- 豆豆staR
-
粘过来的,仅供参考,希望可以帮到你!
一、波函数和原子轨道
1.波动方程
描述宏观物体运动状态的状态方程F=ma,即牛顿第二定律。那么对微观粒子的运动,能不能也有个状态方程呢?1926年,奥地利物理学家薛定谔根据德布罗依预言,提出了描述微观粒子运动状态的波动方程,称为薛定谔方程其基本形式是:
这是个高等数学中的二阶偏微分方程,式中x、y、z为粒子在空间的直角坐标,m可近似看作是电子质量,E为总能量即电子的动能和势能之和,V是势能即核与电子的吸引能,ψ为方程的解(ψ是希腊字母,读做普赛[Psi])。
薛定谔方程是用来描述质量为m的微观粒子,在势能为V的势场中运动,其运动状态和能量关系的定态方程。因为薛定谔方程的每一合理的解ψ,都表示该粒子运动的某一稳定状态,与这个解相应的常数E,就是粒子处于这个稳定状态的能量。由于有很多解,说明具有多种运动状态。对于一定体系,能量最低的状态称为基态,能量较高的状态称为激发态。粒子由一个状态跃迁到另一状态,能量的改变量是一定的,不能取任意的数值,即能量是量子化的由于薛定谔方程是高等数学中一个微分方程,与初等数学中方程不同,它的解ψ不是一些数而是些函数。它是波的振幅与坐标的函数,因此称作波函数。
2.波函数(ψ)
如上所述,波函数ψ就是薛定谔方程的解,是描述核外电子空间运动状态的数学函数式。如同一般函数式有常量和变量一样,它包含三个常量和三个变量,它的一般形式为
式中n、l、m为三个常量,x、y、z为三个变量。
电子在核外运动,有一系列空间运动状态。每一特定状态就有一个相应的波函数ψ和相应的能量E。如有1s、2s、2p、3d、4f……等等核外空间状态,就有ψ1s、ψ2s、ψ2p、ψ3d、ψ4f……和E1s、E2s、E2p、E3d、E4f……与其相对应。或者说一个确定的波函数ψ就代表着核外电子的一个空间运动状态,电子处于这个空间状态运动时就具有确定的能量和其它一些相应的物理量。
[思考题]波函数是什么,它有明确的物理意义吗?
3.波函数的图象
人们通常用几何图形来形象地描述抽象的函数式,这就是函数的图象。大家熟知的y=ax+b的图象就是一条直线。而且由数学知识还知道,一变量函数的几何图形是线,必须用二维坐标的平面图才能表示出来[图2-25,(1)];二变量函数的几何图形是面,必须用三维坐标的立体图才能表示出来[图2-25,(2)];以此推断,三变量函数的几何图形是立体的必须用四维坐标的办法,才能表示出来,这是十分困难的,所以多变量函数的图象表示是很复杂的。
波函数ψ既是函数,也可用图象来形象描述。但它是个三变量函数,其完整的图象是很难直接表示出来的。进一步研究,对于氢原子单电子体系。可采取数学上的坐标变换和变量分离的办法,把一般的波函数变成下列形式:
ψn、l、m(x、y、z)=ψn、l、m(r、θ、φ)=Rn、l(r)Yl、m(θ、φ)
这样,直角坐标中变量x、y、z变换为球坐标中变量r、θ、φ,并且整个波函数ψ分成为函数Rn、l(r)和Yl、m(θ、φ)两部分。Rn、l(r)这个函数的变量r是空间粒子到原点(核)的距离,是与径向有关的,因此称为径向函数或径向部分。Yl、m(θ、φ)这个函数的变量θ和φ是空间粒子与原点连线和z轴的夹角及其在xy面上投影与原点的连线和y轴的夹角(图2-26),都是与角度有关的,所以称为角度函数或角度部分。
表2-9列出若干氢原子波函数及其径向部分和角度部分角度部分图示
角度函数Yl、m(θ、φ)是二变量函数,其值是随θ和φ的变化而改变,它的几何图形是面,可用三维坐标来表示。
所有s态波函数的角度部分都和1s态相同
它是一个与角度(θ、φ)无关的常数,所以它们的角度分布图是一个
又如所有的pz态波函数的角度部分都为
Ypz和Ys不同,随θ角的大小而改变。不同θ值时的Ypz值(也可以不考虑Ypz值中的常数部分,仅取cosθ值)如下:
从原点出发引出相当于各θ角的直线,在各直线上分别截取相当于Ypz=(或cosθ值)数值的线段,联接这些线段的端点,便得到图中的曲线[图2-27,(1)]。因为相当于同一θ角的各个方向是以OZ轴为轴的锥面[图2-27,(2)],所以须将上述曲线绕OZ轴旋转一圈,便得到上下两个封闭的立体曲面[图2-27,(3)],这就是pz态波函数的角度部分图示。
波函数角度部分图示又称为原子轨道的角度分布图,它可理解为在距核r处的同一球面上,各点的波函数数值的相对大小。反映了波函数数值在同一球面上,不同角度,不同方向上的分布情况。如上面绘制的pz波函数的角度部分图示的曲面好似两个对顶的“球壳”。曲面上一叶的波函数数值为正,下一叶为负。
[思考题]波函数角度部分图示中的正、负号,表示的是正电荷和负电荷,对吗?为什么?
s、p、d态的波函数角度部分图示(平面图)如图2-28所示。
波函数的角度部分图示的形状与常量n无关。例如,1s、2s、3s或ns其角度部分图示的都是球形。各p态、d态和f态也是如此,各具有相同的形状,所以在这种图中常不写状态前n的数值。在化学键的形成中常用到波函数的角度部分图示。
[思考题]由波函数角度部分图示能否说s态的电子在核外空间运动是个圆,而p态电子是走8字形呢,为什么?
(2)径向部分图示
径向函数Rn,l(r)是一个变量的函数,其值是随r的变化而改变。它的几何图形是线,可用二维坐标来表示,即R(r)值与r的对画图。
图2-29给出了一些常用的氢原子波函数径向部分图示。
波函数径向部分图示,可理解为在任意指定方向上,距核为r处的某点波函数数值的相对大小。反映的是波函数相对数值在距核不同r处的分布情况,它是与常量n、l都有关。如图所示,1s态波函数的径向部分图示只为正值,而且离核越近正值越大。但其它s态的径向函数R(r)数值随r的不同也可为负值,如3s态,R(r)随r的增大由正值逐渐减小变为负值,后来又转为正值。
波函数图象上有正、负值,这是因为波函数是粒子波动性的反映,波函数在空间具有起伏性,可以为正值,可以为负值,也可以为零。波函数图象上改变正负号的点或面(即波函数数值为零),称为波函数的节点或节面。另外波具有可叠加性,波函数也具有可叠加性,其图象也可以叠加。
[思考题]波函数的图象是不是就是核外电子运动的图形,为什么?
4.原子轨道
电子在原子核外空间运动,它并不象行星绕太阳那样有一定的运行轨道。它的行为遵循量子力学的规律,它的运动状态可用波函数ψ来描述,习惯上仍称波函数ψ为“原子轨道”(或更正确称原子轨道函数或简称原子轨函)。而实际上并没有经典力学中那种“轨道”的含义,所谓原子轨道只不过是代表原子中电子空间运动状态的一个波函数,所以说原子轨道是波函数的同义语。
波函数或原子轨道的概念是结构化学讨论问题的一个基础概念,究竟怎样来理解波函数的物理意义呢?
