汉邦问答 / 问答 / 问答详情

二次函数和一次函数是基本初等函数吗?

2023-07-01 13:06:52
u投在线
答:二次函数和一次函数是基本初等函数。
基本初等函数还包括三角函数,反三角函数,指数函数,对数函数,幂函数,常数函数等。
肖振

二次函数和一次函数是基本初等函数

初等函数

function)、三角函数(trigonometric

function)、反三角函数(inverse

trigonometic

function)与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数

数学辅导团为您解答

无尘剑

基本初等函数包括:幂函数、指数函数、对数函数、三角函数、反三角函数、常数函数。

二次函数和一次函数都是有幂函数组合而成的初等函数。

二次函数和幂函数中的二次幂函数是一样的吗?

如果只有一项,则前面的系数不一样的话也不是同一个函数,而且前者可以有一次幂的项,和常数项
2023-06-30 18:40:573

一次函数 二次函数 反比例函数 指数函数 对数函数 幂函数的基本形式?

一次函数的基本形式是y=ax+b,其中a和b为常数;二次函数的基本形式是y=ax^2+bx+c,其中a、b和c为常数;反比例函数的基本形式是y=k/x,其中k为比例系数;指数函数的基本形式是y=a^x,其中a为底数,x为指数;对数函数的基本形式是y=logax,其中a为底数,x为实数;幂函数的基本形式是y=ax^b,其中a和b为常数。
2023-06-30 18:41:031

一次函数,二次函数,指数函数,对数函数,幂函数图像的增长特点

一次函数是单调增减函数,所谓单调,即随着自变量的增加,因变量单纯地增加或者减少,而不会忽增忽减. 二次函数有一个极值点,在极值点的一侧单调增加,在另一侧音调减少,在极值点处增减性发生变化. 在a^b=c中, 如果a是正常量,b是自变量,c是因变量,则为指数函数.当a1时音调增加. 如果b是常量,a是定义域为正实数的自变量,c是因变量,则为幂函数.当b是正数时单调增加,当b是负数时单调减少. 如果a是正常量,c是定义域为正实数的自变量,b是因变量,则为对数函数,当a1时音调增加,. .
2023-06-30 18:41:271

解释二次函数与幂函数

楼上的基础概念不扎实, 二次函数是自变量最高幂是2,自变量的幂可以是2,1,0的的函数,幂函数的自变量的最高次是任意的. y=ax^2 + bx + c(a≠0)就是二次函数 y=x^a就是幂函数 值得指出的是,二次函数不是幂函数,因为它不一定符合y=x^a
2023-06-30 18:41:361

幂函数是基本初等函数,而二次函数是由二次幂函数,一次函数,常数符合而成,不是基本初等函数。二次函数不是幂函数。
2023-06-30 18:41:452

高中数学中的六大类函数

一次函数二次函数幂函数指数函数对数函数三角函数
2023-06-30 18:41:553

二次函数是不是基本函数

2023-06-30 18:43:354

二次函数是不是幂函数

不一定
2023-06-30 18:43:432

函数的种类有哪些?

常见函数类型有:一次函数、二次函数、三次函数、四次函数;基本初等函数包括幂函数、指数函数、对数函数、三角函数、反三角函数和常数函数。精确地说,设X为一个非空集合,Y为非空数集,f为对应法则,若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应,就称对应法则f是X上的一个函数。函数有许多种,在高中阶段的函数包括:1、一次函数y=ax+b2、二次函数y=ax2+b3、指数函数4、对数函数5、幂函数6、三角函数
2023-06-30 18:44:021

y=x^2既是二次函数,也是幂函数。二次函数的特殊情况(a=1;b,c=0)
2023-06-30 18:44:182

反比例函数、二次函数、幂函数、指数函数、对数函数、反函数的图像各有什么特征?

