- wpBeta
-
思想的碎片JJ :你好!
你说的:奇数位的和的2倍减去偶数位的和如果任能7整除,那么这个数能被7整除。这个是显然不成立的,比如:1005928,它的奇数位和2倍减偶数位和是29,不能被7整除,但1005928显然是能被7整除的!
判断一个数能否被7整除,有两种方法:
①割尾法:
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
割尾法:
证明过程:
设p=a1+a2*10+a3*10^2+...+a(n-1)*10^(n-1)+an*10^n
q=a2+a3*10+...+a(n-1)*10^(n-2)+an*10^(n-1)-2a1
2p+q=21(a2+a3*10+...+an*10^(n-1))
又因为21=7*3,所以若p是7的倍数,那么可以得到q是7的倍数
②末三法:
这个数的末三位数与末三位以前的数字所组成的数之差(反过来也行)能被7、11、13整除。这个数就能被7、11、13整除。
例如:1005928
末三位数:928,末三位之前:1005 1005-928=77
因为7 | 77,所以7|1005928
末三法,简略证明:
设一个数为ABCDEF=ABC×1000+DEF=ABC×1001-ABC+DEF=ABC×7×13×11-(ABC-DEF),由此可见只要ABC-DEF能被7整除,则ABCDEF能被7整除。
- 真颛
-
你说的:奇数位的和的2倍减去偶数位的和如果任能7整除,那么这个数能被7整除。这个是显然不成立的,比如:1005928,它的奇数位和2倍减偶数位和是29,不能被7整除,但1005928显然是能被7整除的!
判断一个数能否被7整除,有两种方法:
①割尾法:
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
割尾法:
证明过程:
设p=a1+a2*10+a3*10^2+...+a(n-1)*10^(n-1)+an*10^n
q=a2+a3*10+...+a(n-1)*10^(n-2)+an*10^(n-1)-2a1
2p+q=21(a2+a3*10+...+an*10^(n-1))
又因为21=7*3,所以若p是7的倍数,那么可以得到q是7的倍数
②末三法:
这个数的末三位数与末三位以前的数字所组成的数之差(反过来也行)能被7、11、13整除。这个数就能被7、11、13整除。
例如:1005928
末三位数:928,末三位之前:1005 1005-928=77
因为7 | 77,所以7|1005928
末三法,简略证明:
设一个数为ABCDEF=ABC×1000+DEF=ABC×1001-ABC+DEF=ABC×7×13×11-(ABC-DEF),由此可见只要ABC-DEF能被7整除,则ABCDEF能被7整除。还有一个更简单的判定法则: 一个正整数,能被7(或11或13)整除的特征(充要条件)是,这个数的末三位数字所表示的数与末三位以前的数字所表示的数以大减小的差能被7(或11或13)整除 1)1与0的特性:
1是任何整数的约数,即对于任何整数a,总有1|a.
0是任何非零整数的倍数,a≠0,a为整数,则a|0.
(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(6)若一个整数能被2和3整除,则这个数能被6整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。
(9)若一个整数的数字和能被9整除,则这个整数能被9整除。
(10)若一个整数的末位是0,则这个数能被10整除。
(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
(12)若一个整数能被3和4整除,则这个数能被12整除。
(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23
- 凡尘
-
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
- 苏萦
-
思想的碎片JJ :你好!
你说的:奇数位的和的2倍减去偶数位的和如果任能7整除,那么这个数能被7整除。这个是显然不成立的,比如:1005928,它的奇数位和2倍减偶数位和是29,不能被7整除,但1005928显然是能被7整除的!
判断一个数能否被7整除,有两种方法:
①割尾法:
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
割尾法:
证明过程:
设p=a1+a2*10+a3*10^2+...+a(n-1)*10^(n-1)+an*10^n
q=a2+a3*10+...+a(n-1)*10^(n-2)+an*10^(n-1)-2a1
2p+q=21(a2+a3*10+...+an*10^(n-1))
又因为21=7*3,所以若p是7的倍数,那么可以得到q是7的倍数
②末三法:
这个数的末三位数与末三位以前的数字所组成的数之差(反过来也行)能被7、11、13整除。这个数就能被7、11、13整除。
例如:1005928
末三位数:928,末三位之前:1005 1005-928=77
因为7 | 77,所以7|1005928
末三法,简略证明:
设一个数为ABCDEF=ABC×1000+DEF=ABC×1001-ABC+DEF=ABC×7×13×11-(ABC-DEF),由此可见只要ABC-DEF能被7整除,则ABCDEF能被7整除。
- 北营
-
七
7的倍数的特征
个位数字去掉,再从余下的数中,减去个位数的2倍,则差能被7整除如:34334-3x2=2828是7的倍数(能被7整除)所以343是7的倍数2023-05-30 19:57:342
7的倍数有什么特征?????????
