿了一个小棍子,嗯,把鸡蛋煮一煮吃了吧。他把小锅子捆在炉子上,又做起实验来,一直把实验做完。“嗯,鸡蛋该煮熟了吧!”牛顿揭开锅盖一看,哎呀,这是怎么了?锅子里一个鸡蛋也没有,煮的是一只挂表呢。这是变戏法吗?不是。牛顿抬起头来一看,鸡蛋就搁在桌子上,可是他搁在桌子上的挂表不见了。啊,啊,原来牛顿专心做实验,随手一抓,把挂表当作鸡蛋,放到小锅子里去煮了.牛顿请客有一天,牛顿请了许多朋友,到家里来吃饭.酒呀,菜呀,摆了满满一桌子。牛顿一看,朋友们还没有来呢,他可是一分钟也不肯浪费的,就抓紧时间到工作室里去,再做一会儿试验。牛顿走进工作室没多久,他的朋友就一个个来了.牛顿请大家吃饭,他自己上哪儿去了?啊,牛顿在工作室里忙着呢,可不能打扰他。客人们就在桌子旁边坐下,一声不响地等着牛顿。等呀,等呀,一个小时过去了,牛顿没有出来,两个多小时过去了,牛顿还是没有出来。朋友们等急了,肚子饿得咕咕叫。大家多想到工作室里去喊他呀,可是谁也没去,他们知道牛顿有个脾气,工作的时候,就把别的事儿得忘了,要是谁去打扰他,他会生气的.客人们饿极了,有个客人说。“牛顿准是把请客的事忘了,咱们还是自己吃吧!”大家觉得这个办法好,就自个儿吃了起来。吃完以后,也不去向牛顿道谢,悄悄地走了.再说牛顿在工作室里,做完了一个试验,才想起了今天请客的事,就急急忙忙走出了工作室。他走进客厅一看,朋友一个也不见,桌子上的酒瓶是空的。菜吃光了,只有一些啃剩下来的骨头.牛顿想了好大一会儿,才自言自语地说;“我真是个傻瓜,我还当自己忘了请客,瞧,原来我已经陪着客人吃过饭了,客人都高高兴兴走了.”牛顿用手轻轻敲着自己的脑袋,想起了还要做个试验,又踏着大步,向工作室走去.

余辉

、【爱迪生】

爱迪生从小就对很多事物感到好奇,而且喜欢亲自去试验一下,直到明白了其中的道理为止。长大以后,他就根据自己这方面的兴趣,一心一意做研究和发明的工作。他在新泽西州建立了一个实验室,一生共发明了电灯、电报机、留声机、电影机、磁力析矿机、压碎机等等总计两千余种东西。爱迪生的强烈研究精神,使他对改进人类的生活方式,作出了重大的贡献。

2、【波义耳】

波义耳童年时并不特别聪明,说话还有点口吃,不大喜欢热闹的游戏,但却十分好学,喜欢静静地读书思考。他从小受到良好的教育,1639至1644年,曾游学欧洲。在这期间,他阅读了许多自然科学书籍,包括天文学家和物理学家伽利略的名著《关于两大世界体系的对话》。这本书给他留下深刻的印象。他后来的名著《怀疑派化学家》就是模仿这本书写的。

3、【居里夫人】

居里夫人是法国籍波兰科学家,研究放射性现象,一生两度获诺贝尔奖。玛丽从小学习就非常勤奋刻苦,对学习有着强烈的兴趣和特殊的爱好,从不轻易放过任何学习的机会,处处表现出一种顽强的进取精神。15岁时,就以获得金奖章的优异成绩从中学毕业。

19岁那年,她开始做长期的家庭教师,同时还自修了各门功课;24岁时,她来到巴黎大学理学院学习。入学两年后,她充满信心地参加了物理学学士学位考试,在30名应试者中,她考了第一名。第二年,她又以第二名的优异成绩,考取了数学学士学位。

4、【瓦特】

瓦特出生于英国,由于家境贫穷没机会上学,先是到一家钟表店当学徒,后又到格拉斯哥大学去当仪器修理工。1764年,格拉斯哥大学收到一台要求修理的纽可门蒸汽机,任务交给了瓦特。瓦特将它修好后,觉得对蒸汽机的工作方法并不满意,经过不懈的努力,他终于设计了一个和汽缸分开的冷凝器,这下热效率提高了三倍,用的煤只有原来的四分之一。

1784年,瓦特的蒸汽机装上了曲轴、飞轮,活塞可以靠从两边进来的蒸汽连续推动,再不用人力去调节活门,世界上第一台真正的蒸汽机诞生了。

5、【诺贝尔】

诺贝尔受父亲的影响,经常和父亲一起去实验炸药。多年随父亲研究炸药的经历,也使他的兴趣很快转到应用化学方面。1862年夏天,他开始了对硝化甘油的研究,因为出现了事故,政府不准诺贝尔在市内进行实验。

诺贝尔百折不挠,把实验室搬到市郊湖中的一艘船上继续实验。经过长期的研究,他终于发现了一种非常容易引起爆炸的物质--雷酸汞,并且成功地解决了炸药的引爆问题,这就是雷管的发明。它是诺贝尔科学道路上的一次重大突破。 诺贝尔一生的发明极多,获得的专利就有255种,其中仅炸药就达129种,就在他生命的垂危之际,他仍念念不忘对新型炸药的研究。

北有云溪

牛顿与苹果的故事

长期以来,牛顿认为,一定有一种神秘的力存在,是这种无形的力拉着太阳系中的行星围绕太阳旋转.但是,这到底是怎样的一种力呢

直到有一天,当牛顿在花园的苹果树下思索,一个苹果落到他的脚边时,牛顿终于获得了顿悟,他的问题也逐渐被解决了.

传说1665年秋季,牛顿坐在自家院中的苹果树下苦思着行星绕日运动的原因.这时,一只苹果恰巧落下来,它落在牛顿的脚边.这是一个发现的瞬间,这次苹果下落与以往无数次苹果下落不同,国为它引起了牛顿的注意.牛顿从苹果落地这一理所当然的现象中找到了苹果下落的原因——引力的作用,这种来自地球的无形的力拉着苹果下落,正像地球拉着月球,使月球围绕地球运动一样.

这个故事据说是由牛顿的外甥女巴尔顿夫人告诉法国哲学家,作家伏尔泰之后流传起来的.伏尔泰将它写入《牛顿哲学原理》一书中.牛顿家乡的这棵苹果树后来被移植到剑桥大学中.

牛顿去世后,他被当作发现宇宙规律的英雄人物继而被赋予传奇色彩,牛顿与苹果的故事更是广为流传.但是事实是否如此却无从找到其他史料加以考证.

“我一定要超过他!”

一谈到牛顿,人们可能认为他小时候一定是个“神童”、“天才”、有着非凡的智力。其实不然,牛顿童年身体瘦弱,头脑并不聪明。在家乡读书的时候,很不用功,在班里的学习成绩属于次等。但他的兴趣却是广泛的,游戏的本领也比一般儿童高。平时他爱好制作机械模型一类的玩艺儿,如风车、水车、日晷等等。他精心制作的一只水钟,计时较准确,得到了人们的赞许。

有时,他玩的方法也很奇特。一天,他作了一盏灯笼挂在风筝尾巴上。当夜幕降临时,点燃的灯笼借风筝上升的力升入空中。发光的灯笼在空中流动,人们大惊,以为是出现了彗星。尽管如此,因为他学习成绩不好,还是经常受到歧视。

当时,封建社会的英国等级制度很严重,中小学里学习好的学生,可以歧视学习差的同学。有一次课间游戏,大家正玩得兴高采烈的时候,一个学习好的学生借故踢了牛顿一脚,并骂他笨蛋。牛顿的心灵受到这种刺激,愤怒极了。他想,我俩都是学生,我为什么受他的欺侮?我一定要超过他!从此,牛顿下定决心,发奋读书。他早起晚睡,抓紧分秒、勤学勤思。

经过刻苦钻研,牛顿的学习成绩不断提高,不久就超过了曾欺侮过他的那个同学,名列班级前茅。

2.某日,他请人吃饭

开饭前,突发奇想做实验区了

客人见没人鸟他,便吃好走人,只留下鸡骨头

事后,他发现自己饿了,

就出来吃饭,但发现鸡骨

就觉得自己吃过了,回去接着实验

3.篱笆下的乐趣

世界上有许多著名的科学家的家境是清贫的。他们在通往成功的道路上,都曾与困苦的境遇作过顽强的斗争。牛顿少年时代的境遇也是十分令人同情的。

牛顿一六四二年出生在英国一个普通农民的家里。在牛顿出生前不久,他的父亲就去世了。母亲在他两岁那年改嫁了。当牛顿十四岁的时候,他的继父不幸故去了,母亲回到家乡,牛顿被迫休学回家,帮助母亲种田过日子。母亲想培养他独立谋生,要他经营农产品的买卖。