这是初中高中数学所有函数的性质 图像 1.一次函数(包括正比例函数) 最简单最常见的函数,在平面直角坐标系上的图象为直线。 定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R 值域:R 奇偶性:无 周期性:无 平面直角坐标系解析式(下简称解析式): ①ax+by+c=0[一般式] ②y=kx+b[斜截式] (k为直线斜率,b为直线纵截距,正比例函数b=0) ③y-y1=k(x-x1)[点斜式] (k为直线斜率,(x1,y1)为该直线所过的一个点) ④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式] ((x1,y1)与(x2,y2)为直线上的两点) ⑤x/a-y/b=0[截距式] (a、b分别为直线在x、y轴上的截距) 解析式表达局限性: ①所需条件较多(3个); ②、③不能表达没有斜率的直线(平行于x轴的直线); ④参数较多,计算过于烦琐; ⑤不能表达平行于坐标轴的直线和过圆点的直线。 倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角。设一直线的倾斜角为a,则该直线的斜率k=tg(a)。 2.二次函数题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。 定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷) 奇偶性:偶函数 周期性:无 解析式: ①y=ax^2+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b^2)/4a); ⑷Δ=b^2-4ac, Δ>0,图象与x轴交于两点: ([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ<0,图象与x轴无交点; ②y=a(x-h)^2+t[配方式] 此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a); 3.反比例函数 在平面直角坐标系上的图象为双曲线。 定义域:(负无穷,0)∪(0,正无穷) 值域:(负无穷,0)∪(0,正无穷) 奇偶性:奇函数 周期性:无 解析式:y=1/x 4.幂函数 y=x^a ①y=x^3 定义域:R 值域:R 奇偶性:奇函数 周期性:无 图象类似于将一个过圆点的二次函数的第四区间部分关于x轴作轴对称 后得到的图象(类比,这个方法不能得到三次函数图象) ②y=x^(1/2) 定义域:[0,正无穷) 值域:[0,正无穷) 奇偶性:无(即非奇非偶) 周期性:无 图象类似于将一个过圆点的二次函数以原点为旋转中心,顺时针旋转 90°,再去掉y轴下方部分得到的图象(类比,这个方法不能得到三次 函数图象) 5.指数函数 在平面直角坐标系上的图象(太难描述了,说一下性质吧……) 恒过点(0,1)。联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减。 定义域:R 值域:(0,正无穷) 奇偶性:无 周期性:无 解析式:y=a^x a>0 性质:与对数函数y=log(a)x互为反函数。 *对数表达:log(a)x表示以a为底的x的对数。 6.对数函数 在定义域上的图象与对应的指数函数(该对数函数的反函数)的图象关于直线y=x轴对称。 恒过定点(1,0)。联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减。 定义域:(0,正无穷) 值域:R 奇偶性:无 周期性:无 解析式:y=log(a)x a>0 性质:与对数函数y=a^x互为反函数。 7.三角函数 ⑴正弦函数:y=sinx 图象为正弦曲线(一种波浪线,是所有曲线的基础) 定义域:R 值域:[-1,1] 奇偶性:奇函数 周期性:最小正周期为2π 对称轴:直线x=kπ/2 (k∈Z) 中心对称点:与x轴的交点:(kπ,0)(k∈Z) ⑵余弦函数:y=cosx 图象为正弦曲线,由正弦函数的图象向左平移π/2个单位(最小平移量)所得。 定义域:R 值域:[-1,1] 奇偶性:偶函数 周期性:最小正周期为2π 对称轴:直线x=kπ (k∈Z) 中心对称点:与x轴的交点:(π/2+kπ,0)(k∈Z) ⑶正切函数:y=tg x 图象的每个周期单位很像是三次函数,很多个,均匀分布在x轴上。 定义域:{x│x≠π/2+kπ} 值域:R 奇偶性:奇函数 周期性:最小正周期为π 对称轴:无 中心对称点:与x轴的交点:(kπ,0)(k∈Z)。 *三角函数的性质略了,太多,光公式就不止千个。另外,三角函数的图象平移、拉伸变化,在图象平移内容中说得很清楚(不在这里,在教材里)我就不多说了。 大功告成!希望对你的学习有所帮助。
2023-06-30 18:44:261

一次函数 二次函数 反比例函数 指数函数 对数函数 幂函数 三角函数的定

初等函数是由幂函数、指数函数、对数函数、初等函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数。它是最常用的一类函数,包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数(以上是基本初等函数),以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。
2023-06-30 18:44:352

一次函数、二次函数、反比例函数是幂函数吗?

