汉邦问答 / 问答 / 问答详情

导数的求法

2023-05-25 12:16:20
阿啵呲嘚

你好,很高兴为你解答:

第一步:确定函数的定义域.如本题函数的定义域为R.

第二步:求f(x)的导数f′(x).

第三步:求方程f′(x)=0的根.

第四步:利用f′(x)=0的根和不可导点的x的值从小到大顺次将定义域分成若干个小开区间,并列出表格.

第五步:由f′(x)在小开区间内的正、负值判断f(x)在小开区间内的单调性.

第六步:明确规范地表述结论.

第七步:反思回顾.查看关键点、易错点及解题规范.

善士六合

剥洋葱一样,一层一层 退级

基本变化 例题

先单一的 再复合型

导数怎么求?

导数定义:f"(x)=lim(h->0)[f(x+h)-f(x)]/h,lim(h→0)[f(x+h)-f(x-h)]/2h,lim(h→0)[f(x+2h)-f(x)]/2hlim(h→0)[f(0+h)-f(0-h)]/2h=2lim(h→0)[f(0-h+2h)-f(0-h)]/2h=lim(h->0)2f"(0-h)当f"(x)在x=0处连续才有lim(h->0)2f"(0-h)=2f"(0)扩展资料常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^210、y=arccosx y"=-1/√1-x^2
2023-05-25 10:09:591

导数怎么求啊~?

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。扩展资料:常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^2
2023-05-25 10:10:061

导数的求法是什么?

求导公式表如下:1、(sinx)"=cosx,即正弦的导数是余弦。2、(cosx)"=-sinx,即余弦的导数是正弦的相反数。3、(tanx)"=(secx)^2,即正切的导数是正割的平方。4、(cotx)"=-(cscx)^2,即余切的导数是余割平方的相反数。5、(secx)"=secxtanx,即正割的导数是正割和正切的积。6、(cscx)"=-cscxcotx,即余割的导数是余割和余切的积的相反数。7、(arctanx)"=1/(1+x^2)。8、(arccotx)"=-1/(1+x^2)。9、(fg)"=f"g+fg",即积的导数等于各因式的导数与其它函数的积,再求和。10、(f/g)"=(f"g-fg")/g^2,即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去被除函数与除函数的导数的积的差为被除式。11、(f^(-1)(x))"=1/f"(y),即反函数的导数是原函数导数的倒数,注意变量的转换。求导注意事项对于函数求导一般要遵循先化简,再求导的原则,求导时不但要重视求导法则的运用,还要特别注意求导法则对求导的制约作用,在化简时,首先注意变换的等价性,避免不必要的运算错误。需要记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。
2023-05-25 10:10:151

如何求导数?

具体回答如下:先把e^y看成一个整体Ae的xy次方即A^xA^x*lnA=e^xy*lne^y=e^xy*y即y乘以e的xy次方导数的计算:计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算,在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
2023-05-25 10:10:291

如何求导数呢?

题意有两种理解方式:1、如果是求y=tanx^2的导数,则有:y=sec^2(x^2)*(x^2)"=2xsec^2(x^2)2、如果是求y=(tanx)^2的导数,则有:y=2tanx*(tanx)"=2tanxsec^2x扩展资料:如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。
2023-05-25 10:10:371

导数怎么求?

根据可微的充要条件,和dy的定义,对于可微函数,当△x→0时△y=A△x+o(△x)=Adx +o(△x)= dy+o(△x) ,o(△x)表示△x的高阶无穷小所以△y -dy=(o(△x)(△y -dy)/△x = o(△x) / △x = 0所以是高阶无穷小扩展资料某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。求极限基本方法有1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;2、无穷大根式减去无穷大根式时,分子有理化;3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。4、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。
2023-05-25 10:10:461

导数怎么求的?

cscx=1/sinxy"=[1"(sinx)-1(sinx)"]/sinx^2=-(sinx)"/sinx^2=-cosx/sinx^2=-cosx/sinx 1/sinx=-cotxcscx。扩展资料:常用导数公式:1.y=c(c为常数) y"=02.y=x^n y"=nx^(n-1)3.y=a^x y"=a^xlna,y=e^x y"=e^x4.y=logax y"=logae/x,y=lnx y"=1/x5.y=sinx y"=cosx6.y=cosx y"=-sinx7.y=tanx y"=1/cos^2x8.y=cotx y"=-1/sin^2x9.y=arcsinx y"=1/√1-x^2
2023-05-25 10:10:521

导数怎么求?

dy=f"(x)dx, f"(x)为函数的导数,再将x值带入即可。通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx=Δx。于是函数y=f(x)的微分又可记作dy=f"(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。扩展资料:微分的基本法则:微分在日常生活中的应用:即求出非线性变化中某一时间点特定指标的变化。比如说,有一个水箱正在加水,水箱里水的体积V(升)和时间t(秒)的关系为V=5-2/(t+1),在t=3时,想知道此时水加入的速率,于是可以算出dV/dt=2/(t+1)^2,代入t=3后得出dV/dt=1/8。可以得出在加水开始3秒时,水箱里的水的体积以每秒1/8升的速率增加。
2023-05-25 10:11:211

如何求一个数的导数?