一个勤奋好学的孩子多么不愿意离开心爱的学校啊!他伤心地哭闹了几次,母亲始终没有回心转意,最后只得违心地按母亲的意愿去学习经商。每天一早,他跟一个老仆人到十几里外的大镇子去做买卖。牛顿非常不喜欢经商,把一切事务都交托老仆人经办,自己却偷偷跑到一个地方去读书。

时光渐渐流逝,牛顿越发对经商感到厌恶,心里所喜欢的只是读书。后来,牛顿索性不去镇里营商了,仅嘱老仆人独去。怕家里人发觉,他每天与老仆人一同出去,到半路停下,在一个篱笆下读书。每当下午老仆人归来时,再一同回家。

这样,日复一日,篱笆下的读书生活倒也其乐无穷。一天,他正在篱笆下兴致勃勃地读书,赶巧被过路的舅舅看见。舅舅一看这个情景,很是生气,大声责骂他不务正业;把牛顿的书抢了过来。舅舅一看他所读的是数学书,上面画着种种记号,心里受到感动。舅舅一把抱住牛顿,激动地说:“孩子,就按你的志向发展吧,你的正道应该是读书。”回到家里后,舅舅竭力劝说牛顿的母亲,让牛顿弃商就学。在舅舅的帮助下,牛顿如愿以偿地复学了。

在暴风中研究和计算风力

时间对人是一视同仁的,给人以同等的量,但人对时间的利用不同,而所得的知识也大不一样。

牛顿十六岁时数学知识还很肤浅,对高深的数学知识甚至可以说是不懂。“知识在于积累,聪明来自学习”。牛顿下决心靠自己的努力攀上数学的高峰。在基础差的不利条件下,牛顿能正确认识自己,知难而进。他从基础知识、基本公式重新学起,扎扎实实、步步推进。他研究完了欧几里德几何学后,又研究笛卡儿几何学,对比之下觉得欧几里德几何学肤浅,便悉心钻研笛氏几何学,直到掌握要领、融会贯通。遂之发明了代数二项式定理。传说中牛顿“大暴风中算风力”的佳话,可为牛顿身体力学的佐证。有一天,天刮着大风暴。风撒野地呼号着,尘土飞扬,迷迷漫漫,使人难以睁眼。牛顿认为这是个准确地研究和计算风力的好机会。于是,便拿着用具,独自在暴风中来回奔走。他踉踉跄跄、吃力地测量着。几次沙尘迷了眼睛,几次风吹走了算纸,几次风使他不得不暂停工作,但都没有动摇他求知的欲望。他一遍又一遍,终于求得了正确的数据。他快乐极了,急忙跑回家去,继续进行研究。有志者事竟成。经过勤奋学习,牛顿为自己的科学高塔打下了深厚的基础。不久,牛顿的数学高塔就建成了,二十二岁时发明了微分学,二十三岁时发明了积分学,为人类科学事业作出了巨大贡献。

万有引力和光的秘密

牛顿二十三岁时,鼠疫流行于伦敦。剑桥大学为预防学生受传染,通告学生休学回家避疫,学校暂时关闭。牛顿回到故乡林肯郡乡下。在乡下度过的休学日子里,他从没间断过学习和研究。万有引力、微积分、光的分析等发明的基础工作,都是这个期间完成的。

那时,乡下的孩子是常常用投石器打几个转转之后,把石抛得很远。他们还可以把一桶牛奶用力从头上转过,而牛奶不掉下来。

这些事实使他怀疑起来:“什么力量使投石器里面的石头,以及水桶里的牛奶不掉下来呢?对于这个问题,他曾想到刻卜勒和伽利略的思想。他从浩瀚的宇宙太空,周行不息的行星,广寒的月球,直至庞大的地球,进而想到这些庞然大物之间力的相互作用。这时,牛顿一头扎进“引力”的计算和验证中了。牛顿计划用这个原理验证太阳系各行星的行动规律。他首先推求月球距地球的距离,由于引用的资料数据不正确,计算的结果错了。因为依理推算月球围绕地球转,每分钟的向心加速度应是十六英尺,但据推算仅得十三点九英尺。在失败的困境中,牛顿毫不灰心和气馁,反而以更大的努力进行辛勤地研究。整整经过了七个春秋寒暑,到三十岁时终于把举世闻名的“万有引力定律”全面证明出来,奠定了理论天文学、天体力学的基础。

这时期牛顿还对光学进行了研究,发现了颜色的根源。一次,他在用自制望远镜观察天体时,无论怎样调整镜片,视点总是不清楚。他想,这可能与光线的折光有关。接着就实验起来。他在暗室的窗户上留一个小圆孔用来透光,在室内窗孔后放一个三棱镜,在三棱镜后挂好白屏接受通过三棱镜折进的光。结果,大出意外,牛顿惊异地看到,白屏上所接受的折光呈椭圆形,两端现出多彩的颜色来。对这个奇异的现象,牛顿进行了深入的思考。得知光受折射后,太阳的白光散为红、橙、黄、绿、蓝、靛、紫七种颜色。因此,白光(阳光)是由红、橙、黄、绿、蓝、 靛、紫七色光线汇合而成。自然界雨后天晴,阳光经过天空中余围的雨滴的折射、反射,形成五彩缤纷的虹霓,正是这个道理。

经过进一步研究,牛顿指出世界万物所以有颜色,并非其自身有颜色。太阳普照万物,各物体只吸收它所接受的颜色,而将它所不能接受的颜色反射出来。这反射出来的颜色就是人们见到的各种物体的颜色。这一学说准确地道出颜色的根源,世界上自古以来所出现的各种颜色学说都被它所推翻。

牛顿所以能取得如此巨大的成就,早年苦学所打下的深厚数学基础起了重要作用。

进入忘我的境界

在一个崎岖的山路上,一位白发苍苍的老人牵着一匹马在缓缓登山。人在前面慢慢地走,马在后面一步步地跟,山谷中响着单调的马蹄声。走啊,走啊,马突然脱缰而跑,老人由于沉浸在极度的思索之中,竟没有发觉。老人依然不畏艰难地登着山,手里还牵着那根马缰绳。当他登到较平坦的地方想要骑马时 一拉缰绳,拽到面前的只是一根绳,回头一看马早已没有了。

牛顿每天除抽出少量的时间锻炼身体外,大部分时间是在书房里度过的。一次,在书房中,他一边思考着问题,一边在煮鸡蛋。苦苦地思索,简直使他痴呆。突然,锅里的水沸腾了,赶忙掀锅一看,“啊!”他惊叫起来,锅里煮的却是一块怀表。原来他考虑问题时竟心不在焉地随手把怀表当做鸡蛋放在锅里了。

还有一次,牛顿邀请一位朋友到他家吃午饭。临近中午,客人应邀而来。客人看见牛顿正在埋头计算问题,桌上、床上摆着稿纸、书籍。看到这种情形,客人没有打搅牛顿,见桌上摆着饭菜,以为是给他准备的,便坐下吃了起来。吃完后就悄悄地走了。当牛顿把题计算完了,走到餐桌旁准备吃午饭时,看见盘子里吃过的鸡骨头,恍然大悟地说:“我以为我没有吃饭呢,我还是吃了。”

这些故事究竟是真是假,并不关重要,不过表明了牛顿是一个怎样沉思默想,不修边幅,虚己敛容的人,他对科学极度的专心,总是想着星辰的旋转,宇宙的变化,而进入了忘我的境界。

谦虚谨慎、一丝不苟的学风

“宽阔的河流平静,学识渊博的人谦虚。”凡是对人类发展作出巨大贡献的伟大人物,都有谦虚的美德。牛顿每当在科学上获得伟大成就时,从不沾沾自喜,自以为很了不起,急忙出版著作,以扬名于世。

当牛顿费尽心血算出“万有引力定律”后,没有急于发表。而是继续孜孜不倦地深思了数年,研究了数年,埋头于数字计算之中,从未对任何人讲过一句。后来,牛顿的朋友,大天文学家哈雷(彗星的发现者),在证明一个关于行星轨道的规律遇到困难时,专程登门请教牛顿。牛顿把自己关于计算“万有引力”的书稿交给哈雷看。哈雷看后才知道他所要请教的问题,正是牛顿早已解决、早已算好了的问题,心里钦羡不已。

在一六八四年十一月某一天,哈雷又到牛顿的寓所拜访。当谈到有关天文学的学术问题时,牛顿拿出写好的关于论证“万有引力”的论文,请哈雷提意见。哈雷看后,对这一巨著感到非常惊讶。他欣喜地对牛顿说:“这真是伟大的论证、伟大的著作!”他再三奉劝牛顿尽快发表这部伟大著作,以造福于人类。可是牛顿没有听信朋友的好意劝告,轻易地发表自己的著作。而是经

过长时间的一丝不苟的反复验证和计算,确认正确无误后,才于一六八七年七月将《自然哲学的数学原理》发表于世。

牛顿是个十分谦虚的人,从不自高自大。曾经有人问牛顿:“你获得成功的秘诀是什么?”牛顿回答说:“假如我有一点微小成就的话,没有其它秘诀,唯有勤奋而已。”他又说:“假如我看得远些,那是因为我站在巨人们的肩上。”这些话多么意味深长啊!它生动地道出牛顿获得巨大成就的奥妙所在,这就是在前人研究成果的基础上,以献身的精神,勤奋地创造,开辟出科学的新天地

CarieVinne

牛顿与苹果的故事

长期以来,牛顿认为,一定有一种神秘的力存在,是这种无形的力拉着太阳系中的行星围绕太阳旋转.但是,这到底是怎样的一种力呢

直到有一天,当牛顿在花园的苹果树下思索,一个苹果落到他的脚边时,牛顿终于获得了顿悟,他的问题也逐渐被解决了.