上述函数均不是幂函数。
2023-06-30 18:44:523

函数的所有分类

对于高中生而言,主要接触的是初等函数,初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数。基本初等函数和初等函数在其定义区间内均为连续函数。非初等的在高中主要接触的是分段函数,当然,函数是多种多样的,关于较复杂函数的一些分类标准会在大学高等数学(也说微积分)课上学习 。
2023-06-30 18:45:021

幂函数的公式是什么?

幂函数公式如下:1、同底数幂的乘法: a^m×a^n=a^(m+n))(m、n都是整数)。2、幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n。3、同底数幂的除法:am÷an=a(m-n) (a≠0,m,n均为正整数,并且m>n)。幂函数的特点幂函数包含了数量丰富的各种函数,衍生出去,衔接了个数不菲的常用函数,譬如:一次函数、二次函数、正比例函数、反比例函数、根式函数、立方函数。影响幂函数图像的走向和形状的重要因素实际上是α,当0<α<1时,尽管整个幂函数图像总体还是上升的,但上升的速度在逐渐减小,最后趋近于0。
2023-06-30 18:45:291

高中数学必修一的知识点

高中高一数学必修1各章知识点总结第一章 集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性; 2.元素的互异性; 3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集 含有有限个元素的集合2.无限集 含有无限个元素的集合3.空集 不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B① 任何一个集合是它本身的子集。AíA②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)③如果 AíB, BíC ,那么 AíC④ 如果AíB 同时 BíA 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作: CSA 即 CSA ={x | x?S且 x?A}SCsAA(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。)构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。(2) 画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。发现解题中的错误。4.快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.5.什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B”给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。常用的函数表示法及各自的优点:1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值补充一:分段函数 (参见课本P24-25)在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。例如: y=2sinX y=2cos(X2+1)7.函数单调性(1).增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)_(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:函数 单调性u=g(x) 增 增 减 减y=f(u) 增 减 增 减y=f[g(x)] 增 减 减 增注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?8.函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)10.函数最大(小)值(定义见课本p36页)1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);第二章 基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *.当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand).当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。注意:当 是奇数时, ,当 是偶数时, 2.分数指数幂正数的分数指数幂的意义,规定:, 0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(1) · ;(2) ;(3) .(二)指数函数及其性质1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>1 0<a<1图象特征 函数性质向x、y轴正负方向无限延伸 函数的定义域为R图象关于原点和y轴不对称 非奇非偶函数函数图象都在x轴上方 函数的值域为R+函数图象都过定点(0,1)自左向右看,图象逐渐上升 自左向右看,图象逐渐下降 增函数 减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1图象上升趋势是越来越陡 图象上升趋势是越来越缓 函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢;注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上, 值域是 或 ;(2)若 ,则 ; 取遍所有正数当且仅当 ;(3)对于指数函数 ,总有 ;(4)当 时,若 ,则 ;二、对数函数(一)对数1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)说明:1 注意底数的限制 ,且 ;2 ;3 注意对数的书写格式.两个重要对数:1 常用对数:以10为底的对数 ;2 自然对数:以无理数 为底的对数的对数 .对数式与指数式的互化对数式 指数式对数底数 ← → 幂底数对数 ← → 指数真数 ← → 幂(二)对数的运算性质如果 ,且 , , ,那么:1 · + ;2 - ;3 .注意:换底公式 ( ,且 ; ,且 ; ).利用换底公式推导下面的结论(1) ;(2) .(二)对数函数1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.2 对数函数对底数的限制: ,且 .2、对数函数的性质:a>1 0<a<1图象特征 函数性质函数图象都在y轴右侧 函数的定义域为(0,+∞)图象关于原点和y轴不对称 非奇非偶函数向y轴正负方向无限延伸 函数的值域为R函数图象都过定点(1,0)自左向右看,图象逐渐上升 自左向右看,图象逐渐下降 增函数 减函数第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0(三)幂函数1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.3、函数零点的求法:求函数 的零点:1 (代数法)求方程 的实数根;2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数 .1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
2023-06-30 18:45:451

