- Ntou123
-
八个公式:
1.y=c(c为常数) y"=0
2.y=x^n y"=nx^(n-1)
3.y=a^x y"=a^xlna
y=e^x y"=e^x
4.y=logax y"=logae/x y=lnx y"=1/x
5.y=sinx y"=cosx
6.y=cosx y"=-sinx
7.y=tanx y"=1/cos^2x
8.y=cotx y"=-1/sin^2x运算法则:
加(减)法则:[f(x)+g(x)]"=f(x)"+g(x)"
乘法法则:[f(x)*g(x)]"=f(x)"*g(x)+g(x)"*f(x)
除法法则:[f(x)/g(x)]"=[f(x)"*g(x)-g(x)"*f(x)]/g(x)^2导数
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
定义
编辑
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导。
需要指出的是:
两者在数学上是等价的。
导函数
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y"、f"(x)、dy/dx或df(x)/dx,简称导数。
导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。[1] [2]
几何意义
函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
常用函数的导数表
① C"=0(C为常数函数)
② (x^n)"= nx^(n-1) (n∈R);熟记1/X的导数
③ (sinx)" = cosx
(cosx)" = - sinx
(tanx)"=1/(cosx)^2=(secx)^2=1+(tanx)^2
(cotx)"=-1/(sinx)^2=-(cscx)^2=-1-(cotx)^2
(secx)"=tanx·secx
(cscx)"=-cotx·cscx
(arcsinx)"=1/(1-x^2)^1/2
(arccosx)"=-1/(1-x^2)^1/2
(arctanx)"=1/(1+x^2)
(arccotx)"=-1/(1+x^2)
(arcsecx)"=1/(|x|(x^2-1)^1/2)
(arccscx)"=-1/(|x|(x^2-1)^1/2)
④(sinhx)"=coshx
(coshx)"=sinhx
(tanhx)"=1/(coshx)^2=(sechx)^2
(coth)"=-1/(sinhx)^2=-(cschx)^2
(sechx)"=-tanhx·sechx
(cschx)"=-cothx·cschx
(arsinhx)"=1/(x^2+1)^1/2
(arcoshx)"=1/(x^2-1)^1/2
(artanhx)"=1/(x^2-1) (|x|<1)
(arcothx)"=1/(x^2-1) (|x|>1)
(arsechx)"=1/(x(1-x^2)^1/2)
(arcschx)"=1/(x(1+x^2)^1/2)
⑤ (e^x)" = e^x
(a^x)" = (a^x)lna (ln为自然对数)
(Inx)" = 1/x(ln为自然对数)
(logax)" =x^(-1) /lna(a>0且a不等于1)
(x^1/2)"=[2(x^1/2)]^(-1)
(1/x)"=-x^(-2)
- 此后故乡只
-
1.y=c(c为常数) y"=0
2.y=x^n y"=nx^(n-1)
3.y=a^x y"=a^xlna
y=e^x y"=e^x
4.y=logax y"=logae/x
y=lnx y"=1/x
5.y=sinx y"=cosx
6.y=cosx y"=-sinx
7.y=tanx y"=1/cos^2x
8.y=cotx y"=-1/sin^2x
.加(减)法则:[f(x)+g(x)]"=f(x)"+g(x)"
乘法法则: [f(x)*g(x)]"=f(x)"*g(x)+g(x)"*f(x)
除法法则:[f(x)/g(x)]"=[f(x)"*g(x)-g(x)"*f(x)]/g(x)^2
常用导数是什么啊?
常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^2导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。2023-06-01 15:59:071
16个基本导数公式是什么?
16个基本导数公式(y:原函数;y":导函数):1、y=c,y"=0(c为常数)。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax,y"=1/(xlna)(a>0且a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。10、y=arccosx,y"=-1/√(1-x^2)。11、y=arctanx,y"=1/(1+x^2)。12、y=arccotx,y"=-1/(1+x^2)。13、y=shx,y"=ch x。14、y=chx,y"=sh x。15、y=thx,y"=1/(chx)^2。16、y=arshx,y"=1/√(1+x^2)。导数的性质:1、单调性:(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。2、凹凸性:可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。以上内容参考:百度百科-导数2023-06-01 15:59:151
常用导数公式表
常用导数公式如下:C′=0 (C为常数)、(x∧n)′=nx∧(n-1)、(sinx)′=cosx、(cosx)′=-sinx、(lnx)′=1/x、(e∧x)′=e∧x。复合函数的导数:(f(g(x))′=(f(u))′(g(x))′*u=g(x)常用导数公式:1.y=c(c为常数)2.y=x^n y"=nx^(n-1)3.y=a^x y"=a^xlna;y=e^x y"=e^x4.f(x)=logaX f"(x)=1/xlna (a>0且a不等于1,x>0);y=lnx y"=1/x5.y=sinx y"=cosx6.y=cosx y"=-sinx7.y=tanx y"=1/(cosx)^28.y=cotx y"=-1/(sinx)^29.y=arcsinx y"=1/√1-x^210.y=arccosx y"=-1/√1-x^211.y=arctanx y"=1/(1+x^2)12.y=arccotx y"=-1/(1+x^2)2023-06-01 15:59:291
常用的求导公式大全
常用的求导公式大全:1、(sinx)"=cosx,即正弦的导数是余弦。2、(cosx)"=-sinx,即余弦的导数是正弦的相反数。3、(tanx)"=(secx)^2,即正切的导数是正割的平方。4、(cotx)"=-(cscx)^2,即余切的导数是余割平方的相反数。5、(secx)"=secxtanx,即正割的导数是正割和正切的积。6、(cscx)"=-cscxcotx,即余割的导数是余割和余切的积的相反数。7、(arctanx)"=1/(1+x^2)。8、(arccotx)"=-1/(1+x^2)。9、(fg)"=f"g+fg",即积的导数等于各因式的导数与其它函数的积,再求和。10、(f/g)"=(f"g-fg")/g^2,即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去被除函数与除函数的导数的积的差为被除式。11、(f^(-1)(x))"=1/f"(y),即反函数的导数是原函数导数的倒数,注意变量的转换。求导注意事项对于函数求导一般要遵循先化简,再求导的原则,求导时不但要重视求导法则的运用,还要特别注意求导法则对求导的制约作用,在化简时,首先注意变换的等价性,避免不必要的运算错误。需要记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。2023-06-01 15:59:501