01 (a^x)"=(a^x)(lna) 指数函数求导公式:(a^x)"=(a^x)(lna)。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。指数函数求导公式:(a^x)"=(a^x)(lna)。指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。 注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。细胞的分裂是一个很有趣的现象,新细胞产生的速度之快是十分惊人的。例如,某种细胞在分裂时,1个分裂成2个,2个分裂成4个……因此,第x次分裂得到新细胞数y与分裂次数x的函数关系式即为: 。 这个函数便是指函数的形式,且自变量为幂指数,我们下面来研究这样的函数。一般地,函数 (a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。对于一切指数函数来讲,值域为(0, +∞)。指数函数中 前面的系数为1。如: 都是指数函数;注意: 指数函数前系数为3,故不是指数函数。导数的求导法则如下: 由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下: 1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。 2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。 3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。 4、如果有复合函数,则用链式法则求导。
2023-05-25 10:11:301

导数怎么求

问题一:(x+ y)的导数,怎么求,详细过程 函数导数公式 这里将列举几个基本的函数的导数以及它们的推导过程: 1.y=c(c为常数) y"=0 2.y=x^n y"=nx^(n-1) 3.y=a^x y"=a^xlna y=e^x y"=e^x 4.y=logax y"=logae/x y=lnx y"=1/x 5.y=sinx y"=cosx 6.y=cosx y"=-sinx 7.y=tanx y"=1/cos^2x 8.y=cotx y"=-1/sin^2x 9.y=arcsinx y"=1/√1-x^2 10.y=arccosx y"=-1/√1-x^2 11.y=arctanx y"=1/1+x^2 12.y=arccotx y"=-1/1+x^2 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y"=f"[g(x)]&8226;g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』 2.y=u/v,y"=(u"v-uv")/v^2 3.y=f(x)的反函数是x=g(y),则有y"=1/x" 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0.用导数的定义做也是一样的:y=c,�Sy=c-c=0,lim�Sx→0�Sy/�Sx=0. 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况.在得到 y=e^x y"=e^x和y=lnx y"=1/x这两个结果后能用复合函数的求导给予证明. 3.y=a^x, �Sy=a^(x+�Sx)-a^x=a^x(a^�Sx-1) �Sy/�Sx=a^x(a^�Sx-1)/�Sx
2023-05-25 10:11:481

导数怎么求?

、导数的定义 设函数y=f(x)在点x=x0及其附近有定义,当自变量x在x0处有改变量△x(△x可正可负),则函数y相应地有改变量△y=f(x0+△x)-f(x0),这两个改变量的比叫做函数y=f(x)在x0到x0+△x之间的平均变化率. 如果当△x→0时,有极限,我们就说函数y=f(x)在点x0处可导,这个极限叫做f(x)在点x0处的导数(即瞬时变化率,简称变化率),记作f′(x0)或,即 函数f(x)在点x0处的导数就是函数平均变化率当自变量的改变量趋向于零时的极限.如果极限不存在,我们就说函数f(x)在点x0处不可导. 2、求导数的方法 由导数定义,我们可以得到求函数f(x)在点x0处的导数的方法: (1)求函数的增量△y=f(x0+△x)-f(x0); (2)求平均变化率; (3)取极限,得导数 3、导数的几何意义 函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率f′(x0). 相应地,切线方程为y-y0= f′(x0)(x-x0). 4、几种常见函数的导数 函数y=C(C为常数)的导数 C′=0. 函数y=xn(n∈Q)的导数 (xn)′=nxn-1 函数y=sinx的导数 (sinx)′=cosx 函数y=cosx的导数 (cosx)′=-sinx 5、函数四则运算求导法则 和的导数 (u+v)′=u′+v′ 差的导数 (u-v)′= u′-v′ 积的导数 (u·v)′=u′v+uv′ 商的导数 . 6、复合函数的求导法则 一般地,复合函数y=f[φ(x)]对自变量x的导数y′x,等于已知函数对中间变量u=φ(x)的导数y′u,乘以中间变量u对自变量x的导数u′x,即y′x=y′u·u′x. 7、对数、指数函数的导数 (1)对数函数的导数 ①; ②.公式输入不出来 其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式. (2)指数函数的导数 ①(ex)′=ex ②(ax)′=axlna 其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式. 导数又叫微商,是因变量的微分和自变量微分之商;给导数取积分就得到原函数(其实是原函数与一个常数之和)。
2023-05-25 10:11:571