一次函数和二次函数有什么区别,具体怎么区分

没有区别。我更喜欢一次函数,因为它长得比较好看。
2023-06-30 18:45:543

二次函数是不是基本函数

是的,二次函数属于幂函数  基本初等函数包括以下几种:  (1)常数函数y=c(c为常数)  (2)幂函数y=x^a(a为常数)  (3)指数函数y=a^x(a>0,a≠1)  (4)对数函数y=log(a)x(a>0,a≠1)  (5)三角函数
2023-06-30 18:46:091

一次函数,二次函数,指数函数,对数函数,幂函数图像的增减速度哪个快哪个慢?

指数函数快,对数慢
2023-06-30 18:46:362

函数在生活中的应用。一次函数、二次函数、指数函数、幂函数、对数函数各举一例 谢谢~~

一次函数 就是弹簧 遵守胡克定律 F=KX + L 二次函数 就是圆球 求他的表面积是 S=3/4πr2 指数函数 参考一楼的 细菌数随时间的变化 N=K1/T幂函数 和 对数函数本人能力有限 也没有课本 想不出来自己可以参照课本看看里面有没有例子或者习题上有没有相关的应用题
2023-06-30 18:46:492

函数的标准形式是?

这个问题问得太宽泛,如果你问得是数学里的函数,那应该问:一次函数,二次函数,幂函数,正弦函数... 等等,这些具体的函数的标准形式。而如果你问的是程序设计语言里的函数,那应该问:Basic,Pascal,C... 等等,这些具体的语言里函数定义的标准形式。
2023-06-30 18:46:572

f(xy)=f(x)f(y)是二次函数还是正切函数还是余弦函数还是幂函数

这是幂函数的函数方程. 常用的如下: f(x+y)=f(x)+f(y)---> f(x)=ax 正比例函数 f(x+y)=f(x)f(y)----->f(x)=a^x ,指数函数 f(xy)=f(x)f(y)---> f(x)=x^a,幂函数 f(xy)=f(x)+f(y)--->f(x)=loga(x),对数函数
2023-06-30 18:47:131

初中数学课本有提到幂函数了吗?

2023-06-30 18:47:239

所有函数的表达式

2023-06-30 18:47:471

二次函数y=x^2如何求导

因为y=x^2,所以dy/dx=y"=2x。
2023-06-30 18:47:542

幂函数与指数函数的区别和联系?

1.指数函数:自变量x在指数的位置上,y=a^x(a>0,a不等于1)性质比较单一,当a>1时,函数是递增函数,且y>0;当0<a<1时,函数是递减函数,且y>0.2.幂函数:自变量x在底数的位置上,y=x^a(a不等于1).a不等于1,但可正可负,取不同的值,图像及性质是不一样的。高中数学里面,主要要掌握a=-1、2、3、1/2时的图像即可。其中当a=2时,函数是过原点的二次函数。其他a值的图像可自己通过描点法画下并了解下基本图像的走向即可。3.y=8^(-0.7)是一个具体数值,并不是函数,如果要和指数函数或者幂函数联系起来也是可以的。首先你可以将其看成:指数函数y=8^x(a=8),当x=-0.7时,y的值;或者将其看成:幂函数y=x^(-0.7)(a=-0.7),当x=8时,y的值。
2023-06-30 18:48:372

指数函数幂函数的区别

指数为x的函数是指数函数,底数为x的函数是幂函数。
2023-06-30 18:48:478

二次函数和一次函数有什么区别?