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推2023-05-30 19:57:413
7、9、11,13、倍数的特征是什么?
7的倍数特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。9的倍数特征:若一个整数的数字和能被9整除,则这个整数能被9整除。11的倍数特征:⑴若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。如264、3080和95949392、2+4-6=11×0,3+8-0-0=11×1,9×4-(5+4+3+2)=11×2,264、308和95949392都能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理。过程唯一不同的是:倍数不是2而是1。⑵将一个数从个位开始两两分隔,若所有分隔开的数和为11的倍数,则这个数为11的倍数(如32571,分隔成3 25 71,3+25+71=99,99为11倍数,所以32571是11的倍数)13的倍数特征:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。2023-05-30 19:57:491
7,9,11它的倍数有什么特征
前面的数减最后一位数的两倍,看结果是不是7的倍数如判断112用前两位11减去最后一位2的两倍即11-2*2=7推得112为7的倍数的倍数尾数应该为7=72*7=143*7=214*7=285*7=356*7=427的倍数如果是奇数的话那尾数一定也是奇数,倍数是偶数的话那尾数也是偶数2023-05-30 19:58:053
7,11,13倍数的特征是什么?
(1)1与0的特性: 1是任何整数的约数,即对于任何整数a,总有1|a. 0是任何非零整数的倍数,a≠0,a为整数,则a|0. (2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。 (3)若一个整数的数字和能被3整除,则这个整数能被3整除。 (4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。 (5)若一个整数的末位是0或5,则这个数能被5整除。 (6)若一个整数能被2和3整除,则这个数能被6整除。 (7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。 (8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。 (9)若一个整数的数字和能被9整除,则这个整数能被9整除。 (10)若一个整数的末位是0,则这个数能被10整除。 (11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1! (12)若一个整数能被3和4整除,则这个数能被12整除。 (13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。 (14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。 (15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。 (16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。 (17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。 (18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除2023-05-30 19:58:254
7,9,11它的倍数有什么特征
9的倍数特征是各个数位上的数字和是9的倍数11的倍数特征是奇数位的数字和与偶数位的数字和的差是11的倍数。7的倍数特征是每六位一组,各组之差是7的倍数;小于六位,就三位一组,不足三位算一组,两组之差是7的倍数。(后组减前组,不够减加7的正倍数直至得数小于7,这个小于7的数就是整个数对7的余数)2023-05-30 19:58:331
七的倍数有何特征?(两位数)
可以被7整除2023-05-30 19:58:451
4、6、7、8、9倍数特征?
①4的倍数的数的特征:一个数的末两位数是4的倍数,这个数就是4的倍数。3268,因为68是4的倍数,所以3268也是4的倍数(能被4整除)②6的倍数的数的特征:因为6=2×3,所以如果一个数的末尾是0 2 4 6 8的数,且是3的倍数,那么这个数就是6的倍数,如3840就能被6整除。2023-05-30 19:58:553
六和七的倍数各有什么特征
42的倍数。2023-05-30 19:59:053
4、6、7、8、9、11的倍数特征
我也不知道2023-05-30 19:59:1414
4、6、7、8、9、11的倍数特征
能被4整除的数的末两位也能被4整除,能被6整除的数的末位是偶数,且各个数位的数字之和是3的倍数能被7和11整除的数的末3位和末3位以前的数字之差(大减小)是7或11的倍数另11的倍数还有一个规律,奇数位数字之和和偶数...2023-05-30 19:59:381
一个数,既是三的倍数,又是五和七的倍数,这个数最小是多少?
这个答案是352023-05-30 20:00:242
75倍数特征?