传说1665年秋季,牛顿坐在自家院中的苹果树下苦思着行星绕日运动的原因.这时,一只苹果恰巧落下来,它落在牛顿的脚边.这是一个发现的瞬间,这次苹果下落与以往无数次苹果下落不同,国为它引起了牛顿的注意.牛顿从苹果落地这一理所当然的现象中找到了苹果下落的原因——引力的作用,这种来自地球的无形的力拉着苹果下落,正像地球拉着月球,使月球围绕地球运动一样.

这个故事据说是由牛顿的外甥女巴尔顿夫人告诉法国哲学家,作家伏尔泰之后流传起来的.伏尔泰将它写入《牛顿哲学原理》一书中.牛顿家乡的这棵苹果树后来被移植到剑桥大学中.

牛顿去世后,他被当作发现宇宙规律的英雄人物继而被赋予传奇色彩,牛顿与苹果的故事更是广为流传.但是事实是否如此却无从找到其他史料加以考证.

“我一定要超过他!”

一谈到牛顿,人们可能认为他小时候一定是个“神童”、“天才”、有着非凡的智力。其实不然,牛顿童年身体瘦弱,头脑并不聪明。在家乡读书的时候,很不用功,在班里的学习成绩属于次等。但他的兴趣却是广泛的,游戏的本领也比一般儿童高。平时他爱好制作机械模型一类的玩艺儿,如风车、水车、日晷等等。他精心制作的一只水钟,计时较准确,得到了人们的赞许。

有时,他玩的方法也很奇特。一天,他作了一盏灯笼挂在风筝尾巴上。当夜幕降临时,点燃的灯笼借风筝上升的力升入空中。发光的灯笼在空中流动,人们大惊,以为是出现了彗星。尽管如此,因为他学习成绩不好,还是经常受到歧视。

当时,封建社会的英国等级制度很严重,中小学里学习好的学生,可以歧视学习差的同学。有一次课间游戏,大家正玩得兴高采烈的时候,一个学习好的学生借故踢了牛顿一脚,并骂他笨蛋。牛顿的心灵受到这种刺激,愤怒极了。他想,我俩都是学生,我为什么受他的欺侮?我一定要超过他!从此,牛顿下定决心,发奋读书。他早起晚睡,抓紧分秒、勤学勤思。

经过刻苦钻研,牛顿的学习成绩不断提高,不久就超过了曾欺侮过他的那个同学,名列班级前茅。

2.某日,他请人吃饭

开饭前,突发奇想做实验区了

客人见没人鸟他,便吃好走人,只留下鸡骨头

事后,他发现自己饿了,

就出来吃饭,但发现鸡骨

就觉得自己吃过了,回去接着实验

3.篱笆下的乐趣

世界上有许多著名的科学家的家境是清贫的。他们在通往成功的道路上,都曾与困苦的境遇作过顽强的斗争。牛顿少年时代的境遇也是十分令人同情的。

牛顿一六四二年出生在英国一个普通农民的家里。在牛顿出生前不久,他的父亲就去世了。母亲在他两岁那年改嫁了。当牛顿十四岁的时候,他的继父不幸故去了,母亲回到家乡,牛顿被迫休学回家,帮助母亲种田过日子。母亲想培养他独立谋生,要他经营农产品的买卖。

一个勤奋好学的孩子多么不愿意离开心爱的学校啊!他伤心地哭闹了几次,母亲始终没有回心转意,最后只得违心地按母亲的意愿去学习经商。每天一早,他跟一个老仆人到十几里外的大镇子去做买卖。牛顿非常不喜欢经商,把一切事务都交托老仆人经办,自己却偷偷跑到一个地方去读书。

时光渐渐流逝,牛顿越发对经商感到厌恶,心里所喜欢的只是读书。后来,牛顿索性不去镇里营商了,仅嘱老仆人独去。怕家里人发觉,他每天与老仆人一同出去,到半路停下,在一个篱笆下读书。每当下午老仆人归来时,再一同回家。

这样,日复一日,篱笆下的读书生活倒也其乐无穷。一天,他正在篱笆下兴致勃勃地读书,赶巧被过路的舅舅看见。舅舅一看这个情景,很是生气,大声责骂他不务正业;把牛顿的书抢了过来。舅舅一看他所读的是数学书,上面画着种种记号,心里受到感动。舅舅一把抱住牛顿,激动地说:“孩子,就按你的志向发展吧,你的正道应该是读书。”回到家里后,舅舅竭力劝说牛顿的母亲,让牛顿弃商就学。在舅舅的帮助下,牛顿如愿以偿地复学了。

在暴风中研究和计算风力

时间对人是一视同仁的,给人以同等的量,但人对时间的利用不同,而所得的知识也大不一样。

牛顿十六岁时数学知识还很肤浅,对高深的数学知识甚至可以说是不懂。“知识在于积累,聪明来自学习”。牛顿下决心靠自己的努力攀上数学的高峰。在基础差的不利条件下,牛顿能正确认识自己,知难而进。他从基础知识、基本公式重新学起,扎扎实实、步步推进。他研究完了欧几里德几何学后,又研究笛卡儿几何学,对比之下觉得欧几里德几何学肤浅,便悉心钻研笛氏几何学,直到掌握要领、融会贯通。遂之发明了代数二项式定理。传说中牛顿“大暴风中算风力”的佳话,可为牛顿身体力学的佐证。有一天,天刮着大风暴。风撒野地呼号着,尘土飞扬,迷迷漫漫,使人难以睁眼。牛顿认为这是个准确地研究和计算风力的好机会。于是,便拿着用具,独自在暴风中来回奔走。他踉踉跄跄、吃力地测量着。几次沙尘迷了眼睛,几次风吹走了算纸,几次风使他不得不暂停工作,但都没有动摇他求知的欲望。他一遍又一遍,终于求得了正确的数据。他快乐极了,急忙跑回家去,继续进行研究。有志者事竟成。经过勤奋学习,牛顿为自己的科学高塔打下了深厚的基础。不久,牛顿的数学高塔就建成了,二十二岁时发明了微分学,二十三岁时发明了积分学,为人类科学事业作出了巨大贡献。

万有引力和光的秘密

牛顿二十三岁时,鼠疫流行于伦敦。剑桥大学为预防学生受传染,通告学生休学回家避疫,学校暂时关闭。牛顿回到故乡林肯郡乡下。在乡下度过的休学日子里,他从没间断过学习和研究。万有引力、微积分、光的分析等发明的基础工作,都是这个期间完成的。

那时,乡下的孩子是常常用投石器打几个转转之后,把石抛得很远。他们还可以把一桶牛奶用力从头上转过,而牛奶不掉下来。

这些事实使他怀疑起来:“什么力量使投石器里面的石头,以及水桶里的牛奶不掉下来呢?对于这个问题,他曾想到刻卜勒和伽利略的思想。他从浩瀚的宇宙太空,周行不息的行星,广寒的月球,直至庞大的地球,进而想到这些庞然大物之间力的相互作用。这时,牛顿一头扎进“引力”的计算和验证中了。牛顿计划用这个原理验证太阳系各行星的行动规律。他首先推求月球距地球的距离,由于引用的资料数据不正确,计算的结果错了。因为依理推算月球围绕地球转,每分钟的向心加速度应是十六英尺,但据推算仅得十三点九英尺。在失败的困境中,牛顿毫不灰心和气馁,反而以更大的努力进行辛勤地研究。整整经过了七个春秋寒暑,到三十岁时终于把举世闻名的“万有引力定律”全面证明出来,奠定了理论天文学、天体力学的基础。