二次函数,一次函数都属于幂函数的一种幂函数:y=x^k二次函数也就是k=1时,一次函数是k=1时。二次函数会比一次函数复杂一点也是高中函数的入门课程
2023-06-30 18:49:501

f(x)是幂函数又是反比例函数,则这个函数是y= f(x)是幂函数又是二次函数,则这个函数是y=

f(x)是幂函数又是反比例函数,则这个函数是y=x^(-1)f(x)是幂函数又是二次函数,则这个函数是y=x^2如图无图请追问如果你认可我的回答,请点击“采纳回答”,祝学习进步!手机提问的朋友在客户端右上角评价点【评价】,然后就可以选择【满意,问题已经完美解决】了
2023-06-30 18:49:581

高中数学里面的函数部分是不是都有一定的联系? 幂函数,指数函数,二次函数,三角函数。它们和导数的关系

每个函数都有自己的基本表达式和基本性质啊,这些性质是需要花时间去好好研究的。导数就是研究函数在其区间内的增长还是下降吧,我记得不太齐了
2023-06-30 18:50:124

为什么y=〖(x-2)〗^2不是幂函数

幂函数就是x^a (a>0 a不等于1)你说的是一次函数和幂函数的复合函数
2023-06-30 18:50:204

为什么y=2乘(x的平方)不是幂函数

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 2的X次方底数为常数2不为自变量
2023-06-30 18:50:355

如何区别指数函数和幂函数

一个常数在上边,一个常数在下边。
2023-06-30 18:50:503

解释二次函数与幂函数

二次函数是幂函数的一种,二次函数中的幂是2,而幂函数中的指数可以是任意的,幂函数只作为了解,而二次函数应重点掌握
2023-06-30 18:52:192

二次函数不属于幂函数,它是幂函数和一次函数的复合函数
2023-06-30 18:52:261

一次函数,二次函数,指数函数,对数函数,幂函数图像的增长特点

一次函数是单调增减函数,所谓单调,即随着自变量的增加,因变量单纯地增加或者减少,而不会忽增忽减. 二次函数有一个极值点,在极值点的一侧单调增加,在另一侧音调减少,在极值点处增减性发生变化. 在a^b=c中, 如果a是正常量,b是自变量,c是因变量,则为指数函数.当a1时音调增加. 如果b是常量,a是定义域为正实数的自变量,c是因变量,则为幂函数.当b是正数时单调增加,当b是负数时单调减少. 如果a是正常量,c是定义域为正实数的自变量,b是因变量,则为对数函数,当a1时音调增加,. .
2023-06-30 18:52:331

一次函数,二次函数,指数函数,对数函数,幂函数图像的增长特点

一次函数:物理应用二次函数:物理应用指数函数:细菌数随时间变化幂函数:银行存款计复利对数函数:实际中某种生物的数量随时间变化注意:符合幂函数和对数函数的必须是y=a^x,y=loga(x)(a>0,a≠0)
2023-06-30 18:52:474

函数的基本公式是什么?

函数的基本公式是如下:1、正比例函数y=kx(k≠0)。2、反比例函数y=k/x(k≠0)。3、一次函数y=kx+b(k≠0)。4、二次函数y=ax^2+bx+c(a≠0)。5、幂函数y=x^a。6、指数函数y=a^x(a>0,a≠1)。7、对数函数y=log(a)x(a是底数,x是真数,且a>0,a≠1)。
2023-06-30 18:53:031

幂函数是怎样的函数?

幂函数公式如下:1、同底数幂的乘法: a^m×a^n=a^(m+n))(m、n都是整数)。2、幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n。3、同底数幂的除法:am÷an=a(m-n) (a≠0,m,n均为正整数,并且m>n)。幂函数的特点幂函数包含了数量丰富的各种函数,衍生出去,衔接了个数不菲的常用函数,譬如:一次函数、二次函数、正比例函数、反比例函数、根式函数、立方函数。影响幂函数图像的走向和形状的重要因素实际上是α,当0<α<1时,尽管整个幂函数图像总体还是上升的,但上升的速度在逐渐减小,最后趋近于0。
2023-06-30 18:53:171

二次函数和一次函数有什么区别

区别大了,而且复杂多啦!要认真对待哦
2023-06-30 18:53:394

函数在生活中的应用.一次函数、二次函数、指数函数、幂函数、对数函数各举一例 生活实例

一次函数:物理应用 二次函数:物理应用 指数函数:细菌数随时间变化 幂函数:银行存款计复利 对数函数:实际中某种生物的数量随时间变化 注意:符合幂函数和对数函数的必须是y=a^x,y=loga(x)(a>0,a≠0)
2023-06-30 18:54:091

幂函数公式怎么写啊?

