汉邦问答 / 问答 / 问答详情

高中数学中的极坐标系是什么意思急需知道

2023-05-25 07:24:25
铁血嘟嘟

极坐标就是给定一个点和一个射线轴,采用描述距离改点的长度和射线轴的夹角来描述点的位置。

什么是极坐标系

极坐标系目录[隐藏]极坐标系极坐标系到直角坐标系的转化:直角坐标系到极坐标系的转换:[编辑本段]极坐标系polarcoordinates在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。当限制ρ≥0,0≤θ<2π时,平面上除极点Ο以外,其他每一点都有唯一的一个极坐标。极点的极径为零,极角任意。若除去上述限制,平面上每一点都有无数多组极坐标,一般地,如果(ρ,θ)是一个点的极坐标,那么(ρ,θ+2nπ),(-ρ,θ+(2n+1)π),都可作为它的极坐标,这里n是任意整数。平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r等速螺线的方程为。此外,椭圆、双曲线和抛物线这3种不同的圆锥截线,可以用一个统一的极坐标方程表示。[编辑本段]极坐标系到直角坐标系的转化:x=ρcosθy=ρsinθ[编辑本段]直角坐标系到极坐标系的转换:长度可直接求出:ρ=sqrt(x^2+y^2)【sqrt表示求平方根】角度需要分段求出,即判断x,y值求解。如果ρ=0,则角度θ为任意,也有函数定义θ=0;如果ρ>0,则:{令ang=asin(y/ρ)如果y=0,x>0,则,θ=0;如果y=0,x<0,则,θ=π;如果y>0,则,θ=ang;如果y<0,则:θ=2π-ang;}
2023-05-24 23:18:582

极坐标系的概念

极坐标系(polar coordinates)是指在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。概念编辑:在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。当限制ρ≥0,0≤θ<2π时,平面上除极点Ο以外,其他每一点都有唯一的一个极坐标。极点的极径为零 ,极角任意。若除去上述限制,平面上每一点都有无数多组极坐标,一般地 ,如果(ρ,θ)是一个点的极坐标 ,那么(ρ,θ+2nπ),(-ρ,θ+(2n+1)π),都可作为它的极坐标,这里n 是任意整数。平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r ,等速螺线的极坐标方程为ρ=aθ 。此外,椭圆、双曲线和抛物线这3种不同的圆锥曲线,可以用一个统一的极坐标方程表示。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θ [0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。
2023-05-24 23:19:051

什么是极坐标系?

图像如下:极坐标:在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。通常情况下,M的极径坐标单位为1(长度单位),极角坐标单位为rad(或°)。扩展资料:极坐标系如何表示点正如所有的二维坐标系,极坐标系也有两个坐标轴:r(半径坐标)和θ(角坐标、极角或方位角,有时也表示为φ或t)。r坐标表示与极点的距离,θ坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的x轴正方向。比如,极坐标中的(3,60°)表示了一个距离极点3个单位长度、和极轴夹角为60°的点。(−3,240°) 和(3,60°)表示了同一点,因为该点的半径为在夹角射线反向延长线上距离极点3个单位长度的地方(240° − 180° = 60°)。极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式。通常来说,点(r,θ)可以任意表示为(r,θ ± 2kπ)或(−r,θ ± (2k+ 1)π),这里k是任意整数。[7] 如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上。使用弧度单位极坐标系中的角度通常表示为角度或者弧度,使用公式2π rad = 360°.具体使用哪一种方式,基本都是由使用场合而定。航海(en:Navigation)方面经常使用角度来进行测量,而物理学的某些领域大量使用到了半径和圆周的比来作运算,所以物理方面更倾向使用弧度。两坐标系转换极坐标系中的两个坐标r和θ可以由下面的公式转换为直角坐标系下的坐标值x = rcos(θ),y = rsin(θ)。参考资料来源:百度百科--极坐标
2023-05-24 23:19:191

极坐标是什么意思?

极坐标是指由动径与辐角组成的坐标,是决定平面上点、面等位置的方法。极坐标属于二维坐标系统。在数学中,极坐标系(英语:Polar coordinate system)是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。应用:极坐标通常被用于导航,作为旅行的目的地或方向可以作为从所考虑的物体的距离和角度。例如,飞机使用极坐标的一个略加修改的版本进行导航。这个系统中是一般的用于导航任何种类中的一个系统,在0°射线一般被称为航向360,并且角度是以顺时针方向继续,而不是逆时针方向,如同在数学系统那样。航向360对应地磁北极,而航向90,180,和270分别对应于磁东,南,西。因此,一架飞机向正东方向上航行5海里将是在航向90(空中交通管制读作090)上航行5个单位。
2023-05-24 23:19:391

