- meira
-
高中数学合集百度网盘下载
链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ
?pwd=1234提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
- FinCloud
-
这是我整理的新课标文科的基础知识 一些数学符号无法复制
我已经上传到文库了 标题是知识梳理课标文 你可以自己搜一下下载那样更清楚
一.集合与简易逻辑
1.注意区分集合中元素的形式.如: —函数的定义域; —函数的值域;
—函数图象上的点集.
2.集合的性质: ①任何一个集合 是它本身的子集,记为 .
②空集是任何集合的子集,记为 .
③空集是任何非空集合的真子集;注意:条件为 ,在讨论的时候不要遗忘了 的情况
如: ,如果 ,求 的取值.(答: )
④ , ; ;
.
⑤ .
⑥ 元素的个数: .
⑦含 个元素的集合的子集个数为 ;真子集(非空子集)个数为 ;非空真子集个数为 .
3.补集思想常运用于解决否定型或正面较复杂的有关问题。
如:已知函数 在区间 上至少存在一个实数 ,使
,求实数 的取值范围.(答: )
4.原命题: ;逆命题: ;否命题: ;逆否命题: ;互为逆否的两
个命题是等价的.如:“ ”是“ ”的 条件.(答:充分非必要条件)
5.若 且 ,则 是 的充分非必要条件(或 是 的必要非充分条件).
6.注意命题 的否定与它的否命题的区别: 命题 的否定是 ;否命题是 .
命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.
如:“若 和 都是偶数,则 是偶数”的否命题是“若 和 不都是偶数,则 是奇数”
否定是“若 和 都是偶数,则 是奇数”.
7.常见结论的否定形式
原结论 否定 原结论 否定
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有 个
至多有 个
小于 不小于 至多有 个
至少有 个
对所有 ,成立
存在某 ,不成立
或
且
对任何 ,不成立
存在某 ,成立
且
或
8.且命题、或命题与否命题: 且命题‘同真则真、一假则假"或命题‘同假则假、一真则真"
9.全称命题与特称命题:例“任意x∈R,x2+1≥0” 的否定为“存在x∈R,x2+1<0”
二.函数
1.函数的三要素:定义域,值域,对应法则.研究函数的问题一定要注意定义域优先的原则.
2.求定义域:使函数解析式有意义(如:分母 ;偶次根式被开方数非负;对数真数 ,底数
且 ;零指数幂的底数 );实际问题有意义;若 定义域为 ,复合函数 定义
域由 解出;若 定义域为 ,则 定义域相当于 时 的值域.
3.求值域常用方法: ①配方法(二次函数类);②逆求法(反函数法);③换元法(特别注意新元的范围).
④三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑤不等式法⑥单调性法;⑦数形结合:根据函数的几何意义,利用数形结合的方法来求值域;
⑧判别式法(慎用):⑨导数法(一般适用于高次多项式函数).
4.求函数解析式的常用方法:⑴待定系数法(已知所求函数的类型); ⑵代换(配凑)法;
⑶方程的思想----对已知等式进行赋值,从而得到关于 及另外一个函数的方程组。
5.函数的奇偶性和单调性
⑴函数有奇偶性的必要条件是其定义域是关于原点对称的,确定奇偶性方法有定义法、图像法等;
⑵若 是偶函数,那么 ;定义域含零的奇函数必过原点( );
⑶判断函数奇偶性可用定义的等价形式: 或 ;
⑷复合函数的奇偶性特点是:“内偶则偶,内奇同外”.
注意:若判断较为复杂解析式函数的奇偶性,应先化简再判断;既奇又偶的函数有无数个
(如 定义域关于原点对称即可).
⑸奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
⑹确定函数单调性的方法有定义法、导数法、图像法和特值法(用于小题)等.
⑺复合函数单调性由“同增异减”判定. (提醒:求单调区间时注意定义域)
如:函数 的单调递增区间是 .(答: )
6.函数图象的几种常见变换⑴平移变换:左右平移---------“左加右减”(注意是针对 而言);
上下平移----“上加下减”(注意是针对 而言).⑵翻折变换: ; .
⑶对称变换:①证明函数图像的对称性,即证图像上任意点关于对称中心(轴)的对称点仍在图像上.
②证明图像 与 的对称性,即证 上任意点关于对称中心(轴)的对称点仍在 上,反之亦然.
③函数 与 的图像关于直线 ( 轴)对称;函数 与函数
的图像关于直线 ( 轴)对称;
④若函数 对 时, 或 恒成立,则 图像关
于直线 对称;
7.函数的周期性:⑴若 对 时 恒成立,则 的周期为 ;
⑵若 是偶函数,其图像又关于直线 对称,则 的周期为 ;
⑶若 奇函数,其图像又关于直线 对称,则 的周期为 ;
⑷若 关于点 , 对称,则 的周期为 ;
⑸ 的图象关于直线 , 对称,则函数 的周期为 ;
⑹ 对 时, 或 ,则 的周期为 ;
8.对数:⑴ ;⑵对数恒等式 ;
⑶ ;
;⑷对数换底公式 ;
9.方程 有解 ( 为 的值域); 恒成立 ,
恒成立 .恒成立问题的处理方法:⑴分离参数法(最值法); ⑵转化为一元二次方程根的分布问题;
10.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:
一看开口方向;二看对称轴与所给区间的相对位置关系;
11.二次函数解析式的三种形式: ①一般式: ;②顶点式:
; ③零点式: .
12.一元二次方程实根分布:先画图再研究 、轴与区间关系、区间端点函数值符号;
13.复合函数:⑴复合函数定义域求法:若 的定义域为 ,其复合函数 的定义域可由
不等式 解出;若 的定义域为 ,求 的定义域,相当于 时,求
的值域;⑵复合函数的单调性由“同增异减”判定.
三.数列
1.由 求 , 注意验证 是否包含在后面 的公式中,若不符合要
单独列出.如:数列 满足 ,求 (答: ).
2.等差数列 ( 为常数)
;
3.等差数列的性质: ① , ;
② (反之不一定成立);特别地,当 时,有 ;
③若 、 是等差数列,则 ( 、 是非零常数)是等差数列;
④等差数列的“间隔相等的连续等长片断和序列”即 仍是等差数列;
⑤等差数列 ,当项数为 时, , ;项数为 时,
, ,且 ; .
⑥首项为正(或为负)的递减(或递增)的等差数列前n项和的最大(或最小)问题,转化为解不等式
(或 ).也可用 的二次函数关系来分析.
⑦若 ,则 ;若 ,则 ;
若 ,则Sm+n=0;S3m=3(S2m-Sm); .
4.等比数列 .
5.等比数列的性质
① , ;②若 、 是等比数列,则 、 等也是等比数列;
③ ;④ (反之不一定成
立); . ⑤等比数列中 (注:各项均不为0)
仍是等比数列. ⑥等比数列 当项数为 时, ;项数为 时, .
6.①如果数列 是等差数列,则数列 ( 总有意义)是等比数列;如果数列 是等比数列,
则数列 是等差数列;
②若 既是等差数列又是等比数列,则 是非零常数数列;
③如果两个等差数列有公共项,那么由他们的公共项顺次组成的数列也是等差数列,且新数列的公差
是原两个等差数列公差的最小公倍数;如果一个等差数列和一个等比数列有公共项,那么由他们的
公共项顺次组成的数列是等比数列,由特殊到一般的方法探求其通项;
④三个数成等差的设法: ;四个数成等差的设法: ;
三个数成等比的设法: ;四个数成等比的错误设法: (为什么?)
7.数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式.
⑵已知 (即 )求 用作差法: .
⑶已知 求 用作商法: .
⑷若 求 用迭加法. ⑸已知 ,求 用迭乘法.
⑹已知数列递推式求 ,用构造法(构造等差、等比数列):①形如 , ,
( 为常数)的递推数列都可以用待定系数法转化为公比为 的等比数列后,
再求 .②形如 的递推数列都可以用 “取倒数法”求通项.
8.数列求和的方法:①公式法:等差数列,等比数列求和公式;②分组求和法;③倒序相加;④错位相减;⑤分裂通项法.
公式: ; ;
; ;常见裂项公式 ;
;
常见放缩公式: .
四.三角函数
1. 终边与 终边相同 ; 终边与 终边共线 ; 终边
与 终边关于 轴对称 ; 终边与 终边关于 轴对称
; 终边与 终边关于原点对称 ;
终边与 终边关于角 终边对称 .
2.弧长公式: ;扇形面积公式: ; 弧度( )≈ .
3.三角函数符号(“正号”)规律记忆口诀:“一全二正弦,三切四余弦”.
注意: ; ;
4.三角函数同角关系中(八块图):注意“正、余弦三兄妹
、 ”的关系.
如 等.
5.对于诱导公式,可用“奇变偶不变,符号看象限”概括;
(注意:公式中始终视a为锐角)
6.角的变换:已知角与特殊角、已知角与目标角、已知角
与其倍角或半角、两角与其和差角等变换.
如: ; ; ; ;
等;“ ”的变换: ;
7.重要结论: 其中 );重要公式 ;
8.正弦型曲线 的对称轴 ;对称中心 ;
余弦型曲线 的对称轴 ;对称中心 ;
9.熟知正弦、余弦、正切的和、差、倍公式,正、余弦定理,处理三角形内的三角函数问题勿忘三
内角和等于 ,一般用正、余弦定理实施边角互化;正弦定理: ;
余弦定理: ;
面积公式: ;射影定理: .
10. 中,易得: ,① , , .
② , , . ③
④锐角 中, , , ,类比得钝角 结论.
⑤ .
11.角的范围:异面直线所成角 ;直线与平面所成角 ;二面角和两向量的夹角 ;直线
的倾斜角 ; 到 的角 ; 与 的夹角 .注意术语:坡度、仰角、俯角、方位角等.
五.平面向量
1.设 , . (1) ;(2) .
2.平面向量基本定理:如果 和 是同一平面内的两个不共线的向量,那么对该平面内的任一向
量 ,有且只有一对实数 、 ,使 .
3.设 , ,则 ;其几何意义是 等于 的长度
与 在 的方向上的投影的乘积; 在 的方向上的投影 .
4.三点 、 、 共线 与 共线;与 共线的单位向量 .
5.平面向量数量积性质:设 , ,则 ;注意:
为锐角 , 不同向; 为直角 ; 为钝角 , 不反向.
6. 同向或有 ; 反向或有
; 不共线 .
7.平面向量数量积的坐标表示:⑴若 , ,则 ;
; ⑵若 ,则 .
六.不等式
1.掌握课本上的几个不等式性质,注意使用条件,另外需要特别注意:
①若 , ,则 .即不等式两边同号时,不等式两边取倒数,不等号方向要改变.