首先得是三的倍数,即各位数字相加是三的倍数再次是二十五的倍数,后两位数字(十位和个位)是00,25,50,75之一。2023-05-30 20:00:311
79倍数的特点
至少加112的倍数的特征:个位上的数字是0,2,4,6,8。 5的倍数的特征:个位上的数字是0或5。 3的倍数的特征:各个数位上的数字之和能被3整除。9的倍数的特征:各个数位上的数字之和能被9整除。2023-05-30 20:00:582
能被7整除的数的特征
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。割减法:把一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样一次次减下去,如果最后的结果是7的倍数(包括0),那么原来这个数就一定能被7整除。例如:判断3164能不能被7整除。因为14是7的倍数,所以3164能被7整除。扩展资料整除概念:若整数a除以非零整数b,商为整数,且余数 为零, 我们就说a能被b整除(或说b能整除a),a为被除数,b为除数,即b|a("|"是整除符号),读作"b整除a"或"a能被b整除"。a叫做b的倍数,b叫做a的约数(或因数)。整除属于除尽的一种特殊情况。整除的一些性质为:1.如果a与b都能被c整除,那么a+b与a-b也能被c整除。2.如果a能被b整除,c是任意整数,那么积ac也能被b整除。3.如果a同时被b与c整除,并且b与c互质,那么a一定能被积bc整除.反过来也成立。参考资料:百度百科-倍数2023-05-30 20:01:051
小升初复习资料
网上有很多资料2023-05-30 20:01:276
27倍数的特征
各位数上的数相加是九的倍数,然后,相加的数除以九,是三的倍数2023-05-30 20:02:071
如何通过规划写出一个数是不是0.5的倍数
判断一个非零自然数是否是2的倍数的方法:这个数末位上的数字是否是偶数即个位上是0、2、4、6、8的数是2的倍数。判断一个非零自然数是否是3的倍数的方法:各个数位上的数字和是否是3的倍数;各个数位上数字遇3就划掉,最后剩余的数就是除以3的余数!判断一个非零自然数是否是4的倍数的方法:这个数的末二位上的数是否是4的倍数数。判断一个非零自然数是否是5的倍数的方法:个位上是0或5的数是5的倍数。2、5的倍数的特征:10的倍数,个位上是0的数是2、5的倍数。2、3的倍数即6的倍数的特征:个位上要是偶数0、2、4、6、8的数且各个数位上的数字相加之和是3的倍数。3、5的倍数的特征:个位上是0或5的数,各个数位上的数字相加之和是3的倍数。判断一个非零自然数是否是8的倍数的方法:末尾三位上的数字是否是8的倍数。判断一个非零自然数是否是9的倍数的方法:这个数的各个数字和是否是9的倍数。各个数位上数字遇9就划掉,最后剩余的数就是除以9的余数!判断一个非零自然数是否是10的倍数的方法:末位上的数字是否是0。希望对你学业有所帮助!2023-05-30 20:02:152
8的倍数特征是什么?
结果负数加7)是否是7的整倍数。如,奇数位组的和对七的余数减偶数位组的和对七的余数(或各奇数位组对七的余数的和减偶数位组对七的余数的和8的倍数的特征一个数的末三位数是8的倍数,那么这个数就是8的倍数。判断一个数是否是8的倍数的方法:末位上的数字是否是5或0:这个数每三位一组:各个数位上的数字和是否是3的倍数。判断一个数是否是7的倍数的方法。各个数位上数字遇9就划掉:1000。判断一个数是否是6的倍数的方法。判断一个数是否是5的倍数的方法:这个数的末二位上的数是否是4的倍数数,最后剩余的数就是除以9的余数,3200:这个数末位上的数字是否是偶数且各个数位上的数字和是否是3的倍数。判断一个数是否是4的倍数的方法:末尾三位上的数字是否是8的倍数:这个数末位上的数字是否是偶数。判断一个数是否是3的倍数的方法,1192等都是8的倍数。判断一个数是否是2的倍数的方法。判断一个数是否是9的倍数的方法:这个数的各个数字和是否是9的倍数2023-05-30 20:02:211
7的倍数的特征是多少呀!
7的倍数特征2023-05-30 20:02:4014
7的倍数有哪些特征?