导数怎么求的呢

解析过程如下:z=f(x²y,xy²)∂z/∂x=2xy*f"1+y²*f"2;∂z/∂y=x²*f"1+2xy*f"2;所以dz=(2xy*f"1+y²*f"2)dx+(x²*f"1+2xy*f"2)dy这里f"1是指对第一个变量u=x²y求导,f"2是指对第二个变量v=xy²求导。
2023-05-25 10:12:031

如何求函数的导数?

解析过程如下:z=f(x²y,xy²)∂z/∂x=2xy*f"1+y²*f"2;∂z/∂y=x²*f"1+2xy*f"2;所以dz=(2xy*f"1+y²*f"2)dx+(x²*f"1+2xy*f"2)dy这里f"1是指对第一个变量u=x²y求导,f"2是指对第二个变量v=xy²求导。
2023-05-25 10:12:122

函数的导数怎么求?

对x求导就是将x看成一个函数形式,求导结果就是1。求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。不是所有的函数都可以求导。可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。函数的几何含义:函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。
2023-05-25 10:12:191

求导怎么计算的

Q=53-P所以P=53-Q因此TR=PQ=(53-Q)Q=53Q-Q²dTR/dQ=53-2Q所以当生产量Q=53/2时利润最大
2023-05-25 10:12:363

求全部的导数公式

函数导数公式 这里将列举几个基本的函数的导数以及它们的推导过程: 1.y=c(c为常数) y"=0 2.y=x^n y"=nx^(n-1) 3.y=a^x y"=a^xlna y=e^x y"=e^x 4.y=logax y"=logae/x y=lnx y"=1/x 5.y=sinx y"=cosx 6.y=cosx y"=-sinx 7.y=tanx y"=1/cos^2x 8.y=cotx y"=-1/sin^2x 9.y=arcsinx y"=1/√1-x^2 10.y=arccosx y"=-1/√1-x^2 11.y=arctanx y"=1/1+x^2 12.y=arccotx y"=-1/1+x^2 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y"=f"[g(x)]&8226;g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』 2.y=u/v,y"=(u"v-uv")/v^2 3.y=f(x)的反函数是x=g(y),则有y"=1/x" 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0.用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0. 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况.在得到 y=e^x y"=e^x和y=lnx y"=1/x这两个结果后能用复合函数的求导给予证明. 3.y=a^x, ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1) ⊿y/⊿x=a^x(a^⊿x-1)/⊿x 如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算.由设的辅助函数可以知道:⊿x=loga(1+β). 所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β 显然,当⊿x→0时,β也是趋向于0的.而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna. 把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna. 可以知道,当a=e时有y=e^x y"=e^x. 4.y=logax ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x 因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有 lim⊿x→0⊿y/⊿x=logae/x. 可以知道,当a=e时有y=lnx y"=1/x. 这时可以进行y=x^n y"=nx^(n-1)的推导了.因为y=x^n,所以y=e^ln(x^n)=e^nlnx, 所以y"=e^nlnx&8226;(nlnx)"=x^n&8226;n/x=nx^(n-1). 5.y=sinx ⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2) ⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2) 所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)&8226;lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx 6.类似地,可以导出y=cosx y"=-sinx. 7.y=tanx=sinx/cosx y"=[(sinx)"cosx-sinx(cos)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x"=cosy y"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x"=-siny y"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x"=1/cos^2y y"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x"=-1/sin^2y y"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y"=u"土v" 5.y=uv,y=u"v+uv" 均能较快捷地求得结果.
2023-05-25 10:12:441

如何求导数及导数的应用

有这样的求导公式:y=ax^n的导数为y=a*nx^(n-1)判断函数的单调性,函数要有连续性,再根据其导数判断;导数>0,递增;<0递减
2023-05-25 10:12:524

导数怎么求出来的啊,要详细过程

接图
2023-05-25 10:12:581

定积分 求导 怎么求 ?把完整过程写一下

ftcost^2dt=1/2fcost^2dt^2=1/2sint^2+C
2023-05-25 10:13:187

函数的导数怎么求例子

利用导数可以解决某些不定式极限(就是指0/0、无穷大/无穷大等等类型的式子),这种方法叫作“洛比达法则”。然后,我们可以利用导数,把一个函数近似的转化成另一个多项式函数,即把函数转化成a0+a1(x-a)+a2(x-a)^2+……+an(x-a)^n,这种多项式叫作“泰勒多项式”,可以用于近似计算、误差估计,也可以用于求函数的极限。另外,利用函数的导数、二阶导数,可以求得函数的形态,例如函数的单调性、凸性、极值、拐点等。扩展资料常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^210、y=arccosx y"=-1/√1-x^2
2023-05-25 10:15:112