②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论.
2.掌握几类不等式(一元一次、二次、绝对值不等式、简单的指数、对数不等式)的解法,尤其注意
用分类讨论的思想解含参数的不等式;勿忘数轴标根法,零点分区间法.
3.掌握重要不等式,(1)均值不等式:若 ,则 (当且仅当 时
取等号)使用条件:“一正二定三相等 ” 常用的方法为:拆、凑、平方等;(2) ,
(当且仅当 时,取等号);(3)公式注意变形如: , ;(4)若 ,则 (真分数的性质);
4.含绝对值不等式: 同号或有 ; 异号或有
.
5.证明不等式常用方法:⑴比较法:作差比较: .注意:若两个正数作差比较有困
难,可以通过它们的平方差来比较大小;⑵综合法:由因导果;⑶分析法:执果索因.基本步骤:要证…
需证…,只需证…; ⑷反证法:正难则反;⑸放缩法:将不等式一侧适当的放大或缩小以达证题目的.
放缩法的方法有:①添加或舍去一些项,如: ; .②将分子或分母放大(或缩小)
③利用基本不等式,如: .④利用常用结论: ;
(程度大); (程度小);
⑹换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元
代数换元.如:知 ,可设 ;知 ,可设 ,
( );知 ,可设 ;已知 ,可设 .
⑺最值法,如: ,则 恒成立. ,则 恒成立.
七.直线和圆的方程
1.直线的倾斜角 的范围是 ;
2.直线的倾斜角与斜率的变化关系 (如右图):
3.直线方程五种形式:⑴点斜式:已知直线过点 斜率为 ,则直线
方程为 ,它不包括垂直于 轴的直线.⑵斜截式:已知直线在 轴上的截距为
和斜率 ,则直线方程为 ,它不包括垂直于 轴的直线. ⑶两点式:已知直线经过
、 两点,则直线方程为 ,它不包括垂直于坐标轴的直线.
⑷截距式:已知直线在 轴和 轴上的截距为 ,则直线方程为 ,它不包括垂直于坐标
轴的直线和过原点的直线.⑸一般式:任何直线均可写成 ( 不同时为0)的形式.
提醒:⑴直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?)
⑵直线在坐标轴上的截距可正、可负、也可为 .直线两截距相等 直线的斜率为 或直线过
原点;直线两截距互为相反数 直线的斜率为 或直线过原点;直线两截距绝对值相等
直线的斜率为 或直线过原点.
⑶截距不是距离,截距相等时不要忘了过原点的特殊情形.
4.直线 与直线 的位置关系:
⑴平行 (斜率)且 (在 轴上截距);
⑵相交 ;(3)重合 且 .
5.点 到直线 的距离公式 ;
两条平行线 与 的距离是 .
6.设三角形 三顶点 , , ,则重心 ;
7.有关对称的一些结论
⑴点 关于 轴、 轴、原点、直线 的对称点分别是 , , , .
⑵曲线 关于下列点和直线对称的曲线方程为:①点 : ;
② 轴: ;③ 轴: ;④原点: ;⑤直线 :
;⑥直线 : ;⑦直线 : .
8.⑴圆的标准方程: . ⑵圆的一般方程:
.特别提醒:只有当 时,方程
才表示圆心为 ,半径为 的圆(二元二次方程
表示圆 ,且 ).
⑶圆的参数方程: ( 为参数),其中圆心为 ,半径为 .圆的参数方程主要应用是
三角换元: ; .
⑷以 、 为直径的圆的方程 ;
10.点和圆的位置关系的判断通常用几何法(计算圆心到直线距离).点 及圆的方程
.① 点 在圆外;
② 点 在圆内;③ 点 在圆上.
11.圆上一点的切线方程:点 在圆 上,则过点 的切线方程为: ;
过圆 上一点 切线方程为 .
12.过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与 轴垂直的直线.
13.直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解
决弦长问题.① 相离 ② 相切 ③ 相交
14.圆与圆的位置关系,经常转化为两圆的圆心距与两圆的半径之间的关系.设两圆的圆心距为 ,
两圆的半径分别为 : 两圆相离; 两圆相外切; 两
圆相交; 两圆相内切; 两圆内含; 两圆同心.
15.求解线性规划问题的步骤是:(1)根据实际问题的约束条件列出不等式;(2)作出可行域,写出目标
函数(判断几何意义);(3)确定目标函数的最优位置,从而获得最优解.
八.圆锥曲线方程
1.直线与圆锥曲线相交的弦长公式 或
(弦端点 ,由方程 消去
得到 , , 为斜率). 这里体现了解几中“设而不求”的思想;
2.椭圆、双曲线的通径(最短弦)为 ,焦准距为 ,抛物线的通径为 ,焦准距为 ;
双曲线 的焦点到渐近线的距离为 ;
3.中心在原点,坐标轴为对称轴的椭圆,双曲线方程可设为 (对于椭圆 );
4.抛物线 的焦点弦(过焦点的弦)为 , 、 ,则有如下结论:
⑴ ;⑵ , ; ⑶ .
5.对于 抛物线上的点的坐标可设为 ,以简化计算.
6.圆锥曲线中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.在椭圆 中,
以 为中点的弦所在直线斜率 ;在双曲线 中,以 为中点的弦所
在直线斜率 ;在抛物线 中,以 为中点的弦所在直线的斜率 .
7.求轨迹方程的常用方法:
⑴直接法:直接通过建立 、 之间的关系,构成 ,是求轨迹的最基本的方法.
⑵待定系数法:可先根据条件设所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可.
⑶代入法(相关点法或转移法).
⑷定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程.
⑸交轨法(参数法):当动点 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑
将 、 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程.
8.解析几何与向量综合的有关结论:
⑴给出直线的方向向量 或 .等于已知直线的斜率 或 ;
⑵给出 与 相交,等于已知 过 的中点;
⑶给出 ,等于已知 是 的中点;
⑷给出 ,等于已知 与 的中点三点共线;
⑸给出以下情形之一: ① ; ②存在实数 ,使 ; ③若存在实数 ,
且 ;使 ,等于已知 三点共线.
⑹给出 ,等于已知 是 的定比分点, 为定比,即
⑺给出 ,等于已知 ,即 是直角,给出 ,等于已
知 是钝角或反向共线,给出 ,等于已知 是锐角或同向共线.
⑼在平行四边形 中,给出 ,等于已知 是菱形.
⑽在平行四边形 中,给出 ,等于已知 是矩形.
⑾在 中,给出 ,等于已知 是 的外心(三角形的外心是外接圆
的圆心,是三角形三边垂直平分线的交点).
⑿在 中,给出 ,等于已知 是 的重心(三角形的重心是三角形
三条中线的交点).
⒀在 中,给出 ,等于已知 是 的垂心(三角形的垂心
是三角形三条高的交点).
⒁在 中,给出 等于已知 通过 的内心.
⒂在 中,给出 等于已知 是 的内心(三角形内切圆
的圆心,三角形的内心是三角形三条角平分线的交点).
⒃在 中,给出 ,等于已知 是 中 边的中线.
等可能事件的概率公式:⑴ ; ⑵互斥事件有一个发生的概率公式为:
;⑶相互独立事件同时发生的概率公式为 ;⑷独立重复试验
概率公式 ;⑸如果事件 与 互斥,那么事件 与 、 与 及事件
与 也都是互斥事件;⑹如果事件 、 相互独立,那么事件 、 至少有一个不发生
的概率是 ;(6)如果事件 与 相互独立,那么事件 与 至少有
一个发生的概率是 .
十三.导数
1.导数的定义: 在点 处的导数记作 .
2.函数 在点 处有导数,则 的曲线在该点处必有切线,且导数值是该切线的斜率.但函数
的曲线在点 处有切线,则 在该点处不一定可导.如 在 有切线,但不可导.
3.函数 在点 处的导数的几何意义是指:曲线 在点 处切线的斜率,
即曲线 在点 处的切线的斜率是 ,切线方程为 .
4.常见函数的导数公式: ( 为常数); . ; ;
; ; .
5.导数的四则运算法则: ; ; .
6.复合函数的导数: .
7.导数的应用:
(1)利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增
函数;如果 ,那么 为减函数;如果在某个区间内恒有 ,那么 为常数;
(2)求可导函数极值的步骤:①求导数 ;②求方程 的根;③检验 在方程
根的左右的符号,如果左正右负,那么函数 在这个根处取得最大值;如果左负
右正,那么函数 在这个根处取得最小值;
(3)求可导函数最大值与最小值的步骤:①求 在 内的极值;②将 在各极值点
点的极值与 、 比较,其中最大的一个为最大值,最小的一个为最小值.
十四.复数
1.理解复数、实数、虚数、纯虚数、模的概念和复数的几何表示.
2.熟练掌握与灵活运用以下结论:⑴ 且 ;⑵复数是
实数的条件:① ;② ;③ .
3.复数是纯虚数的条件: ① 是纯虚数 且 ; ② 是纯虚数
;③ 是纯虚数 .
4.⑴复数的代数形式: ;⑵复数的加、减、乘、除运算按以下法则进行:设 ,
,则 , ,
.
十五.注意答题技巧训练
1.技术矫正:考试中时间分配及处理技巧非常重要,有几点需要必须提醒同学们注意:
⑴按序答题,先易后难.一定要选择熟题先做、有把握的题目先做.
⑵不能纠缠在某一题、某一细节上,该跳过去就先跳过去,千万不能感觉自己被卡住,这样会心慌,
影响下面做题的情绪.
⑶避免“回头想”现象,一定要争取一步到位,不要先做一下,等回过头来再想再检查,高考时间较紧
张,也许待会儿根本顾不上再来思考.
⑷做某一选择题时如果没有十足的把握,初步答案或猜估的答案必须先在卷子上做好标记,有时间
再推敲,不要空答案,否则要是时间来不及瞎写答案只能增加错误的概率.
2.规范化提醒:这是取得高分的基本保证.规范化包括:解题过程有必要的文字说明或叙述,注意解完
后再看一下题目,看你的解答是否符合题意,谨防因解题不全或失误,答题或书写不规范而失分.总
之,要吃透题“情”,合理分配时间,做到一准、二快、三规范.特别是要注意解题结果的规范化.
⑴解与解集:方程的结果一般用解表示(除非强调求解集);不等式、三角方程的结果一般用解集(集
合或区间)表示.三角方程的通解中必须加 .在写区间或集合时,要正确地书写圆括号、方括
号或大括号,区间的两端点之间、集合的元素之间用逗号隔开.