二、几率密度和电子云
从理论上可以由薛定谔方程的解波函数来描述核外电子空间运动状态,那么波函数如何来描述核外电子空间运动状态呢?这是与电子在核外空间出现的几率密度有关的,是与微观粒子运动规律上的统计性相联系的。
1.微观粒子运动规律上的统计性
一个电子在核外极微小的空间内作非常高速的运动,它的一个稳定状态一定是千万次瞬间变化的结果。虽然它具有波动性,不可能同时准确测定它的位置和动量。但是可从千万次瞬间变化中,由统计学上的方法,用电子在核外空间出现机会的多少作几率性的判断。这也反映出微观粒子运动规律上具有统计性。
(1)日常的统计现象
机会在自然界的事物中起着很重要的作用,大量多次的事件中总包含着统计性。日常中的统计现象是很多的,比如射击打靶,运动员的命中率就遵循统计规律。虽然无法事先确定每次打中靶的具体位置,但大量射击的结果就能得出一定的规律性。比如打一千次命中十环若是五百次,那么命中十环的机会就是百分之五十;如果命中九环的是二百五十次,那么中九环的机会就是百分之二十五;如果脱靶两次,那脱靶的机会就是百分之零点二。这种“机会”的百分数(或小数)统计学上就称为几率(概率),这是大量多次行为的结果,是个统计的数字,重复次数越多,越准确。分析一下射击后的靶图(图2-30),这是张围绕中心分布的斑斑点点的图象。图中心的洞眼最密,外围的洞眼依次变稀,可以说中心的几率密度最大,外围的几率密度依次变小。这是个平面图,单位面积的几率就是几率密度。对三维空间而言,几率密度就是指空间某处单位体积中出现的几率。要注意几率与几率密度虽都是统计学上的概念,但两者是不同的,几率是指机会的多少或大小,是个百分数或小数,是没有单位(或量纲)的。而几率密度则是单位体积内的几率,有个密度的概念在里面,是有单位(或量纲)的。
核外电子的运动也具有这种统计性,下面就用统计的方法来分析电子衍射图。
(2)电子衍射图的统计分析
电子衍射图是用较强的电子流通过金属箔(作光栅),在极短的时间内得到的图片。如果设想电子流的强度小到电子是一个一个地发射出去的,在感光底片的屏上就会出现一个、一个被感光了的斑点,显示出电子的微粒性。由于电子运动具有二象性,不可能准确地知道电子在屏上的落点及中间的途径。但屏上总会有个斑点,而且每个斑点总不都重合在一起的[图2-31,(1)]。随着时间的延长,衍射斑点的数目逐渐增多,这些斑点在底片上的分布就显示出衍射图样来。只要时间足够长,得到衍射花样与强电子流极短时间得到的一样[图2-31,(2)]。由此可见,电子衍射花环的出现并不是不可思议的,它只不过是一个电子多次运动的统计性结果或是多个电子运动统计性的结果。所观察到的现象,实际是一种统计性规律的反映。因此,德国玻恩(Born,M.)认为,电子的波动性是许多相互独立的、条件相同的电子运动的统计结果,是和电子运动的统计性规律联系在一起的。就大量电子的行为而言,衍射强度(即波的强度)大的地方,电子出现的数目多;衍射强度小的地方,电子出现的数目就少。就一个电子行为而言,可以认为是一个电子重复进行千万次相同的实验,也一定是在衍射强度大的地方出现的机会多,即几率密度大;在衍射强度小的地方出现的机会少,即几率密度小。因此,电子的衍射波在空间某点的强度是和电子出现的几率密度成正比。实验所揭示的电子波动性是大量电子运动或是一个电子进行大量多次相同实验的统计结果。电子波实质是“几率波”,波的强度反映电子出现几率密度的大小。同样,原子核外电子运动的情况也是如此,进一步分析可得如下的关系:
∵衍射强度∝粒子密度ρ(或几率密度)
而波动力学指出:衍射强度∝|振幅|2,波函数ψ正是电子波的振幅与位置坐标的函数,也即ψ就代表着电子波的振幅。
∴衍射强度∝|ψ|2
对比一下,就可得出:核外电子出现的几率密度∝|ψ|2
这样电子在核外空间某点的几率密度就可以用相应的波函数在该点所取值的绝对值平方来表示。由此也可看出,ψ是表示核外电子空间运动状态的函数;而|ψ|2则表示处于该态电子在核外空间出现的几率密度。
[思考题]核外电子的波动性真的就象横波、驻波那样吗?
2.几率密度分布的形象化表示——电子云
(1)电子云概念
波函数绝对值平方|ψ|2代表电子在核外空间各点的几率密度。因而可用小黑点的疏密程度来表示空间各点的几率密度大小,|ψ|2大的地方,黑点较密;|ψ|2小的地方,黑点较疏。以基态氢原子为例,将1s波函数平方即可求得空间各点|ψ|2的数值。
再根据|ψ1s|2的数值,按黑点的疏密程度可画出氢原子1s态的几率密度分布图形如图2-34所示。
[思考题]上述氢原子基态几率密度分布图只是一个电子运动的反映,为什么?
由上图可看出,氢原子的电子并不是在固定轨道上运动,而是在核外一个较大的空间都可以找到。而且在空间不同地点找到电子的机会并不一样,是不均匀分布的。单位体积内找到电子的机会随离核距离r增大而减小。换句话说,核附近单位体积内找到电子的机会就多如图2-32中1,反之离核越远机会就越少如图2-32中2。
但是考查不同的同心球壳(即离核不同r的球壳)中的几率总数时,发现核附近几率密度虽大,但总几率并不是最大。对氢原子来说,原子半径为52.9(pm)的球壳几率最大。
这一点可这样来理解:假定考查电子离核距离为r1、r2、r3三个单位球壳内的总几率。
若已知: r1 r2(r2=2r1) r3(r3=3r1)
各球壳几率密度ρ 0.5 0.3 0.1
∵几率=几率密度×体积,而球壳体积=4πr2×厚度,单位球壳即厚度为1的球壳。
∴各球壳总几率
∴总几率还是r2处单位球壳内最大。核附近几率密度虽最大,但因其体积小,二者乘积即总几率并不最大。
对氢原子基态,从几率密度看,由核向外是越来越少,但从球壳总几率看,在距核52.9皮米单位球壳最大。要注意的是上图中黑点数目,对一个氢原子来说并不代表电子的数目,而是代表一个电子在空间各点出现的几率大小,是一个电子运动规律上统计性的反映。
由上可看出,按几率密度的分布,电子仿佛是分布在核的周围空间,就如同这些黑点似的,象笼罩在核外的云雾一样。因而常常形象地将电子在核外空间的几率密度分布,即|ψ|2在空间的分布图称为电子云。但这并不是说电子真的象云那样分散,不再是一个粒子,只是对电子运动具有统计性的一种形象地说法。所以电子云就是电子在核外空间出现的几率密度分布的形象化描述法。
电子不同的空间运动状态,就有不同的ψ,也就有不同的几率密度分布。而其形象化的描述就是电子云,因此也就有不同形状的电子云。那么不同形状的电子云是如何得出?波函数ψ是个函数,同样|ψ|2仍是个函数。与波函数的图象一样,|ψ|2也有图象,也即电子云的图形。
[思考题]电子云就是高速运动着的电子所分散成的云,对吗,为什么?