求函数的导数

背诵求导公式
2023-05-25 10:15:214

函数的任意阶导数怎么求?比如y的0.5阶导数

y的n次幂的导数:就是n乘以y的n-1次幂就好比你举的例子,y的0.5次幂就等于0.5乘以y的-0.5次幂。
2023-05-25 10:16:093

方程的导数怎么求

到了高三的时候你将学到,这个导数其实是一个函数的每个点的切线的正切的集合,可以说它分为函数和非函数两种,而球一般规律的函数的倒数,就如二次函数是,是将y放在等号一边,将x的次数依次降1,常数不管,就是这样,而你说的元的导函数我们高中阶段应该不会遇到,我也没看见过!
2023-05-25 10:16:174

求导数 要过程

2023-05-25 10:16:241

怎么求导数

运用下面的公式若y=f(x)*g(x)则y"=f(x)"*g(x)+f(x)*g(x)"此题f(x)=x^2g(x)=sinx因此得到y"=2x*sinx+x^2*cosx楼主啊你这个题目是复合函数求导在中学阶段是不需要掌握的我给你的那个公式呢是大学里的你要是记住了也可以用套公式很简单的
2023-05-25 10:16:532

求导数的方法是什么?

arcsecx=yx=secy=两边对x求导1=y"secytanyy"=1/secytany=1/【x√(x^2-1)]
2023-05-25 10:17:001

导数怎么求?

导数定义:f"(x)=lim(h->0)[f(x+h)-f(x)]/h,lim(h→0)[f(x+h)-f(x-h)]/2h,lim(h→0)[f(x+2h)-f(x)]/2hlim(h→0)[f(0+h)-f(0-h)]/2h=2lim(h→0)[f(0-h+2h)-f(0-h)]/2h=lim(h->0)2f"(0-h)当f"(x)在x=0处连续才有lim(h->0)2f"(0-h)=2f"(0)扩展资料常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^210、y=arccosx y"=-1/√1-x^2
2023-05-25 10:17:201

导数求导基本公式

24个基本求导公式可以分成三类。第一类是导数的定义公式,即差商的极限. 再用这个公式推出17个基本初等函数的求导公式,这就是第二类。最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。1、f"(x)=lim(h->0)[(f(x+h)-f(x))/h]. 即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数,一共有如下求导公式:2、f(x)=a的导数, f"(x)=0, a为常数. 即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。就是当幂函数的指数等于1的时候的导数。可以根据幂函数的求导公式求得。3、f(x)=x^n的导数, f"(x)=nx^(n-1), n为正整数. 即系数为1的单项式的导数,以指数为系数, 指数减1为指数. 这是幂函数的指数为正整数的求导公式。4、f(x)=x^a的导数, f"(x)=ax^(a-1), a为实数. 即幂函数的导数,以指数为系数,指数减1为指数.5、f(x)=a^x的导数, f"(x)=a^xlna, a>0且a不等于1. 即指数函数的导数等于原函数与底数的自然对数的积.6、f(x)=e^x的导数, f"(x)=e^x. 即以e为底数的指数函数的导数等于原函数.7、f(x)=log_a x的导数, f"(x)=1/(xlna), a>0且a不等于1. 即对数函数的导数等于1/x与底数的自然对数的倒数的积.8、f(x)=lnx的导数, f"(x)=1/x. 即自然对数函数的导数等于1/x.9、(sinx)"=cosx. 即正弦的导数是余弦.10、(cosx)"=-sinx. 即余弦的导数是正弦的相反数.11、(tanx)"=(secx)^2. 即正切的导数是正割的平方.12、(cotx)"=-(cscx)^2. 即余切的导数是余割平方的相反数.13、(secx)"=secxtanx. 即正割的导数是正割和正切的积.14、(cscx)"=-cscxcotx. 即余割的导数是余割和余切的积的相反数.15、(arcsinx)"=1/根号(1-x^2).16、(arccosx)"=-1/根号(1-x^2).17、(arctanx)"=1/(1+x^2).18、(arccotx)"=-1/(1+x^2).最后是利用四则运算法则、复合函数求导法则以及反函数的求导法则,就可以实现求所有初等函数的导数。设f,g是可导的函数,则:19、(f+g)"=f"+g". 即和的导数等于导数的和。20、(f-g)"=f"-g". 即差的导数等于导数的差。21、(fg)"=f"g+fg". 即积的导数等于各因式的导数与其它函数的积,再求和。22、(f/g)"=(f"g-fg")/g^2. 即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去被除函数与除函数的导数的积的差为被除式。23、(1/f)"=-f"/f^2. 即函数倒数的导数,等于函数的导数除以函数的平方的相反数。24、(f^(-1)(x))"=1/f"(y). 即反函数的导数是原函数导数的倒数,注意变量的转换。想要牢记这些基本的求导公式,一定要学会用自己的语言来描述它们,就像老黄上面所做的一样,才能把它们内化成自己的知识,在以后运用时做到得心应手。最后以f(x)=sinx的导数f"(x)=-cosx为例,介绍它是怎么由导数的定义公式推导出来的:f"(x)=lim(h->0)[(sin(x+h)-sin(x))/h]=lim(h->0)[2sin(h/2)cos((2x+h)/2)/h]=lim(h->0)[sin(h/2)/(h/2)]乘以lim(h->0)[cos((2x+h)/2]=lim(h->0)[cos((2x+h)/2]=cosx.
2023-05-25 10:17:281