⑵带单位的计算题或应用题,最后结果必须带单位,解题结束后一定要写上符合题意的“答”.
⑶分类讨论题,一般要写综合性结论.
⑷任何结果要最简.如 等.
⑸排列组合题,无特别声明,要求出数值.
⑹函数问题一般要注明定义域(特别是反函数).
⑺参数方程化普通方程,要考虑消参数过程中最后的限制范围.
⑻轨迹问题:①轨迹与轨迹方程的区别:轨迹方程一般用普通方程表示,轨迹则需要说明图形形状.
②有限制条件的必须注明轨迹中图形的范围或轨迹方程中 或 的范围.
⑼分数线要划横线,不用斜线.
- 水元素sl
-
1.集合、简易逻辑 理解集合、子集、补集、交集、并集的概念; 了解空集和全集的意义; 了解属于、包含、相等关系的意义; 掌握有关的术语和符号,并会用它们正确表示一些简单的集合。 理解逻辑联结词"或"、"且"、"非"的含义; 理解四种命题及其相互关系;掌握充要条件的意义。 2.函数 了解映射的概念,在此基础上加深对函数概念的理解。 了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法。 了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。 理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。 理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。 能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。 3.不等式 理解不等式的性质及其证明。 掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。 掌握分析法、综合法、比较法证明简单的不等式。 掌握二次不等式,简单的绝对值不等式和简单的分式不等式的解法。 理解不等式:|a|-|b|≤|a+b|≤|a|+|b|。 4.三角函数(46课时) 理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。 掌握任意角的正弦、余弦、正切的定义, 并会利用单位圆中的三角函数线表示正弦、余弦和正切。 了解任意角的余切、正割、余割的定义; 掌握同角三角函数的基本关系式: 掌握正弦、余弦的诱导公式。 掌握两角和与两角差的正弦、余弦、正切公式; 掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。 能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。 了解周期函数与最小正周期的意义; 了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;以及简化这些函数图象的绘制过程; 会用"五点法"画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。 会由已知三角函数值求角,并会用符号 arcsin x、arccos x、arctan x表示。 掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。 5.平面向量 理解向量的概念,掌握向量的几何表示, 了解共线向量的概念。 掌握向量的加法与减法。 掌握实数与向量的积,理解两个向量共线的充要条件。 了解平面向量的基本定理, 理解平面向量的坐标的概念, 掌握平面向量的坐标运算。 掌握平面向量的数量积及其几何意义, 了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。 掌握平面两点间的距离公式, 掌握线段的定比分点和中点坐标公式,并且能熟练运用; 掌握平移公式。 6.数列 理解数列的概念, 了解数列通项公式的意义; 了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。 理解等差数列的概念, 掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题 理解等比数列的概念 掌握等比数列的通项公式与前 n 项和公式,并能解决简单的实际问题。 7.直线和圆的方程 理解直线的倾斜角和斜率的概念, 掌握过两点的直线的斜率公式, 掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。 掌握两条直线平行与垂直的条件, 掌握两条直线所成的角和点到直线的距离公式; 能够根据直线的方程判断两条直线的位置关系。 会用二元一次不等式表示平面区域。 了解简单的线性规划问题,了解线性规划的意义,并会简单应用。 掌握圆的标准方程和一般方程, 了解参数方程的概念,理解圆的参数方程。 8.圆锥曲线方程 掌握椭圆的定义、标准方程和椭圆的简单几何性质; 理解椭圆的参数方程。 掌握双曲线的定义、标准方程和双曲线的简单几何性质。 掌握抛物线的定义、标准方程和抛物线的简单几何性质。 掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图; 能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。 掌握两条直线平行与垂直的判定定理和性质定理; 掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离)。 掌握直线和平面平行的判定定理和性质定理; 掌握直线和平面垂直的判定定理和性质定理; 掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念; 了解三垂线定理及其逆定理。 掌握两个平面平行的判定定理和性质定理; 掌握二面角、二面角的平面角、两个平行平面间的距离的概念; 掌握两个平面垂直的判定定理和性质定理。 进一步熟悉反证法,会用反证法证明简单的问题。 了解多面体的概念,了解凸多面体的概念。 了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。 了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。 了解正多面体的概念,了解多面体的欧拉公式。 了解球的概念,掌握球的性质,掌握球的表面积和体积公式。 10.排列、组合、二项式定理 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 11.概率 了解随机事件的统计规律性和随机事件概率的意义。 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。 了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。 了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。 会计算事件在 n 次独立重复试验中恰好发生 k 次的概率。 选修Ⅰ 1.统计 了解随机抽样、分层抽样的意义,会用它们对简单实际问题进行抽样; 会用样本频率分布估计总体分布, 会利用样本估计总体期望值和方差,体会如何从数据中提取信息并作出统计推断。 2.导数 理解导数是平均变化率的极限;理解导数的几何意义。 掌握函数 的导数公式,会求多项式函数的导数。 理解极大值、极小值、最大值、最小值的概念, 会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。 选修Ⅱ 1.概率与统计 了解离散型随机变量的意义, 会求出某些简单的离散型随机变量的分布列。 了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。 会用样本频率分布估计总体分布。 了解正态分布的意义及主要性质。 了解线性回归的方法和简单应用。 2. 极限 理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。 从数列和函数的变化趋势了解数列极限和函数极限的概念。 掌握极限的四则运算法则;会求某些数列与函数的极限。 了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。 3.导数 了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等); 掌握函数在一点处的导数的定义和导数的几何意义; 理解导函数的概念。 熟记基本导数公式(c,xm(m为有理数), sin x, cos x, ex, ax, ln x,logax的导数); 掌握两个函数和、差、积、商的求导法则; 了解复合函数的求导法则,会求某些简单函数的导数。 会从几何直观了解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 4.数系的扩充--复数 理解复数的有关概念; 掌握复数的代数表示与几何意义。 掌握复数代数形式的运算法则,能进行复数代数形式的加、减、乘、除运算。
导数放缩法常用不等式有哪些?
导数放缩法常用不等式有如下:1、地位同等要同构,主要针对双变量:方程组上下同构,合二为一泰山移。f(x1)-f(x2)/x1-x2>k(x1<x2) 。f(x1)-f(x2)< kx1-kx2 。f(x1)-kx1< f(x2)-kxz 。y=f(x)-kx为增函数。f(x1)-f(x2)/x1-x2<(k/x1x2(x1<x2)。f(x1)-f(x2)>k(x1-x2)/x1x2=k/x2-k/x1。f(x1)+k/x1>f(x2)+k/x2→y=f(x)+k/x为减函数。含有地位同等的两个变量x1,x2,或p,q等不等式进行“尘归尘,土归土”式的整理,是一种常见变形,如果整理(即同构)后不等式两边具有结构的一致性,往往暗示单调性(需要预先设定两个变量的大小)。2、指对跨阶想同构,同左同右取对数。同构基本模式。积型:aea≤blnb三种网构方式。同右:elnea≤bInb→f(x)=xInx。同左::aea≤(lnb)elnb→f(x)=xex。取对:a+Ina≤Inb+In(lnb)→f(x)=x+Inx。3、同构放缩需有方,切放同构一起上,这个是对同构思想方法的一个灵活运用。【放缩也是一种能力】,利用切线放缩,往往需要局部同构。【利用切线放缩如同用均值不等式,只要取等号的条件成立即可】。掌握常见放缩:(注意取等号的条件,以及常见变形)。ex≥x+1→ex-1≥x→ex≥ex=ex≥e2/4x2。ex≥1+x+x2/2。ex≤2+x/2-x(0≤x< 2)。ex≥ax+1(x≥0,0<a≤1)。对解决指对混合不等式问题,如恒成立求参数取值范围,或证明不等式,都带来极大的便利。当然,在具体使用中,往往要结合切线放缩,或换元法。可以说掌握了这些变形新宠及常见切线型不等式,就大大降低了这类问题的难度。2023-06-01 18:24:191
数学导数放缩法技巧
放缩法是高中数学中一种重要的数学方法,尤其在证明不等式时经常用到. 由于近几年数列不等式在高考中的难度要求降低,放缩法的应用重点也逐渐从证明数列不等式转移到导数压轴题中,尤其是在导数不等式证明中更是大放异彩. 下面试举几例,以供大家参考.利用基本不等式放缩,化曲为直利用单调性放缩,化动为静评注 借助导数研究函数单调性是证明初等不等式的重要方法. 证法1 直接求导证明,由于其含有参数m,因而在判断g( x) 的零点和求f( x) 取得最小值f( x0) 时显得较为麻烦; 证法2 利用对数函数y = ln x 的单调性化动为静,证法显得简单明了. 此外,本题也是处理函数隐零点问题的一个经典范例.03活用函数不等式放缩,化繁为简有两个常用的函数不等式:它们源于高中教材( 人教A 版选修2 - 2,P32) 的一组习题,曾多次出现在高考试题中.2023-06-01 18:24:321
高中导数放缩常用公式及证明
高中导数放缩常用公式及证明如下:导数放缩常用公式是:ln(1+x)0,sinx0。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。2023-06-01 18:24:401
高中数学放缩法公式
高中数学放缩法公式,导数放缩常用公式是:ln(1+x)0,sinx0。要根据每个题目的特征1/n(n+1)=1/n-1/(n+1)不是缩放法,是等式1/n(n+1)可缩小到1/(n+1)²扩大到1/n²。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。放缩法 放缩法是指要让不等式A。2023-06-01 18:25:081
八个放缩公式导数是什么?
八个放缩公式导数是如下:一、y=c(c为常数) y"=0二、y=x^n y"=nx^(n-1)三、y=a^x y"=a^xlna y=e^x y"=e^x四、y=logax y"=logae/x y=lnx y"=1/x 五、y=sinx y"=cosx 六、y=cosx y"=-sinx 七、y=tanx y"=1/cos^2x 八、y=cotx y"=-1/sin^2x2023-06-01 18:25:361
高中导数题放缩法限制条件是什么?
高中这个里面数学题的话,双方限制的条件是非常的,很难的,也就是说他这个非常的宽松,你可以问问你们老师,把它缩放题做多了之后,然后时间长了,时间长了,你才会做这样的东西,否则的话,做起这些题还是非常难的,因此那我不建议你认真的2023-06-01 18:25:521
导数放缩法什么时候不能用?
放缩法一般是用在不等式的证明和比大小中,在当时的运算中。不用放缩法。2023-06-01 18:26:016
八个放缩公式导数是什么?