这时期牛顿还对光学进行了研究,发现了颜色的根源。一次,他在用自制望远镜观察天体时,无论怎样调整镜片,视点总是不清楚。他想,这可能与光线的折光有关。接着就实验起来。他在暗室的窗户上留一个小圆孔用来透光,在室内窗孔后放一个三棱镜,在三棱镜后挂好白屏接受通过三棱镜折进的光。结果,大出意外,牛顿惊异地看到,白屏上所接受的折光呈椭圆形,两端现出多彩的颜色来。对这个奇异的现象,牛顿进行了深入的思考。得知光受折射后,太阳的白光散为红、橙、黄、绿、蓝、靛、紫七种颜色。因此,白光(阳光)是由红、橙、黄、绿、蓝、 靛、紫七色光线汇合而成。自然界雨后天晴,阳光经过天空中余围的雨滴的折射、反射,形成五彩缤纷的虹霓,正是这个道理。

经过进一步研究,牛顿指出世界万物所以有颜色,并非其自身有颜色。太阳普照万物,各物体只吸收它所接受的颜色,而将它所不能接受的颜色反射出来。这反射出来的颜色就是人们见到的各种物体的颜色。这一学说准确地道出颜色的根源,世界上自古以来所出现的各种颜色学说都被它所推翻。

牛顿所以能取得如此巨大的成就,早年苦学所打下的深厚数学基础起了重要作用。

进入忘我的境界

在一个崎岖的山路上,一位白发苍苍的老人牵着一匹马在缓缓登山。人在前面慢慢地走,马在后面一步步地跟,山谷中响着单调的马蹄声。走啊,走啊,马突然脱缰而跑,老人由于沉浸在极度的思索之中,竟没有发觉。老人依然不畏艰难地登着山,手里还牵着那根马缰绳。当他登到较平坦的地方想要骑马时 一拉缰绳,拽到面前的只是一根绳,回头一看马早已没有了。

牛顿每天除抽出少量的时间锻炼身体外,大部分时间是在书房里度过的。一次,在书房中,他一边思考着问题,一边在煮鸡蛋。苦苦地思索,简直使他痴呆。突然,锅里的水沸腾了,赶忙掀锅一看,“啊!”他惊叫起来,锅里煮的却是一块怀表。原来他考虑问题时竟心不在焉地随手把怀表当做鸡蛋放在锅里了。

还有一次,牛顿邀请一位朋友到他家吃午饭。临近中午,客人应邀而来。客人看见牛顿正在埋头计算问题,桌上、床上摆着稿纸、书籍。看到这种情形,客人没有打搅牛顿,见桌上摆着饭菜,以为是给他准备的,便坐下吃了起来。吃完后就悄悄地走了。当牛顿把题计算完了,走到餐桌旁准备吃午饭时,看见盘子里吃过的鸡骨头,恍然大悟地说:“我以为我没有吃饭呢,我还是吃了。”

这些故事究竟是真是假,并不关重要,不过表明了牛顿是一个怎样沉思默想,不修边幅,虚己敛容的人,他对科学极度的专心,总是想着星辰的旋转,宇宙的变化,而进入了忘我的境界。

谦虚谨慎、一丝不苟的学风

“宽阔的河流平静,学识渊博的人谦虚。”凡是对人类发展作出巨大贡献的伟大人物,都有谦虚的美德。牛顿每当在科学上获得伟大成就时,从不沾沾自喜,自以为很了不起,急忙出版著作,以扬名于世。

当牛顿费尽心血算出“万有引力定律”后,没有急于发表。而是继续孜孜不倦地深思了数年,研究了数年,埋头于数字计算之中,从未对任何人讲过一句。后来,牛顿的朋友,大天文学家哈雷(彗星的发现者),在证明一个关于行星轨道的规律遇到困难时,专程登门请教牛顿。牛顿把自己关于计算“万有引力”的书稿交给哈雷看。哈雷看后才知道他所要请教的问题,正是牛顿早已解决、早已算好了的问题,心里钦羡不已。

在一六八四年十一月某一天,哈雷又到牛顿的寓所拜访。当谈到有关天文学的学术问题时,牛顿拿出写好的关于论证“万有引力”的论文,请哈雷提意见。哈雷看后,对这一巨著感到非常惊讶。他欣喜地对牛顿说:“这真是伟大的论证、伟大的著作!”他再三奉劝牛顿尽快发表这部伟大著作,以造福于人类。可是牛顿没有听信朋友的好意劝告,轻易地发表自己的著作。而是经

过长时间的一丝不苟的反复验证和计算,确认正确无误后,才于一六八七年七月将《自然哲学的数学原理》发表于世。

牛顿是个十分谦虚的人,从不自高自大。曾经有人问牛顿:“你获得成功的秘诀是什么?”牛顿回答说:“假如我有一点微小成就的话,没有其它秘诀,唯有勤奋而已。”他又说:“假如我看得远些,那是因为我站在巨人们的肩上。”这些话多么意味深长啊!它生动地道出牛顿获得巨大成就的奥妙所在,这就是在前人研究成果的基础上,以献身的精神,勤奋地创造,开辟出科学的新天地

kikcik

牛顿是英国著名的物理学家、数学家和天文学家.生于1642年英国林肯郡的一个农民家庭. 幼年时,牛顿身体较弱,学习成绩也不好,还经常受到别的同学的欺侮.有一次,几个同学逼他太甚,他忽然鼓起勇气反抗起来.从此,再没有人敢欺侮他,他也暗暗下决心,在学习上要超过别的同学,不再让人瞧不起.由于发奋读书,他的各门功课,尤其是数学,都成为班上最优秀的. 少年时期的牛顿,非常喜欢动手做玩具、小器械,他做的灯笼、风筝十分精巧,他的风筝比商店卖的飞得还高.据说,他曾经做过一个“水钟”,他在水桶壁上划上均匀的横线,让桶里的水从桶底往外滴,水面不断下降,根据刻度线读出时间,水滴尽了,正好是中午时刻.这个钟类似于我国古代的漏壶.牛顿做的“太阳钟”,据说是在木板上划上线,中间钉一枚铁钉,在阳光下,看钉子的影子与哪条线重合,就能读出时间.这个“太阳钟”类似于我国古代的日晷. 1661年牛顿中学毕业,考入英国剑桥大学三一学院.在大学期间,由于他中学的数学基础好,再加上自己刻苦钻研,他的学习突飞猛进,深受导师的喜爱,导师将自己的专长,毫无保留地传授给了他. 1665年牛顿大学毕业,获得学士学位,留校做研究工作.从此开始了他的科学生涯. 1665年秋,伦敦发生了可怕的瘟疫,剑桥大学关门,牛顿回到了家乡.在家乡的十八个月,可以说是牛顿一生中最重要的时期,几乎他所有最重要的成就都在这个时期奠定了基础.牛顿研究苹果落地的故事,就发生在这期间. 瘟疫过后,牛顿回到剑桥大学.1668年他取得硕士学位.1669年,他的导师巴罗博士辞职,并积极推荐他接替了数学教授的职位.他从这年开始,就成为全剑桥大学公认的大数学家,还被选为三一学院管理委员会成员. 牛顿在剑桥大学从事教学和科研工作,长达三十年之久.这三十年是他刻苦钻研的三十年,为了科学研究,他的绝大部分时间都是在实验室里度过的,有时为了检验一个设想,他呕心沥血、通宵达旦,直到有了结果才罢休.牛顿的渊博学识和辉煌的科学成就,都是在剑桥取得的. 1672年牛顿当选为英国伦敦皇家学会会员.1689年当选为英国国会议员.1696年因病离开剑桥大学,到皇家造币厂当监督,1699年出任造币厂厂长,同时被选为法国科学院八个外国委员之一.1703年他当选为皇家学会会长,以后每年都连任,直到去世.1705年英国女皇授予他爵士称号. 1727年3月20日,牛顿因病在伦敦逝世,终年85岁.因为他一生对国家的贡献,逝世后被葬于威斯敏斯特教堂的墓地. 牛顿是十七世纪最伟大的科学巨匠,他所取得的科学成就是无与伦比的.同时,他又十分谦虚,他临终这样评论自己:“我不知道世界上的人对我是怎样看待的.但在我自己看来,却只觉得我好像是一个小孩子,在海滩上玩耍,不时寻找比平常更光滑的石子,或是美丽的贝壳;可是,在那汪洋大海之中,却充满着无穷的真理,在我面前都未发现.”“如果说我比笛卡儿(法国数学家、物理学家,1596~1650)看得远一点儿,那是因为我是站在前辈巨人的肩上.”

再也不做站长了

【牛顿】

事迹:牛顿1661年入英国剑桥大学三一学院,1665年获文学士学位。随后两年在家乡躲避瘟疫。这两年里,他制定了一生大多数重要科学创造的蓝图。1667年回剑桥后当选为三一学院院委,次年获硕士学位。1669年任卢卡斯教授直到1701年。1696年任皇家造币厂监督,并移居伦敦。1703年任英国皇家学会会长。1706年受女王安娜封爵。他晚年潜心于自然哲学与神学。

成果:牛顿在科学上最卓越的贡献是微积分和经典力学的创建

hi投

出生,长大,死亡,当然牛顿有点牛。提出了牛顿三大运动定律和万有引力定律,晚年信神。算是追求真理过程因能力不够而误入错误道路,但还是很牛。

真颛

牛顿对科学的贡献可以归纳为两点

一是发明微积分,

二是建立了经典力学体系。

u投在线

牛顿是英国的科家

角动量为什么守恒?