函数的导数怎么求?

24个基本求导公式可以分成三类。第一类是导数的定义公式,即差商的极限。再用这个公式推出17个基本初等函数的求导公式,这就是第二类。最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。1、f"(x)=lim(h->0)[(f(x+h)-f(x))/h].即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。兄敏其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数。2、f(x)=a的导数,f"(x)=0,a为常数.即常数的导数等于0;这个导数其实是一个塌宽特殊的幂函数的导数。就是当幂函羡衫枝数的指数等于1的时候的导数。可以根据幂函数的求导公式求得。3、f(x)=x^n的导数,f"(x)=nx^(n-1),n为正整数.即系数为1的单项式的导数,以指数为系数,指数减1为指数.这是幂函数的指数为正整数的求导公式。    
2023-05-25 10:17:461

导数如何求???

dy=d(sinx)=cosxdx常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^2导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。
2023-05-25 10:18:051

导数的求法怎么求?

分数的导数的求法: 。函数商的求导法则:[f(x)/g(x)]"=[f"(x)g(x)-f(x)g"(x)]/[g(x)]^2。导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。扩展资料:导数与函数的性质一、单调性(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。二、凹凸性可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。参考资料:百度百科——导数
2023-05-25 10:18:121

函数的导数怎么求啊?

[ln(1/x)]"=[1/(1/x)](1/x)"=x(-1/x^2)=-1/x导数公式1、C"=0(C为常数)。2、(Xn)"=nX(n-1) (n∈R)。3、(sinX)"=cosX。4、(cosX)"=-sinX。5、(aX)"=aXIna (ln为自然对数)。6、(logaX)"=1/(Xlna) (a>0,且a≠1)。
2023-05-25 10:18:411

求导数公式

1、y=c(c为常数)y"=0,2、y=x^n y"=nx^(n-1),3、y=a^x y"=a^xlna,y=e^x y"=e^x,4、y=logax y"=logae/x,y=lnx y"=1/x,5、y=sinx y"=cosx,6、y=cosx y"=-sinx,7、y=tanx y"=1/cos^2x,8、y=cotx y"=-1/sin^2x。导数,也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近,例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
2023-05-25 10:18:501

怎么求函数的导数?

令y=x^(2x)两边同时取自然对数,得到lny=2xlnx两边同时对x求导,得到y"/y=2lnx+2x(1/x)=2(lnx+1)所以y"=2(lnx+1)y将y=x^(2x)代入,得到y"=2(lnx+1)[x^(2x)]不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。扩展资料:对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。参考资料来源:百度百科——导数
2023-05-25 10:19:151

导数怎么求

以下是18个基本导数公式(y:原函数;y":导函数):1、y=c,y=0(c为常数)2、y=xxμ,y"=μxμ负1(μ为常数且μ不等于0)。3。y=aAx,y"=aAxIna。y=eAx,y"=eAx。4、y=logax,y"=1/(xina)(a>0且a=1);y=Inx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=负sinx。7、y=tanx,y"=(secx)2=1/(cosx)2。8、y=cotx,y"=负(cscx)2=负1/(sinx)2。9、y=arcsinx,y"=1/√(1负x2)。10、y=arccosx,y"=负1/√(1负x2)。11、y=arctanx,y"=1/(1+x2)。12、y=arccotx,y"=负1/(1+2)。13、y=shx,y"=chx。14、y=chx,y"=shx。15、y=thx,y"=1/(chx)2。16、y=arshx,y"=1/V(1+x12)。17、y=c(c为常数)y"=018、y=xny"=nxx(n负1)。
2023-05-25 10:19:211

如何求导数?