(2)电子云的角度分布、径向分布与几率径向分布
|Y(θ、φ)|2为电子云角度分布函数。它可以理解为在距核r处的同一球面上、各点的几率密度的相对大小。反映的是几率密度在同一球面上,不同角度,不同方向上的分布情况,它与常量n无关。由|Y(θ、φ)|2-θ、φ作图,可得到电子云角度分布图。氢原子的s、p、d态的电子云角度分布如图2-33所示。
[思考题]将图2-28与图2-33对比,电子云角度分布图要“瘦”些,而且各曲面取值都是正值,这是为什么?
|R(r)|2为电子云径向分布函数,它表示在任意指定方向上,距核为r处的某点电子出现的几率即几率密度。反映的是几率密度在距核不同r处的分布情况,它与常量n与l有关。
由|R(r)|2-r作图,可得到电子云径向分布图。氢原子的1s、2s、3s和2p、3p、3d的电子云径向分布如图2-34所示。
前面谈到,电子离核越近,几率密度越大。但从几率来看,并不一定是离核越近的越大,而且不同态的情况也不一样。由于距核r处单位球壳中出现的几率为4πr2dr×几率密度,也即4πr2dr|R(r)|2,就令D(r)=4πr2|R(r)|2为几率的径向分布函数。它反映的则是距核半径为r处的球面附近、单位厚度整个球壳内电子出现的几率,将D(r)-r作图,就得到几率径向分布图。
图2-34(2)是氢原子1s态电子的几率径向分布图。图中极大值正好在玻尔半径(r=a0=52.9pm)处。它表明在半径为52.9皮米附近的单位球壳内电子出现的几率,比任何其它地方单位球壳内的大。在这个意义上,可以说玻尔轨道是量子力学处理结果的一种粗略近似。
下面是氢原子一些不同态的几率径向分布图:
由图可看出,都有个几率最大的主峰,而且常量n值越大,主峰离核越远。这也说明核外电子虽无固定轨道,但几率分布是远近不同的,按出现几率大小,电子云是可以有不同密度的集中区域。此外2s、3s……主峰外还有小峰,说明这些态电子也有机会渗透到核附近。所以按核外电子出现几率,电子云既是可分层的,又是可相互渗透的。
电子云的角度分布图表示了电子在核外空间不同角度出现的几率密度大小,从角度侧面反映了电子几率密度分布的方向性。电子云的径向分布图反映的是几率密度在距核不同处的分布情况。而几率的径向分布图则表示电子在核外空间球壳内出现的几率随半径r变化的情况,从而反映了核外电子几率分布的层次及穿透性,常用来讨论多电子原子的能量效应(屏蔽和钻穿效应)。
(3)电子云分布图(黑点图)
上面从角度和径向两个侧面分析了几率密度即电子云的分布,而几率密度在空间的实际分布则是由上述两方面联合决定的。几率密度的空间分布,亦即是电子云分布图(黑点图)。它可由相应的电子云角度分布图和径向分布图用投影的方法得到。这种图也称作电子云的“实在图象”或电子云总体分布图氢原子的几种电子云分布图如图2-37所示。
由图可见1s和电子云的分布图虽都是球形对称的,但2s电子云有两个密度集中的区域。对2pz电子来说,电子云分布图与其电子云角度分布图还有些相似,但3pz的电子云分布图和其角度分布图则相差甚远了。这是因为电子云分布图,除了受角度分布影响外,还要反映径向分布的特点,3pz电子云径向分布图有两个峰,故使其电子云分布图出现了两个密度集中的区域。
(4)电子云的等密度面和界面图
电子在空间的分布并没有明确的边界,在r值较大,离核很远的地方电子出现的几率并不为零。但实际上在离核几百皮米以外,电子出现的几率已很小
了。为了表示电子出现的主要区域分布,可将几率密度(|ψ|2值)相同的各点联成一个曲面,构成等密度面。等密度面图可清晰地表现几率密度变化的层次。下图是2p、3p电子云的等密度面图,图中每一条封闭曲线应理解为空间的一个封闭曲面,所标的数字为几率密度的相对大小。
若从等密度面图中选出某一等密度面,电子在此面内出现的几率很大(如95%),而在此面外出现的几率很小,则可用此等密度面来表示电子云的“形状”(或轮廓),叫做界面图。图2—39是几种电子云的界面图。
[思考题]对于2p电子,电子云界面图中有节面,其几率密度为零,那么电子如何从节面下边通过节面运动到节面上边去的呢?
波函数与电子云可以有多种函数图形来表示它们的分布特征,要注意各种图形的得出并应根据函数的内容来理解,不同图示的不同含义。上面介绍的只是一般常用的几种,要求重点掌握波函数的角度部分图示与电子云几率的径向分布图。
三、波函数和电子云的区别和联系
波函数和电子云都是重要的基础概念,它们既是不同的概念,但又是有密切的联系。在物理意义上,波函数是描写核外电子空间运动状态的数学函数式,而电子云则是电子在核外空间出现的几率密度分布的形象化描述。从它们的角度部分的图形看,形状相似但略有不同,电子云的角度分布图比相应波函数的角度部分图示要“瘦”点。而且波函数的角度部分图示有正负号,而电子云的都是正值。这些就是它们的不同点。可是它们都是描述核外电子空间运动状态的,而且|ψ|2的函数图象实际就是相应的电子云的图象。
- 小菜G的建站之路
-
就高中阶段而言,应该有四种:
电子式、原子结构示意图。电子云和轨道排布式,其中轨道排布式是最为详细的。
- 北境漫步
-
有好几种运动模型,波尔理论,近代物理学电子云模型等,一电子云模型相对权威一点,如果对其运动状态进行研究,初级波尔理论好一点,再深一点就是粒子运动的薛定尔方程,大学物理基础会有,无机化学及分析学也有介绍,希望能帮助你
在波函数中,自变量和因变量分别是什么?波函数到底是怎样的?
波函数的符号是Ψ,它的物理意义是表示微观体系的运动状态.对于单个微观粒子而言,它表示这个粒子的空间运动状态,具体来讲就是该粒子在空间的概率分布.Ψ=Ψ(x,y,z,t),即粒子的运动状态与所处位置和时间有关,因此Ψ的自变量就是粒子的坐标和时间,Ψ就是波函数为因变量.Ψ其实就是某一时刻、在某一位置(坐标)该粒子出现在此的概率,粒子在空间整个区域出现的概率不难理解当然就是1,即Ψ在整个空间的积分为1.2023-06-11 12:26:111
波函数与波动方程的区别
简单的说,波函数有两个变量,一个是t一个是x,表示在波的传播方向上x处质点在t时刻的(y方向上)位移。而波动方程就是把x带进去,变量只剩下t。2023-06-11 12:26:181
波函数ψ有什么变量?()
波函数u03c8有什么变量?() A.r B.u03b8 C.Ф D.以上均是 正确答案:D2023-06-11 12:26:251
标准波函数的x和t都是变量吗,分开来有什么意义?