高中常用导数公式表
高中常用导数公式表如下:原函数:y=c(c为常数),导数: y"=0;原函数:y=x^n,导数:y"=nx^(n-1);原函数:y=tanx,导数: y"=1/cos^2x;原函数:y=cotx,导数:y"=-1/sin^2x;原函数:y=sinx,导数:y"=cosx;原函数:y=cosx。导数: y"=-sinx;原函数:y=a^x,导数:y"=a^xlna;原函数:y=e^x,导数: y"=e^x;原函数:y=logax,导数:y"=logae/x;原函数:y=lnx,导数:y"=1/x。高中数学导数学习方法:2.一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负;正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像。根据图像就可以求出你想要的东西,比如最大值或最小值等。3.特殊情况下,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;如果导数恒小于0,就减。2023-06-01 16:00:141
高中常用的导数公式
高中数学中常用的导数公式如下:1、y = kx + b 的斜率 k 的导数为 0,截距 b 的导数为 1。 即 dy/dx = k。2、y = x^n 的导数为 nx^(n-1)。 即 dy/dx = nx^(n-1)。3、y = sin x 的导数为 cos x,y = cos x 的导数为 -sin x。 即 dy/dx = cos x, d(cosx)/dx = -sin x。4、y = e^x 的导数为 e^x。 即 dy/dx = e^x。5、y = ln x 的导数为 1/x。 即 dy/dx = 1/x。6、y = arcsin x 的导数为 1/√(1-x^2), y = arccos x 的导数为 -1/√(1-x^2)。 即 dy/dx = 1/√(1-x^2), d(arccosx)/dx = -1/√(1-x^2)。7、y = a^x(a>0,且a≠1)的导数为 a^x ln a。 即 dy/dx = a^x ln a。8、y = loga x(a>0,且a≠1)的导数为 1/(x ln a)。 即 dy/dx = 1/(x ln a)。9、y = tan x 的导数为 sec^2 x,y = cot x 的导数为 -csc^2 x。 即 dy/dx = sec^2 x, d(cotx)/dx = -csc^2 x。什么是导数导数是微积分中的一个基本概念,用于表示一个函数在某一点处的变化率或斜率。可以理解为函数图像在某一点处的切线的斜率。导数的概念和应用广泛存在于各个科学领域,包括物理学、工程学、经济学等等。在高中数学中,学生将学习单变量函数的导数和相关的计算方法,以及导数的各种应用,如最值问题、曲线图形分析、速度和加速度等。2023-06-01 16:00:341
常用求导公式24个
24个基本求导公式1、C′=0 (C为常数)2、(x∧n)′=nx∧(n-1)3、(sinx)′=cosx4、(cosx)′=-sinx5、(lnx)′=1/x6、(e∧x)′=e∧x7、(logaX)"=1/(xlna)8、(a∧x)"=(a∧x)*lna9、(u±v)′=u′±v′10、(uv)′=u′v+uv′11、(u/v)′=(u′v-uv′)/v12、(f(g(x))′=(f(u))′(g(x))′. u=g(x)13、y=c(c为常数) y"=014、y=x^n y"=nx^(n-1)15、y=a^x y"=a^xlnay=e^x y"=e^x16、y=logax y"=logae/xy=lnx y"=1/x17、y=sinx y"=cosx18、y=cosx y"=-sinx19、y=tanx y"=1/cos^2x20、y=cotx y"=-1/sin^2x21、y=arcsinx y"=1/√1-x^222、y=arccosx y"=-1/√1-x^223、y=arctanx y"=1/1+x^224、y=arccotx y"=-1/1+x^2基本导数公式有:(lnx)"=1/x、(sinx)"=cosx、(cosx)"=-sinx求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。2023-06-01 16:00:581
常用导数公式
常用导数公式如下:导数公式:y=c(c为常数) y"=0、y=x^n y"=nx^(n-1) ;运算法则:加(减)法则:[f(x)+g(x)]"=f(x)"+g(x)"。 导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。2023-06-01 16:01:201
基本导数公式有哪些?
常用导数公式表如下:c"=0(c为常数)(x^a)"=ax^(a-1),a为常数且a≠0(a^x)"=a^xlna(e^x)"=e^x(logax)"=1/(xlna),a>0且 a≠1(lnx)"=1/x(sinx)"=cosx(cosx)"=-sinx(tanx)"=(secx)^2(secx)"=secxtanx导函数如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y"、f"(x)、dy/dx或df(x)/dx,简称导数。2023-06-01 16:01:351
常用的求导公式大全
常用的求导公式大全参考如下:1.y=c(c为常数) y"=0 2.y=x^n y"=nx^(n-1) 3.y=a^x y"=a^xlna y=e^x y"=e^x 4.y=logax y"=logae/x y=lnx y"=1/x 5.y=sinx y"=cosx 6.y=cosx y"=-sinx7.y=tanx y"=1/cos^2x 8.y=cotx y"=-1/sin^2x2运算法则加(减)法则:[f(x)+g(x)]"=f(x)"+g(x)"乘法法则:[f(x)*g(x)]"=f(x)"*g(x)+g(x)"*f(x)除法法则:[f(x)/g(x)]"=[f(x)"*g(x)-g(x)"*f(x)]/g(x)^2基本初等函数的导数表1.y=c y"=0 2.y=α^μ y"=μα^(μ-1) 3.y=a^x y"=a^x lna y=e^x y"=e^x4.y=loga,x y"=loga,e/x y=lnx y"=1/x 5.y=sinx y"=cosx6.y=cosx y"=-sinx 7.y=tanx y"=(secx)^2=1/(cosx)^28.y=cotx y"=-(cscx)^2=-1/(sinx)^2 9.y=arc sinx y"=1/√(1-x^2)10.y=arc cosx y"=-1/√(1-x^2) 11.y=arc tanx y"=1/(1+x^2)12.y=arc cotx y"=-1/(1+x^2) 13.y=sh x y"=ch x14.y=ch x y"=sh x 15.y=thx y"=1/(chx)^216.y=ar shx y"=1/√(1+x^2) 17.y=ar chx y"=1/√(x^2-1) 18.y=ar th y"=1/(1-x^2)2023-06-01 16:01:531
高中常用数学导数公式