极坐标系的概念

极坐标系的概念就是在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r ,等速螺线的极坐标方程为ρ=aθ 。此外,椭圆、双曲线和抛物线这3种不同的圆锥曲线,可以用一个统一的极坐标方程表示。极坐标系的意义极坐标通常被用于导航,作为旅行的目的地或方向可以作为从所考虑的物体的距离和角度。例如,飞机使用极坐标的一个略加修改的版本进行导航。这个系统中是一般的用于导航任何种类中的一个系统,在0°射线一般被称为航向360,并且角度是以顺时针方向继续,而不是逆时针方向。航向360对应地磁北极,而航向90,180,和270分别对应于磁东,南,西。有些几何轨迹问题如果用极坐标法处理,它的方程比用直角坐标法来得简单,描图也较方便。1694年,J.贝努利利用极坐标引进了双纽线,这曲线在18世纪起了相当大的作用。
2023-05-24 23:19:531

什么是极坐标 极坐标是什么呢

1、极坐标,属于二维坐标系统,创始人是牛顿,主要应用于数学领域。极坐标是指在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。 2、对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。通常情况下,M的极径坐标单位为1(长度单位),极角坐标单位为rad(或°)。
2023-05-24 23:20:051

极坐标是什么意思

简单地说,极坐标就是:用角度和长度描述位置的坐标系。
2023-05-24 23:20:135

极坐标系的概念

极坐标系的概念如下:极坐标系(polar coordinates)是指在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。  在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。 当限制ρ≥0,0≤θ<2π时,平面上除极点Ο以外,其他每一点都有唯一的一个极坐标。极点的极径为零 ,极角任意。若除去上述限制,平面上每一点都有无数多组极坐标,一般地 ,如果(ρ,θ)是一个点的极坐标 ,那么(ρ,θ+2nπ),(-ρ,θ+(2n+1)π),都可作为它的极坐标,这里n 是任意整数。平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r ,等速螺线的极坐标方程为ρ=aθ 。此外,椭圆、双曲线和抛物线这3种不同的圆锥曲线,可以用一个统一的极坐标方程表示。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θ。 [0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。
2023-05-24 23:20:271

极坐标系的概念

极坐标系的概念如下:在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。当限制ρ≥0,0≤θ<2π时,平面上除极点Ο以外,其他每一点都有唯一的一个极坐标。极点的极径为零 ,极角任意。若除去上述限制,平面上每一点都有无数多组极坐标,一般地 ,如果(ρ,θ)是一个点的极坐标 ,那么(ρ,θ+2nπ),(-ρ,θ+(2n+1)π),都可作为它的极坐标,这里n 是任意整数。平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r ,等速螺线的极坐标方程为ρ=aθ 。此外,椭圆、双曲线和抛物线这3种不同的圆锥曲线,可以用一个统一的极坐标方程表示。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θ[0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。
2023-05-24 23:21:021

什么是极坐标?

‍‍如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的,如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。‍‍
2023-05-24 23:21:173

什么是极坐标系?

极坐标系下求绕极轴旋转的旋转体的体积具体计算过程如下用极坐标系描述的曲线方程称作极坐标方程,通常表示为r为自变量θ的函数。极坐标方程经常会表现出不同的对称形式,如果r(-θ) = r(θ),则曲线关于极点(0°/180°)对称,如果r(π-θ) = r(θ),则曲线关于极点(90°/270°)对称,如果r(θ-α) = r(θ),则曲线相当于从极点顺时针方向旋转α°。扩展资料极坐标系的意义1、用于定位和导航。极坐标通常被用于导航,作为旅行的目的地或方向可以作为从所考虑的物体的距离和角度。2、有些几何轨迹问题如果用极坐标法处理,它的方程比用直角坐标法来得简单,描图也较方便。1694年,J.贝努利利用极坐标引进了双纽线,这曲线在18世纪起了相当大的作用。3、建模有径向对称的系统提供了极坐标系的自然设置,中心点充当了极点。这种用法的一个典型例子是在适用于径向对称的水井时候的地下水流方程。有径向力的系统也适合使用极坐标系。4、行星运动的开普勒定律。开普勒第二定律极坐标提供了一个表达在引力场中开普勒行星运行定律的自然数的方法。开普勒第一定律,认为环绕一颗恒星运行的行星轨道形成了一个椭圆,这个椭圆的一个焦点在质心上。参考资料:百度百科-极坐标系
2023-05-24 23:21:541

何谓极坐标系

很多,好处了很多,
2023-05-24 23:22:132

什么叫做极坐标系呀?能通俗点讲讲吗?是立体的?还是平面的?只有圆可以用吗?