求导的方法 :(1)求函数y=f(x)在x0处导数的步骤: ① 求函数的增量Δy=f(x0+Δx)-f(x0) ② 求平均变化率 ③ 取极限,得导数。 (2)几种常见函数的导数公式: ① C"=0(C为常数);② (x^n)"=nx^(n-1) (n∈Q); ③ (sinx)"=cosx; ④ (cosx)"=-sinx; ⑤ (e^x)"=e^x;⑥ (a^x)"=a^xIna (ln为自然对数) ⑦ loga(x)"=(1/x)loga(e) (3)导数的四则运算法则: ①(u±v)"=u"±v"②(uv)"=u"v+uv" ③(u/v)"=(u"v-uv")/ v^2 ④[u(v)]"=[u"(v)]*v" (u(v)为复合函数f[g(x)]) (4)复合函数的导数:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。扩展资料:求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。数学中的名词,即对函数进行求导,用  表示。反函数求导法则:若函数  严格单调且可导,则其反函数  的导数存在且  。复合函数求导法则:若  在点x可导  在相应的点u也可导,则其复合函数  在点x可导且  。隐函数求导法则:若  中存在隐函数  ,这里仅是说y为一个x的函数并非说y一定被反解出来为显式表达。即  ,尽管y未反解出来,只要y关于x的隐函数存在且可导,我们利用复合函数求导法则则仍可以求出其反函数。参考资料:百度百科——求导
2023-05-25 10:19:412

如何求函数的导数

、利用复合函数求导。[ln(3x)]"=(1/3x)*(3x)"=(1/3x)*3=1/x另外一种解法是利用对数性质。ln(3x)=ln3+lnx[ln(3x)]"=(ln3)"+(lnx)"=0+1/x=1/x。扩展资料:导函数如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y"、f"(x)、dy/dx或df(x)/dx,简称导数。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。 [1] 几何意义函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。导数的计算计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。参考资料:百度百科-导数
2023-05-25 10:20:561

导数的求法

f"(x)= [f(x)]^2∫ df(x)/[f(x)]^2 = ∫dx-1/f(x) = x + Cf(x) = -1/(x+C)f"(x) = 1/(x+C)^2f""(x) = -2/(x+C)^2......f^(n)(x) =(-1)^(n-1) . n!/(x+C)^(n+1)= n! [f(x)]^(n+1)
2023-05-25 10:21:101

求所有的导数公式

基本函数求导公式:y=x^n, y"=nx^(n-1)y=a^x, y"=a^xlnay=e^x, y"=e^xy=log(a)x ,y"=1/x lnay=lnx y"=1/xy=sinx y"=cosxy=cosx y"=-sinxy=tanx y"=1/cos²xy=cotanx y"=-1/sin²xy=arcsinx y"=1/√(1-x²)y=arccosx y"=-1/√(1-x²)y=arctanx y"=1/(1+x²)y=arccotanx y"=-1/(1+x²)希望对您有所帮助。
2023-05-25 10:21:325

高数导数怎么求啊??

具体回答如下:y=x(x-1)(x-2)(x-3)……(x-n)n阶导数为(n+1)!x-n(n+1)/2观察y=x(x-1)(x-2)(x-3)……(x-n)的最高次数项为x^(n+1)求n阶导后成为(n+1)!x第二高次数项为-(1+2+3+……+n)x^n求n阶导后取系数成为-n(n+1)/2所以y的n阶导数为(n+1)!x-n(n+1)/2y=x(x-1)(x-2)(x-3)……(x-n)n阶导数为(n+1)!x-n(n+1)/2求导的意义:一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
2023-05-25 10:22:041

基本求导公式18个

24个基本求导公式可以分成三类。第一类是导数的定义公式,即差商的极限.再用这个公式推出17个基本初等函数的求导公式,这就是第二类。最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。1、f"(x)=lim(h->0)[(f(x+h)-f(x))/h].即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数,一共有如下求导公式:2、f(x)=a的导数,f"(x)=0,a为常数.即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。就是当幂函数的指数等于1的时候的导数。可以根据幂函数的求导公式求得。3、f(x)=x^n的导数,f"(x)=nx^(n-1),n为正整数.即系数为1的单项式的导数,以指数为系数,指数减1为指数.这是幂函数的指数为正整数的求导公式。
2023-05-25 10:22:121

函数的导数怎么求?

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。扩展资料:常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^2
2023-05-25 10:22:191

高数的导数怎么求?