导数是高中数学的一个重要知识点,那么,高中常用数学导数公式有哪些呢?下面我整理了一些相关信息,供大家参考! 数学导数公式有哪些 1.y=c(c为常数) y"=0 2.y=x^n y"=nx^(n-1) 3.y=a^x y"=a^xlna y=e^x y"=e^x 4.y=logax y"=logae/x y=lnx y"=1/x 5.y=sinx y"=cosx 6.y=cosx y"=-sinx 7.y=tanx y"=1/cos^2x 8.y=cotx y"=-1/sin^2x 9.y=arcsinx y"=1/√1-x^2 10.y=arccosx y"=-1/√1-x^2 11.y=arctanx y"=1/1+x^2 12.y=arccotx y"=-1/1+x^2 数学中几种求导数的方法 定义法:用导数的定义来求导数。 公式法:根据课本给出的公式来求导数。 隐函数法:利用隐函数来求导,图中给出隐函数求导的例题。 对数法:通过对数来求导数。 复合函数法:利用复合函数来求导数。 导数的运算法则 导数的运算法则,就是指导数的加、减、乘、除的四则运算法则,这也是需要掌握的重要内容,公式如下: ①(u±v)=u"v±vu" ②uv=u"v+uv" ③u/v=(u"v-uv")/v^2 这里边的u.v一般是代表的两个不同的函数,不会同时为常数。这三个运算法则中,特别要记住的是两个函数商的导数求法,分子中出现的是减号,这个地方容易出错。对于上面提到的二次函数,符合函数和差的运算法则,所以y"=(ax^2)"+(bx)"+c"=2ax+b+0=2ax+b.2023-06-01 16:02:141
常用导数公式大全
导数,也叫导函数值。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。接下来分享常用导数公式,供参考。 三角函数的导数公式 正弦函数:(sinx)"=cosx 余弦函数:(cosx)"=-sinx 正切函数:(tanx)"=sec²x 余切函数:(cotx)"=-csc²x 正割函数:(secx)"=tanx·secx 余割函数:(cscx)"=-cotx·cscx 反三角函数的导数公式 反正弦函数:(arcsinx)"=1/√(1-x^2) 反余弦函数:(arccosx)"=-1/√(1-x^2) 反正切函数:(arctanx)"=1/(1+x^2) 反余切函数:(arccotx)"=-1/(1+x^2) 其他函数导数公式 常函数:y=c(c为常数) y"=0 幂函数:y=xn y"=nx^(n-1) 指数函数:①y=ax y"=axlna ②y=ex y"=ex 对数函数:①y=logax y"=1/xlna ②y=lnx y"=1/x2023-06-01 16:02:221
高中全部导数公式总结
高中数学的导数公式特别多,在这里不可能给你写出来,请你打开手机,在网上搜索公式都会展现在你的面前。2023-06-01 16:02:325
高中数学常用导数公式
导数是微积分中的重要基础概念,高中数学常用的导数公式有哪些呢?为此我为大家推荐了一些高中数学常用导数公式,欢迎大家参阅。 高中数学导数公式 1.y=c(c为常数) y"=0 2.y=x^n y"=nx^(n-1) 3.y=a^x y"=a^xlna y=e^x y"=e^x 4.y=logax y"=logae/x y=lnx y"=1/x 5.y=sinx y"=cosx 6.y=cosx y"=-sinx 7.y=tanx y"=1/cos^2x 8.y=cotx y"=-1/sin^2x 9.y=arcsinx y"=1/√1-x^2 10.y=arccosx y"=-1/√1-x^2 11.y=arctanx y"=1/1+x^2 12.y=arccotx y"=-1/1+x^2 高中数学常用推导公式 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y"=f"[g(x)]•g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』 2.y=u/v,y"=u"v-uv"/v^2 3.y=f(x)的反函数是x=g(y),则有y"=1/x" 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y"=e^x和y=lnx y"=1/x这两个结果后能用复合函数的求导给予证明。 3.y=a^x, ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1) ⊿y/⊿x=a^x(a^⊿x-1)/⊿x 如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。 所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β 显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。 可以知道,当a=e时有y=e^x y"=e^x。 4.y=logax ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x 因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有 lim⊿x→0⊿y/⊿x=logae/x。 可以知道,当a=e时有y=lnx y"=1/x。 这时可以进行y=x^n y"=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx, 所以y"=e^nlnx•(nlnx)"=x^n•n/x=nx^(n-1)。 5.y=sinx ⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2) ⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2) 所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx 6.类似地,可以导出y=cosx y"=-sinx。 7.y=tanx=sinx/cosx y"=[(sinx)"cosx-sinx(cos)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x"=cosy y"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x"=-siny y"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x"=1/cos^2y y"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x"=-1/sin^2y y"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y"=u"土v" 5.y=uv,y=u"v+uv" 均能较快捷地求得结果。2023-06-01 16:03:011
如何求一个函数的导数?
导数公式推导过程如下:y=a^x,△y=a^(x+△x)-a^x=a^x(a^△x-1),△y/△x=a^x(a^△x-1)/△x。如果直接令△x→0,是不能导出导函数的,必须设一个辅助的函数β=a^△x-1通过换元进行计算。由设的辅助函数可以知道:△x=loga(1+β)。所以(a^△x-1)/△x=β/loga(1+β)=1/loga(1+β)^1/β。显然,当△x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。把这个结果代入lim△x→0△y/△x=lim△x→0a^x(a^△x-1)/△x后得到lim△x→0△y/△x=a^xlna。可以知道,当a=e时有y=e^x y"=e^x。常用导数:y = C(C为常数) , y" = 0。y=xn, y" = nxn-1。y = ax, y" = lna*ax。y = ex, y" = ex。y = logax , y" = 1 / (x*lna)。y = lnx , y" = 1/x。y = sinx , y" = cosx。y = cosx , y" = -sinx。y = tanx , y" = 1/cos2x = sec2x。y = cotx , y" = -1/sin2x= -csc2x。y = arcsinx , y" = 1 / √(1-x2)。y = arccosx , y" = - 1 /√(1-x2)。y = arctanx , y" = 1/(1+x2)。2023-06-01 16:03:071
常用函数的导数表有哪些?