极坐标系(polar coordinates)是指在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。
2023-05-24 23:22:212

直角坐标系和极坐标系有什么区别

一、组成不同1、直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。2、极坐标系:极坐标系(polar coordinates)是指在平面内由极点、极轴和极径组成的坐标系。二、形状不同1、直角坐标系:其中横轴为X轴,纵轴为Y轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。还分为第一象限,第二象限,第三象限,第四象限。从右上角开始数起,逆时针方向算起。2、极坐标系:在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。直角坐标系:极坐标系:扩展资料:直角坐标系的应用:一、计算三角形面积1、s=(1/2)*底*高;2、海伦公式:√[p(p-a)(p-b)(p-c) ]其中p=1/2(a+b+c),s=1/2的周长*内切圆半径;3、s=1/2absinC,s=1/2acsinB ,s=1/2bcsinA。二、计算三重积分适用于被积区域Ω不含圆形的区域,且积分表达式的转换和积分上下限的表示方法。参考资料来源:百度百科-直角坐标系参考资料来源:百度百科-极坐标系
2023-05-24 23:22:271

直角坐标系和极坐标系有什么区别?

直角坐标系是正方形网状,直角坐标的优势在于处理直线问题,矩形等规则图形,如果动点是按直线运动,的用直角坐标比较好。也是最常用的坐标系,更为直观一些。直角坐标系的建立:对于平面内任意一点A,过点分A别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点x,y分别叫做点A的横坐标、纵坐标,有序数对(x,y)叫做点A的坐标。极坐标系是圆辐射形;极坐标利用的极轴长度与偏离极轴的角度为坐标进行计算的,其优势在于处理圆形,旋转问题,比较多的是关于极轴(直角坐标里的正半轴)对称的曲线图形,或绕远点规则运动的图形。极坐标系的建立:在平面内取一个点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向。对于平面内任何一点A,用l表示线段OA的长度(有时也用r表示),θ表示从Ox到OA的角度,l叫做点A的极径,θ叫做点A的极角,有序数对 (l,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。通常情况下,A的极径坐标单位为1(长度单位),极角坐标单位为rad(或°)。
2023-05-24 23:22:461

极坐标系的方程是什么?

圆的极坐标公式:ρ²=x²+y²,x=ρcosθ,y=ρsinθ  tanθ=y/x,(x不为0)1、如果半径为R的圆的圆心在直角坐标的x=R,y=0点,即(R,0),也就是极坐标的ρ=R,θ=0,即(R,0)点:那么该圆的极坐标方程为:ρ=2Rcosθ。2、如果圆心在x=R,y=R,或在极坐标的(√2 R,π/4),该圆的极坐标方程为:ρ^2-2Rρ(sinθ+cosθ)+R^2=0。3、如果圆心在x=0,y=R,该圆的极坐标方程为:ρ=2Rsinθ。4、圆心在极坐标原点:ρ=R(θ任意)。拓展内容:在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。参考资料:极坐标方程—百度百科
2023-05-24 23:22:521

极坐标系到底是什么?那个θ代表什么

极坐标系(polar coordinates)是指在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。
2023-05-24 23:23:072

极坐标系怎么建立

极坐标系建立:极坐标在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向).第一个用极坐标来确定平面上点的位置的是牛顿。他的《流数法与无穷级数》,大约于1671年写成,出版于1736年。此书包括解析几何的许多应用,例如按方程描出曲线。书中创建之一,是引进新的坐标系。17甚至18世纪的人,一般只用一根坐标轴(x轴),其y值是沿着与x轴成直角或斜角的方向画出的。牛顿所引进的坐标之一,是用一个固定点和通过此点的一条直线作标准,例如我们使用的极坐标系。】牛顿还引进了双极坐标,其中每点的位置决定于它到两个固定点的距离。由于牛顿的这个工作直到1736年才为人们所发现,而瑞士数学家J.贝努利于1691年在《教师学报》上发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者。J.贝努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线。
2023-05-24 23:23:141

如何理解极坐标系

极坐标系是指在平面内由极点、极轴和极径组成的坐标系,在平面上取定一点O,称为极点,从O出发引一条射线,称为极轴,再取定一个单位长度,通常规定角度取逆时针方向为正,这样,平面上任一点P的位置就可以用线段OP的长度以及从射线到OP的角度来确定。
2023-05-24 23:23:381

极坐标公式

极坐标公式是什么?x = rcos(θ),y = rsin(θ),r^2=x^2+y^2 (一般默认r>0),tan(θ)=y/x (x≠0)。在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。扩展资料:极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式。通常来说,点(r, θ)可以任意表示为(r, θ ±n×360°)或(−r, θ ± (2n+ 1)180°),这里n是任意整数。如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上。极坐标系中的角度通常表示为角度或者弧度,使用公式2π*rad= 360°。具体使用哪一种方式,基本都是由使用场合而定。航海方面经常使用角度来进行测量,而物理学的某些领域大量使用到了半径和圆周的比来作运算,所以物理方面更倾向使用弧度。
2023-05-24 23:23:461

极坐标是什么呢

1、极坐标,属于二维坐标系统,创始人是牛顿,主要应用于数学领域。极坐标是指在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。2、对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。通常情况下,M的极径坐标单位为1(长度单位),极角坐标单位为rad(或°)。
2023-05-24 23:24:161

什么是极坐标

极坐标定义:在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。极坐标的使用:CAD极坐标的使用一般是用来绘制已知旋转角度和长度的线段。有绝对极坐标与相对极坐标两种方式。绝对极坐标使用方法:(“L”—空格—极长<角度—空格)相对极坐标使用方法(“L”—空格—@极长<角度)
2023-05-24 23:24:262

直角坐标系和极坐标系有什么区别?