7的倍数特征:1、一个数的末三位数与末三位数之前的数字组成的数之差(用大数减小数)是7的倍数,这个数就是7的倍数。例如:125027,这个数字末三位是027,末三位之前的数字组成的数是125,125-27=98,98是7的倍数,125027就是7的倍数。2、若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。例如:133,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;扩展资料1、7是两个数的立方差:7=2³-1³,并且7是满足此性质的最小正整数。2、999,999 除以 7 刚好是 142,857 ,所以 1/7 的循环节有六个数字,它们在不停重复。1/7 = 0.14285714…2/7 = 0.28571429…3/7 = 0.42857143…4/7 = 0.57142857…5/7 = 0.71428571…6/7 = 0.85714286…22/7=3.14285714142857×7=9999993、7第四个素数(质数),是最大的个位数素数。7是第二个梅森素数,2³- 1 = 7。2023-05-30 20:03:081
7倍数有什么特征?
7的倍数特点:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。下面以15127为例进行下具体说明:(1)将15127分成1512和7(2)1512-7×2=1512-14=1498(3)将1498分成149和8(4)149-8×2=149-16=133(5)将133分成13和3(6)6.13-3×2=13-6=715127经过几次操作后,得到的数字是7,7能被7整除,所以,15127能被7整除。经过计算我们知道:15127=2161×7上面就是判断一个数是否是7的倍数的快捷方法。拓展资料①一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。②一个数除以另一数所得的商。如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。③一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。2023-05-30 20:03:152
7的倍数特征是什么?
7的倍数特征:1、一个数的末三位数与末三位数之前的数字组成的数之差(用大数减小数)是7的倍数,这个数就是7的倍数。例如:125027,这个数字末三位是027,末三位之前的数字组成的数是125,125-27=98,98是7的倍数,125027就是7的倍数。2、若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。例如:133,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数。倍数①一个整数能够被另一整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。②一个数除以另一数所得的商。如 a:b=c,就是说a是b的c倍,a是b 的倍数。③一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集.注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。2023-05-30 20:03:221
7的倍数的特征是什么
7的倍数特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。例如:133,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;2023-05-30 20:03:292
7的倍数的特征是什么?
能被7整除的数的特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,2023-05-30 20:03:351
7有什么倍数特征,为什么?
把7放到整数值环境中加以考察。把7放到数论历史中加以考察。把7放到记号哲学史加以考察。2023-05-30 20:03:434
7的倍数的特征
一个数的末三位数与末三位数之前的数字组成的数之差(用大数减小数)是7的倍数,这个数就是7的倍数。2023-05-30 20:04:011
七的倍数特征段为法的原因
七的倍数特征段为法的原因:用截尾法方便判断,不用一个个的做除法,7的倍数特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或不易看出,就需要继续上述的过程.2023-05-30 20:04:081
7的倍数的特征是什么
7的倍数特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。例如:133,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数。扩展资料:①一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。②一个数除以另一数所得的商。如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。③一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。 注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。任意两个奇数的平方差是8的倍数证明:设任意奇数2n+1,2m+1,(m,n∈N)(2m+1)2-(2n+1)2=(2m+1+2n+1)*(2m-2n)=4(m+n+1)(m-n)当m,n都是奇数或都是偶数时,m-n是偶数,被2整除当m,n一奇一偶时,m+n+1是偶数,被2整除所以(m+n+1)(m-n)是2的倍数则4(m+n+1)(m-n)一定是8的倍数(注:0可以被2整除,所以0是一个偶数,0也可以被8整除,所以0是8的倍数。)2023-05-30 20:04:141
怎么快速的检查一个数是不是七的倍数啊?