常用函数导数表如下:拓展说明:1. 导数定义:导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。2. 几何意义函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。2023-06-01 16:03:311
常用的导数公式表
常用的导数公式表对于双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y"=u"土v" 5.y=uv,y=u"v+uv" 均能较快捷地求得结果。引用的常用公式在推导的过程中有这几个常见的公式需要用到:⒈y=f[g(x)],y"=f"[g(x)]·g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』⒉y=u/v,y"=(u"v-uv")/v^2⒊y=f(x)的反函数是x=g(y),则有y"=1/x"2023-06-01 16:03:451
有哪些常见函数的导数表达式?
常用函数导数表如下:拓展说明:1. 导数定义:导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。2. 几何意义函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。2023-06-01 16:04:051
导数怎么算
你这里的具体函数式是什么?求导数的时候一般就使用基本的导数公式得到到函数之后,代入自变量的值即可如果是特别的式子,或者分段函数等等那就要用定义来求了 lim(x0趋于0) [f(x+x0)-f(x)]/x02023-06-01 16:04:182
基本函数导数表
基本函数的导数表的话,这个要看你那个函数是什么类型的函数是?是你这个函数的类型不同是正比例还是反比例都有一定关系的导数。2023-06-01 16:04:276
大学导数公式表有哪些?
常用导数公式表如下:c"=0(c为常数)(x^a)"=ax^(a-1),a为常数且a≠0(a^x)"=a^xlna(e^x)"=e^x(logax)"=1/(xlna),a>0且 a≠1(lnx)"=1/x(sinx)"=cosx(cosx)"=-sinx(tanx)"=(secx)^2(secx)"=secxtanx(cotx)"=-(cscx)^2(cscx)"=-csxcotx(arcsinx)"=1/√(1-x^2)(arccosx)"=-1/√(1-x^2)(arctanx)"=1/(1+x^2)(arccotx)"=-1/(1+x^2)(shx)"=chx(chx)"=shxd(Cu)=Cdud(u+-v)=du+-dvd(uv)=vdu+udvd(u/v)=(vdu-udv)/v^2导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。2023-06-01 16:05:141
求导的常用公式
求导的常用公式如下:1、(sinx)"=cosx,即正弦的导数是余弦。2、(cosx)"=-sinx,即余弦的导数是正弦的相反数。3、(tanx)"=(secx)^2,即正切的导数是正割的平方。4、(cotx)"=-(cscx)^2,即余切的导数是余割平方的相反数。5、(secx)"=secxtanx,即正割的导数是正割和正切的积。6、(cscx)"=-cscxcotx,即余割的导数是余割和余切的积的相反数。7、(arctanx)"=1/(1+x^2)。8、(arccotx)"=-1/(1+x^2)。9、(fg)"=f"g+fg",即积的导数等于各因式的导数与其它函数的积,再求和。10、(f/g)"=(f"g-fg")/g^2,即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去被除函数与除函数的导数的积的差为被除式。11、(f^(-1)(x))"=1/f"(y),即反函数的导数是原函数导数的倒数,注意变量的转换。2023-06-01 16:05:341
大学导数公式表
常用导数公式表如下:c"=0(c为常数)(x^a)"=ax^(a-1),a为常数且a≠0(a^x)"=a^xlna(e^x)"=e^x(logax)"=1/(xlna),a>0且 a≠1(lnx)"=1/x(sinx)"=cosx(cosx)"=-sinx(tanx)"=(secx)^2(secx)"=secxtanx(cotx)"=-(cscx)^2(cscx)"=-csxcotx(arcsinx)"=1/√(1-x^2)(arccosx)"=-1/√(1-x^2)(arctanx)"=1/(1+x^2)(arccotx)"=-1/(1+x^2)(shx)"=chx(chx)"=shxd(Cu)=Cdud(u+-v)=du+-dvd(uv)=vdu+udvd(u/v)=(vdu-udv)/v^2导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。2023-06-01 16:05:491
根号x2+1的导数怎么求?
要求导,要知道2点知y =x^n , y" = nx^(n-1) 和 链式法则y=√(x^2+1)利用 y =x^n , y" = nx^(n-1)y" =(1/2)(x^2+1)^(-1/2) . (x^2-1)"利用链式法则y" =(1/2)(x^2+1)^(-1/2) . (2x)化简y" =x/√(x^2+1)2023-06-01 16:05:565
2017高中数学常用导数公式
导数是高中数学微积分中的重要基础概念,需要高中生重点学习。下面我给高中生带来数学常用导数公式,希望对你有帮助。 高中数学常用导数公式 1.y=c(c为常数) y"=0 2.y=x^n y"=nx^(n-1) 3.y=a^x y"=a^xlna y=e^x y"=e^x 4.y=logax y"=logae/x y=lnx y"=1/x 5.y=sinx y"=cosx 6.y=cosx y"=-sinx 7.y=tanx y"=1/cos^2x 8.y=cotx y"=-1/sin^2x 9.y=arcsinx y"=1/√1-x^2 10.y=arccosx y"=-1/√1-x^2 11.y=arctanx y"=1/1+x^2 12.y=arccotx y"=-1/1+x^2 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y"=f"[g(x)]•g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』 2.y=u/v,y"=u"v-uv"/v^2 3.y=f(x)的反函数是x=g(y),则有y"=1/x" 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y"=e^x和y=lnx y"=1/x这两个结果后能用复合函数的求导给予证明。 3.y=a^x, ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1) ⊿y/⊿x=a^x(a^⊿x-1)/⊿x 如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。 所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β 显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。 可以知道,当a=e时有y=e^x y"=e^x。 4.y=logax ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x 因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有 lim⊿x→0⊿y/⊿x=logae/x。 可以知道,当a=e时有y=lnx y"=1/x。 这时可以进行y=x^n y"=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx, 所以y"=e^nlnx•(nlnx)"=x^n•n/x=nx^(n-1)。 