幂函数公式如下:1、同底数幂的乘法: a^m×a^n=a^(m+n))(m、n都是整数)。2、幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n。3、同底数幂的除法:am÷an=a(m-n) (a≠0,m,n均为正整数,并且m>n)。幂函数的特点幂函数包含了数量丰富的各种函数,衍生出去,衔接了个数不菲的常用函数,譬如:一次函数、二次函数、正比例函数、反比例函数、根式函数、立方函数。影响幂函数图像的走向和形状的重要因素实际上是α,当0<α<1时,尽管整个幂函数图像总体还是上升的,但上升的速度在逐渐减小,最后趋近于0。
2023-06-30 18:54:341

y=x^n是什么函数 幂函数么?

是幂函数如y=x^2二次函数也是幂函数要注意幂函数x在底数上,区别指数函数x在指数上另幂函数x前面的系数一定为1,后面不在任何东西y=x^2+4就不是幂函数
2023-06-30 18:55:531

求各种函数的性质

画出他们的图像看图像吧!自己试着做!相信自己!
2023-06-30 18:56:164

高一数学必修一知识点总结

  数学是比较容易得分的科目之一,那么高一数学必修一知识点有哪些呢。以下是由我为大家整理的“高一数学必修一知识点总结”,仅供参考,欢迎大家阅读。    第一章 集合与函数概念   一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性   说明:   (1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。   (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。   (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。   (4)集合元素的三个特性使集合本身具有了确定性和整体性。   3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}   2.集合的表示方法:列举法与描述法。   注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,   如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。   描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}   4、集合的分类:   1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系   1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”   结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,   即:A=B ① 任何一个集合是它本身的子集。AíA   ②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)   ③如果 AíB, BíC ,那么 AíC   ④ 如果AíB 同时 BíA 那么A=B   3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.   4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作: CSA 即 CSA ={x | x?S且 x?A}   (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。   (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ   ⑶(CUA)∪A=U   二、函数的有关概念   1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域   . 注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;   3 函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;   (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。 (2) 画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换   (3)作用: 1、直观的看出函数的性质; 2、利用数形结合的方法分析解题的思路。提高解题的速度。 发现解题中的错误。 4.快去了解区间的概念   (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.   5.什么叫做映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B” 给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象   说明:函数是一种特殊的映射,映射是一种特殊的对应   ,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:   (Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;   (Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。   常用的函数表示法及各自的优点:   1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;   2 解析法:必须注明函数的定义域;   3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;   4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值   补充一:分段函数 (参见课本P24-25) 在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。   分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.   (1)分段函数是一个函数,不要把它误认为是几个函数;   (2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 补充二:复合函数 如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。   例如: y=2sinX y=2cos(X2+1)   7.函数单调性   (1).增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.   注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质   2 必须是对于区间D内的任意两个自变量x1,x2;当x1   (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.   (3).函数单调区间与单调性的判定方法 (A)   定义法: 1 任取x1,x2∈D,且x1   8.函数的奇偶性 (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.   注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).   (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称.   总结:利用定义判断函数奇偶性的格式步骤:   1 首先确定函数的定义域,并判断其定义域是否关于原点对称;   2 确定f(-x)与f(x)的关系;   3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.   首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .   9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)   10.函数最大(小)值(定义见课本p36页)   1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);   如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);   第二章 基本初等函数   一、指数函数 (一)指数与指数幂的运算   1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *. 当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand)   . 当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).   由此可得:负数没有偶次方根;0的任何次方根都是0,   , 2.分数指数幂 正数的分数指数幂的意义,规定: , 0的正分数指数幂等于0,0的负分数指数幂没有意义   指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.   (二)指数函数及其性质   1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1.   2、指数函数的图象和性质 a>1 0   (1)在[a,b]上, 值域是 或 ;   (2)若 ,则 ; 取遍所有正数当且仅当 ;   (3)对于指数函数 ,总有 ;   (4)当 时,若 ,则 ; 二、对数函数 (一)对数 1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)   说明:1 注意底数的限制 ,且 ; 2 ; 3 注意对数的书写格式. 两个重要对数: 1 常用对数:以10为底的对数 ; 2 自然对数:以无理数 为底的对数的对数 . 对数式与指数式的互化 对数式 指数式 对数底数 ← → 幂底数 对数 ← → 指数 真数 ← → 幂 (二)对数的运算性质 如果 ,且 , , ,那么: 1 · + ; 2 - ; 3 . 注意:换底公式 ( ,且 ; ,且 ; ). 利用换底公式推导下面的结论(1) ;(2) . (二)对数函数 1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞). 注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。 如: , 都不是对数函数,而只能称其为对数型函数. 2 对数函数对底数的限制: ,且 . 2、对数函数的性质: a>1 0   (三)幂函数   1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸; (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 第三章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。 2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即: 方程 有实数根 函数 的图象与 轴有交点 函数 有零点. 3、函数零点的求法: 求函数 的零点: 1 (代数法)求方程 的实数根; 2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数 . 1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点. 2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程 无实根,二次函数的图象与轴无交点。
2023-06-30 18:56:331