? 第一个问题,x 和t 都是变量,因为波动既是时间的函数也是空间的函数,对于普通的振动,只是时间的函数,比如一群人站一排,依次下顿站起下蹲站起,他们的位置都没变,只是时间的函数,而波动则是一边跑,一边蹲下起立。第二个问题我没有看懂2023-06-11 12:26:344
时间这个事件的波函数的自变量是什么?
波函数本质上就是概率密度函数,所以,波函数的自变量为时间,波函数的值表示发生事件的概率2023-06-11 12:26:501
波函数与振动方程有何区别
2023-06-11 12:27:003
结构化学问题:波函数图像能不能画出来?
能画的啊,现在啥不能做,有专门的软件的,方便的很那2023-06-11 12:27:243
波函数为什么是时空变量的复函数
具有复数的性质。波函数是时空变量的复函数是由于波函数就具有了复数的性质,在数学上就表示为一个复数函数,并且都存在一定程度上的调制和再构。波函数是量子力学中用来描述粒子的德布罗意波的函数,为了定量地描述微观粒子的状态。2023-06-11 12:27:301
波动方程中x与s有什么区别
波动方程中的x和s都代表位置。但是x通常指的是粒子或者波在空间中的位置,而s则更多地用于描述波函数的形态在时间上的演化。具体来说,波函数可以看作是位置和时间的函数,而s就代表着时间的变量。因此,在波动方程中,x的变化描述了波函数在空间上的分布情况,而s的变化则描述了波函数的演化过程。2023-06-11 12:27:492
定态波函数形式有几种
定态波函数形式有两种,分为含有时间变量的称之为状态函数,不含时间变量的函数称之为定态波函数2023-06-11 12:27:551
波函数的形式为什么是 ψ(x,t) 而不是 ψ(x,y,z,t)?
这是一个函数(或者说解析式), ψ=ψ(x,y,z,t)表示ψ的值由函数ψ(x,y,z,t)确定,其中括号中的字母表示变量,也就是说,x,y,z,t这四个变量会影响ψ的值。可以看成是四元函数ψ的变量如有疑问追问,如满意记得采纳,如果有其他问题也可点我名字向我求助答题不易,如果没有回答完全,请您谅解,请采纳最快回答的正确答案!!谢谢!2023-06-11 12:28:111
波函数的意义
量子力学中的波函数是对系统量子态的数学描述。我们可以把波函数看成是一个复数形式的概率振幅。根据玻恩的量子力学描述,波函数的模方代表了一个粒子在空间某处出现的概率。我们想要得到一个确定的波函数,首先要获得一组完备的自由度的集合,也就是题主所说的4个量子数。一旦这四个量子数确定了,描述粒子状态的波函数才能唯一确定。但是对于一个给定的系统,选择哪些自由度构成完备自由度的集合并不是唯一的。对应地,波函数的域也不是唯一的。例如波函数可以在实空间中用位置坐标描述,也可以在动量空间中用动量去描述,二者可以通过傅里叶变换联系在一起。有些时候,对于一些无法描述清楚的实验现象,通过引进一些新的自由度,便可以很容易地解释。一个粒子,比如电子和光子,它们的自旋非零,在自由度的完备集合中就需要包含自旋这个离散变量。对于一个亚原子粒子还有可能包括一些其它离散变量比如同位旋。2023-06-11 12:28:181
电子波函数的理解
高速运动的物体是一种波2023-06-11 12:28:272
自旋波函数是含t的吗
自旋波函数是指用来描述自旋系统(例如电子)的波函数。它包含有关自旋系统的信息,例如自旋角度和自旋状态。这些波函数通常被表示为含有时间t的函数,因为自旋系统的性质是随时间变化的。2023-06-11 12:29:094
量子力学波函数描写的是什么?
粒子运动的方向与速度及任何可能的状态是一种概率假说。2023-06-11 12:29:363
波函数是什么东西? 波函数有什么物理意义?他的正负又表示什么?
波函数的物理意义——微观粒子的状态完全由其被函数描述. 其正负代表波函数的对称性并不代表电荷.2023-06-11 12:29:431
波函数在物理中有什么意义?
波函数的物理意义:力学中的波函数是对系统的数学描述,可以把波函数看成是一个复数形式的概率振幅。根据玻恩的力学描述,波函数的模方代表了一个粒子在空间某处出现的概率。由于微观粒子具有波粒二象性,粒子的位置和动量不能同时有确定值,因而质点状态的经典描述方式不适用于对微观粒子状态的描述,物质波于宏观尺度下表现为对几率波函数的期望值,不确定性失效可忽略不计。相关内容解释:“波函数”ψ是复函数,在实空间里没有物理意义。但是,经过数学变换到实空间里后可以表示成径向分布函数,和角度分布函数。就是常常不太严格的所谓的“实波函数”。这些实函数,像其他很多数学函数一样,有正有负, 以+/-符号标注。(虽然复波函数没有物理意义,但是在量子力学的计算中非常有用)。2023-06-11 12:29:501
氢原子波函数计算方法都有什么?大致介绍一下各自的方法
物理2023-06-11 12:30:293
量子力学 为什么要用波函数描述微观粒子的运动状态
由于一切微观粒子都具有波粒二象性(从爱因斯坦的光子理论,到德布罗依的推断及电子衍射实验,到以后实验中关于许多粒子流的衍射现象,都证明了波粒二象性的普适意义),因而原子中电子的运动应该服从某种波动规律。以微观粒子的波粒二象性为基础,薛定谔建立了描述微观粒子运动规律的波动方程。薛定谔方程,是波函数对x,,y,z三个空间坐标变量的二阶偏微分方程。波函数,是薛定谔引入的一个物理量,是空间坐标(x,y,z)的函数,也可以用球坐标表示。薛定谔方程不是用数学方法推导出来的,是大量实验事实证明的。2023-06-11 12:30:472
关于波函数的诠释有哪些?