一、组成不同1、直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。2、极坐标系:极坐标系(polarcoordinates)是指在平面内由极点、极轴和极径组成的坐标系。二、形状不同1、直角坐标系:其中横轴为X轴,纵轴为Y轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。还分为第一象限,第二象限,第三象限,第四象限。从右上角开始数起,逆时针方向算起。2、极坐标系:在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。直角坐标系:极坐标系:扩展资料:直角坐标系的应用:一、计算三角形面积1、s=(1/2)*底*高;2、海伦公式:√[p(p-a)(p-b)(p-c)]其中p=1/2(a+b+c),s=1/2的周长*内切圆半径;3、s=1/2absinC,s=1/2acsinB,s=1/2bcsinA。二、计算三重积分适用于被积区域Ω不含圆形的区域,且积分表达式的转换和积分上下限的表示方法。参考资料来源:百度百科-直角坐标系参考资料来源:百度百科-极坐标系
2023-05-24 23:24:343

极坐标的定义和概念是什么?

在平面上取一个定点O叫做极点;自点O引一条射线Ox叫做极轴;再选定一个长度单位、角度单位(通常取弧度)及其正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系(如图)。设M是平面上的任一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的∠xOM叫做点M的极角,记为θ.有序数对(ρ,θ)称为点M的极坐标,记作M(ρ,θ). 第一个用极坐标来确定平面上点的位置的是牛顿。他的《流数法与无穷级数》,大约于1671年写成,出版于1736年。此书包括解析几何的许多应用,例如按方程描出曲线。书中创建之一,是引进新的坐标系。扩展资料平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r ,等速螺线的极坐标方程为ρ=aθ 。此外,椭圆、双曲线和抛物线这3种不同的圆锥曲线,可以用一个统一的极坐标方程表示。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θ属于[0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。参考资料来源:百度百科-极坐标
2023-05-24 23:24:431

圆的极坐标是什么?

圆的极坐标公式:ρ²=x²+y²,x=ρcosθ,y=ρsinθ  tanθ=y/x,(x不为0)。1、如果半径为R的圆的圆心在直角坐标的x=R,y=0点,即(R,0),也就是极坐标的ρ=R,θ=0,即(R,0)点:那么该圆的极坐标方程为:ρ=2Rcosθ。2、如果圆心在x=R,y=R,或在极坐标的(√2 R,π/4),该圆的极坐标方程为:ρ^2-2Rρ(sinθ+cosθ)+R^2=0。3、如果圆心在x=0,y=R,该圆的极坐标方程为:ρ=2Rsinθ。4、圆心在极坐标原点:ρ=R(θ任意)。在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。
2023-05-24 23:24:561

极坐标的表示方法

任意一点P表示为(r,t)。r为P到O的距离,t为射线OP到极轴(也就是x轴的正半轴,极坐标中只有x轴的正半轴,特别称为极轴)的夹角。 扩展资料   正如所有的二维坐标系,极坐标系也有两个坐标轴:r(半径坐标)和θ(角坐标、极角或方位角,有时也表示为φ或t)。r坐标表示与极点的距离,θ坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的.x轴正方向。   比如,极坐标中的(3,60°)表示了一个距离极点3个单位长度、和极轴夹角为60°的点。(?3,240°) 和(3,60°)表示了同一点,因为该点的半径为在夹角射线反向延长线上距离极点3个单位长度的地方(240° ? 180° = 60°)。   极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式。通常来说,点(r,θ)可以任意表示为(r,θ ± 2kπ)或(?r,θ ± (2k+ 1)π),这里k是任意整数。[7] 如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上。
2023-05-24 23:25:091

极坐标公式是什么?

x = rcos(θ),y = rsin(θ),r^2=x^2+y^2 (一般默认r>0),tan(θ)=y/x (x≠0)。在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。扩展资料:极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式。通常来说,点(r, θ)可以任意表示为(r, θ ±n×360°)或(−r, θ ± (2n+ 1)180°),这里n是任意整数。如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上。极坐标系中的角度通常表示为角度或者弧度,使用公式2π*rad= 360°。具体使用哪一种方式,基本都是由使用场合而定。航海方面经常使用角度来进行测量,而物理学的某些领域大量使用到了半径和圆周的比来作运算,所以物理方面更倾向使用弧度。
2023-05-24 23:25:171