角动量守恒实际就是力矩相等,比如八大行星离太阳越远,行星线速度越慢;其实就是力臂越长,行星受力越小.再比如一根绳子绑一个石头兜圈,同样的力气,绳子越长,石头越慢;反之,石头越快.这都和力气守恒,也是角动量守恒.再比如普通自行车后车轮,空转时很难停下来,是因为车轮各点两边力矩都相等,互相制约产生的角动量守恒,而其它摩擦力、阻力都很小,所以很难停下来.也因此汽车车轮有的上面有配重找平衡,为的是力矩相等,为的是角动量守恒. 即行星角动量守恒,也就是和太阳自转产生的能量守恒,也就是行星的力矩和太阳自转能量,相符相成,或者说达到平衡,使行星永恒围绕太阳公转.
2023-07-01 10:24:361

证明角动量守恒

http://translate.google.cn/translate?hl=zh-CN&sl=zh-TW&u=http://www.phy.ntnu.edu.tw/demolab/phpBB/viewtopic.php%3Ftopic%3D19083&sa=X&oi=translate&resnum=8&ct=result&prev=/search%3Fq%3D%25E8%25AF%2581%25E6%2598%258E%25E8%25A7%2592%25E5%258A%25A8%25E9%2587%258F%25E5%25AE%2588%25E6%2581%2592%26complete%3D1%26hl%3Dzh-CN%26newwindow%3D1%26client%3Daff-os-worldbrowser%26hs%3DZAx 这个给你希望有帮助
2023-07-01 10:24:514

什么是角动量守恒?

角动量守恒条件是合外力矩等于零。角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。角动量守恒的具体应用:用角动量守恒推算开普勒第二定律开普勒第二定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。行星在太阳的向心引力作用下绕日运动,所以行星受到的引力对太阳的力矩为零,那么角动量就华丽丽的守恒了,故有L=rpsinα=常数。由上述推导可之掠面速度A/t为常数,所以相同时间行星绕太阳扫过的面积相等。
2023-07-01 10:25:087

刚体定轴转动角动量守恒定律原理

刚体定轴转动角动量守恒定律原理如下:定轴转动刚体的角动量守恒的条件是外力对刚体转轴的力矩之和为零。刚体定轴转动的角动量:刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。刚体定轴转动的角动量定理:(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。刚体定轴转动的角动量守恒定律:如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。注解(1)单个刚体对定轴的转动惯量保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量I应等于初始时刻的角动量Im。,亦即Im =I,因而@=@。这时,物体绕定轴作匀角速转动。(2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度@随转动惯量的改变而变,但两者之乘积I 却保持不变,因而当变大时,@变小;变小时,@变大。如芭蕾舞演员表演时就是这样。
2023-07-01 10:25:551

大学物理角动量问题 如图为什么角动量守恒?求详细说明~~~

设人相对于盘的匀角速度为ωr(逆时针为正),盘对地的角速度为ω"(顺时针为负),系统(人和转盘)合外力矩为零,角动量(对地面)守恒:0=(ωr-ω")J1-ω".J2 , 则 ω"=ωr.j1/(J1+J2)匀角速度位移与加速度成正比θ"/θr=ω"/ωr=J1/(J1+J2)盘相对于地面转角θ"=θr.J1/(J1+J2)=2π.mR^2/(mR^2+MR^2/2)=2π.m/(m+M/2) ,顺时针人相对于地面转角θ=θr-θ"=2π-2π.m/(m+M/2)=2π(1-m/(m+M/2) ,逆时针
2023-07-01 10:26:232

什么是角动量?为什么角动量守恒?如何理解角动量守恒?

这个是物理上的,核物理上的一个知识点,用在核物理上天体。
2023-07-01 10:26:334

求大神解答这三种情况之间的机械能、动量、角动量守恒与不守恒的原理区别…谢谢!

第一种情况:绳子和重力只能提供竖直方向的力,其对O点的力矩为0,故子弹撞入沙袋前后,子弹和沙袋组成的系统对O点的角动量守恒,水平方向动量守恒;设子弹质量为m,沙袋质量为M,则子弹撞入前,动能为p^2/(2m), 撞入后总动能为p^2/[2(M+m)];而子弹撞入前后,系统总重力势能不变,故系统机械能不守恒(子弹射入沙袋,摩擦力做功产生内能)。 第二种情况:同上,系统角动量守恒。由于子弹射入杆,摩擦力做功产生内能,故机械能不守恒。至于水平方向动量,可将杆分离出来进行研究:以杆为研究对象,杆受到撞击一般在O点会有运动倾向,导致其在O点会产生作用力与反作用力(除“打击中心”虎口不受力外,子弹打在其他位置都会在O点产生水平方向效果的反作用力),故杆和子弹组成的系统一般情况由于会受到O点拥有水平方向效果的力,而动量不守恒。 第三种情况,物体在做圆周运动,动量方向不断发生改变,故动量不守恒。由于重力和绳的拉力的合力即为向心力,此力位于水平方向,且时刻指向O点,故此物关于O点的角动量守恒。除此之外,由于没有其他能量转化,系统机械能也是守恒的。
2023-07-01 10:27:361

陀螺角动量守恒原理

事实上,陀螺并非角动量守恒,当陀螺自转角速度方向和竖直方向有一定夹角的时候,很显然,重力对陀螺和地面的接触点的力矩不为0,因此陀螺角动量不会守恒,在这个力矩的作用下,如果陀螺还有一定的初始角速度,陀螺的角动量矢量将会绕着过地面接触点的竖直轴转动。 扩展资料   角动量这个时候大小不变方向在改变,因此也就存在一个变化率,如果陀螺所收到的力矩刚好等于这个变化率,陀螺在理想状态下就会稳定转动。进动的角速度也可以按照这个思路来计算,表达式为Ω=M/(Lsinθ),M是重力产生的力矩,L是陀螺自转的角动量,θ是与竖直方向偏角。
2023-07-01 10:27:511

为什么人骑自行车不会摔倒

有惯性
2023-07-01 10:28:014

飞机、轮船上的导航仪利用了哪一力学原理?

飞机轮船上的导航仪利用了哪一力学原理?飞机轮船上的导航仪利用了,磁场的力学原理来制造
2023-07-01 10:28:292

单双杠练习中运用到的角动量守恒原理

先从最简单的物理模型开始:前提是滑手出台子前没有向一侧甩上肢,即整体角动量为零.由于自身整体角动量为零,所以此时滑手的选择只有50-50(即标准的直飞)和shifties(翻译为漂转、漂移什么的)两个选择.所谓shiifties具体就是上半身向一个方向拧,下半身向反方向拧,然后再收回的一个过程,可将这一模型简化成双旋翼直升机的上下两组旋桨(当然只能转圆周的很小一部分).更进一步的模型则可以加入出台子时的角动量,最复杂的则需要加入纵向的旋转(因为选手在做纵向旋转时身体会明显的收紧,想把这个模型作具体了绝对不是两个垂直转轴那么简单).最后说两句题外话,单板运动和大多数运动一样,主要的技术来自于实践经验,很多滑手根本不会考虑什么角动量守恒但照样会作出让我们眼花缭乱的转体,此外,.楼主是抱着什么心态在知道发这种问题.个人觉得这么细化的问题出现在“知道”这个大众化的交流平台上很难得到满意的答案.
2023-07-01 10:28:361

太空转身原理是什么?

力的作用是相互的
2023-07-01 10:28:595

自行车走不起不倒,什么原理,来个简单明了答案,复杂看不懂?