八个公式:y=c(c为常数) y"=0y=x^n y"=nx^(n-1)y=a^x y"=a^xlna y=e^x y"=e^xy=logax y"=logae/x y=lnx y"=1/x y=sinx y"=cosx y=cosx y"=-sinx y=tanx y"=1/cos^2x y=cotx y"=-1/sin^2x含义如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f"(x)如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f"(x)为区间[a,b]上的导函数,简称导数。2023-06-01 18:26:161
ex和lnx的常见的放缩是什么?
ex,lnx是指对数形式。在求导运算过程中,出现[ex]与含[x]多项式或[lnx]与含[x]多项式混杂情形,导致后续讨论的复杂化。笔者经仔细研究近几年全国卷试题,发现此类问题可通过化归变成几种模型,再求解。现整理如下。[g(x)+h(x)ex或g(x)+h(x)e-x]化归成[f(x)ex或f(x)e-x]。例1已知函数[f(x)=(x-2)ex+a(x-1)2]有两个零点,求a的取值范围。解析由函数有两零点,且显然[x=1]不为零点得,即[f(x)=(x-2)ex+a(x-1)2=0],则有[(x-2)ex(x-1)2=-a]。如果由定义推导的话:(lnx)"=lim(dx->0) ln(x+dx) -lnx / dx=lim(dx->0) ln(1+dx /x) / dxdx/x趋于0,那么ln(1+dx/x)等价于dx/x。所以:lim(dx->0) ln(1+dx /x) / dx=lim(dx->0) (dx /x) / dx=1/x函数可导的条件:如果一个函数的定义域为全体实数,即函数在其上都有定义,函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。2023-06-01 18:26:251
ex和lnx的常见的放缩是什么?
ex和lnx的常见的放缩是: ex=" "这是因为在unix下,一般都是使用双字节的,所以,在unix下,如果遇到一个双字节的字符串,那么就可以使用这种方法,来将其扩展为单字节。 lnx="在linux系统下,一般都是使用单字节,所以,一般情况下,都不使用这种方法。还有一种情况,就是如果遇到一个双字节的字符串,但是,这个字符串中包含了其他的字符,那么,也可以用这种方式,来进行扩展,但是,这种方法,只能扩展为一个字符。还有,如果这个字符串,不是双字节字符串,而是单字节字符串,那么,也可以使用这种方法,来进行扩展。2023-06-01 18:26:512
第三问 导数放缩,感觉答案给的不是很常规,求新方法
证明lnx>=1-1/x,之后取x=1+2/(2i-1),i=2,3,...nln(2i+1)-ln(2i-1)>2/(2i+1)相加,ln(2n+1)-ln3>∑(i=2 to n)2/(2i+1)=∑(i=1 to n)2/(2i-1)-2-2/3+2/(2n+1)∑(i=1 to n)2/(2i-1)-ln(2n+1)<2-ln3+2/3-2/(2n+1)<2-ln3+2/3<22023-06-01 18:27:031
切线放缩证明导数不等式
切线放缩证明导数不等式介绍如下:切线放缩是考试中的经典考法,最经典的不等式有e^x>=x+1,linx<=x-1及其变形。切线放缩可以化曲为直,化超越式为便于处理的线性式或无超越式函数予以处理,并能够达到局部的近似模拟,关注函数形态,把握其凹凸性、变化趋势是关键,通常是借助切线搭桥,从而证明问题。切线不等式是构造函数不等式的一种常用方法。多用于将指数、对数、无理根式统一到一阶幂函数的形式,用时还需考虑函数的凹凸性(凹凸性过于复杂的函数需慎用),难点是寻找切线放缩的位置通常于端点处进行放缩,不行的话后移选取特殊点,若还是搞不定则需要待定系数法进行选取。证明不等式是学生的弱点与难点,也是高考的热点。本文就以利用导数证明不等式为例,谈一些具体做法,仅供参考。一、用函数的单调性证明不等式 注用函数的单调性证明不等式的一般思路:(1)构造函数f(x);(2)利用导数确定f(x)在某一区间的单调性;(3)依据该区间的单调性证不等式。二、用函数的最值证明不等式一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。2023-06-01 18:27:101
导数的题型及解题技巧
1、导数与函数的零点:难点在于分类讨论,解题的关键是“临界点”的确定,落实逻辑推理能力、运算求解能力、分类与整合的能力。常用的方法有分离参数法(参变分离)和分类讨论法,结合代数变形、整体代换法、函数同构——构造函数、不等式等技巧解决函数的隐零点问题及函数的极值点偏移问题。2、导数与函数的单调性:在这一部分要理解函数的单调性与导数符号之间的关系;灵活运用导数求函数的单调性,理解已知函数单调性求参数取值范围的方法。3、导数与函数的极值、最值:掌握函数在某点取得极值的充分条件和必要条件;灵活应用导数求函数的极大值、极小值及求在闭区间上函数的最大值、最小值的方法。4、导数与不等式:这是难点,学会以基本初等函数或其复合形式为载体的超越函数类型,灵活应用导数研究函数的单调性、极值、最值、零点问题,注意与不等式之间的联系;掌握定义法、公式法、综合法、放缩法。5、变化率与导数、导数的计算:在这一部分,我们需要理解导数的概念及实际背景,清楚导数就是瞬时变化率;理解导数的几何意义,会灵活运用导数求两种类型的切线,注意数形结合;落实8大基本初等函数的导数公式、导数的四则运算法则及复合函数求导的方法。2023-06-01 18:27:301
导数中不等式证明六种方法
导数中不等式证明六种方法如下:(1)作差比较法.(2)作商比较法.(3)公式法.(4)放缩法.(5)分析法.(6)归纳猜想、数学归纳法.证明不等式是学生的弱点与难点,也是高考的热点。本文就以利用导数证明不等式为例,谈一些具体做法,仅供参考。一、用函数的单调性证明不等式 注用函数的单调性证明不等式的一般思路:(1)构造函数f(x);(2)利用导数确定f(x)在某一区间的单调性;(3)依据该区间的单调性证不等式。二、用函数的最值证明不等式一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。2023-06-01 18:27:461
想问一下有没有人知道怎么求狄拉克δ函数的导数
狄拉克δ函数的导数是广义函数(分布函数),其对任何“充分光滑”的且紧支的函数f(x), 狄拉克δ函数的导数乘f(x)的积分等于-f"(0)2023-06-01 18:28:103
切线放缩法的原理是什么?
切线放缩的公式是:ex≥x+1(当x=0时取等号)和nx≤x-1(当x=1时取等号)。刚刚接触导数的时候,数学老师都会讲到这个很奇妙的不等式:ex≥x+1。结合图像,容易发现,y=x+1其实就是曲线y=ex在(0,1)处的切线。由于切线恒在曲线下方,所以就存在如上的不等关系。除此之外,还有一个重要的不等式:x-1≥lnx(x>0)其图像如下,容易发现y=x-1也是一条切线。切线放缩法实质就是利用函数的图像性质解决一类多元的问题向一元函数求最值和类型的不等式转化。2023-06-01 18:29:221
数学导数中那个e是怎么得来的?
e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。我们可以从自然对数最早是怎么来的来说明其有多“自然”。以前人们做乘法就用乘法,很麻烦,发明了对数这个工具后,乘法可以化成加法,即:log(a*b)=loga+logb但是能够这么做的前提是,我要有一张对数表,能够知道loga和logb是多少,然后求和,能够知道log多少等于这个和。虽然编对数表很麻烦,但是编好了就是一劳永逸的事情,因此有个大数学家开始编对数表。但他遇到了一个麻烦,就是这个对数表取多少作为底数最合适?10吗?或是2?为了决定这个底数,他做了如下考虑:1.所有乘数/被乘数都可以化到0.1-1之内的数乘以一个10的几次方,这个用科学记数法就行了。2.那么现在只考虑做一个0-1之间的数的对数表了,那么我们自然用一个0-1之间的数做底数。(如果用大于1的数做底数,那么取完对数就是负数,不好看;)3.这个0-1间的底数不能太小,比如0.1就太小了,这会导致很多数的对数都是零点几;而且“相差很大的两个数之的对数值却相差很小”,比如0.1做底数时,两个数相差10倍时,对数值才相差1.换句话说,像0.5和0.55这种相差不大的数,如果用0.1做底数,那么必须把对数表做到精确到小数点以后很多位才能看出他们对数的差别。4.为了避免这种缺点,底数一定要接近于1,比如0.99就很好,0.9999就更好了。总的来说就是1-1/X,X越大越好。在选了一个足够大的X(X越大,对数表越精确,但是算出这个对数表就越复杂)后,你就可以算(1-1/X)^1=p1,(1-1/X)^2=p2,……那么对数表上就可以写上P1的对数值是1,P2的对数值是2……(以1-1/X作为底数)。而且如果X很大,那么P1,P2,P3……间都靠得很紧,基本可以满足均匀地覆盖了0.1-1之间的区间。5.最后他再调整了一下,用(1-1/X)^X作为底,这样P1的对数值就是1/X,P2的对数值就是2/X,……PX的对数值就是1,这样不至于让一些对数值变得太大,比如若X=10000,有些数的对数值就要到几万,这样调整之后,各个数的对数值基本在0-几之间。两个值之间最小的差为1/X。6.现在让对数表更精确,那么X就要更大,数学家算了很多次,1000,1万,十万,最后他发现,X变大时,这个底数(1-1/X)^X趋近于一个值。这个值就是1/e,自然对数底的倒数(虽然那个时候还没有给它取名字)。其实如果我们第一步不是把所有值放缩到0.1-1之间,而是放缩到1-10之间,那么同样的讨论,最后的出来的结果就是e了---这个大数学家就是著名的欧拉(Euler),自然对数的名字e也就来源于欧拉的姓名。当然后来数学家对这个数做了无数研究,发现其各种神奇之处,出现在对数表中并非偶然,而是相当自然或必然的。因此就叫它自然对数底了。2023-06-01 18:29:391
高中数学导数问题。第二问的第二小部的问题在第三张图片上。还有第三问划横线的不知道是怎么来的?
第二种情况解释:(2a+1,2)的确是递增,但之后又递减了,所以考虑极大值g(2)≤1,这也正是答案的做法。第三种情况解释:画横线的部分很巧妙,用到了放缩和利用第二种情况中的结论。也可以直接求导来求解。具体过程均见下图,如有疑问欢迎追问,望采纳。2023-06-01 18:29:461
数学方法是什么?