极坐标的有关知识

极坐标系是一个二维坐标系统。该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。历史 主条目:三角函数的历史众所周知,希腊人最早使用了角度和弧度的概念。天文学家喜帕恰斯(Hipparchus 190-120 BC)制成了一张求各角所对弦的弦长函数的表格。并且,曾有人引用了他的极坐标系来确定恒星位置。在螺线方面,阿基米德描述了他的著名的螺线,一个半径随角度变化的方程。希腊人作出了贡献,尽管最终并没有建立整个坐标系统。关于是谁首次将极坐标系应用为一个正式的坐标系统,流传着有多种观点。关于这一问题的较详尽历史,哈佛大学教授朱利安·卢瓦尔·科利奇的《极坐标系起源》[1][2]作了阐述。格雷瓜·德·圣-万桑特 和博纳文图拉·卡瓦列里,被认为在几乎同时、并独立地各自引入了极坐标系这一概念。圣-万桑特在1625年的私人文稿中进行了论述并发表于1647年,而卡瓦列里在1635进行了发表,而后又于1653年进行了更正。卡瓦列里首次利用极坐标系来解决一个关于阿基米德螺线内的面积问题。布莱士·帕斯卡随后使用极坐标系来计算抛物线的长度。在1671年写成,1736年出版的《流数术和无穷级数》(en:Method of Fluxions)一书中,艾萨克·牛顿第一个将极坐标系应用于表示平面上的任何一点。牛顿在书中验证了极坐标和其他九种坐标系的转换关系。在1691年出版的《博学通报》(Acta eruditorum)一书中雅各布·伯努利正式使用定点和从定点引出的一条射线,定点称为极点,射线称为极轴。平面内任何一点的坐标都通过该点与定点的距离和与极轴的夹角来表示。伯努利通过极坐标系对曲线的曲率半径进行了研究。实际上应用“极坐标”en:Polar coordinate system这个术语的是由格雷古廖·丰塔纳开始的,并且被18世纪的意大利数学家所使用。该术语是由乔治·皮科克在1816年翻译拉克鲁瓦克斯的《微分学与积分学》(Differential and Integral Calculus)[3][4][5] 一书时,被翻译为英语的。阿勒克西斯·谢罗特和莱昂哈德·欧拉被认为是将平面极坐标系扩展到三维空间的数学家。在极坐标系中表示点点(3,60°) 和 点(4,210°)点(3,60°) 和 点(4,210°)正如所有的二维坐标系,极坐标系也有两个坐标轴:r(半径坐标)和θ(角坐标、极角或方位角,有时也表示为φ或t)。r坐标表示与极点的距离,θ坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的x轴正方向。[6]比如,极坐标中的(3,60°)表示了一个距离极点3个单位长度、和极轴夹角为60°的点。(−3,240°) 和(3,60°)表示了同一点,因为该点的半径为在夹角射线反向延长线上距离极点3个单位长度的地方(240° − 180° = 60°)。极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式。通常来说,点(r, θ)可以任意表示为(r, θ ± n×360°)或(−r, θ ± (2n + 1)180°),这里n是任意整数。[7] 如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上。[编辑] 使用弧度单位极坐标系中的角度通常表示为角度或者弧度,使用公式2π rad = 360°.具体使用哪一种方式,基本都是由使用场合而定。航海(en:Navigation)方面经常使用角度来进行测量,而物理学的某些领域大量使用到了半径和圆周的比来作运算,所以物理方面更倾向使用弧度。[8][编辑] 在极坐标系与平面直角坐标系(笛卡尔坐标系)间转换极坐标系中的两个坐标 r 和 θ 可以由下面的公式转换为 直角坐标系下的坐标值 x = r cos heta , y = r sin heta ,由上述二公式,可得到从直角坐标系中x 和 y 两坐标如何计算出极坐标下的坐标 r = sqrt{x^2 + y^2} , heta = arctan frac{y}{x}qquad x e 0 ,[9]在 x = 0的情况下:若 y 为正数 θ = 90° (π/2 radians); 若 y 为负, 则 θ = 270° (3π/2 radians).[编辑] 极坐标方程用极坐标系描述的曲线方程称作极坐标方程,通常表示为r为自变量θ的函数。极坐标方程经常会表现出不同的对称形式,如果r(−θ) = r(θ),则曲线关于极点(0°/180°)对称,如果r(π−θ) = r(θ),则曲线关于极点(90°/270°)对称,如果r(θ−α) = r(θ),则曲线相当于从极点逆时针方向旋转α°。[9][编辑] 圆方程为r(θ) = 1的圆。方程为r(θ) = 1的圆。在极坐标系中,圆心在(r0, φ) 半径为 a 的圆的方程为 r^2 - 2 r r_0 cos( heta - varphi) + r_0^2 = a^2 该方程可简化为不同的方法,以符合不同的特定情况,比如方程 r( heta)=a ,表示一个以极点为中心半径为a的圆。[10][编辑] 直线经过极点的射线由如下方程表示 heta = varphi ,,其中φ为射线的倾斜角度,若 m为直角坐标系的射线的斜率,则有φ = arctan m。 任何不经过极点的直线都会与某条射线垂直。[11] 这些在点(r0, φ)处的直线与射线θ = φ 垂直,其方程为 r( heta) = {r_0}sec( heta-varphi) ,.[编辑] 玫瑰线一条方程为 r(θ) = 2 sin 4θ的玫瑰线.一条方程为 r(θ) = 2 sin 4θ的玫瑰线.极坐标的玫瑰线(polar rose)是数学曲线中非常著名的曲线,看上去像花瓣,它只能用极坐标方程来描述,方程如下: r( heta) = a cos k heta , OR r( heta) = a sin k heta ,如果k是整数,当k是奇数时那么曲线将会是k个花瓣,当k是偶数时曲线将是2k个花瓣。如果k为非整数,将产生圆盘(disc)状图形,且花瓣数也为非整数。注意:该方程不可能产生4的倍数加2(如2,6,10……)个花瓣。变量a代表玫瑰线花瓣的长度。[编辑] 阿基米德螺线方程 r(θ) = θ for 0 < θ < 6π的一条阿基米德螺线.方程 r(θ) = θ for 0 < θ < 6π的一条阿基米德螺线.阿基米德螺线在极坐标里使用以下方程表示: r( heta) = a+b heta ,.改变参数a将改变螺线形状,b控制螺线间距离,通常其为常量。阿基米德螺线有两条螺线,一条θ > 0,另一条θ < 0。两条螺线在极点处平滑地连接。把其中一条翻转 90°/270°得到其镜像,就是另一条螺线。[编辑] 圆锥曲线Ellipse, showing semi-latus rectumEllipse, showing semi-latus rectum圆锥曲线方程如下: r = {lover (1 + e cos heta)}其中l表示半径,e表示离心率。 如果e < 1,曲线为椭圆,如果e = 1,曲线为抛物线,如果e > 1,则表示双曲线。[编辑] 其他曲线由于坐标系统是基于圆环的,所以许多有关曲线的方程,极坐标要比直角坐标系(笛卡尔形式)简单得多。比如lemniscates, en:limaçons, and en:cardioids。应用[编辑] 行星运动的开普勒定律开普勒第二定律开普勒第二定律 另见:开普勒行星运动定律极坐标提供了一个表达开普拉行星运行定律的自然数的方法。开普勒第一定律,认为环绕一颗恒星运行的行星轨道形成了一个椭圆,这个椭圆的一个焦点在质心上。上面所给出的二次曲线部分的等式可用于表达这个椭圆。 开普勒第二定律,即等域定律,认为连接行星和它所环绕的恒星的线在等时间间隔所划出的区域是面积相等的,即dmathbf{A}over dt是常量。这些等式可由牛顿运动定律推得。在开普勒行星运动定律中有相关运用极坐标的详细推导。
2023-05-24 23:25:321