7的倍数特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。9的倍数特征:若一个整数的数字和能被9整除,则这个整数能被9整除。11的倍数特征:⑴若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。如264、3080和95949392、2+4-6=11×0,3+8-0-0=11×1,9×4-(5+4+3+2)=11×2,264、308和95949392都能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理。过程唯一不同的是:倍数不是2而是1。⑵将一个数从个位开始两两分隔,若所有分隔开的数和为11的倍数,则这个数为11的倍数(如32571,分隔成3 25 71,3+25+71=99,99为11倍数,所以32571是11的倍数)13的倍数特征:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。2023-05-30 20:04:201
七的倍数和除数除不尽的问题
7的倍数特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。9的倍数特征:若一个整数的数字和能被9整除,则这个整数能被9整除。11的倍数特征:⑴若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。如264、3080和95949392、2+4-6=11×0,3+8-0-0=11×1,9×4-(5+4+3+2)=11×2,264、308和95949392都能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理。过程唯一不同的是:倍数不是2而是1。⑵将一个数从个位开始两两分隔,若所有分隔开的数和为11的倍数,则这个数为11的倍数(如32571,分隔成3 25 71,3+25+71=99,99为11倍数,所以32571是11的倍数)13的倍数特征:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。2023-05-30 20:04:331
如何用7的倍数特征判断一个数是几的倍数?
一、7的倍数特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。二、举个例子:判断133是否7的倍数的过下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程下:613-9×2=595,59-5×2=49,所以6139是7的倍数,其余类推 。三、拓展资料(1)4的倍数的特征:十位数是奇数,且个位数为不是四的倍数的偶数;或十位数是偶数且个位数是四的倍数;若一个整数的末尾两位数能被4整除,则这个数能被4整除,即是4的倍数;(2)6的倍数的特征: 各个数位上的数字之和可以被3整除的偶数;(3)8的倍数的特征: 数字的末三位能被8整除的数;(4)9的倍数的特征:任何正整数的9倍,其各位数字之和是9的倍数,如果继续将各位数字连加最后必然会等于9;(5)11的倍数的特征:若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理,过程唯一不同的是:倍数不是2而是1;(6)13的倍数的特征:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止;(7)17的倍数的特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.2023-05-30 20:04:451
7的所有倍数是哪些?
很多很多,无限。2023-05-30 20:04:584
7和8的倍数的特征
不太明白题意按理解答复一下吧7的倍数是一个奇数一个偶数,即奇、偶、奇、偶……8的倍数全部是偶数。2023-05-30 20:05:061
7,9,11它的倍数有什么特征
都是基数2023-05-30 20:05:254
哪些数是7的倍数?
7的倍数特征:1、一个数的末三位数与末三位数之前的数字组成的数之差(用大数减小数)是7的倍数,这个数就是7的倍数。例如:125027,这个数字末三位是027,末三位之前的数字组成的数是125,125-27=98,98是7的倍数,125027就是7的倍数。2、若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。例如:133,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;扩展资料1、7是两个数的立方差:7=2³-1³,并且7是满足此性质的最小正整数。2、999,999 除以 7 刚好是 142,857 ,所以 1/7 的循环节有六个数字,它们在不停重复。1/7 = 0.14285714…2/7 = 0.28571429…3/7 = 0.42857143…4/7 = 0.57142857…5/7 = 0.71428571…6/7 = 0.85714286…22/7=3.14285714142857×7=9999993、7第四个素数(质数),是最大的个位数素数。7是第二个梅森素数,2³- 1 = 7。2023-05-30 20:05:321
7、9、11的倍数特征
4:最后两位组成的整数能被四整除9:各个位上的数相加,能被9整除11:所有奇数位上数的和减去偶数位上数的和是11的倍数(包括0)7:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推2023-05-30 20:05:412
8和7的倍数特征,以及它们的共同倍数特征是什么?
7的倍数特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要上次提到的「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。8的倍数特征:若一个整数的未尾三位数能被8整除,则这个数能被8整除。2023-05-30 20:05:471
4,5,6,7,8,9,11,12,13,14,16,17,18,19的倍数特征
4的倍数的最后两位是4的倍数;5的倍数的最后一位是0或5;6的倍数的各数字之和是6的倍数;7的倍数的末三位以前的数与末三位的数的差是7的倍数;8的倍数的最后三位是8的倍数;9的倍数的各数字之和是9的倍数;11的倍数的偶数位数字之和与奇数位数字之和的差是11的倍数;12的倍数是各数字之和是3的倍数且最后两位是4的倍数;13的倍数的末三位以前的数与末三位的数的差是13的倍数;14的倍数必是能被7整除的偶数;16的倍数的最后四位是16的倍数;18的倍数的各数字之和是9的倍数的偶数;2023-05-30 20:05:551
4和7的倍数特征
4:最后两位组成的整数能被四整除9:各个位上的数相加,能被9整除11:所有奇数位上数的和减去偶数位上数的和是11的倍数(包括0)7:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推2023-05-30 20:06:032
7和13的倍数特征是什么?(详细点啊~)
(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。(3)若一个整数的数字和能被3整除,则这个整数能被3整除。(4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。(5)若一个整数的末位是0或5,则这个数能被5整除。(6)若一个整数能被2和3整除,则这个数能被6整除。(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。(9)若一个整数的数字和能被9整除,则这个整数能被9整除。(10)若一个整数的末位是0,则这个数能被10整除。(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!(12)若一个整数能被3和4整除,则这个数能被12整除。(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除2023-05-30 20:06:232
7的倍数特征三位截断法怎么做?