车上装了陀螺仪!
2023-07-01 10:29:232

牛顿发明了什么

牛顿力学上发明了角动量守恒的原理;在光学上,牛顿发明了反射式望远镜;在数学上,发展了微积分。 牛顿被称为天才,是著名的物理学家,数学家。那么牛顿发明了什么,才使得他如此出名呢?下面来给大家具体的介绍一下。 详细内容 01 在力学上,牛顿阐明了角动量守恒的原理。 02 在光学上,牛顿发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。 03 牛顿系统地表述了冷却定律,并研究了音速。 04 在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。 05 牛顿证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。
2023-07-01 10:29:421

牛顿发明了什么

牛顿发明了反射望远镜,提出了万有引力定律、牛顿三大运动定律、论证开普勒行星运动定律、引力理论, 推动了科学革命、动量和角动量守恒的原理、冷却定律,并研究了音速、微积分学。1、在力学上,牛顿阐明了角动量守恒的原理,提出牛顿运动定律。 2、在光学上,牛顿发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。 3、牛顿系统地表述了冷却定律,并研究了音速。 4、在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。 5、牛顿证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。 6、在经济学上,牛顿提出了金本位制度。牛顿在1672年创造了反射望远镜。他用质点间的万有引力证明,密度呈球对称的球体对外的引力都可以用同质量的质点放在中心的位置来代替。牛顿预言地球不是正球体。岁差就是由于太阳对赤道突出部分的摄动造成的。
2023-07-01 10:29:491

请问一下第6题怎么做啊?学过了刚体转动但是还是没有思路啊

既然你提到了刚体,就知道你应该是在说大学物理了,而刚体的定轴转动是刚体的最简单的运动,相当于质点的直线运动,都是比较简单的,而求解力学问题有四条线,建立坐标系求解运动微分方程,利用牛顿动力学方程解题,利用三大守恒原理(动量,角动量,能量守恒)解题,利用分析力学拉格朗日方程(或者哈密顿正则方程)解题,下面就谈一下对于求解质点和刚体运动问题的经验对于单个质点的问题,首先分析受力情况,这里就有点区别,如果质点受有心力作用,那就是死套路了,三大守恒定律加轨道方程一定能求解,实在是没思路还可以从比耐公式出发(即从运动微分方程出发)进行推导,如果不是受有心力作用,还是首先考虑三大守恒定律,因为三大守恒所列的方程都是对时间的一阶微分方程,求解比较方便,一般方程列出结果也就一目了然了,但是也有缺点,由于是求解一阶微分方程,就无法利用三大守恒定律求出质点所受的约束反作用力,如果题中需要求解到约束反作用力如(张力,支持力等)就需要用到牛顿动力学方程结合运动微分方程求解,计算繁琐,但只要顺着思路是可以求出所有待求约束反力的,当然三大守恒定律所能求解出的速度等量也可以求出的(牛顿力学认为改变物体运动的原因只有力,因此牛顿力学处理约束的方法就是把约束去掉,代之以约束反作用力,而分析力学观点认为改变物体运动的原因是力和约束,因此还要单独考虑约束方程。)对于质点组(刚体),其实出发点完全一样,首先都要考虑三大守恒定律,特别是刚体,因为刚体的运动通常存在转动,所以首先就应该想到角动量守恒,当然,刚体转动如果仅仅是定轴转动的话基本上角动量守恒就可以解决,然而真正的刚体运动一般是平面运动或者是定点转动,所以其它守恒定律都应同时考虑,缺点同样是无法求约束反力,对于纯运动学问题还可以考虑基点法和瞬心法求刚体上某一点加速度和速度,同样一切三大守恒定律能求解出来的两都可以利用牛顿动力学方程求解,并且运动牛顿动力学方程还可以求解约束反力,缺点同样是计算要求高最后说一下一直没提到的分析力学,这是另一类求解力学问题的方法,运用该方法在做受力分析是还需做约束分析,判断系统自由度,选取独立广义坐标,利用拉格朗日方程或者哈密顿正则方程求解,理论上一切可以利用牛顿力学求解的力学问题都可以利用分析力学求解,可以说分析力学可以脱离作图直接求解,但是对数学的要求是最高的这就是我的观点,有兴趣可以留言交流~~
2023-07-01 10:29:571

谁能简单解释一下角动量守恒 不要复制 要易懂

角动量守恒一般用在天体运动或原子物理中,其来源似乎是开普勒第二定律(面积定律)即极短相同时间内扫过面积相同。VLsina为定值。在合力距为0时守恒,L=mvrsina.r是距参考点的距离(参考点任意)a是速度与r的夹角,可理解为动量力矩。
2023-07-01 10:30:062

芭蕾舞演员在在旋转时为了增高转速应该怎么做?物理原理是什么?

先把身体张开,旋转中把手脚缩回来;物理原理是根据动量矩守恒原理,四肢张开,让身体的转动惯量增大,同样的转速可以获得更大的动量矩,手脚缩回,身体转动惯量减小,转速则增大
2023-07-01 10:30:262

根据角动量守恒原理,说明自行车和摩托车在具有一定速度后为什么不容易倒?

惯性
2023-07-01 10:30:353

哪期快乐大本营有啊啊啊啊这个实验的

快乐大本营有“啊啊啊啊科学实验站”的期数:20120421期 启动仪式:干冰蛋糕、干冰气球、液氮大炮20120428期 人体钢琴、听力大考验、水果DJ台20120505期 六氟化硫:灭蜡烛、承载小船、变声、祝福小虎队20120512期 伯努利原理:快乐乒乓球、飞球大赛、电影《赛德克u2027巴莱》介绍、天使墙20120519期 气:吹蜡烛、烟炮、跳箱灭烛、氢气爆炸20120526期 单手飞鸡蛋、灯泡钉钉子20120609期 力的分散作用:胶杯与蛋筒(120602期)20120616期 泡腾片原理、泡腾片网球大战、超级大蛋糕20120623期 折飞机、人体画版作画20120639期 武林争霸赛:单手劈木条、瓶子不许动、快剑飞木术20120728期 立硬币、立瓶子、泡沫赵州桥20120804期 缓冲、淀粉池、液氮饼干20120811期 打蛋清、打泡泡、看谁泡泡堆得高20120818期 《快乐到家》电影启动仪式:光影画、三轮挑战:绷扣子、叉鱼丸、火线冲击20120825期 彩虹圈、液氮冰淇淋、干冰蜡烛20120901期 气压:打气球、空气炮、庆祝仪式20120915期 洗洁精画画、跑跑卡丁船、超级大烟鼓20120922期 吸盘、神奇吸盘大考验20120929期 压力20121006期 共振20121020期 角动量守恒原理20121103期 伯努利原理20121117期 水面张力20121201期 缓冲20121208期 静电:静电金属球、静电飘升机、摩擦起电20121215期 角动量守恒原理20130112期 倾斜板、木头人20130119期 摩擦力20130202期 柠檬通电、综艺新年赛20130316期 空气压力:速度比拼、优美比拼:采爆气球20130330期 通电奏乐、定时拍照20130406期 橡皮筋压力、演艺圈竞技排行榜:跳高、单扛摔跤20130601期 人体轮胎、过四关20130622期 小球上坡、逆天抢答题20130629期 腐蚀20130713期 液氮、猜国旗、接歌曲、真真假假20130727期 大气压强、魔幻水杯20130810期 动手、接纸船、纸船过三关20130907期 防水、女神KTV20130921期 声音传播:震碎杯子、乐器水下发声实验20131005期 力量20131012期 电、烧烤、人工发电KTV20131102期 光影、亲子版心有灵犀20131123期 电音猜歌、液氮大炮20131130期 静电版火线冲击20131221期 静电:静电版火线冲击20131228期 离心力、离心力投篮、Make A Wish20130104期 真空、真空版心有灵犀20140125期 气垫船、举办婚礼20140308期 Bom Bom Change、空气炮点球赛20140315期 分子料理20140405期 橡皮圈乘重(140301期)20140419期 气球20140426期 冰淇淋接力赛20140503期 旅行饿不着料理大赛20140517期 聚变20140614期 烈焰挑战20140621期 环保机器人大赛、飓风电扇20140628期 纳米:诚实姐姐魔术时间、泥浆油漆大战20140726期 惯性:扯桌布、赛车挑战20140802期 棒针插水袋20140823期 视错舞蹈20140830期 味觉大考验、神奇实验20141004期 力学:硬币力学(短片)、高空换装20141018期 泡泡:神奇泡泡树20141108期 拱形结构:泡沫赵州桥20141115期 力学:斜立可乐、高空对战20141206期 承力:圆柱承字典、蜂窝结构:防水纸椅子承重20141213期 气象气球20141220期 力的分散原理:抛栗子大赛、针板扎气球20150110期 重心:拆积木:大形抽木条实验20150207期 同性相斥:数字炸弹20150214期 记忆金属:预言20150321期 快速洗掉502胶水20150404期 物品魔术:数字炸弹)20150411期(重播) 旅行饿不着料理大赛
2023-07-01 10:30:461

阐述开普勒第二定律及其遵守的物理原理?

开普勒行星运动第二定律,也称等面积定律,其原始表述:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。其现代表述为:太阳系中太阳和运动中的行星的连线(矢径)在相等的时间内扫过相等的面积。开普勒第二定律遵守的物理原理是:万有引力充当向心力时,行星运动的角动量守恒。即角动量守恒原理。
2023-07-01 10:30:541

陀螺仪帮助地磁校准的原理

陀螺仪帮助地磁校准的原理是利用角动量守恒原理。根据查询相关资料信息显示:陀螺仪帮助地磁校准的原理是利用角动量守恒原理,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的,根据这个道理,可以用来保持方向。
2023-07-01 10:31:181

高一物理竞赛,关于角动量守恒的一点不解。请乱讲的不要入了。感谢解答。

1. 角速度和速度一样是跟参考系的选取有关系的,所以选地面固定点为参考点的话D、C的角速度是不一样的,而在与B平动的参考系来看D、C的角速度是相等的。而角动量守恒和动量守恒定律类似,虽然在不同惯性系具体数值不同但在惯性系都成立的。所以你需要去验证的是角动量的定量关系而不是角速度的。2. 在角动量守恒定律里,角速度不是一个关键的概念,关键是理解角动量。所以以
2023-07-01 10:31:474

猫咪身体非常柔软,为什么把猫咪抛下它会四肢着地?