极坐标方程是什么?

直线的极坐标方程是:对于不经过极点的直线y=kx+b,代入x=ρcosθ,y=ρsinθ,化简即可。极坐标系(polar coordinates)是指在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。相关内容解释:在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。θ=常数在极坐标中表示以极点为始点,与极轴的正向的夹角为θ的射线,所以在极坐标系中直线的方程是θ=k与θ=π-k,k为直线的倾。
2023-05-24 23:25:501

什么是极坐标,极坐标怎么算?

极坐标绕极轴旋转体积公式:用一般函数图形绕x轴旋转的旋转体体积公式,换元x=rcosθ,y=rsinθ即可得到此公式。对极坐标表示的面积绕轴旋转的体积计算问题分别从积分元素法P.Guldin定理及球坐标下三重积分计算,给出三种计算方法。一般高等数学教材中均给出了由直角坐标表出面积的旋转体体积计算公式,即面积a≤x≤b, 0≤у≤y(x)。绕ox轴旋转所成旋转体的体积为如下图:常见圆的极坐标方程:(1)、圆心在极点,半径为r的圆:p=r;(2)、圆心为M(a,0),半径为a的圆:p=2acosθ;(3)圆心为M(a,2/π),半径为a的圆:p=2asinθ.极坐标,属于二维坐标系统,创始人是牛顿,主要应用于数学领域。极坐标是指在平面内取一个顶点O,叫极点,引一条射线Ox,叫作极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫作点M的极径,θ叫作点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫作极坐标系。以上内容参考:百度百科—极坐标
2023-05-24 23:26:141

极坐标系的基本概念

当限制ρ≥0,0≤θ<2π时,平面上除极点Ο以外,其他每一点都有唯一的一个极坐标。极点的极径为零 ,极角任意。若除去上述限制,平面上每一点都有无数多组极坐标,一般地 ,如果(ρ,θ)是一个点的极坐标 ,那么(ρ,θ+2nπ),(-ρ,θ+(2n+1)π),都可作为它的极坐标,这里n 是任意正整数。平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r ,等速螺线的极坐标方程为ρ=aθ 。此外,椭圆 、双曲线和抛物线这3种不同的圆锥曲线,可以用一个统一的极坐标方程表示。
2023-05-24 23:26:411

极坐标的定义和概念是什么?