从后向前三个一段 把奇数段 和偶数段 的和 求出奇偶段的和作差得数除以7 能整除 说明原数能整除72023-05-30 20:06:301
7和13的倍数特征是什么?(详细点啊~)
(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。(3)若一个整数的数字和能被3整除,则这个整数能被3整除。(4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。(5)若一个整数的末位是0或5,则这个数能被5整除。(6)若一个整数能被2和3整除,则这个数能被6整除。(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。(9)若一个整数的数字和能被9整除,则这个整数能被9整除。(10)若一个整数的末位是0,则这个数能被10整除。(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!(12)若一个整数能被3和4整除,则这个数能被12整除。(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除2023-05-30 20:06:482
7、9、11的倍数特征
7的倍数特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数。11的倍数特征:若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1。9的倍数是各个数位的和是9的倍数,这个数就是9的倍数2023-05-30 20:06:562
7的倍数特征,11的倍数特征,13的倍数特征,25的倍数特征,125的倍数特征,8的倍数特征,4的倍数特征。
【1】7的倍数特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。【2】11的,若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1! 【3】13的,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。 【4】25的,25的倍数的十位和个位数是25或者50或者75或者00【5】125的,125、250、375、500、625、750、875、1000。只要是末尾的三位数(如上),是这8个数其中的一个,那么,它就是125的倍数。【6】8的,若一个整数的未尾三位数能被8整除,则这个数能被8整除。 【7】4的,若一个整数的末尾两位数能被4整除,则这个数能被4整除。2023-05-30 20:07:032
2、3、4、5、6、7、8、9的倍数特征
(1)若一个整数的末位是0、2、4、6或8,则这个数能被2整除. (2)若一个整数的数字和能被3整除,则这个整数能被3整除. (3) 若一个整数的末尾两位数能被4整除,则这个数能被4整除. (4)若一个整数的末位是0或5,则这个数能被5整除. (5)若一个整数能被2和3整除,则这个数能被6整除. (6)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除.如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推. (7)若一个整数的未尾三位数能被8整除,则这个数能被8整除. (8)若一个整数的数字和能被9整除,则这个整数能被9整除.2023-05-30 20:07:101
7的整数特征是什么呀
短一点2023-05-30 20:07:293
2、3、5、7、9的倍数特征
7的好像有点不对?(本人的看法,请勿回复。)2023-05-30 20:07:393
7,8,11,13,17,19,23,29的倍数的特征
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1。若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23(或29)整除。我让儿子在网校上问的老师,呵呵。希望能为你解决问题2023-05-30 20:07:461
7,8,11,13,17,19,23,29的倍数的特征
(1)1与0的特性: 1是任何整数的约数,即对于任何整数a,总有1|a. 0是任何非零整数的倍数,a≠0,a为整数,则a|0. (2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。 (3)若一个整数的数字和能被3整除,则这个整数能被3整除。 (4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。 (5)若一个整数的末位是0或5,则这个数能被5整除。 (6)若一个整数能被2和3整除,则这个数能被6整除。 (7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。 (8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。 (9)若一个整数的数字和能被9整除,则这个整数能被9整除。 (10)若一个整数的末位是0,则这个数能被10整除。 (11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1! (12)若一个整数能被3和4整除,则这个数能被12整除。 (13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。 (14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。 (15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。 (16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。 (17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。 (18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除2023-05-30 20:07:531