有这些:哥本哈根概率波诠释、德布罗意导航波诠释、埃弗莱特多世界诠释。哥本哈根概率波诠释波恩、海森堡和玻尔所支持的哥本哈根诠释,是现在的主流派。“哥本哈根诠释认为波函数没有物理本质,仅是一种数学描述, 用来计算微观物体在某一处出现的概率,只要计算结果与实验结果相符即可。”龙桂鲁说道。哥本哈根诠释中,对微观粒子进行测量时,微观粒子由多种可能性的迭加态转换到一个特定的本征态,体系的状态转化瞬时发生,这称作“波函数坍缩”。粒子具体转换到哪一个状态是完全随机的。德布罗意导航波诠释导航波理论最早在1927年由法国理论物理学家德布罗意提出。美国物理学家玻姆在1952年开始接手,一直研究到1992年离世。因此该理论也被称为德布罗意—玻姆理论。“德布罗意导航波诠释认为波函数就是一个引导波,粒子按照这个波函数的引导走,也就是说粒子行走的位置是被一个波函数引导好的。”龙桂鲁说道。在德布罗意—玻姆理论中,电子始终拥有确定的位置,即便该位置无法被观察者察觉。电子的位置受到导航波的引导。一个电子只能通过一条缝隙,但导航波可以同时穿过两条缝隙。导航波的干涉产生了侦测屏上的干涉图。埃弗莱特多世界诠释多世界理论由美国物理学家休·埃弗莱特提出。龙桂鲁介绍,多世界理论认为当粒子经过双缝后,会出现两个不同的世界,在其中一个世界里粒子穿过了左边的缝隙,而在另一个世界里粒子则通过了右边的缝隙。波函数不需要“坍缩”,去随机选择左还是右,事实上两种可能都发生了。只不过它表现为两个世界:生活在一个世界中的人们发现在他们那里粒子通过了左边的缝隙,而生活在另一个世界的人们观察到的粒子则在右边。也就是说,粒子穿过双缝的一瞬间产生了多个平行宇宙,每个宇宙对应一种可能性。由于我们只是恰好生活在其中一个平行宇宙中,所以只观察到了一种结果。2023-06-11 12:30:541
量子力学中用波函数表示粒子的状态,波函数需要满足什么条件
波函数需要满足 单值、连续和平方可积。2023-06-11 12:31:084
一维束缚态的波函数相位为什么是常数?有什么物理含义
波函数就其本义而言不是量子力学特有的概念.任何波都有相应的波图执只是习惯上这一术语通常专用于描述量子态而不常用于经典波.经典波例如沿 轴方向传播的平面单色波,波动动量 对 和 的函数——波函数可写为 ,其复指数形式为 ,波函数 给出了传播方向上时刻 在点处的振动状态。经典波的波函数通常称之为:波的表达式或波运动方程.量子力学中,把德布罗意关系 p = k 及 E = ω 代入上式就得到自由粒子的波函数 ( 自由粒子的波的表达式 ).经典波与概率狡的唯一共性是叠加相干性。但概率波函数是态函数,而态的叠加与经典波的叠加有着本质的差别.经典波函数描述的是经典波动量对时空变量的函数关系.量子力学中的概率波函数其意义不同于经典物理中的任何物理量.概率波函数虽是态函执但本身不是力学量.态函数给出的也不是物理量间的关系.概率波函数的意义是:由波函效描述微观体系各种力学量的概率分朽.作为一种约定的处理方法,经典波可表为复指数函数形式但只有它的实部才有物理意义.而概率波函数一般应为复函数.非相对论量子力学中,粒子不产生出不泯灭.粒子一定在全空间中出现,导致了概率被函数归一化问题,而经典波则不存征这个问题.概率波函数乘上一常数后,粒子在空间各点出现的相对概率不变.因而,仍描述原来的状态.而经典波中不同的波幅的波表不同的波动状态,振幅为零的态表示静止态.而量子力学中,振幅处处为零的态 表示不存在粒子.另外经典波函数与量子被函数满足各自的、特征不同的波方程.2023-06-11 12:31:181
波函数有什么物理含义
波函数是个复函数,即波函数里既有实数部分又有虚数部分,且各部分都可根据欧拉公式写成正余弦函数形式.但这两部分合起来就不再是简单正余弦了.它本身并无实际意义但它平方后得到的新函数可表示粒子在空间各点出现的概率密度(但其图相并不表示粒子轨道)2023-06-11 12:31:381
波函数的平方怎么算
波函数的平方计算方法如下:波恩说波函数的平方是概率密度函数,让波函数和物理意义之间建立起了关系。波函数的平方,也就是概率密度函数,这个密度肯定意味着概率与什么东西的比值。通常,波函数以空间坐标为变量,那么这个概率密度就是空间中每个点出现此体系的概率的密度,要转换成此点邻域内(这个概念不明白的话,请仔细学一学微分的概念)出现此体系的概率,则要将概率密度函数乘以空间微元,这样就得到这个点邻域内出现此体系的概率。对空间中每个点都那么操作的话,就能够得到空间中出现体系的概率的分布图像,这就是电子云,相应的概率密度函数,即每个空间点内出现此体系的概率的密度,空间中每个点的邻域内出现此体系的概率,若要求出在某一块区域内出现的概率,则对上式积分即可。电子云描述的是电子出现的概率,而波函数的平方并不等于概率,而是概率密度。2023-06-11 12:31:451
波函数与振动方程有何区别 上课没认真听,做题时会搞混>_
波动是一系列的点振动,是能量的传递形式.振动是一个点振动 波函数:若x和t都是变量,波函数描述了在波的传播方向上x处质点在t时刻的位移. 波函数是振动方程的解.给你个链接自己看看吧.2023-06-11 12:31:511
氢原子的s轨道波函数与什么有关
氢原子的s轨道波函数具体与什么有关如下:氢原子s轨道是球对称的,解氢原子薛定谔方程的时候通过分离变量法,可以把波函数化作与r有关的径向方程以及与角度有关的角向方程.由于氢原子s轨道的角向分布是球对称的,因此与角度相关的角向分布关联的函数一定是一个常实数;我们知道,对于波函数ψ而言,乘以一个常实数不影响波函数的分布情况,因此氢原子s轨道的实际波函数一定是一个系数乘以径向方程的解.因此,s轨道波函数与角度θ和Φ无关.径向方程只与r有关,而氢原子薛定谔方程的解由角向和径向的解相乘得到,角向是常实数,那么波函数就只与径向方程有关了.当然,对于氢原子p、d等轨道而言,其角向存在角动量,因此波函数就会与θ和Φ有关.2023-06-11 12:32:011
简述波函数三个基本条件(连续性,有限性和单值性)的含义
在一个地方的几率密度只有一个值; 运动的连续性要求几率密度是连续的; 在所有可能出现的电子的地方的几率不可能发散形成无穷大,所以必须有限2023-06-11 12:32:531
在量子力学中这个公式是自由粒子的平面波函数,那么这里复数的右上角 r 代表是常数么?如果是的话它代
r是位置矢量,波函数的自变量有空间位置r和时间t2023-06-11 12:32:591
角度波函数与什么有关
角度波函数与波函数有关。所谓的密度分布函数是对复波函数“平方”后的函数ψ^2——量子力学里把它叫做几率密度分布函数。这是一个全正的实函数,有物理意义——-代表了空间里电子分布的几率密度。把它对全空间进行积分就可以得到一个电子在空间某个部分(由ψ决定)出现的几率。如果只对这个函数的角度部分进行积分就得到所谓的“概率密度的角度分布图”。研究过程在量子力学中,为了定量地描述微观粒子的状态,量子力学中引入了波函数,并用Ψ表示。一般来讲,波函数是空间和时间的函数,并且是复函数,即Ψ=Ψ(x,y,z,t)。将爱因斯坦的“鬼场”和光子存在的概率之间的关系加以推广,玻恩假定Ψ*Ψ就是粒子的概率密度,即在时刻t,在点(x,y,z)附近单位体积内发现粒子的概率。波函数Ψ的绝对值的平方因此就称为概率幅。2023-06-11 12:33:061
波函数中的 s p d f 指的是什么? 它们有什么意义? 在线等答案·····急!!!!!!
是原子轨道的种类,包括 s 、p 、d 、f 、g、h 、…… 比如在屏蔽效应与钻穿效应中,其本质就是 s , p , d , f 等状态的径向分布不同而引起的能量效应,能级分裂和能级交错是钻穿效应和屏蔽效应共同作用的结果。在原子的电子构型和分区情况中主族元素分区是S区和P区,在副族元素中过渡元素的分区是D区,内过渡元素是f 区!2023-06-11 12:33:322
定态波函数有什么特点?