高数常见函数求导公式如下图:求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。扩展资料:导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f"(x)dx。
2023-05-25 10:22:251

求全部的导数公式

函数导数公式这里将列举几个基本的函数的导数以及它们的推导过程: 1.y=c(c为常数) y"=0 2.y=x^n y"=nx^(n-1) 3.y=a^x y"=a^xlna y=e^x y"=e^x 4.y=logax y"=logae/x y=lnx y"=1/x 5.y=sinx y"=cosx 6.y=cosx y"=-sinx 7.y=tanx y"=1/cos^2x 8.y=cotx y"=-1/sin^2x 9.y=arcsinx y"=1/√1-x^2 10.y=arccosx y"=-1/√1-x^2 11.y=arctanx y"=1/1+x^2 12.y=arccotx y"=-1/1+x^2 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y"=f"[g(x)]&8226;g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』 2.y=u/v,y"=(u"v-uv")/v^2 3.y=f(x)的反函数是x=g(y),则有y"=1/x" 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y"=e^x和y=lnx y"=1/x这两个结果后能用复合函数的求导给予证明。 3.y=a^x, ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1) ⊿y/⊿x=a^x(a^⊿x-1)/⊿x 如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。 所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β 显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。 可以知道,当a=e时有y=e^x y"=e^x。 4.y=logax ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x 因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有 lim⊿x→0⊿y/⊿x=logae/x。 可以知道,当a=e时有y=lnx y"=1/x。 这时可以进行y=x^n y"=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx, 所以y"=e^nlnx&8226;(nlnx)"=x^n&8226;n/x=nx^(n-1)。 5.y=sinx ⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2) ⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2) 所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)&8226;lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx 6.类似地,可以导出y=cosx y"=-sinx。 7.y=tanx=sinx/cosx y"=[(sinx)"cosx-sinx(cos)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x"=cosy y"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x"=-siny y"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x"=1/cos^2y y"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x"=-1/sin^2y y"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y"=u"土v" 5.y=uv,y=u"v+uv" 均能较快捷地求得结果。
2023-05-25 10:22:391

导数的求法?

求导定义:函数y=f(x)的导数的原始定义为y"=f"(x)=lim(Δx→0)|(Δy/Δx)=lim(Δx→0)|Δy/lim(Δx→0)|Δx=dy/dx,其中Δy=f(x+Δx)-f(x);实数C的导数(C)"=0导数的四则运算法则:u=u(x),v=v(x);加减法原则:(u±v)"=u"±v"证明:(u±v)"=lim(Δx→0)|(Δ(u±v)/Δx)=d(u±v)/dx,其中Δ(u±v)=u(x+Δx)±v(x+Δx)-u(x)±v(x)=[u(x+Δx)-u(x)]±[v(x+Δx)-v(x)]=Δu±Δv,则(u±v)"=lim(Δx→0)|(Δ(u±v)/Δx)=lim(Δx→0)|(Δu/Δx)±lim(Δx→0)|(Δv/Δx)=(du/dx)±(dv/dx)=u"±v"乘法法则(uv)"=u"v+uv"证明:则(uv)"=lim(Δx→0)|(Δ(uv)/Δx)=d(uv)/dx,其中Δ(uv)=u(x+Δx)v(x+Δx)-u(x)v(x)=[u(x+Δx)v(x+Δx)-u(x)v(x+Δx)]+[u(x)v(x+Δx)-u(x)v(x)]=[u(x+Δx)-u(x)]v(x+Δx)]+u(x)[v(x+Δx)-v(x)]=Δu×v(x+Δx)]+u(x)×Δv则(uv)"=lim(Δx→0)|[(Δu×v(x+Δx)]+u(x)×Δv)/Δx]=lim(Δx→0)|[Δu×v(x+Δx)/Δx]+lim(Δx→0)|[u(x)×Δv/Δx]=lim(Δx→0)|[Δu×v(x+Δx)/Δx]×lim(Δx→0)|v(x+Δx)+lim(Δx→0)|u(x)×lim(Δx→0)|[u(x)Δv/Δx]=(du/dx)vx+u(x)(dv/dx)=u"(x)v(x)+u(x)v"(x)除法法则:(u/v)"=(u"v-uv")/v²证明:与乘法法则的证法类似,此处略!复合函数的求导法则:y=f(u)=f(u(x)),u=u(x),则y"=f"(u(x))×u"(x)简证:y=f(u)=f(u(x)),u=u(x),则y"=lim(Δx→0)|(Δy/Δx)=lim(Δx→0)|[(Δy/Δu)×(Δu/Δx)]=lim(Δx→0)|(Δy/Δu)×lim(Δx→0)|(Δu/Δx)=(dy/du)×(du/dx)=f"(u(x))×u"(x)e^y+xy-e=0——原隐函数,其中y=f(x)两边求导得(e^y+xy-e)"=0"左边先由求导的加减法原则可知(e^y+xy-e)"=(e^y)"+(xy)"-(e)",由常数的导数为0可知原隐函数两边求导后为:(e^y)"+(xy)"=0由复合函数的导数可知(e^y)"=e^y×y",其中(e^x)"=e^x;由求导的乘法法则可知(xy)"=y+xy",即原隐函数的导数为e^y×y"+y+xy"=0(其中y"=dy/dx)接下来求函数y的过程就是传说中的求解微分方程,这个求解通常都比较难,而且往往是非常难!
2023-05-25 10:22:461