在平面上取一个定点O叫做极点;自点O引一条射线Ox叫做极轴;再选定一个长度单位、角度单位(通常取弧度)及其正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系(如图)。设M是平面上的任一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的∠xOM叫做点M的极角,记为θ.有序数对(ρ,θ)称为点M的极坐标,记作M(ρ,θ). 第一个用极坐标来确定平面上点的位置的是牛顿。他的《流数法与无穷级数》,大约于1671年写成,出版于1736年。此书包括解析几何的许多应用,例如按方程描出曲线。书中创建之一,是引进新的坐标系。扩展资料平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r,等速螺线的极坐标方程为ρ=aθ。此外,椭圆、双曲线和抛物线这3种不同的圆锥曲线,可以用一个统一的极坐标方程表示。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θ属于[0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。参考资料来源:搜狗百科-极坐标
2023-05-24 23:27:032

什么是极坐标?

在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。举个例子说直角坐标中的(1,1)极坐标表示为(根号2,45度)
2023-05-24 23:27:111

直线的极坐标方程是什么啊?

直线的极坐标方程是:对于不经过极点的直线y=kx+b,代入x=ρcosθ,y=ρsinθ,化简即可。极坐标系(polar coordinates)是指在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。相关内容解释:在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。θ=常数在极坐标中表示以极点为始点,与极轴的正向的夹角为θ的射线,所以在极坐标系中直线的方程是θ=k与θ=π-k,k为直线的倾。
2023-05-24 23:27:181

极坐标系的坐标方程

用极坐标系描述的曲线方程称作极坐标方程,通常表示为r为自变量θ的函数。极坐标方程经常会表现出不同的对称形式,如果r(-θ) = r(θ),则曲线关于极点(0°/180°)对称,如果r(π-θ) = r(θ),则曲线关于极点(90°/270°)对称,如果r(θ-α) = r(θ),则曲线相当于从极点顺时针方向旋转α°。 方程为r(θ) = 1的圆。在极坐标系中,圆心在(r0, φ) 半径为 a 的圆的方程为r^2-2rr0cos(θ-φ)+r0^2=a^2,这个方程如果由(x-a)^2+(y-b)^2=r^2转化而来,则r0^2=a^2+b^2,φ=arctan a/b.该方程可简化为不同的方法,以符合不同的特定情况,比如方程r(θ)=a表示一个以极点为中心半径为a的圆。 经过极点的射线由如下方程表示θ=φ,其中φ为射线的倾斜角度,若 k为直角坐标系的射线的斜率,则有φ = arctan k。 任何不经过极点的直线都会与某条射线垂直。 这些在点(r0, φ)处的直线与射线θ = φ 垂直,其方程为r(θ)=r0sec(θ-φ) 一条方程为 r(θ) = 2 sin 4θ的玫瑰线。极坐标的玫瑰线(polar rose)是数学曲线中非常著名的曲线,看上去像花瓣,它只能用极坐标方程来描述,方程如下:r(θ)=a cos kθr(θ)=a sin kθOR如果k是整数,当k是奇数时那么曲线将会是k个花瓣,当k是偶数时曲线将是2k个花瓣。如果k为非整数,将产生圆盘(disc)状图形,且花瓣数也为非整数。注意:该方程不可能产生4的倍数加2(如2,6,10……)个花瓣。变量a代表玫瑰线花瓣的长度。 方程 r(θ) = θ for 0 < θ < 6π的一条阿基米德螺线。阿基米德螺线在极坐标里使用以下方程表示:r(θ)=a+bθ.改变参数a将改变螺线形状,b控制螺线间距离,通常其为常量。阿基米德螺线有两条螺线,一条θ > 0,另一条θ < 0。两条螺线在极点处平滑地连接。把其中一条翻转 90°/270°得到其镜像,就是另一条螺线。 椭圆,展示了半正焦弦圆锥曲线方程如下:r=ep/(1-e cosθ)其中l表示半正焦弦,e表示离心率。 如果e < 1,曲线为椭圆,如果e = 1,曲线为抛物线,如果e > 1,则表示双曲线。其中e表示离心率,p表示焦点到准线的距离。 由于坐标系统是基于圆环的,所以许多有关曲线的方程,极坐标要比直角坐标系(笛卡尔形式)简单得多。比如lemniscates, en:lima?ons, anden:cardioids。
2023-05-24 23:27:301