假如波函数可以写为ψ(r,t)=ψ(r)*e^(-iE/h t)时就可以判断该波函数是定态波函数。当体系处于定态波函数所描写的状态时,能量具有确定值。这里^表示次方。定态就是波函数当中不含时间项。特点是粒子的分布概率不随时间变化,只和位置有关。2023-06-11 12:33:391
12.有心力场中的运动
两个粒子的运动,可以化为单个粒子在有心力场中的运动,所以总是要考察有心力场中粒子的运动。 将两个粒子的哈密顿量经过巧妙的变换,变为了两个独立部分的和,对于波函数而言,就是将整体波函数变成了两个独立部分的波函数的乘积。于是,就将两个粒子的运动问题,变成了单个粒子在势能场中的运动了。 于是,由薛定谔方程,得到波函数的二阶微分方程,拉普拉斯算子采用球坐标中的形式,球坐标中的拉普拉斯算子的表达式,可以利用正交坐标系的性质,带入到张量分析中的公式,可以去求。感觉不太好算。 根据之前的内容,有心力场中的运动,角动量是守恒的,所以波函数可以分离变量,也就是径部和角部,角部就是球谐函数,由于角动量守恒,所以和之前的没什么区别。经过一些变换,可以得到径向函数的运动方程,这个方程非常重要。 波函数的径部,就是一端受限的一维运动,能级是非简并的,所以能量就可以区分不同的态,在加上角部的两个描述l,m。就构成了一组完全集,(E,l,m)。当这三个量确定了,系统的态就确定了,也就是说系统的波函数就知道了。因此系统的所有的态都可以通过这几个量来索引。为了方便描述,就对能级编号,0代表最低的能级,序号随能量增大而增大,这个序数称之为径量子数,对于l和m,本身就是整数值,所以不用再编号了,l称之为角量子数,m称之为磁量子数。这里就能解答高中化学中的一些疑问了,关于原子轨道的问题,像1s,2p,3d,4f,5g这种记号的来历,其实就是从这里出来的,角量子数l=0,1,2,3...,约定记为s,p,d,f...。所以,在那么早的时候,大家就已经在接触量子力学了,毕竟原子理论就是在这基础上建立的。2023-06-11 12:33:451
关于薛定谔的猫的一个疑问?
薛定谔猫表面上是一个量子力学的问题,但本质上看,是一个哲学问题。这个问题是关于确定性与不确定性之争的问题。不能就事论事,仅仅就薛定谔猫去进行争论,而是应当站在更高的角度——站在整个哲学观的角度来看待这个问题。哲学上历来有两种意见,一种观点认为宇宙是一个确定性的;另一种观点认为宇宙是不确定性的。如果宇宙是确定性的,那么我们就可以通过逻辑思维加以把握,找出这种客观规律,一旦建立起了这些规律的知识体系,那么科学也就建立起来了。用哲学的语言来表述就是宇宙具有宇宙具有必然性,这是逻辑学的理论基础,这种观点其实就是可知论。如果宇宙是不确定性的,那么我们不可能认识整个宇宙,那些所谓的客观规律不过是我们的幻梦而已。因为尽管科学很强大,但是不可否认,人类的科学总有很多漏洞,无法用逻辑解释,这些漏洞都是宇宙的不确定性造成的。用哲学语言来表述就是宇宙具有偶然性,这种观点其实就是不可知论。那么薛定谔猫的问题其实可以表述为猫的生命到底可不可知的问题。扩大开来,宇宙的秘密到底可不可知?科学到底可靠不可靠?到底是可知论的理由正确还是不可知论的理由正确?在启蒙时代,人类第一次认识到了可知论的重要性,而到了第二次工业革命之后,人类又发现了不可知论也很有道理。17世纪牛顿和莱布尼茨把微分和积分联系了起来,创建了高等数学,使人类从常量数学走向了变量数学,以此作为工具来推演宇宙万物的各种内在规律。牛顿又第一次破天荒的把苹果落地这个物理运动现象同数学联系起来,使人类认识到原来苹果落地的运动轨迹也可以用数学加以演算得到,推广言之,所有的物体运动都可以用数学加以演算。拉普拉斯甚至宣称整个宇宙都可以用某个数学公式演算,可以测算宇宙的历史与未来。但是到了20世纪人类改变了这个看法。在1927年海森堡发现了测不准原理。这个原理又第一次破天荒的在实验观测基础之上用理论推导证实了人类理性的有限。测不准原理简单的说就是当你测定出这个微观粒子的动量时候,它的运动路线你测不准,当你测定它的运动路线的时候,它的动量你又测不准。总而言之,总有某个物理量是你测不准的。这个原理是违反常识的。苹果落地的时候,如果苹果的质量一定,高度一定,那么苹果的落地时间、落地速度、落地能量你都可以测得准。落地高度h=1/2*g*t^2,落地前的势能E=mgh,落地后的动能=1/2mv^2,对不对?但是海森堡却发现,微观粒子并非如此,你永远测不准。其实,还有其他的东西也是人类科学所不能测准的。比如布朗运动。高中物理课本是这样解释的:布朗运动就是大量分子在作无规则的热运动。请注意:分子是在作“无规则”的热运动,也就是没有规则,那么分子运动真的没有规则吗?还是说人类永远不能测定这些分子的规则呢?不管是无规则还是人类不能测定规则,布朗运动和海森堡测不准原理和一样,证明了不可知论的重要性。也正是如此才建立起了量子力学。量子力学实际上就是阐述宇宙之不确定性的科学。这似乎自相矛盾,既然都不确定性了,那么还要用确定性的科学去描述不确定性的东西干什么?实际上量子力学引入了概率,让不确定性被限制在一个概率之内。薛定谔方程的波函数ψ不就是一个概率吗?那么回到量子力学的话题,量子力学实际上是承认了测不准原理并对原子运动的不确定性加以阐释,由此而推导出了薛定谔方程。别看推导出了薛定谔方程,其实仍然不能解释很多东西。比如波函数ψ,它的物理意义人们不够明确,它的函数图形人们也无法理解。在主量子数、角量子数、磁量子数一定的条件下,波函数ψ包含四个变量:因变量ψ和三个自变量x、y、z(或者表示为r、θ、Φ)。一个函数如果只有一个自变量,那么可以表示为一个平面直角坐标系,如果有两个自变量,那么可以表示为一个空间直角坐标系。但是如果有三个自变量呢?这三个自变量加上因变量,是一个四维函数,人类只有三维理性,如何认识四维的薛定谔方程?人类只能把波函数化解为径向波函数和角度波函数的乘积,然后分别用角度分布图和径向分布图这两个侧面来近似去认识波函数,但是问题在于仅仅站在侧面岂能得出完整结论?其结果只能是横看成岭侧成峰,远近高低各不同。身在三维空间下的人类无法跳出三维世界以外,是永远无法识得波函数真面目的。因此,薛定谔方程用数学方程揭示了人类理性的有限性,揭示了不可知论成立的理由。那么到底宇宙具有不具有确定性?到底可知论的理由正确还是不可知论的理由正确?德国哲学家康德早在1781年出版的著名的《纯粹理性批判》里面就回答了这个问题。他提出了四组二律背反的命题,其中第四组命题就是关于必然性与偶然性的命题。