导数怎么求?有什么定义?

  (1)求函数y=f(x)在x0处导数的步骤:   ①求函数的增量Δy=f(x0+Δx)-f(x0)  ②求平均变化率  ③取极限,得导数。  (2)几种常见函数的导数公式:  ①C"=0(C为常数函数);  ②(x^n)"=nx^(n-1)(n∈Q);  ③(sinx)"=cosx;  ④(cosx)"=-sinx;  ⑤(e^x)"=e^x;  ⑥(a^x)"=(a^x)*Ina(ln为自然对数)  ⑦(Inx)"=1/x(ln为自然对数)  ⑧(logax)"=(1/x)*logae,(a>0且a不等于1)  补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。  (3)导数的四则运算法则:  ①(u±v)"=u"±v"  ②(uv)"=u"v+uv"  ③(u/v)"=(u"v-uv")/v^2  (4)复合函数的导数  复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。  导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献!
2023-05-25 10:22:531

如何求函数的导数?

求导的方法 :(1)求函数y=f(x)在x0处导数的步骤: ① 求函数的增量Δy=f(x0+Δx)-f(x0) ② 求平均变化率 ③ 取极限,得导数。 (2)几种常见函数的导数公式: ① C"=0(C为常数);② (x^n)"=nx^(n-1) (n∈Q); ③ (sinx)"=cosx; ④ (cosx)"=-sinx; ⑤ (e^x)"=e^x;⑥ (a^x)"=a^xIna (ln为自然对数) ⑦ loga(x)"=(1/x)loga(e) (3)导数的四则运算法则: ①(u±v)"=u"±v"②(uv)"=u"v+uv" ③(u/v)"=(u"v-uv")/ v^2 ④[u(v)]"=[u"(v)]*v" (u(v)为复合函数f[g(x)]) (4)复合函数的导数:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。扩展资料:求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。数学中的名词,即对函数进行求导,用  表示。反函数求导法则:若函数  严格单调且可导,则其反函数  的导数存在且  。复合函数求导法则:若  在点x可导  在相应的点u也可导,则其复合函数  在点x可导且  。隐函数求导法则:若  中存在隐函数  ,这里仅是说y为一个x的函数并非说y一定被反解出来为显式表达。即  ,尽管y未反解出来,只要y关于x的隐函数存在且可导,我们利用复合函数求导法则则仍可以求出其反函数。参考资料:百度百科——求导
2023-05-25 10:22:591

函数的导数怎么求

1、(x^n)"=nx^(n-1)2、a"=0(常数的导数为0)例题(x^3+2)"=(x^3)"+2"=3x^23、(longax)"=(1/x)logae (log以a为底);特别的以e为底例:log3x=(1/x)log3e4、(a^x)"=(lna)a^x (ln3=loge3)例:3^x=(ln3)3^x若有疑问可以追问!望采纳这种他人劳动!谢谢新年快乐
2023-05-25 10:24:241

求所有的导数公式

y=c(c为常数) y"=0y=x^n y"=nx^(n-1)y=a^x y"=a^xlnay=e^x y"=e^xy=logax y"=logae/xy=lnx y"=1/xy=sinx y"=cosxy=cosx y"=-sinxy=tanx y"=1/cos^2xy=cotx y"=-1/sin^2xy=arcsinx y"=1/√1-x^2y=arccosx y"=-1/√1-x^2y=arctanx y"=1/1+x^2y=arccotx y"=-1/1+x^2拓展资料:导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。导数的计算计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。口诀常为零,幂降次对倒数(e为底时直接倒数,a为底时乘以1/lna)指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna)正变余,余变正切割方(切函数是相应割函数(切函数的倒数)的平方)割乘切,反分式参考资料:导数 百度百科
2023-05-25 10:24:331

怎么求函数的导数?

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^2
2023-05-25 10:24:441