二.数学基本方法:配方法、换元法、反证法、割补法、待定系数法;分析法、比较法、综合法、归纳法、观察法、定义法、等积法、向量法、解析法、构造法、类比法、放缩法、导数法、参数法、消元法、不等式法、判别式法、数形结合法、分类讨论法、数学归纳法、分离参数法、整体代换、正难则反、设而不求、设而求之.2023-06-01 18:30:133
利用导数证明不等式的方法
利用导数证明不等式的方法:1、差值函数法:主要步骤是: ①构造新函数h(x)= A(x)-B(x); ②求导h′(x)= A′(x)-B′(x); ③研究函数h(x)的单调性、极值、图象等(无法进行时,继续求导h′′(x)= A′′(x)-B′′(x), 研究h′(x)的单调性、极值、图象等); ④通过h′(x)或h′′(x),获得h(x)的性质,进而实现证明不等式A(x)>B(x)的目标。2、切线放缩法直线y = x+1 是曲线y = ex 在(0,1)处的切线, 且在曲线y = ex 的下方, 所以有ex ≥x + 1(当且仅当x = 0 时等号成立)直线y = x - 1 是曲线y = ln x在(1,0)处的切线, 且在曲线y = ln x 的上方, 所以有ln x ≤x - 1(当且仅当x = 1 时等号成立)。3、换元法先将待证的不等式>0 等价变形为>0, 而此不等式中有两个字母参数x1,x2, 不好处理.继续将其等价变形为为新元t,通过换元,则问题立即化为关于t 的一元不等式,利用差值函数法证明即可实现目标。2023-06-01 18:30:231
求导中导数能展开吗
能。可以用泰勒展开式的用法,解决导中导数、指数导数、对数函数、正弦函数、余弦函数、正切函数(三角函数)与高次导数之间的跨阶放缩问题。2023-06-01 18:30:421
高中数学导数题需要分类讨论时一般遵循怎样的顺序?
高中数学导数题需要分类讨论时一般遵循怎样的顺序? 首先导数分类讨论主要分为两种: 第一种:讨论二次函数 。 1.二项式系数 . 【例1】:设函数 , 其中 (1)讨论函数 的极值点的个数, 并说明理由; (2)若 恒成立, 求 的取值范围. (1)不采用通分再讨论:后果有点。。。。。。。。 讨论: (1):当 时, 。 ,故只须在 区间内再找一个点使得 成立,才能证明 有极值点。 放缩找点法: 时, ,故有 ; 令 ,解得 。 故 . 由零点定理得: 故 在 区间存在唯一个变号零点。 故当 时,函数 存在极大值点。 (2):当 时, ,函数 无极值点。 (3):当 时, 在定义域 内有解。设解为 。 . 下面只须讨论 的正负。 甲:当 时,即 时,恒有 此时,函数 无极值点。 乙:当 时,即 时; . ;故得出 在定义域 内。 下面又开始找点操作: 找左端点 : 条件:即 时;找点区间: 。 验证 : . 假设 。 验证: . 由零点定理得: 区间存在变号零点。 故在 区间 存在极大值点。 找右端点 : 条件:即 时;找点区间: 。 由零点定理得: 区间存在变号零点。 故在 区间 存在 极小值点。 综上可知: f"(x) 在x>-1 区间存在两个变号零点。故函数 f(x) 有两个极值点。 综上有: ①当 时,函数 存在一个极大值点。 ②当 时,函数 无极值点。 ③当 时,函数 有两个极值点。 总结: 上面展示的过程,逻辑严密,思维难度大: 难在两上方面: 下面采用二次函数讨论: , 令 讨论: (1):当 时, ,函数 无极值点。 (2):当 时, , 只有一个变号零点 函数 存在一个极大值点。 (3)当 时, , 恒成立, ,函数 无极值点。 (4)当 时, , , 故 有两个变号零点,即 只有两个变号零点 函数 存在两个极值点。 综上有: ①当 时,函数 存在一个极大值点。 ②当 时,函数 无极值点。 ③当 时,函数 有两个极值点。 通分后讨论二次函数明显简单很多。 第二问:采用必要条件探路+更换主元消参法 当 时, , 则必有 ,解得 。 当 时, ,令 ,解得 ,故必有 . 极限写法会被扣2分,哪么怎么不被扣会呢?采用 时,定义域内总存在一个点 ,使得 ,即可证明 的范围只能在 区间。 操作: 条件: . 我们知道: . 故 令 解得: ,在定义域内。 所以当 ,定义域: 时;总存在一个点 ,使得 成立。故要使 ,故必有 。 综上必有 ,才 。 下面只须在 的 讨论可能成立的 。 更换主元以 为自变量, 为参数得: 讨论: (1)当 时, 单调减。 。 (2)当 时,函数 可取 任意值。 (3)当 单调增。 。 。2023-06-01 18:30:481
导数的问题求高人
2023-06-01 18:30:563
高中放缩法常用的不等式有哪些?
1、等比数例倒求放缩目标。小于常值题是重点,因为它涉及一个考点, 即公比小于1的等比数列前N项的极限。2、(n*n型,n*(n-1),n*(n+1), n*(n-2),n*(n+2)型)裂项放缩方法。高考唯有放缩需要反复试,一次放缩不够,两次放缩,代价必须花,除非你运气好,刚好练过。但是试不能无目的,高考题的设置肯定是想考某一个考点设计的,说明此考点不是等比极限。一般情况裂项法不是高考常规考点,单独考察的不多,除非出题人脱离考纲。3、变型后利用构造函数单调性求最值作桥梁放缩,这是现流行的放缩法(因为现高中学导数啦)。4、相乘相消化(不常用)。2023-06-01 18:32:391
问一道导数题,要求用高中方法解答。顺便有一个地方不明白(图和补充放楼下)?
分析:目前高中已经教授了导数,但是本题如果用导数显然就陷入了出题者的“泥沼”,很简单的又普遍的方法是运用初等函数特征再结合放缩法,这里不用高中,用初中给你解!解:考察函数:y=lnx(x>0),易知,该函数是增函数,因此:必有ln(x+1)>lnx,当x>1时恒成立。∴ln(t+1)>lnt∴g(t)=(t-1)ln(t+1)-tlnt < (t-1)lnt-tlnt = (t-1-t)lnt = -lnt当t>1时,显然:-lnt<0因此:g(t)<02023-06-01 18:32:451
高中数学的公式应用?
数学高考基础知识、常见结论详解一、集合与简易逻辑: 一、理解集合中的有关概念 (1)集合中元素的特征: 确定性 , 互异性 , 无序性 。 集合元素的互异性:如: , ,求 ; (2)集合与元素的关系用符号 , 表示。 (3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。 (4)集合的表示法: 列举法 , 描述法 , 韦恩图 。 注意:区分集合中元素的形式:如: ; ; ; ; ; ; (5)空集是指不含任何元素的集合。( 、 和 的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。 注意:条件为 ,在讨论的时候不要遗忘了 的情况。 如: ,如果 ,求 的取值。 二、集合间的关系及其运算 (1)符号“ ”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ; 符号“ ”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。 (2) ; ; (3)对于任意集合 ,则: ① ; ; ; ② ; ; ; ; ③ ; ; (4)①若 为偶数,则 ;若 为奇数,则 ; ②若 被3除余0,则 ;若 被3除余1,则 ;若 被3除余2,则 ; 三、集合中元素的个数的计算: (1)若集合 中有 个元素,则集合 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。 (2) 中元素的个数的计算公式为: ; (3)韦恩图的运用: 四、 满足条件 , 满足条件 , 若 ;则 是 的充分非必要条件 ; 若 ;则 是 的必要非充分条件 ; 若 ;则 是 的充要条件 ; 若 ;则 是 的既非充分又非必要条件 ; 五、原命题与逆否命题,否命题与逆命题具有相同的 ; 注意:“若 ,则 ”在解题中的运用, 如:“ ”是“ ”的 条件。 六、反证法:当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立, 步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确。 矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题。 适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。 正面词语 等于 大于 小于 是 都是 至多有一个 否定 正面词语 至少有一个 任意的 所有的 至多有n个 任意两个 否定 二、函数 一、映射与函数: (1)映射的概念: (2)一一映射:(3)函数的概念: 如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。 函数 的图象与直线 交点的个数为 个。 二、函数的三要素: , , 。 相同函数的判断方法:① ;② (两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法: (2)函数定义域的求法: ① ,则 ; ② 则 ; ③ ,则 ; ④如: ,则 ; ⑤含参问题的定义域要分类讨论; 如:已知函数 的定义域是 ,求 的定义域。 ⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 。 (3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式; ②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 求下列函数的值域:① (2种方法); ② (2种方法);③ (2种方法); 三、函数的性质: 函数的单调性、奇偶性、周期性 单调性:定义:注意定义是相对与某个具体的区间而言。 判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。 应用:比较大小,证明不等式,解不等式。 奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。 判别方法:定义法, 图像法 ,复合函数法 应用:把函数值进行转化求解。 周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。 其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式。 四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。 常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考) 平移变换 y=f(x)→y=f(x+a),y=f(x)+b 注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。 (ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。 对称变换 y=f(x)→y=f(-x),关于y轴对称 y=f(x)→y=-f(x) ,关于x轴对称 y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称 y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数) 伸缩变换:y=f(x)→y=f(ωx), y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。 一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称; 如: 的图象如图,作出下列函数图象: (1) ;(2) ; (3) ;(4) ; (5) ;(6) ; (7) ;(8) ; (9) 。 五、反函数: (1)定义: (2)函数存在反函数的条件: ; (3)互为反函数的定义域与值域的关系: ; (4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。 (5)互为反函数的图象间的关系: ; (6)原函数与反函数具有相同的单调性; (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。 如:求下列函数的反函数: ; ; 七、常用的初等函数: (1)一元一次函数: ,当 时,是增函数;当 时,是减函数; (2)一元二次函数: 一般式: ;对称轴方程是 ;顶点为 ; 两点式: ;对称轴方程是 ;与 轴的交点为 ; 顶点式: ;对称轴方程是 ;顶点为 ; ①一元二次函数的单调性: 当 时: 为增函数; 为减函数;当 时: 为增函数; 为减函数; ②二次函数求最值问题:首先要采用配方法,化为 的形式, Ⅰ、若顶点的横坐标在给定的区间上,则 时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得; 时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得; Ⅱ、若顶点的横坐标不在给定的区间上,则 时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得; 时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得; 有三个类型题型: (1)顶点固定,区间也固定。如: (2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。 (3)顶点固定,区间变动,这时要讨论区间中的参数. ③二次方程实数根的分布问题: 设实系数一元二次方程 的两根为 ;则: 根的情况 等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根 充要条件 注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。 (3)反比例函数: (4)指数函数: 指数运算法则: ; ; 。 指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。 (5)对数函数: 指数运算法则: ; ; ; 对数函数:y= (a>o,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。 注意:(1) 与 的图象关系是 ; (2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。 (3)已知函数 的定义域为 ,求 的取值范围。 已知函数 的值域为 ,求 的取值范围。 六、 的图象: 定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数。 