正题:在世界原因的系列里有某种必然的存在体;反题:里边没有必然的东西,在这个系列里一切都是偶然的。这两个命题代表了两种派别的意见,一个是主张宇宙存在必然性(宇宙可知),另一个是宇宙存在偶然性(不可知)。而康德的看法却是这样的:从经验方面看,宇宙归根结底是具有偶然性的,但是从本体上看,宇宙未必不具有一定的必然性。也就是说主张必然性的一派和主张偶然性的一派的说法都对,只是在一定的范围内成立。换句话说,宇宙有一部分是具有确定性的,但是不全部都具有确定性,仅仅在人类所能经验到的、并被人类理性所能理解的范围内具有确定性。在此之外的东西——比如超验的东西和先验逻辑以外的东西——是在人类看来具有偶然性的。康德的这个观点如何理解?举两个例子就明白。先举一个医学的例子:吸烟与肺癌的关系。禁烟者说吸烟导致肺癌,而吸烟者则辩称得肺癌的人未必一定吸烟,而吸烟也未必一定导致肺癌(例如谁谁谁吸烟就不得肺癌)。由此可以看出吸烟与肺癌的关系就是一个处在确定性和不确定性之间的状态,或者说是处在必然性与偶然性之间的状态:多数吸烟者的健康都被损害了,吸烟和损害健康的关系是确定性的,是必然性的,但是不排除有个别吸烟者健康不被损害。至于为什么不被损害,人类不知道。因为人体内的生化代谢的全部复杂过程无法被人类理性所把握——人类不可能认识机体内所有的酶促反应机理,也不可能全部认识基因转录、翻译和基因调控在吸烟和癌变过程中的所有具体作用。此外还存在很多个体差异。所以到底哪个人吸烟会得肺癌,而哪个人吸烟就不得肺癌?这个内在的因果关系人类永远都说不清楚、不确定。人类对吸烟只能采取宁可信其有、不可信其无的态度来全面禁烟,而不可能采取有针对性地对某人吸烟采取阻止,而对某些人吸烟却鼓励的做法。这都说明了可知论和不可知论在各自的范围内是成立的。再举一个数学的例子:数论里面有一类数叫做超越数,是不能用整系数多项式的根来表示的。超越方程也是不能求得解析解而只能求得近似解的,因为这些数都超越了人类的理性,是人类不知道的。代数数是可知的,每个超越数的具体大小和每个超越方程的解析解都是不可知的。至于你举的例子也是如此。考试成绩是具有确定性还是具有不确定性?是可知的还是不可知的?总的来说是和你付出的努力有因果关系,是确定的,几分耕耘几分收获,成绩在一定范围内是具有确定性的,能被你所把握。但是也可能有意外出现,这又是不确定的。你认为自己答题后一点把握也没有,这实际上已经表明了一个大致的因果关系——你没有复习到位。我每次复习考试的时候,至少要把自己独立总结整理出的复习材料看5遍以上我才对进考场有把握。所以考试成绩虽然不确定,但是总体的因果关系已经从这个复习的过程当中体现出来了。所以我就算考试成绩不好、发挥失常也对得起自己的良心。倒是我没有复习到位的时候,我会有那种对成绩不确定的感觉。你认为猫是死是活客观上是一个唯一确定的状态,不存在死活叠加的问题。实际上可以表述为“猫的死活是具有内在因果联系的,是具有必然性的、确定性的”。你认为“薛定谔的猫的问题其实质也不过就是一个观测系的问题”,实际上用康德哲学的语言来表述就是:存在一个物自体猫,还存在一个观察系猫,就是人类觉察出物自体产生的现象,并以运用逻辑对现象加以整理形成的逻辑知识,也就是“对象”。物自体猫和观察系猫不是一回事。薛定谔猫的死活实际上就是人类头脑中的对象的死活,是观察系猫的死活,不是物自体猫本身的死活。有人说“猫处在生死选择的概率云中无法确定”,那不过是人头脑中的“对象”处在一片概率云中,这个“对象”是不确定的,至于物自体——猫本身死活早就由于内在的因果联系已经确定下来了,只不过尚未被人所认识。2023-06-11 12:34:052
波函数什么时候可以称为态函数
波函数在描述微观粒子的运动状态时称为态函数。根据查询相关资料,粒子的运动状态可以用含坐标和时间变量的函数来描述,其包括体系的全部信息,此时波函数被称为态函数。2023-06-11 12:34:111
波函数的平方表示概率密度,那么波函数表示什么?
波函数,即薛定谔方程的解。波函数的意义该如何解释?这个问题是量子力学的根本问题之一,对这个问题的思考,直接引发了一场关于量子力学完备性的大辩论,这场辩论延续至今,量子力学本身也是通过这场辩论逐步发展的,并形成今天的体系。辩论的一方,主要是以波恩为首的哥本哈根学派,他们持有的观点就是概率密度解释,不确定性原理等等,并在此基础上提出量子力学中微观粒子具有非定域性的特点,我们今天学习的量子力学教科书中采用的就是他们的解释。辩论的另一方,主要是以爱因斯坦、薛定谔为首的一帮人,反对概率解释,认为微观粒子必须具有确定性,实在性,定域性。由于薛定谔本人站在这一方,所以当时有很多哥本哈根学派的人开玩笑说“薛定谔不懂薛定谔方程”。起初人们认为这场辩论只是对量子力学解释的矛盾引发的,可后来发现,这不仅仅是物理学的辩论,更是各个物理学家哲学观点之间的碰撞。所以从二十世纪后半叶开始,人们开始从各个方面着手设计实验,企图验证这两类观点。不幸的是,几乎所有的实验结果都站在哥本哈根学派这一方,所以哥本哈根学派的几率解释被当做量子力学的几个假定之一,写进了教科书;自此,几率解释成为了量子力学的正统观点。但正如所有其他的科学理论一样,假定的便无法证明,科学理论无法“证实”只能“证伪”,所以至今仍然有许多人在反对哥本哈根学派,并且方兴未艾。现在我们学习量子力学只需知道:波函数的概率解释是量子力学的基本假定之一。(参看周世勋《量子力学教程》)本人持有的观点:在微观领域,哥本哈根学派的观点还将继续统领量子力学很长一段时间。推荐搜索:第五次索尔维会议,隐变量,贝尔不等式,走进量子纠缠,上帝掷骰子吗?量子力学史话。2023-06-11 12:34:201
波函数相关问题 求助高手
波函数就是描述微观粒子的运动状态的函数,因为微观粒子具有波粒二象性,波函数描述粒子的波性,并且在某些情况下可以引入量子数,阐释粒子的粒子性。因变量就是这个状态函数,自变量是空间位置和时间,如果粒子的状态不随时间变化而改变就称为定态波函数,自变量仅仅是空间参数,与时间无关2023-06-11 12:34:492
量子力学中总看到“波函数”这个词,究竟什么是波函数?
简谐波波函数2023-06-11 12:34:575
波函数是什么东西? 波函数有什么物理意义?他的正负又表示什么?
波函数的物理意义——微观粒子的状态完全由其被函数描述. 其正负代表波函数的对称性并不代表电荷.2023-06-11 12:36:131
波函数有什么物理意义?