5.y=sinx ⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2) ⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2) 所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx 6.类似地,可以导出y=cosx y"=-sinx。 7.y=tanx=sinx/cosx y"=[(sinx)"cosx-sinx(cos)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x"=cosy y"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x"=-siny y"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x"=1/cos^2y y"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x"=-1/sin^2y y"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y"=u"土v" 5.y=uv,y=u"v+uv" 均能较快捷地求得结果。 高中数学有关导数的知识点 一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的 方法 1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f"(A)。 二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。 三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《 百科 全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。 四、实无限将异军突起微积分第二轮初等化或成为可能 微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。 高中 数学 学习方法 1、填空题后几题可能涉及向量数量积(以三角形、平行四边形、梯形、正六边形和圆锥曲线为载体,数形结合求数量积和参数)、基本不等式求最值及参数范围、数列与圆锥曲线基本量的计算,运用抽象函数的性质求函数值与解不等式、三角形的计算与三角求值,命题的否定与必要不充分条件也是易错点。 2、三角复习,应重视以图形为载体运用三角变换求角的方法与注意点,已知三角形的中线、角平分线或高等如何解三角形。 3、立体几何复习应关注符号语言表述的命题的真假判断,共(异)面的判断与证明、用性质定理寻找平行线与垂线的方法,运用三棱锥体积求点面距离。 4、解析几何要围绕主干知识——椭圆的方程和性质,运用圆心的轨迹、圆锥曲线的定义、性质、椭圆标准方程的变形、直线斜率、圆的性质和平面几何知识推证椭圆的一些基本性质,会对圆锥曲线中的存在性、唯一性、不变性、恒成立等性质进行论证、运用。 5、数列复习应重视对差、等比数列的综合运用。掌握证明一个数列不是等差(比)数列的方法,会用整数的基本性质和求不定方程整数解的方法求解数列的基本量,证明数列的一些基本性质(如无穷子数列项的整除性质和不等关系)。 6、应用题可从解三角形、概率、数列求和、函数、立几等模型出发构建数学模型,概率应用题应注意解题规范。 7、关注高等数学知识与竞赛试题在解题中的指导作用。2023-06-01 16:06:091
求高中数学导数常用八个公式 导数四个运算法则
几种常见函数的导数:1.C′=0(C为常数)2.(x∧n)′=nx∧(n-1)3.(sinx)′=cosx4.(cosx)′=-sinx5.(lnx)′=1/x6.(e∧x)′=e∧x函数的和·差·积·商的导数:(u±v)′=u′±v′(uv)′=u′v+uv′(u/v)′=(u′v-uv′)/v²复合函数的导数:(f(g(x))′=(f(u))′(g(x))′.u=g(x)2023-06-01 16:06:171
求几个常用函数的导数
y"=[(2x+5)^5]"=5(2x+1)^4(2x+1)"=10(2x+1)^4y"=[(x^2+a^2)^5]"=5(x^2+a^2)^4(x^2+a^2)"=5(x^2+a^2)^4*2x=10x(x^2+a^2)^4y"=[(a^2-x^2)^5]"=5(a^2-x^2)^4(a^2-x^2)"=5(a^2-x^2)^4*(-2x)=-10x(a^2-x^2)^4不懂的话欢迎追问满意的话别忘了采纳哦希望我说的对你有帮助2023-06-01 16:06:242
基本导数公式有哪些?
常用导数公式表如下:c"=0(c为常数)(x^a)"=ax^(a-1),a为常数且a≠0(a^x)"=a^xlna(e^x)"=e^x(logax)"=1/(xlna),a>0且 a≠1(lnx)"=1/x(sinx)"=cosx(cosx)"=-sinx(tanx)"=(secx)^2(secx)"=secxtanx导函数:如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y"、f"(x)、dy/dx或df(x)/dx,简称导数。2023-06-01 16:06:571
常用函数的导数表
)"= nx^(n-1) (n∈R);熟记1/X的导数 ③ (sinx)" = cosx (cosx)" = - sinx (tanx)"=1/(cosx)^2=(secx)^22023-06-01 16:07:064
常用导数公式有哪些?
基本初等函数导数公式主要有以下f(x)=x^n (n不等于0) f"(x)=nx^(n-1) (x^n表示x的n次方)f(x)=sinx f"(x)=cosxf(x)=cosx f"(x)=-sinxf(x)=a^x f"(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f"(x)=e^x导数运算法则如下(f(x)+/-g(x))"=f"(x)+/- g"(x)(f(x)g(x))"=f"(x)g(x)+f(x)g"(x)(g(x)/f(x))"=(f(x)"g(x)-g(x)f"(x))/(f(x))^2导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。2023-06-01 16:07:391
常用函数的导数都是什么?
常用函数的导数表如图:导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。扩展资料导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。资料来源:导数_百度百科2023-06-01 16:07:451
常见导数都是什么?
常用导数公式:y=c(c为常数) y"=0,y=x^n y"=nx^(n-1),y=a^x y"=a^xlna,y=e^x y"=e^x,y=logax y"=logae/x,y=lnx y"=1/x,y=sinx y"=cosx,y=cosx y"=-sinx,y=tanx y"=1/cos^2x,y=cotx y"=-1/sin^2x,y=arcsinx y"=1/√1-x^2。1、导数的求导法则:由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。导数也叫导函数值。又名微商,是微积分中的重要基础概念。2、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。3、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。4、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。5、如果有复合函数,则用链式法则求导。2023-06-01 16:07:591
几种常见的导函数
导数基本公式2023-06-01 16:08:083
高中数学常用导数公式有哪些?