七、补充内容: 抽象函数的性质所对应的一些具体特殊函数模型: ① 正比例函数 ② ; ; ③ ; ; ④ ; 三、导 数 1.求导法则: (c)/=0 这里c是常数。即常数的导数值为0。 (xn)/=nxn-1 特别地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k�6�1f(x))/= k�6�1f/(x) 2.导数的几何物理意义: k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。 V=s/(t) 表示即时速度。a=v/(t) 表示加速度。 3.导数的应用: ①求切线的斜率。 ②导数与函数的单调性的关系 一 与 为增函数的关系。 能推出 为增函数,但反之不一定。如函数 在 上单调递增,但 ,∴ 是 为增函数的充分不必要条件。 二 时, 与 为增函数的关系。 若将 的根作为分界点,因为规定 ,即抠去了分界点,此时 为增函数,就一定有 。∴当 时, 是 为增函数的充分必要条件。 三 与 为增函数的关系。 为增函数,一定可以推出 ,但反之不一定,因为 ,即为 或 。当函数在某个区间内恒有 ,则 为常数,函数不具有单调性。∴ 是 为增函数的必要不充分条件。 函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点的讨论问题,要谨慎处理。 四单调区间的求解过程,已知 (1)分析 的定义域;(2)求导数 (3)解不等式 ,解集在定义域内的部分为增区间(4)解不等式 ,解集在定义域内的部分为减区间。 我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数 在某个区间内可导。 ③求极值、求最值。 注意:极值≠最值。函数f(x)在区间[a,b]上的最大值为极大值和f(a) 、f(b)中最大的一个。最小值为极小值和f(a) 、f(b)中最小的一个。 f/(x0)=0不能得到当x=x0时,函数有极值。 但是,当x=x0时,函数有极值 f/(x0)=0 判断极值,还需结合函数的单调性说明。 4.导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线); (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 四、不等式 一、不等式的基本性质: 注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。 (2)注意课本上的几个性质,另外需要特别注意: ①若ab>0,则 。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。 ②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。 ③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。 ④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小 二、均值不等式:两个数的算术平均数不小于它们的几何平均数。 若 ,则 (当且仅当 时取等号) 基本变形:① ; ; ②若 ,则 , 基本应用:①放缩,变形; ②求函数最值:注意:①一正二定三取等;②积定和小,和定积大。 当 (常数),当且仅当 时, ; 当 (常数),当且仅当 时, ; 常用的方法为:拆、凑、平方; 如:①函数 的最小值 。 ②若正数 满足 ,则 的最小值 。 三、绝对值不等式: 注意:上述等号“=”成立的条件; 四、常用的基本不等式: (1)设 ,则 (当且仅当 时取等号) (2) (当且仅当 时取等号); (当且仅当 时取等号) (3) ; ; 五、证明不等式常用方法: (1)比较法:作差比较: 作差比较的步骤: ⑴作差:对要比较大小的两个数(或式)作差。 ⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。 ⑶判断差的符号:结合变形的结果及题设条件判断差的符号。 注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。 (2)综合法:由因导果。 (3)分析法:执果索因。基本步骤:要证……只需证……,只需证…… (4)反证法:正难则反。 (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。 放缩法的方法有: ⑴添加或舍去一些项,如: ; ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如: ; ⑷利用常用结论: Ⅰ、 ; Ⅱ、 ; (程度大) Ⅲ、 ; (程度小) (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。如: 已知 ,可设 ; 已知 ,可设 ( ); 已知 ,可设 ; 已知 ,可设 ; (7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式; 六、不等式的解法: (1)一元一次不等式: Ⅰ、 :⑴若 ,则 ;⑵若 ,则 ; Ⅱ、 :⑴若 ,则 ;⑵若 ,则 ; (2)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对 进行讨论: (5)绝对值不等式:若 ,则 ; ; 注意:(1).几何意义: : ; : ; (2)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有: ⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;①若 则 ;②若 则 ;③若 则 ; (3).通过两边平方去绝对值;需要注意的是不等号两边为非负值。 (4).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。 (6)分式不等式的解法:通解变形为整式不等式; ⑴ ;⑵ ; ⑶ ;⑷ ; (7)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。 (8)解含有参数的不等式: 解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论: ①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性. ②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论. ③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要分 、 、 讨论。 五、数列 本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解. ②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类; ③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整 体思想求解. (4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错. 一、基本概念: 1、 数列的定义及表示方法: 2、 数列的项与项数: 3、 有穷数列与无穷数列: 4、 递增(减)、摆动、循环数列: 5、 数列{an}的通项公式an: 6、 数列的前n项和公式Sn: 7、 等差数列、公差d、等差数列的结构: 8、 等比数列、公比q、等比数列的结构: 二、基本公式: 9、一般数列的通项an与前n项和Sn的关系:an= 10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 11、等差数列的前n项和公式:Sn= Sn= Sn= 当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。 12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k (其中a1为首项、ak为已知的第k项,an≠0) 13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式); 当q≠1时,Sn= Sn= 三、有关等差、等比数列的结论 14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。 15、等差数列{an}中,若m+n=p+q,则 16、等比数列{an}中,若m+n=p+q,则 17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。 18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。 19、两个等比数列{an}与{bn}的积、商、倒数组成的数列 {an bn}、 、 仍为等比数列。 20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。 21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。 22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 23、三个数成等比的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 24、{an}为等差数列,则 (c>0)是等比数列。 25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。 26. 在等差数列 中: (1)若项数为 ,则 (2)若数为 则, , 27. 在等比数列 中: (1) 若项数为 ,则 (2)若数为 则, 四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。 28、分组法求数列的和:如an=2n+3n 29、错位相减法求和:如an=(2n-1)2n 30、裂项法求和:如an=1/n(n+1) 31、倒序相加法求和:如an= 32、求数列{an}的最大、最小项的方法: ① an+1-an=…… 如an= -2n2+29n-3 ② (an>0) 如an= ③ an=f(n) 研究函数f(n)的增减性 如an= 33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解: (1)当 >0,d<0时,满足 的项数m使得 取最大值. (2)当 <0,d>0时,满足 的项数m使得 取最小值。 在解含绝对值的数列最值问题时,注意转化思想的应用。 还有一些但打不了了2023-06-01 18:32:532
高中导数题型总结
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,让我们抽出时间写写总结吧。那么你知道总结如何写吗?下面是我帮大家整理的高中导数题型总结,仅供参考,希望能够帮助到大家。 首先,关于二次函数的不等式恒成立的主要解法。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数, (1)若在区间上为“凸函数”,求m的取值范围; (2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值. 解:由函数得 (1)在区间上为“凸函数”, 则在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于 解法二:分离变量法: ∵当时,恒成立, 当时,恒成立 等价于的最大值()恒成立, 而()是增函数,则 (2)∵当时在区间上都为“凸函数” 则等价于当时恒成立 变更主元法 再等价于在恒成立(视为关于m的一次函数最值问题) 请同学们参看2010第三次周考: 例2:设函数 (Ⅰ)求函数f(x)的单调区间和极值; (Ⅱ)若对任意的不等式恒成立,求a的取值范围. (二次函数区间最值的例子) 解:(Ⅰ) 令得的单调递增区间为(a,3a) 令得的单调递减区间为(-,a)和(3a,+) ∴当x=a时,极小值=当x=3a时,极大值=b. (Ⅱ)由||≤a,得:对任意的恒成立① 则等价于这个二次函数的对称轴(放缩法) 即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。 上是增函数.(9分) ∴ 于是,对任意,不等式①恒成立,等价于 又∴ 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系 第三种:构造函数求最值 题型特征:恒成立恒成立;从而转化为第一、二种题型 例3;已知函数图象上一点处的切线斜率为, (Ⅰ)求的值; (Ⅱ)当时,求的值域; (Ⅲ)当时,不等式恒成立,求实数t的取值范围。 解:(Ⅰ)∴,解得 (Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减 又 ∴的值域是 (Ⅲ)令 思路1:要使恒成立,只需,即分离变量 思路2:二次函数区间最值 二、题型一:已知函数在某个区间上的单调性求参数的范围 解法1:转化为在给定区间上恒成立,回归基础题型 解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集; 做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集 例4:已知,函数. (Ⅰ)如果函数是偶函数,求的极大值和极小值; (Ⅱ)如果函数是上的单调函数,求的取值范围. 解:. (Ⅰ)∵是偶函数,∴.此时,, 令,解得:. 列表如下: (-∞,-2) -2 (-2,2) 2 (2,+∞) + 0 - 0 + 递增 极大值 递减 极小值 递增 可知:的极大值为,的极小值为. (Ⅱ)∵函数是上的单调函数, ∴,在给定区间R上恒成立判别式法 则解得:. 综上,的取值范围是. 例5、已知函数 (I)求的单调区间; (II)若在[0,1]上单调递增,求a的取值范围。子集思想 (I) 1、 当且仅当时取“=”号,单调递增。 2、 单调增区间: 单调增区间: (II)当则是上述增区间的`子集: 1、时,单调递增符合题意 2、, 综上,a的取值范围是[0,1]。 三、题型二:根的个数问题 题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题 解题步骤 第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”; 第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系; 第三步:解不等式(组)即可; 例6、已知函数,,且在区间上为增函数. 