因为猫咪的4只脚是足够的轻,这就导致在空中是容易调整的,这也是猫咪独有的特点。
2023-07-01 10:31:575

大学物理角动量守恒公式

大学物理中角动量守恒定律的公式为:L = Iω其中,L表示角动量,I表示转动惯量,ω表示角速度。角动量是描述物体旋转运动的物理量,它的大小等于物体的转动惯量I与角速度ω的乘积,即角动量L=Iω。角动量的方向与角速度的方向相同,因此它是一个矢量量。当物体在没有外力作用下,它的角速度和转动惯量保持不变,此时称为角动量守恒。在这种情况下,如果物体的转动惯量发生改变,角速度则相应地发生改变,以保持角动量守恒。这种情况下,当物体由宽的一面旋转变为细的一面旋转时,角速度增大,而当物体由细的一面旋转变为宽的一面旋转时,角速度减小,以保证角动量守恒。学习大学物理角动量守恒公式,需要有以下几个步骤:1、学习物理基础知识。理解角动量的物理定义、角速度的概念和转动惯量的定义等基本概念。同时,需要掌握使用单位的规范,确保计算精度和准确性。2、学习角动量守恒定律的知识。掌握角动量守恒的物理原理和相关定律,深入了解角动量守恒的应用领域和实际意义。3、多做例题。进行大量的练习,从简单到复杂地解决各种相关的物理问题,例如计算质点系的角动量,利用角动量守恒定律进行周期性运动的分析等。4、认真思考,合理应用。在解决问题时,注意理解题意,分析问题的本质,运用角动量守恒定律解决问题。同时也要注意实际应用,掌握如何把角动量守恒定律应用到实际的物理问题中。5、寻求帮助。如果在学习中遇到困难,可以向老师或同学寻求帮助,或者查阅相关的学习资料和教材,加深自己的理解。
2023-07-01 10:33:001

刚学角动量,问个关于角动量守恒的问题

你把简单问题复杂化,然后又考虑不全面,出现自相矛盾。角动量的守恒条件,就是合外力矩等于零。其中一种特例就是行星类,叫做有心力,对应力矩等于零,角动量守恒。按照你的分析,你只考虑到r的大小变化,会导致角动量大小变化,这个没错,但是r的方向也在变,也会导致角动量变化,两个因素累加,就会保证角动量不变。但是明显被搞复杂了。
2023-07-01 10:33:341

关于角动量守恒

某个方向的角动量应该是对于某个转轴来说的,所以该问题中竖直方向角动量守恒,考虑竖直方向角动量时,r应该取大小应该是到转轴的距离。向下的速度是由于下落过程中重力做功,有外力参与的过程中,角动量是不一定守恒的。而水平速度方向上仍然是守恒的,此时角动量沿竖直方向。
2023-07-01 10:33:461

快乐大本营啊啊啊啊科学实验站做过的实验有哪些是自己也可以做的?原理是什么?

金贤重这期的啊阿啊啊你可以自己作
2023-07-01 10:34:062

那个用自行车轮和轮盘,的物理实验叫什么啊?原理是什么?

这叫验证角动量守恒原理就是 角动量守恒
2023-07-01 10:34:131

怎么理解角动量

看单位自己想嘛,kg×m×m/s,意思就是质量乘距离乘速度呗。1千克的东西在距离旋转中心1米的位置运动速度是1米每秒时,角动量就是1这个单位。
2023-07-01 10:34:243

物理问题:关于角动量守恒

高中范围学习的都是质点运动学,物体都看做质点,没有转动和形变,也就没有角动量和冲量。有关角动量守恒的问题,要到大学学习了刚体的转动才会清楚,它也是守恒的。
2023-07-01 10:34:493

王亚平的心肌实验的原理

实验一:太空细胞——空间站实验展示 细胞在失重环境下生长得好吗?当然好!正如航天员王亚平在课堂上所说,细胞在太空中很神奇,甚至能看到它在跳动。在此次太空授课中,航天员叶光富为大家展示了太空中细胞的神奇变化。记者在现场看到,心肌细胞在荧光显微镜下闪闪发光,还做起了收缩运动。太空授课科普专家组成员、北京交通大学物理国家级实验教学示范中心副教授陈征解释说,这是微重力环境下活的心肌细胞因为生物电脉冲而产生的明暗闪烁。实验二:太空转身——角动量守恒原理 究竟怎样完成太空转身?航天员叶光富漂浮着尝试了吹气、游泳等方法后均无果,但当他右手不断地划着圈并且越划越快时,他在太空成功转身。“叶光富的太空转身体现的是角动量守恒原理。”陈征解释说,空间站处于微重力环境,人人身轻如燕,但同时也失去了地面摩擦力提供的向前的动力,因此人不但不会比在地面上走路更轻松,反而会寸步难行。他解释道,太空转身实验的核心关键词叫做角动量。角动量是描述物体转动的物理量。这个试验所展现的是在微重力的环境中,航天员在不接触空间站的情况下,类似于理想状态下验证“没有外力矩,物体会处于角动量守恒”。航天员上半身向左转动时,按照角动量守衡的原则,下半身就会向右转。讲课中,航天员就是通过右手划圈实现转身。实验三:浮力消失——浮力与重力伴生 乒乓球在太空里会浮在水面上吗?王亚平在“天宫课堂”上,将乒乓球放在盛有水的杯子中,轻轻用吸管一压,失重环境下,会发生什么有趣的事情?只见乒乓球停留在了水中,不能浮起来。乒乓球在微重力环境下“浮力消失”,陈征说,微重力条件下,液体内部压强处处相等,因而也就不再有上下表面压强差而产生的浮力。“重力和浮力相伴而生,正是地球上的重力使得乒乓球能够浮于水面。”实验四:水膜张力——液体表面张力 在翟志刚、叶光富的辅助下,航天员王亚平把一个金属圈插入饮用水袋中,慢慢抽出金属圈,形成了一个水膜。接着,她往水膜表面贴上一片和女儿一起完成的花朵折纸。在水膜试验中,这朵花在太空中“绽放”。“在微重力环境下,表面张力很大的水也能够延展成水膜而不像地面上不要加入表面活性剂,贴在水膜上的花朵也因为表面张力而展开。”陈征说。那么什么是液体表面张力?清华大学航天学院副教授王兆魁曾介绍,受到内部分子的吸引,液体表面分子有被拉入内部的趋势,导致表面就像一张绷紧的橡皮膜,这种促使液体表面收缩的绷紧的力,就是表面张力。实验五:水球光学——同样是液体表面张力 王亚平接着用饮水袋往水膜上注水,利用液体表面张力,水膜很快变成一个亮晶晶的大水球。叶光富立即向水球内注入空气,水球内形成一个球形气泡。神奇的事情发生了,水球产生了双重成像,中间和外部一个是正像一个是倒像。这是为什么呢?陈征解释道,重力影响极小时,水在表面张力作用下形成近乎完美的球形,可以像凸透镜那样成像。在加入气泡后,悬在水球中的气泡又把水球分成了中心和周围两部分,中心部分变成两个凹透镜的组合而成一个正立虚像,周围部分仍是凸透镜形成倒立实像。实验六:泡腾片实验——浮力消失 泡腾片遇到水之后会产生很多气泡,那么在太空,泡腾片与水球相遇会发生什么变化?在今天的“天宫课堂”第一课上,太空教师王亚平就做了这样一个实验。只见泡腾片在水球里不断冒泡,但在失重环境下,气泡虽然不断产生,但并没有离开水球。而随着气泡不断增多,水球逐渐变成了一个充满欢乐的“气泡球”,而且产生了阵阵香气。
2023-07-01 10:34:561

中国空间站(写一写介绍了几种小实验,你最喜欢哪一种详细写,是什么原理

六种。最喜欢的是太空转身实验。太空转身实验原理是角动量守恒。有这六种实验:太空细胞学研究实验、太空转身、浮力消失实验、水膜张力实验、水球光学实验、泡腾片实验。角动量守恒定律是指系统所受合外力矩为零时系统的角动量保持不变。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
2023-07-01 10:35:032

陀螺仪是怎样的?小小的它为何能为飞机导航?