数学所有的求导公式1、原函数:y=c(c为常数)导数: y"=02、原函数:y=x^n导数:y"=nx^(n-1)3、原函数:y=tanx导数: y"=1/cos^2x4、原函数:y=cotx导数:y"=-1/sin^2x5、原函数:y=sinx导数:y"=cosx6、原函数:y=cosx导数: y"=-sinx7、原函数:y=a^x导数:y"=a^xlna8、原函数:y=e^x导数: y"=e^x9、原函数:y=logax导数:y"=logae/x10、原函数:y=lnx导数:y"=1/x求导公式大全整理y=f(x)=c (c为常数),则f"(x)=0f(x)=x^n (n不等于0) f"(x)=nx^(n-1) (x^n表示x的n次方)f(x)=sinx f"(x)=cosxf(x)=cosx f"(x)=-sinxf(x)=tanx f"(x)=sec^2xf(x)=a^x f"(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f"(x)=e^xf(x)=logaX f"(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f"(x)=1/x (x>0)f(x)=tanx f"(x)=1/cos^2 xf(x)=cotx f"(x)=- 1/sin^2 xf(x)=acrsin(x) f"(x)=1/√(1-x^2)f(x)=acrcos(x) f"(x)=-1/√(1-x^2)f(x)=acrtan(x) f"(x)=-1/(1+x^2)2023-06-01 16:08:211
高中常用数学导数公式
导数是高中数学的一个重要知识点,那么,高中常用数学导数公式有哪些呢?下面我整理了一些相关信息,供大家参考!1 数学导数公式有哪些 1.y=c(c为常数) y"=0 2.y=x^n y"=nx^(n-1) 3.y=a^x y"=a^xlna y=e^x y"=e^x 4.y=logax y"=logae/x y=lnx y"=1/x 5.y=sinx y"=cosx 6.y=cosx y"=-sinx 7.y=tanx y"=1/cos^2x 8.y=cotx y"=-1/sin^2x 9.y=arcsinx y"=1/√1-x^2 10.y=arccosx y"=-1/√1-x^2 11.y=arctanx y"=1/1+x^2 12.y=arccotx y"=-1/1+x^2 1 数学中几种求导数的方法 定义法:用导数的定义来求导数。 公式法:根据课本给出的公式来求导数。 隐函数法:利用隐函数来求导,图中给出隐函数求导的例题。 对数法:通过对数来求导数。 复合函数法:利用复合函数来求导数。 1 导数的运算法则 导数的运算法则,就是指导数的加、减、乘、除的四则运算法则,这也是需要掌握的重要内容,公式如下:①(u±v)=u"v±vu" ②uv=u"v+uv" ③u/v=(u"v-uv")/v^2这里边的u.v一般是代表的两个不同的函数,不会同时为常数。这三个运算法则中,特别要记住的是两个函数商的导数求法,分子中出现的是减号,这个地方容易出错。对于上面提到的二次函数,符合函数和差的运算法则,所以y"=(ax^2)"+(bx)"+c"=2ax+b+0=2ax+b.2023-06-01 16:08:281
高中导数公式表
高中导数公式如下:原函数:y=c(c为常数),导数: y"=0;原函数:y=x^n,导数:y"=nx^(n-1);原函数:y=tanx,导数: y"=1/cos^2x;原函数:y=cotx,导数:y"=-1/sin^2x;原函数:y=sinx,导数:y"=cosx;原函数:y=cosx导数: y"=-sinx;原函数:y=a^x,导数:y"=a^xlna;原函数:y=e^x,导数: y"=e^x;原函数:y=logax,导数:y"=logae/x;原函数:y=lnx,导数:y"=1/x高中数学导数学习方法1.多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。2.一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负;正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像。根据图像就可以求出你想要的东西,比如最大值或最小值等。3.特殊情况下,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;如果导数恒小于0,就减。2023-06-01 16:08:461
求14个常用的导数公式。
14个导数公式如下。1、y=cy=02、y=α^μy=μα^(μ-1)3、y=a^xy=a^xlnay=e^xy=e^4、y=logaxy=loga,e/xy=lnxy=1/x5、y=sinxy=cosx6、y=cosxy=-sinx7、y=tanxy=(secx)^2=1/(cosx)^2。8、y=cotxy=-(cscx)^2=-1/(sinx)^29、y=arcsinxy=1/√(1-x^2)10、y=arccosxy=-1/√(1-x^2)11、y=arctanxy=1/(1+x^2)12、y=arccotxy=-1/(1+x^2)13、y=shxy=chx14、y=chxy=shx。导数的求导法则:由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如:求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式);两个函数的乘积的导函数:一导乘二+一乘二导(即②式);两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式);如果有复合函数,则用链式法则求导。2023-06-01 16:09:041
高中常用数学导数公式
导数是高中数学的一个重要知识点,那么,高中常用数学导数公式有哪些呢?下面我整理了一些相关信息,供大家参考!1 数学导数公式有哪些 1.y=c(c为常数)y"=0 2.y=x^ny"=nx^(n-1) 3.y=a^xy"=a^xlna y=e^xy"=e^x 4.y=logaxy"=logae/x y=lnxy"=1/x 5.y=sinxy"=cosx 6.y=cosxy"=-sinx 7.y=tanxy"=1/cos^2x 8.y=cotxy"=-1/sin^2x 9.y=arcsinxy"=1/√1-x^2 10.y=arccosxy"=-1/√1-x^2 11.y=arctanxy"=1/1+x^2 12.y=arccotxy"=-1/1+x^2 1 数学中几种求导数的方法 定义法:用导数的定义来求导数。 公式法:根据课本给出的公式来求导数。 隐函数法:利用隐函数来求导,图中给出隐函数求导的例题。 对数法:通过对数来求导数。 复合函数法:利用复合函数来求导数。 1 导数的运算法则 导数的运算法则,就是指导数的加、减、乘、除的四则运算法则,这也是需要掌握的重要内容,公式如下:①(u±v)=u"v±vu" ②uv=u"v+uv" ③u/v=(u"v-uv")/v^2这里边的u.v一般是代表的两个不同的函数,不会同时为常数。这三个运算法则中,特别要记住的是两个函数商的导数求法,分子中出现的是减号,这个地方容易出错。对于上面提到的二次函数,符合函数和差的运算法则,所以y"=(ax^2)"+(bx)"+c"=2ax+b+0=2ax+b.2023-06-01 16:09:171