求实数的取值范围; 若函数与的图象有三个不同的交点,求实数的取值范围. 解:(1)由题意∵在区间上为增函数, ∴在区间上恒成立(分离变量法) 即恒成立,又,∴,故∴的取值范围为 (2)设, 令得或由(1)知, ①当时,,在R上递增,显然不合题意… ②当时,,随的变化情况如下表: — ↗ 极大值 ↘ 极小值 ↗ 由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得 综上,所求的取值范围为 根的个数知道,部分根可求或已知。 例7、已知函数 (1)若是的极值点且的图像过原点,求的极值; (2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。 解:(1)∵的图像过原点,则, 又∵是的极值点,则 (2)设函数的图像与函数的图像恒存在含的三个不同交点, 等价于有含的三个根,即: 整理得: 即:恒有含的三个不等实根 (计算难点来了:)有含的根, 则必可分解为,故用添项配凑法因式分解, 十字相乘法分解: 恒有含的三个不等实根 等价于有两个不等于-1的不等实根。 题2:切线的条数问题====以切点为未知数的方程的根的个数 例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围. (1)由题意得: ∴在上;在上;在上 因此在处取得极小值 ∴①,②,③ 由①②③联立得:,∴ (2)设切点Q, 过 令, 求得:,方程有三个根。 需: 故:;因此所求实数的范围为: 题3:已知在给定区间上的极值点个数则有导函数=0的根的个数 解法:根分布或判别式法 例8、 解:函数的定义域为(Ⅰ)当m=4时,f(x)=x3-x2+10x, =x2-7x+10,令,解得或. 令,解得 可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为. (Ⅱ)=x2-(m+3)x+m+6, 要使函数y=f(x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞) 根分布问题: 则,解得m>3 例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围. 解:(1) 当时,令解得,令解得, 所以的递增区间为,递减区间为. 当时,同理可得的递增区间为,递减区间为. (2)有且仅有3个极值点 =0有3个根,则或, 方程有两个非零实根,所以 或 而当或时可证函数有且仅有3个极值点 其它例题: 1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11. (Ⅰ)求函数的解析式; (Ⅱ)若时,恒成立,求实数的取值范围. 解:(Ⅰ) 令=0,得 因为,所以可得下表: 0 + 0 - ↗ 极大 ↘ 因此必为最大值,∴因此,, 即,∴,∴ (Ⅱ)∵,∴等价于, 令,则问题就是在上恒成立时,求实数的取值范围, 为此只需,即, 解得,所以所求实数的取值范围是[0,1]. 2、(根分布与线性规划例子) (1)已知函数 (Ⅰ)若函数在时有极值且在函数图象上的点处的切线与直线平行,求的解析式; (Ⅱ)当在取得极大值且在取得极小值时,设点所在平面区域为S,经过原点的直线L将S分为面积比为1:3的两部分,求直线L的方程. 解:(Ⅰ).由,函数在时有极值, ∴ ∵∴ 又∵在处的切线与直线平行, ∴故 ∴…………………….7分 (Ⅱ)解法一:由及在取得极大值且在取得极小值, ∴即令,则 ∴∴故点所在平面区域S为如图△ABC, 易得,,,,, 同时DE为△ABC的中位线, ∴所求一条直线L的方程为: 另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分,设直线L方程为,它与AC,BC分别交于F、G,则, 由得点F的横坐标为: 由得点G的横坐标为: ∴即 解得:或(舍去)故这时直线方程为: 综上,所求直线方程为:或.…………….………….12分 (Ⅱ)解法二:由及在取得极大值且在取得极小值, ∴即令,则 ∴∴故点所在平面区域S为如图△ABC, 易得,,,,, 同时DE为△ABC的中位线,∴所求一条直线L的方程为: 另一种情况由于直线BO方程为:,设直线BO与AC交于H, 由得直线L与AC交点为: ∵,, ∴所求直线方程为:或 3、(根的个数问题)已知函数的图象如图所示。 (Ⅰ)求的值; (Ⅱ)若函数的图象在点处的切线方程为,求函数f(x)的解析式; (Ⅲ)若方程有三个不同的根,求实数a的取值范围。 解:由题知: (Ⅰ)由图可知函数f(x)的图像过点(0,3),且=0 得 (Ⅱ)依题意=–3且f(2)=5 解得a=1,b=–6 所以f(x)=x3–6x2+9x+3 (Ⅲ)依题意f(x)=ax3+bx2–(3a+2b)x+3(a>0) =3ax2+2bx–3a–2b由=0b=–9a① 若方程f(x)=8a有三个不同的根,当且仅当满足f(5)<8a 由①②得–25a+3<8a<7a+3 所以当 4、(根的个数问题)已知函数 (1)若函数在处取得极值,且,求的值及的单调区间; (2)若,讨论曲线与的交点个数. 解:(1) ………………………………………………………………………2分 令得 令得 ∴的单调递增区间为,,单调递减区间为…………5分 (2)由题得 即 令……………………6分 令得或……………………………………………7分 当即时 - 此时,,,有一个交点;…………………………9分 当即时, ∴当即时,有一个交点; 当即时,有两个交点; 当时,,有一个交点.………………………13分 综上可知,当或时,有一个交点; 当时,有两个交点.…………………………………14分 5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数. (Ⅰ)若函数在处有极值,求的解析式; (Ⅱ)若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.2023-06-01 18:33:081
导数!!!!!!!!
当然是尽可能的把图像画出来啦然后就可以理清题目并可能找到突破口啊2023-06-01 18:33:374
请问高考数学怎么考到130啊,为什么我觉得最后两道大题圆锥曲线和导数这么难,还有选择和填空最后一个
踩金质奖巧浩全年们senior162023-06-01 18:33:453
求Y的导数?
直接求就好了,基础。2023-06-01 18:33:543
高中数学的数列、导数、曲线方程这三大部分,最难的是哪个?
难者不会,会者不难。这东西无从比较谁更难2023-06-01 18:34:046
跪求高中数学重要、基础知识点(概念、公式、定理)?一定要全!!谢谢大家
买本书看2023-06-01 18:34:2110
数学方法有
数学方法包括:配方法、换元法、反证法、割补法、待定系数法;分析法、比较法、综合法、归纳法、观察法、定义法、等积法、向量法、解析法、构造法、类比法、放缩法、导数法、参数法、消元法、不等式法、判别式法、数形结合法、分类讨论法、数学归纳法、分离参数法、整体代换等2023-06-01 18:35:042
高二数学重要知识点总结大全
大家对知识点应该都不陌生吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。掌握知识点是我们提高成绩的关键!下面是我给大家带来的数学重要知识点 总结 大全,以供大家参考! 高二数学 重要知识点总结大全 一、导数的应用 1、用导数研究函数的最值 确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。 学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。 2、生活中常见的函数优化问题 1)费用、成本最省问题 2)利润、收益最大问题 3)面积、体积最(大)问题 二、推理与证明 1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的 方法 是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。 2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。 三、不等式 对于含有参数的一元二次不等式解的讨论 1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。 2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。 通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。 四、坐标平面上的直线 1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。 2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。 3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。 五、圆锥曲线 1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。 2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线 上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。 3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。 高二上册数学必修一知识点归纳 1.机械振动:机械振动是指物体在平衡位置附近所做的往复运动. 2.回复力:回复力是指振动物体所受到的指向平衡位置的力,是由作用效果来命名的.回复力的作用效果总是将物体拉回平衡位置,从而使物体围绕平衡位置做周期性的往复运动。回复力是由振动物体所受力的合力(如弹簧振子)沿振动方向的分力(如单摆)提供的,这就是回复力的来源。 3.平衡位置:平衡位置是指物体在振动中所受的回复力为零的位置,此时振子未必一定处于平衡状态.比如单摆经过平衡位置时,虽然回复力为零,但合外力并不为零,还有向心力. 4.描述振动的物理量: ①位移总是相对于平衡位置而言的,方向总是由平衡位置指向振子所在的位置—总是背离平衡位置向外; ②振幅是物体离开平衡位置的距离,它描述的是振动的强弱,振幅是标量; ③频率是单位时间内完成全振动的次数; ④相位用来描述振子振动的步调。如果振动的振动情况完全相反,则振动步调相反,为反相位. 5.简谐运动: A、简谐运动的回复力和位移的变化规律; B、单摆的周期。由本身性质决定的周期叫固有周期,与摆球的质量、振幅(振动的总能量)无关。 6.简谐运动的表达式和图象:x=Asin(ωt+φ0)简谐运动的图象描述的是一个质点做简谐运动时,在不同时刻的位移,因而振动图象反映了振子的运动规律(注意:振动图象不是运动轨迹)。由振动图象还可以确定振子某时刻的振动方向. 7.简谐运动的能量:不计摩擦和空气阻力的振动是理想化的振动,此时系统只有重力或弹力做功,机械能守恒。振动的能量和振幅有关,振幅越大,振动的能量越大。 高中数学知识点整理 空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为(0°,90°)esp.空间向量法 两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线; (2)没有公共点——平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平 面相 交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 高二数学重要知识点总结大全相关 文章 : ★ 2020高二数学知识点总结 ★ 高二数学重要知识点归纳 ★ 高二数学知识点总结(人教版) ★ 高二数学必背知识点总结 ★ 高二数学知识点总结 ★ 高二数学考点知识点总结复习大纲 ★ 高二数学知识点总结归纳 ★ 高二数学知识点大全 ★ 高二数学知识的重点要点的总结 ★ 高二数学知识点总结20202023-06-01 18:35:121
导数中什么是异构
导数中的异构其实是一种代数变形思维。这种代数变形思维,再用几组切线放缩不等式,把题设条件进行转换,通过保值性定理去处理相关问题,包括证明不等式、求参数范围、零点问题等等。2023-06-01 18:35:201
数学导数放缩法技巧
放缩法是高中数学中一种重要的数学方法,尤其在证明不等式时经常用到. 由于近几年数列不等式在高考中的难度要求降低,放缩法的应用重点也逐渐从证明数列不等式转移到导数压轴题中,尤其是在导数不等式证明中更是大放异彩. 下面试举几例,以供大家参考.利用基本不等式放缩,化曲为直利用单调性放缩,化动为静评注 借助导数研究函数单调性是证明初等不等式的重要方法. 证法1 直接求导证明,由于其含有参数m,因而在判断g( x) 的零点和求f( x) 取得最小值f( x0) 时显得较为麻烦; 证法2 利用对数函数y = ln x 的单调性化动为静,证法显得简单明了. 此外,本题也是处理函数隐零点问题的一个经典范例.03活用函数不等式放缩,化繁为简有两个常用的函数不等式:它们源于高中教材( 人教A 版选修2 - 2,P32) 的一组习题,曾多次出现在高考试题中.2023-06-01 18:35:551
数学导数放缩法技巧
放缩法是高中数学中一种重要的数学方法,尤其在证明不等式时经常用到. 由于近几年数列不等式在高考中的难度要求降低,放缩法的应用重点也逐渐从证明数列不等式转移到导数压轴题中,尤其是在导数不等式证明中更是大放异彩. 下面试举几例,以供大家参考.利用基本不等式放缩,化曲为直利用单调性放缩,化动为静评注 借助导数研究函数单调性是证明初等不等式的重要方法. 证法1 直接求导证明,由于其含有参数m,因而在判断g( x) 的零点和求f( x) 取得最小值f( x0) 时显得较为麻烦; 证法2 利用对数函数y = ln x 的单调性化动为静,证法显得简单明了. 此外,本题也是处理函数隐零点问题的一个经典范例.03活用函数不等式放缩,化繁为简有两个常用的函数不等式:它们源于高中教材( 人教A 版选修2 - 2,P32) 的一组习题,曾多次出现在高考试题中.2023-06-01 18:36:032
导数大题放缩叫什么
导数放缩常用公式是f(x)=ex-ln(x+m),导数也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。2023-06-01 18:36:181
八个放缩公式导数是什么?