飞机陀螺仪实际上是用于感测和保持方向的设备。其设计基于角动量不会熄灭的理论。陀螺仪主要由可绕轴旋转的轮组成。一旦陀螺仪开始旋转,由于车轮的角动量,陀螺仪趋向于抵抗方向的变化。 1850年,法国物理学家福柯首次发现了高速旋转转子,以研究地球的旋转。由于惯性,其旋转轴始终指向固定方向。
2023-07-01 10:35:123

什么是角动量守恒?

角动量守恒,又称角动量守恒定律 是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变. dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化. 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性.   根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.   此原理多用于天文学,天体运行时自转不变.   注解:   (1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 .这时,物体绕定轴作匀角速转动.   (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大.如芭蕾舞演员表演时就是这样.   (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例.因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变.
2023-07-01 10:36:001

角动量守恒

角动量守恒,又称角动量守恒定律 是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变。 dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化。 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性。  根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.  此原理多用于天文学,天体运行时自转不变.  注解:  (1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 。这时,物体绕定轴作匀角速转动。   (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大。如芭蕾舞演员表演时就是这样。   (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。以上回答你满意么?
2023-07-01 10:36:081

角动量守恒转台实验原理

角动量守恒转台的实验原理为绕定轴转动的刚体,当对转轴的合外力矩为零时,刚体对转轴的角动量守恒,此为刚体的角动量守恒定律。根据角动量定理,内力不影响系统的总角动量,因此只要外力矩为零,则系统的角动量守恒。若物体为刚体,则表现为物体绕轴具有恒定的转速。若物体是非刚体,则体系的转速与其转动惯量成反比。地球受到的来自于月球和太阳的引力经过其质心,如果不考虑潮汐力的作用,这些力的力矩为零,因此地球的自转角动量守恒,由于地球近似是一个刚体,因此表现为地球具有恒定的自转角速度。同样,地球受到太阳的引力是有心力,故它绕太阳的公转运动也满足角动量守恒的条件,这就是开普勒第二定律:地球的矢径在相等的时间内扫过的面积相等。不过地球的轨道不是圆轨道,故公转角速度不是恒定的。芭蕾舞表演者脚下受力的力矩如果足够小,她的角动量是守恒的,在她张开手臂时,转速就减小,而收拢手臂则转速增加。跳水运动员在空中飞翔过程中只受重力作用,作用点正好是人体的转动中心,因此力矩为零,故角动量守恒。若他想在空中多翻几次筋斗,则必须在这有限的时间内,尽可能提高翻转角速度,因此他必须尽可能的缩成一团以减小自身转动惯量;而入水时又要尽可能竖直向下,减小摇摆,因此就伸直全身,将转速降到最低。
2023-07-01 10:36:441

为什么跳水运动员在跳水过程中角动量守恒?

运动员起跳后,围绕着质心转动,因重力通过质心轴,故其角动量L=Jω守恒。运动员在空中翻转过程中,因动作的变化导致四肢末端到质心距离的改变,使得运动员对质心的转动惯量J随之变化,因此其角速度随之变化。据L=Jω,运动员的角动量L不变,则角速度ω与转动惯量J成反比。扩展资料角动量守恒定律内容对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。这是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。
2023-07-01 10:37:081

角动量守恒原理,详细的浅显易懂的,不要教科书式的回答。

角动量守恒实际就是力矩相等,比如八大行星离太阳越远,行星线速度越慢;其实就是力臂越长,行星受力越小。再比如一根绳子绑一个石头兜圈,同样的力气,绳子越长,石头越慢;反之,石头越快。这都和力气守恒,也是角动量守恒。再比如普通自行车后车轮,空转时很难停下来,是因为车轮各点两边力矩都相等,互相制约产生的角动量守恒,而其它摩擦力、阻力都很小,所以很难停下来。也因此汽车车轮有的上面有配重找平衡,为的是力矩相等,为的是角动量守恒。即行星角动量守恒,也就是和太阳自转产生的能量守恒,也就是行星的力矩和太阳自转能量,相符相成,或者说达到平衡,使行星永恒围绕太阳公转。
2023-07-01 10:37:241

刚体定轴转动的角动量守恒定律

刚体定轴转动的角动量守恒定律内容如下:中文名称:刚体定轴转动的角动量守恒定律英文名称:Law of conservation of angular momentum of rigid body in rotational motion定义及摘要:刚体定轴转动的角动量守恒定律根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即M=OI=恒量在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.注解(1)单个刚体对定轴的转动惯量保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量I应等于初始时刻的角动量Im。,亦即Im =I,因而@=@。这时,物体绕定轴作匀角速转动。(2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度@随转动惯量的改变而变,但两者之乘积I 却保持不变,因而当变大时,@变小;变小时,@变大。如芭蕾舞演员表演时就是这样。(3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变
2023-07-01 10:37:331

下面四种运动,哪一种没有利用角动量守恒原理

角动量守恒,又称角动量守恒定律 是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变. dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化. 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性.   根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.   此原理多用于天文学,天体运行时自转不变.   注解:   (1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 .这时,物体绕定轴作匀角速转动.   (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大.如芭蕾舞演员表演时就是这样.   (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例.因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变.
2023-07-01 10:38:031

角动量守恒

角动量守恒条件是合外力矩等于零。角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。角动量守恒的具体应用:用角动量守恒推算开普勒第二定律开普勒第二定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。行星在太阳的向心引力作用下绕日运动,所以行星受到的引力对太阳的力矩为零,那么角动量就华丽丽的守恒了,故有L=rpsinα=常数。由上述推导可之掠面速度A/t为常数,所以相同时间行星绕太阳扫过的面积相等。
2023-07-01 10:38:272

角动量守恒

角动量守恒条件是合外力矩等于零。角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。角动量守恒的具体应用:用角动量守恒推算开普勒第二定律开普勒第二定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。行星在太阳的向心引力作用下绕日运动,所以行星受到的引力对太阳的力矩为零,那么角动量就华丽丽的守恒了,故有L=rpsinα=常数。由上述推导可之掠面速度A/t为常数,所以相同时间行星绕太阳扫过的面积相等。
2023-07-01 10:38:442

日常生活中还有什么现象满足角动量守恒定律

角动量守恒,又称角动量守恒定律 是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变。 dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化。 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性。根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.此原理多用于天文学,天体运行时自转不变.注解:(1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 。这时,物体绕定轴作匀角速转动。 (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大。如芭蕾舞演员表演时就是这样。 (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。
2023-07-01 10:38:511

刚体角动量守恒定律的内容刚体的运动形式有哪些

角动量守恒  角动量守恒,又称角动量守恒定律 是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变。 dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化。 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性。根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.此原理多用于天文学,天体运行时自转不变.注解:(1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 。这时,物体绕定轴作匀角速转动。 (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大。如芭蕾舞演员表演时就是这样。 (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。
2023-07-01 10:39:001

角动量的物理意义是什么?求大神帮助

角动量守恒,又称角动量守恒定律 是指系统所受合外力矩为零时系统的角动量保持不变。 dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化。 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性。 根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律. 此原理多用于天文学,天体运行时自转不变. 注解: (1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 。这时,物体绕定轴作匀角速转动。 (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大。如芭蕾舞演员表演时就是这样。 (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。
2023-07-01 10:39:221

腕力球原理 腕力球原理是什么

1、腕力球的工作原理:运用陀螺仪和角动量守恒原理,在惯性定律和角动量作用下持续旋转并产生强大的力量,使手腕、手臂处于自主运动状态。 2、腕力球高速旋转所产生的强大力量,对锻炼我们手指、手腕、手臂的力量和韧性非常具有帮助,并集运动、娱乐、健身于一体,越来越受到全世界人们的青睐和喜爱。 3、腕力球是腕力健身球的简称,也称强力球、魔力球、陀螺球、超级陀螺,是台湾人发明的,在台湾比较流行,后又传到欧美国家,并逐渐在全球推广开来。
2023-07-01 10:39:291

关于角动量守恒的问题

原来人坐在转椅上静止,整个系统的角动量为零,当伸开双臂把身体向右转时,就是一个向下的角动量,根据角动量守恒必有一个向上的角动量,所以椅子就会向左转。再比如舞蹈演员跳舞时,做旋转动作时,如果双手举起则转动加快,如果水平伸开双手则转动减慢,这也是角动量守恒的例子。
2023-07-01 10:39:441

航模 陀螺仪 原理

陀螺仪(gyroscope),是一种用来感测与维持方向的装置,基于角动量守恒的理论设计出来的。陀螺仪主要是由一个位于轴心且可旋转的轮子构成。 陀螺仪一旦开始旋转,由于轮子的角动量,陀螺仪有抗拒方向改变的趋向。陀螺仪多用于导航、定位等系统。详见:http://www.hudong.com/wiki/%E9%99%80%E8%9E%BA%E4%BB%AA
2023-07-01 10:39:544

角动量守恒应用

导航仪,开普勒定律(径矢单位时间内扫过面积相等)
2023-07-01 10:40:402