六个常用函数的导数
① C"=0(C为常数函数) ② (x^n)"= nx^(n-1) (n∈R);熟记1/X的导数 ③ (sinx)" = cosx (cosx)" = - sinx (tanx)"=1/(cosx)^2=(secx)^2=1+(tanx)^2 (cotx)"=-1/(sinx)^2=-(cscx)^2=-1-(cotx)^2 (secx)"=tanx·secx (cscx)"=-cotx·cscx (arcsinx)"=1/(1-x^2)^1/2 (arccosx)"=-1/(1-x^2)^1/2 (arctanx)"=1/(1+x^2) (arccotx)"=-1/(1+x^2) (arcsecx)"=1/(|x|(x^2-1)^1/2) (arccscx)"=-1/(|x|(x^2-1)^1/2) ④(sinhx)"=coshx (coshx)"=sinhx (tanhx)"=1/(coshx)^2=(sechx)^2 (coth)"=-1/(sinhx)^2=-(cschx)^2 (sechx)"=-tanhx·sechx (cschx)"=-cothx·cschx (arsinhx)"=1/(x^2+1)^1/2 (arcoshx)"=1/(x^2-1)^1/2 (artanhx)"=1/(x^2-1) (|x|1) (arsechx)"=1/(x(1-x^2)^1/2) (arcschx)"=1/(x(1+x^2)^1/2) ⑤ (e^x)" = e^x (a^x)" = (a^x)lna (ln为自然对数) (Inx)" = 1/x(ln为自然对数) (logax)" =x^(-1) /lna(a>0且a不等于1) (x^1/2)"=[2(x^1/2)]^(-1) (1/x)"=-x^(-2)2023-06-01 16:09:261
常用的导数
常用的导数:求函数的增量Δy=f(x0+Δx)-f(x0)、(sinx)" = cosx等等,具体信息如下:导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。2023-06-01 16:09:341
高二年级常用导数公式
【 #高二# 导语】高二是承上启下的一年,是成绩分化的分水岭,成绩往往形成两极分化:行则扶摇直上,不行则每况愈下。在这一年里学生必须完成学习方式的转变。为了让你更好的学习 高二频道为你整理了《高二年级常用导数公式》希望你喜欢! 1.y=c(c为常数) y"=0 2.y=x^n y"=nx^(n-1) 3.y=a^x y"=a^xlna y=e^x y"=e^x 4.y=logax y"=logae/x y=lnx y"=1/x 5.y=sinx y"=cosx 6.y=cosx y"=-sinx 7.y=tanx y"=1/cos^2x 8.y=cotx y"=-1/sin^2x 9.y=arcsinx y"=1/√1-x^2 10.y=arccosx y"=-1/√1-x^2 11.y=arctanx y"=1/1+x^2 12.y=arccotx y"=-1/1+x^2 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y"=f"[g(x)]•g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』 2.y=u/v,y"=u"v-uv"/v^2 3.y=f(x)的反函数是x=g(y),则有y"=1/x" 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y"=e^x和y=lnx y"=1/x这两个结果后能用复合函数的求导给予证明。 3.y=a^x, ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1) ⊿y/⊿x=a^x(a^⊿x-1)/⊿x 如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。 所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β 显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。 可以知道,当a=e时有y=e^x y"=e^x。 4.y=logax ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x 因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有 lim⊿x→0⊿y/⊿x=logae/x。 可以知道,当a=e时有y=lnx y"=1/x。 这时可以进行y=x^n y"=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx, 所以y"=e^nlnx•(nlnx)"=x^n•n/x=nx^(n-1)。 5.y=sinx ⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2) ⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2) 所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx 6.类似地,可以导出y=cosx y"=-sinx。 7.y=tanx=sinx/cosx y"=[(sinx)"cosx-sinx(cos)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x"=cosy y"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x"=-siny y"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x"=1/cos^2y y"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x"=-1/sin^2y y"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y"=u"土v" 5.y=uv,y=u"v+uv" 均能较快捷地求得结果。2023-06-01 16:09:541
高中全部导数公式总结
高中数学的导数公式特别多,在这里不可能给你写出来,请你打开手机,在网上搜索公式都会展现在你的面前。2023-06-01 16:10:155
求高中数学导数公式
几种常见函数的导数:1.C′=0 (C为常数)2.(x∧n)′=nx∧(n-1)3.(sinx)′=cosx4.(cosx)′=-sinx5.(lnx)′=1/x6.(e∧x)′=e∧x函数的和·差·积·商的导数:(u±v)′=u′±v′(uv)′=u′v+uv′(u/v)′=(u′v-uv′)/v²复合函数的导数:(f(g(x))′=(f(u))′(g(x))′. u=g(x)2023-06-01 16:10:4510
高中数学导数8个公式是什么?
常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。2023-06-01 16:11:171
导数八个公式和运算法则是什么?