八个放缩公式导数是如下:一、y=c(c为常数) y"=0二、y=x^n y"=nx^(n-1)三、y=a^x y"=a^xlna y=e^x y"=e^x四、y=logax y"=logae/x y=lnx y"=1/x 五、y=sinx y"=cosx 六、y=cosx y"=-sinx 七、y=tanx y"=1/cos^2x 八、y=cotx y"=-1/sin^2x2023-06-01 18:36:261
请问:八个放缩公式导数是什么?
八个放缩公式导数是如下:一、y=c(c为常数) y"=0二、y=x^n y"=nx^(n-1)三、y=a^x y"=a^xlna y=e^x y"=e^x四、y=logax y"=logae/x y=lnx y"=1/x 五、y=sinx y"=cosx 六、y=cosx y"=-sinx 七、y=tanx y"=1/cos^2x 八、y=cotx y"=-1/sin^2x2023-06-01 18:36:401
八个放缩公式是什么?
八个公式:y=c(c为常数) y"=0y=x^n y"=nx^(n-1)y=a^x y"=a^xlna y=e^x y"=e^xy=logax y"=logae/x y=lnx y"=1/x y=sinx y"=cosx y=cosx y"=-sinx y=tanx y"=1/cos^2x y=cotx y"=-1/sin^2x含义:如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f"(x)如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f"(x)为区间[a,b]上的导函数,简称导数。2023-06-01 18:36:541
高中数学求导数的公式有哪些?
八个放缩公式导数是如下:一、y=c(c为常数) y"=0二、y=x^n y"=nx^(n-1)三、y=a^x y"=a^xlna y=e^x y"=e^x四、y=logax y"=logae/x y=lnx y"=1/x 五、y=sinx y"=cosx 六、y=cosx y"=-sinx 七、y=tanx y"=1/cos^2x 八、y=cotx y"=-1/sin^2x2023-06-01 18:37:001
高等数学,放缩那里,那个导数加个绝对值就变大了?怎么回事?
这不是题设给你的条件么?2023-06-01 18:37:153
高中导数中常用的同构式有哪些?
高中导数中常用的同构式有如下。1、地位同等要同构,主要针对双变量:方程组上下同构,合二为一泰山移f(x1)-f(x2)/x1-x2>k(x1<x2) 。f(x1)-f(x2)< kx1-kx2 。f(x1)-kx1< f(x2)-kxz 。y=f(x)-kx为增函数。f(x1)-f(x2)/x1-x2<(k/x1x2(x1<x2)。f(x1)-f(x2)>k(x1-x2)/x1x2=k/x2-k/x1。f(x1)+k/x1>f(x2)+k/x2→y=f(x)+k/x为减函数。含有地位同等的两个变量x1,x2,或p,q等不等式进行“尘归尘,土归土”式的整理,是一种常见变形,如果整理(即同构)后不等式两边具有结构的一致性,往往暗示单调性(需要预先设定两个变量的大小)。2、指对跨阶想同构,同左同右取对数。同构基本模式积型:aea≤blnb三种网构方式。同右:elnea≤bInb→f(x)=xInx。同左::aea≤(lnb)elnb→f(x)=xex。取对:a+Ina≤Inb+In(lnb)→f(x)=x+Inx。3、同构放缩需有方,切放同构一起上,这个是对同构思想方法的一个灵活运用。【放缩也是一种能力】,利用切线放缩,往往需要局部同构。【利用切线放缩如同用均值不等式,只要取等号的条件成立即可】。掌握常见放缩:(注意取等号的条件,以及常见变形)。ex≥x+1→ex-1≥x→ex≥ex=ex≥e2/4x2。ex≥1+x+x2/2。ex≤2+x/2-x(0≤x< 2)。ex≥ax+1(x≥0,0<a≤1)。对解决指对混合不等式问题,如恒成立求参数取值范围,或证明不等式,都带来极大的便利。当然,在具体使用中,往往要结合切线放缩,或换元法。可以说掌握了这些变形新宠及常见切线型不等式,就大大降低了这类问题的难度。2023-06-01 18:37:231
导数的题型及解题技巧
导数的题型及解题技巧如下:1变化率与导数、导数的计算;在这一部分,我们需要理解导数的概念及实际背景,清楚导数就是瞬时变化率;理解导数的几何意义,会灵活运用导数求两种类型的切线,注意数形结合;落实8大基本初等函数的导数公式、导数的四则运算法则及复合函数求导的方法。2、导数与函数的单调性;在这一部分要理解函数的单调性与导数符号之间的关系;灵活运用导数求函数的单调性,理解已知函数单调性求参数取值范围的方法。3、导数与函数的极值、最值;掌握函数在某点取得极值的充分条件和必要条件;灵活应用导数求函数的极大值、极小值及求在闭区间上函数的最大值、最小值的方法。4、导数与不等式;这是难点,学会以基本初等函数或其复合形式为载体的超越函数类型,灵活应用导数研究函数的单调性、极值、最值、零点问题,注意与不等式之间的联系;掌握定义法、公式法、综合法、放缩法。5、导数与函数的零点;难点在于分类讨论,解题的关键是“临界点”的确定,落实逻辑推理能力、运算求解能力、分类与整合的能力。常用的方法有分离参数法(参变分离)和分类讨论法,结合代数变形、整体代换法、函数同构——构造函数、不等式等技巧解决函数的隐零点问题及函数的极值点偏移问题。2023-06-01 18:37:371
切线放缩的几个公式是什么?
切线放缩的公式是:ex≥x+1(当x=0时取等号)和nx≤x-1(当x=1时取等号)。刚刚接触导数的时候,数学老师都会讲到这个很奇妙的不等式:ex≥x+1。结合图像,容易发现,y=x+1其实就是曲线y=ex在(0,1)处的切线。由于切线恒在曲线下方,所以就存在如上的不等关系。除此之外,还有一个重要的不等式:x-1≥lnx(x>0)其图像如下,容易发现y=x-1也是一条切线。切线放缩法实质就是利用函数的图像性质解决一类多元的问题向一元函数求最值和类型的不等式转化。2023-06-01 18:38:121
tanx能不能放缩为X
可以的。Tanx=sinx/cosx,根据求导法则可以得出(Tanx)"=(1/cosx)^2=(secx)^2结论。导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率,导数的几何意义是该函数曲线在这一点上的切线斜率。2023-06-01 18:38:291
切线放缩法的公式是什么?
切线放缩的公式是:ex≥x+1(当x=0时取等号)和nx≤x-1(当x=1时取等号)。刚刚接触导数的时候,数学老师都会讲到这个很奇妙的不等式:ex≥x+1。结合图像,容易发现,y=x+1其实就是曲线y=ex在(0,1)处的切线。由于切线恒在曲线下方,所以就存在如上的不等关系。除此之外,还有一个重要的不等式:x-1≥lnx(x>0)其图像如下,容易发现y=x-1也是一条切线。切线放缩法实质就是利用函数的图像性质解决一类多元的问题向一元函数求最值和类型的不等式转化。2023-06-01 18:38:351
数学导数中那个e是怎么得来的
e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。我们可以从自然对数最早是怎么来的来说明其有多“自然”。以前人们做乘法就用乘法,很麻烦,发明了对数这个工具后,乘法可以化成加法,即:log(a*b)=loga+logb但是能够这么做的前提是,我要有一张对数表,能够知道loga和logb是多少,然后求和,能够知道log多少等于这个和。虽然编对数表很麻烦,但是编好了就是一劳永逸的事情,因此有个大数学家开始编对数表。但他遇到了一个麻烦,就是这个对数表取多少作为底数最合适?10吗?或是2?为了决定这个底数,他做了如下考虑:1.所有乘数/被乘数都可以化到0.1-1之内的数乘以一个10的几次方,这个用科学记数法就行了。2.那么现在只考虑做一个0-1之间的数的对数表了,那么我们自然用一个0-1之间的数做底数。(如果用大于1的数做底数,那么取完对数就是负数,不好看;)3.这个0-1间的底数不能太小,比如0.1就太小了,这会导致很多数的对数都是零点几;而且“相差很大的两个数之的对数值却相差很小”,比如0.1做底数时,两个数相差10倍时,对数值才相差1.换句话说,像0.5和0.55这种相差不大的数,如果用0.1做底数,那么必须把对数表做到精确到小数点以后很多位才能看出他们对数的差别。4.为了避免这种缺点,底数一定要接近于1,比如0.99就很好,0.9999就更好了。总的来说就是1-1/x,x越大越好。在选了一个足够大的x(x越大,对数表越精确,但是算出这个对数表就越复杂)后,你就可以算(1-1/x)^1=p1,(1-1/x)^2=p2,……那么对数表上就可以写上p1的对数值是1,p2的对数值是2……(以1-1/x作为底数)。而且如果x很大,那么p1,p2,p3……间都靠得很紧,基本可以满足均匀地覆盖了0.1-1之间的区间。5.最后他再调整了一下,用(1-1/x)^x作为底,这样p1的对数值就是1/x,p2的对数值就是2/x,……px的对数值就是1,这样不至于让一些对数值变得太大,比如若x=10000,有些数的对数值就要到几万,这样调整之后,各个数的对数值基本在0-几之间。两个值之间最小的差为1/x。6.现在让对数表更精确,那么x就要更大,数学家算了很多次,1000,1万,十万,最后他发现,x变大时,这个底数(1-1/x)^x趋近于一个值。这个值就是1/e,自然对数底的倒数(虽然那个时候还没有给它取名字)。其实如果我们第一步不是把所有值放缩到0.1-1之间,而是放缩到1-10之间,那么同样的讨论,最后的出来的结果就是e了---这个大数学家就是著名的欧拉(euler),自然对数的名字e也就来源于欧拉的姓名。当然后来数学家对这个数做了无数研究,发现其各种神奇之处,出现在对数表中并非偶然,而是相当自然或必然的。因此就叫它自然对数底了。2023-06-01 18:38:552
切线放缩公式是什么?
切线放缩的公式是:ex≥x+1(当x=0时取等号)和nx≤x-1(当x=1时取等号)。刚刚接触导数的时候,数学老师都会讲到这个很奇妙的不等式:ex≥x+1。结合图像,容易发现,y=x+1其实就是曲线y=ex在(0,1)处的切线。由于切线恒在曲线下方,所以就存在如上的不等关系。除此之外,还有一个重要的不等式:x-1≥lnx(x>0)其图像如下,容易发现y=x-1也是一条切线。切线放缩法实质就是利用函数的图像性质解决一类多元的问题向一元函数求最值和类型的不等式转化。2023-06-01 18:39:021