波函数的物理意义:力学中的波函数是对系统的数学描述,可以把波函数看成是一个复数形式的概率振幅。根据玻恩的力学描述,波函数的模方代表了一个粒子在空间某处出现的概率。由于微观粒子具有波粒二象性,粒子的位置和动量不能同时有确定值,因而质点状态的经典描述方式不适用于对微观粒子状态的描述,物质波于宏观尺度下表现为对几率波函数的期望值,不确定性失效可忽略不计。相关内容解释:“波函数”ψ是复函数,在实空间里没有物理意义。但是,经过数学变换到实空间里后可以表示成径向分布函数,和角度分布函数。就是常常不太严格的所谓的“实波函数”。这些实函数,像其他很多数学函数一样,有正有负, 以+/-符号标注。(虽然复波函数没有物理意义,但是在量子力学的计算中非常有用)。2023-06-11 12:36:201
怎样描述微观粒子的运动状态?为什么?波函数有哪些重要的性质?为什么
哎不知道啊有个不确定性原理就是你能描述微观粒子的位置就不能说出他的速度你能说出他的速度就描述不出他的位置现在人们觉得最小的粒子是夸克但是最新物理理论是组成夸克的是一种弦这就是著名的弦理论波函数我不懂帮不了你哇2023-06-11 12:36:372
物理中波函数有什么意义?
波函数的物理意义:力学中的波函数是对系统的数学描述,可以把波函数看成是一个复数形式的概率振幅。根据玻恩的力学描述,波函数的模方代表了一个粒子在空间某处出现的概率。由于微观粒子具有波粒二象性,粒子的位置和动量不能同时有确定值,因而质点状态的经典描述方式不适用于对微观粒子状态的描述,物质波于宏观尺度下表现为对几率波函数的期望值,不确定性失效可忽略不计。相关内容解释:“波函数”ψ是复函数,在实空间里没有物理意义。但是,经过数学变换到实空间里后可以表示成径向分布函数,和角度分布函数。就是常常不太严格的所谓的“实波函数”。这些实函数,像其他很多数学函数一样,有正有负, 以+/-符号标注。(虽然复波函数没有物理意义,但是在量子力学的计算中非常有用)。2023-06-11 12:36:491
量子力学 为什么要用波函数描述微观粒子的运动状态
由于一切微观粒子都具有波粒二象性(从爱因斯坦的光子理论,到德布罗依的推断及电子衍射实验,到以后实验中关于许多粒子流的衍射现象,都证明了波粒二象性的普适意义),因而原子中电子的运动应该服从某种波动规律。以微观粒子的波粒二象性为基础,薛定谔建立了描述微观粒子运动规律的波动方程。薛定谔方程,是波函数对x,,y,z三个空间坐标变量的二阶偏微分方程。波函数,是薛定谔引入的一个物理量,是空间坐标(x,y,z)的函数,也可以用球坐标表示。薛定谔方程不是用数学方法推导出来的,是大量实验事实证明的。2023-06-11 12:37:051
电子的波函数有什么特性?
波函数:wave function波函数是量子力学中用来描述粒子的德布罗意波的函数。 为了定量地描述微观粒子的状态,量子力学中引入了波函数,并用ψ表示。一般来讲,波函数是空间和时间的函数,并且是复函数,即ψ=ψ(x,y,z,t)。将爱因斯坦的“鬼场”和光子存在的概率之间的关系加以推广,玻恩假定 就是粒子的概率密度,即在时刻t,在点(x,y,z)附近单位体积内发现粒子的概率。波函数ψ因此就称为概率幅。 电子在屏上各个位置出现的概率密度并不是常数:有些地方出现的概率大,即出现干涉图样中的“亮条纹”;而有些地方出现的概率却可以为零,没有电子到达,显示“暗条纹”。 由此可见,在电子双缝干涉实验中观察到的,是大量事件所显示出来的一种概率分布,这正是玻恩对波函数物理意义的解释,即波函数模的平方对应于微观粒子在某处出现的概率密度(probability density): 即是说,微观粒子在各处出现的概率密度才具有明显的物理意义。 据此可以认为波函数所代表的是一种概率的波动。这虽然只是人们目前对物质波所能做出的一种理解,然而波函数概念的形成正是量子力学完全摆脱经典观念、走向成熟的标志;波函数和概率密度,是构成量子力学理论的最基本的概念。 概率幅满足于迭加原理,即:ψ12=ψ1+ψ2(1.26) 相应的概率分布为(1.27) 如图:为S亚层的轨道3s1电子经过10万次影象合成的波函数图象。2023-06-11 12:37:121
在自由空间中,电子波函数有什么性质或特点?
我哪里清楚的啊2023-06-11 12:37:311
波函数模的平方如何计算
根据实际情况看,波函数模的平方应该借助数学工具进行计算。2023-06-11 12:37:494
波函数与振动方程有何区别上课没认真听,做题时会搞
波动是一系列的点振动,是能量的传递形式.振动是一个点振动波函数:若x和t都是变量,波函数描述了在波的传播方向上x处质点在t时刻的位移.波函数是振动方程的解.给你个链接自己看看吧.2023-06-11 12:38:051
量子力学 为什么要用波函数描述微观粒子的运动状态?
由于一切微观粒子都具有波粒二象性(从爱因斯坦的光子理论,到德布罗依的推断及电子衍射实验,到以后实验中关于许多粒子流的衍射现象,都证明了波粒二象性的普适意义),因而原子中电子的运动应该服从某种波动规律。以微观粒子的波粒二象性为基础,薛定谔建立了描述微观粒子运动规律的波动方程。薛定谔方程,是波函数对x,,y,z三个空间坐标变量的二阶偏微分方程。波函数,是薛定谔引入的一个物理量,是空间坐标(x,y,z)的函数,也可以用球坐标表示。薛定谔方程不是用数学方法推导出来的,是大量实验事实证明的。2023-06-11 12:38:144
量子力学 我有点弄不明白本征函数和波函数 还有本征值和本征态的关系
波函数可以由本征函数叠加而成。准确地说,这是量子力学基本假设之一,态是希尔伯特空间的一个矢量,我们用波函数描述时就变成了波矢,而这个空间又由一系列正交的基矢组成,这些基矢可认为是某个力学量算符的本证函数,不同表象空间的基矢量是不同的,但态确是一样的。就好比A矢量在直角坐标系和球坐标系中表述不一样,但却是同一个矢量,不同表象空间也有一定的变换关系为正交变换。对于本征值本证态的解释上层楼给的很清楚。2023-06-11 12:38:212
量子力学-平面波函数归一化问题!
符号的标定具有任意性的,我用什么符号来标定并不影响其波函数的表示将其中一个的变量引入p"来表示是为了得出用p-p"为宗量的“德儿塔”函数(抱歉那个希腊字母搞不上来)当然最后的归一化,是满足p=p"的所以波函数和它的共轭的积分是1也就是说引入的p"并不是一个什么新的变量,只是为了得到后面函数的形式而引入的。这样设不会有问题的,因为导出dirac函数的过程是一个数学过程,不是物理过程,不一定非得要是两个共轭的波函数相乘再积分得到。当然两个共轭的波函数相乘后积分,无疑可以得到1,但是没有dirac函数的形式。2023-06-11 12:38:421
一道物理学问题
高中生还是不要弄得太深了,花时间花精力还不一定有效果呢,你说是吗?2023-06-11 12:38:492