高一数学《二次函数》知识全攻略

二次函数是幂函数的一种,是高中函数中比较基础但应用比较广泛的函数,学好二次函数有助于同学们在处理函数问题时得心应手,多多取分。 工具/材料 高一数学必修一教材 01 第一,二次函数的三种表示方法。适用于不同的情况,下面分别给大家介绍。 02 第二,二次函数的单调性,单调性就是增减性,表现在图像上就是图像升高或降低 03 第三,二次函数开口方向。由a的符号决定。 04 第四,二次函数与y轴的交点位置。由c的符号决定。 05 第五,二次函数与x轴的交点个数。由△=b^2-4ac决定。 06 第六,二次函数的最值。由定义域和开口方向共同决定。 07 第七,二次函数与一次函数的交点个数。由联立方程组得到的△=b^2-4ac决定。 08 第八,二次函数对称轴与y轴的关系,由a、b的符号决定。 特别提示 二次函数的一般式、顶点式和两根式之间是可以互换的。大家要熟练运用,适合哪一种就用哪一种
2023-06-30 18:56:581

初中学的函数与高中函数有啥区别?感觉不太一样

我也就只有呵呵了
2023-06-30 18:57:085

二次函数和一次函数是基本初等函数吗?

是的
2023-06-30 18:57:505

二次函数的所有公式是什么

顶点式y=a(x-h)^2+k两根式y=a(x-x)(x-x)应用:顶点式y=a(x-h)^2+k例1:一个二次函数的顶点是(3,1),且过点(0,10)则可以设这个二次函数的的解析式为:y=a(x-3)^2+1又因为过点(0,10)代入可得10=a(0-3)^2+1解得a=1所以这个二次函数的解析式为y=(x-3)^2+1化解得:y=x^2-6x+10例1:一个二次函数的两根x1=1,x2=3,且过点(0,9)则可以设这个二次函数的的解析式为:y=a(x-1)(x-3)又因为过点(0,9)代入可得9=a(0-1)(0-3)解得a=3所以这个二次函数的解析式为y=3(x-1)(x-3)化解得:y=3x^2-12x+9
2023-06-30 18:58:132

求解,幂函数内容 谢谢大神,感恩不尽

如图所示,应该是选A,有4个点满足。显然f(x)=x平方,以AB为底,面积是3的话,高就是根号2。作平行于AB,且与AB距离为根号2的直线,与二次函数的交点的个数,即为所求的个数。供参考
2023-06-30 18:58:431