八个公式:1.y=c(c为常数) y"=0 2.y=x^n y"=nx^(n-1) 3.y=a^x y"=a^xlna y=e^x y"=e^x 4.y=logax y"=logae/x y=lnx y"=1/x 5.y=sinx y"=cosx 6.y=cosx y"=-sinx 7.y=tanx y"=1/cos^2x 8.y=cotx y"=-1/sin^2x运算法则:加(减)法则:[f(x)+g(x)]"=f(x)"+g(x)"乘法法则:[f(x)*g(x)]"=f(x)"*g(x)+g(x)"*f(x)除法法则:[f(x)/g(x)]"=[f(x)"*g(x)-g(x)"*f(x)]/g(x)^2导数导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。定义编辑设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导。需要指出的是:两者在数学上是等价的。导函数如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y"、f"(x)、dy/dx或df(x)/dx,简称导数。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。[1] [2] 几何意义函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。常用函数的导数表① C"=0(C为常数函数)② (x^n)"= nx^(n-1) (n∈R);熟记1/X的导数③ (sinx)" = cosx(cosx)" = - sinx(tanx)"=1/(cosx)^2=(secx)^2=1+(tanx)^2(cotx)"=-1/(sinx)^2=-(cscx)^2=-1-(cotx)^2(secx)"=tanx·secx(cscx)"=-cotx·cscx(arcsinx)"=1/(1-x^2)^1/2(arccosx)"=-1/(1-x^2)^1/2(arctanx)"=1/(1+x^2)(arccotx)"=-1/(1+x^2)(arcsecx)"=1/(|x|(x^2-1)^1/2)(arccscx)"=-1/(|x|(x^2-1)^1/2)④(sinhx)"=coshx(coshx)"=sinhx(tanhx)"=1/(coshx)^2=(sechx)^2(coth)"=-1/(sinhx)^2=-(cschx)^2(sechx)"=-tanhx·sechx(cschx)"=-cothx·cschx(arsinhx)"=1/(x^2+1)^1/2(arcoshx)"=1/(x^2-1)^1/2(artanhx)"=1/(x^2-1) (|x|<1)(arcothx)"=1/(x^2-1) (|x|>1)(arsechx)"=1/(x(1-x^2)^1/2)(arcschx)"=1/(x(1+x^2)^1/2)⑤ (e^x)" = e^x(a^x)" = (a^x)lna (ln为自然对数)(Inx)" = 1/x(ln为自然对数)(logax)" =x^(-1) /lna(a>0且a不等于1)(x^1/2)"=[2(x^1/2)]^(-1)(1/x)"=-x^(-2)2023-06-01 16:11:262
高数求导公式有哪些
高数常见函数求导公式如下图:求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。扩展资料:一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性,定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:(1)若在(a,b)内f"(x)>0,则f(x)在[a,b]上的图形单调递增;(2)若在(a,b)内f"(x)<0,则f(x)在[a,b]上的图形单调递减;(3)若在(a,b)内f"(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。函数的导数就是一点上的切线的斜率。当函数单调递增时,斜率为正,函数单调递减时,斜率为负。导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f"(x)dx。参考资料:百度百科——导数2023-06-01 16:11:441
常用求导公式
常用求导公式有:1、f"(x)=lim(h->0)[(f(x+h)-f(x))/h]. 即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数,一共有如下求导公式:2、f(x)=a的导数, f"(x)=0, a为常数. 即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。就是当幂函数的指数等于1的时候的导数。可以根据幂函数的求导公式求得。3、f(x)=x^n的导数, f"(x)=nx^(n-1), n为正整数. 即系数为1的单项式的导数,以指数为系数, 指数减1为指数. 这是幂函数的指数为正整数的求导公式。4、f(x)=x^a的导数, f"(x)=ax^(a-1), a为实数. 即幂函数的导数,以指数为系数,指数减1为指数.5、f(x)=a^x的导数, f"(x)=a^xlna, a>0且a不等于1. 即指数函数的导数等于原函数与底数的自然对数的积.6、f(x)=e^x的导数, f"(x)=e^x. 即以e为底数的指数函数的导数等于原函数.7、f(x)=log_a x的导数, f"(x)=1/(xlna), a>0且a不等于1. 即对数函数的导数等于1/x与底数的自然对数的倒数的积.8、f(x)=lnx的导数, f"(x)=1/x. 即自然对数函数的导数等于1/x.9、(sinx)"=cosx. 即正弦的导数是余弦.10、(cosx)"=-sinx. 即余弦的导数是正弦的相反数.11、(tanx)"=(secx)^2. 即正切的导数是正割的平方.12、(cotx)"=-(cscx)^2. 即余切的导数是余割平方的相反数.13、(secx)"=secxtanx. 即正割的导数是正割和正切的积.14、(cscx)"=-cscxcotx. 即余割的导数是余割和余切的积的相反数.15、(arcsinx)"=1/根号(1-x^2).16、(arccosx)"=-1/根号(1-x^2).17、(arctanx)"=1/(1+x^2).18、(arccotx)"=-1/(1+x^2).2023-06-01 16:12:101
常用复合函数的导数公式
.常用导数公式 1.y=c(c为常数)y"=0 2.y=x^ny"=nx^(n-1) 3.y=a^xy"=a^xlna y=e^xy"=e^x 4.y=logaxy"=logae/x y=lnxy"=1/x 5.y=sinxy"=cosx 6.y=cosxy"=-sinx 7.y=tanxy"=1/cos^2x 8.y=cotxy"=-1/sin^2x 9.y=arcsinxy"=1/√1-x^2 10.y=arccosxy"=-1/√1-x^2 11.y=arctanxy"=1/1+x^2 12.y=arccotxy"=-1/1+x^2 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y"=f"[g(x)]•g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』 2.y=u/v,y"=u"v-uv"/v^2 3.y=f(x)的反函数是x=g(y),则有y"=1/x" 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到y=e^xy"=e^x和y=lnxy"=1/x这两个结果后能用复合函数的求导给予证明。 3.y=a^x, ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1) ⊿y/⊿x=a^x(a^⊿x-1)/⊿x 如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。 所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β 显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。 可以知道,当a=e时有y=e^xy"=e^x。 4.y=logax ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x 因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有 lim⊿x→0⊿y/⊿x=logae/x。 可以知道,当a=e时有y=lnxy"=1/x。 这时可以进行y=x^ny"=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx, 所以y"=e^nlnx•(nlnx)"=x^n•n/x=nx^(n-1)。 5.y=sinx ⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2) ⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2) 所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx 6.类似地,可以导出y=cosxy"=-sinx。 7.y=tanx=sinx/cosx y"=[(sinx)"cosx-sinx(cos)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x"=cosy y"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x"=-siny y"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x"=1/cos^2y y"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x"=-1/sin^2y y"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y"=u"土v" 5.y=uv,y=u"v+uv" 均能较快捷地求得结果。2023-06-01 16:12:291
求导法则中,常用的六个公式有哪些?
1、(C)"=0;2、(x^a)"=ax^(a-1);3、(a^x)"=(a^x)lna,a>0,a≠1;(e^x)"=e^x;4、[logx]"=1/[xlna],a>0,a≠1,(lnx)"=1/x;5、y=f(t),t=g(x),dy/dx=f"(t)*g"(x);6、x=f(t),y=g(t),dy/dx=g"(t)/f"(t)。扩展资料:不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。2023-06-01 16:12:361
求函数的导数公式
导数定义:f"(x)=lim(h->0)[f(x+h)-f(x)]/h,lim(h→0)[f(x+h)-f(x-h)]/2h,lim(h→0)[f(x+2h)-f(x)]/2hlim(h→0)[f(0+h)-f(0-h)]/2h=2lim(h→0)[f(0-h+2h)-f(0-h)]/2h=lim(h->0)2f"(0-h)当f"(x)在x=0处连续才有lim(h->0)2f"(0-h)=2f"(0)扩展资料常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^210、y=arccosx y"=-1/√1-x^22023-06-01 16:12:441