极坐标与直角坐标的转化

极坐标转换为直角坐标转化方法及其步骤: 第一步:把极坐标方程中的θ整理成cosθ和sinθ的形式 第二步:把cosθ化成x/ρ,把sinθ化成y/ρ;或者把ρcosθ化成x,把ρsinθ化成y第三步:把ρ换成(根号下x2+y2);或将其平方变成ρ2,再变成x2+y2 第四步:把所得方程整理成让人心里舒服的形式. 例:把ρ=2cosθ化成直角坐标方程. 将ρ=2cosθ等号两边同时乘以ρ,得到:ρ2=2ρcosθ 把ρ2用x2+y2代替,把ρcosθ用x代替,得到:x2+y2=2x 再整理一步,即可得到所求方程为: (x-1)^2+y2=1 这是一个圆,圆心在点(1,0),半径为1直角坐标转换为极坐标第一:两个坐标原点重合.x轴相重合.第二:长度单位相同.第三:通常使用“弧度制”.在此情况下,我们有设直角坐标系里的曲线上的一个任一点的坐标为A(x,y).则它在极坐标系里的坐标为A(ρ,θ).扩展资料:在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。通常情况下,M的极径坐标单位为1(长度单位),极角坐标单位为rad(或°)。极坐标系是一个二维坐标系统。该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。直角坐标系又叫笛卡尔坐标系,它通过一对数字坐标在平面中唯一地指定每个点,该坐标系是以相同的长度单位测量的两个固定的垂直有向线的点的有符号距离。每个参考线称为坐标轴或系统的轴,它们相遇的点通常是有序对(0,0)。坐标也可以定义为点到两个轴的垂直投影的位置,表示为距离原点的有符号距离。为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线。它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。这样就构成了一个笛卡尔坐标。在三维笛卡尔坐标系中,三个平面,xy-平面,yz-平面,xz-平面,将三维空间分成了八个部分,称为卦限(octant)空。第Ⅰ卦限的每一个点的三个坐标都是正值。参考资料:百度百科-直角坐标  百度百科-极坐标
2023-05-24 23:27:441

直角坐标系和极坐标系有什么区别

直角坐标系是正方形网状,极坐标系是圆辐射形;一个直角坐标对应唯一点,一个极坐标也对应唯一点;但一个点在直角坐标系中的直角坐标是唯一的,而一个点在极坐标系中的极坐标却有无数多个。
2023-05-24 23:27:513

极坐标是什么意思

问题一:c极坐标是什么意思 极坐标:在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。 CNC (数控机床)是计算机数字控制机床(puter numerical control)的简称,是一种由程序控制的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,通过计算机将其译码,从而使机床执行规定好了的动作,通过刀具切削将毛坯料加工成半成品成品零件。 问题二:极坐标中的"极"是什么意思? 基本字义 1. 顶端,最高点,尽头:登~(帝王即位)。登峰造~。 2. 指地球的南北两端或电路、磁体的正负两端:~地(极圈以内的地区)。~圈。北~。阴~。 3. 尽,达到顶点:~力。~目四望。物~必反。 4. 最高的,最终的:~点。~限。~端。~致。 5. 国际政治中指综合国力强,对国际事务影响大的国家和国家集团:多~化趋势。 6. 准则:为民立~。 7. 疲乏:人~马疲。 8. 古同“亟”,急。 9. 古同“殛”,杀或罚。 10.副词:表示最高程度:~其。~为(wéi )。 11.数词:表示10的48次方。在中国古代数学中,比极小的是载,表示10的44次方,比极大的是恒河沙,表示10的52次方 问题三:PS中滤镜的极坐标是什么意思 极坐标是对原图有破坏性的滤镜 平面到极坐标:图像顶边下凹,底边和两侧边上翻 极坐标到平面:海像底边上凸,顶边和两侧边下翻 问题四:cad极坐标怎么用 又[email protected]的 有@.-5的 什么意思 ]@]@] 是相对的意思,比如之前输入过一个点15,10的,后面输入@10,20,那就是这个10,20相对于前面的点,那么后面的点真实坐标是15+10,10+20 就是25,30 问题五:PS里的平面坐标和极坐标分别是什么意思 使用文字很难解释,实践一下就知道了。 1、把下图在PS中打开,滤镜--扭曲--极坐标--平面坐标到极坐标。 2、继续执行:滤镜--扭曲--极坐标--极极坐标到平面坐标。 3、你一定会明白是怎么回事了。 问题六:极坐标系到底是什么?那个θ代表什么 呵呵!小学六年级就【关心】起《极坐标》了?够超前的! 1)极坐标系就是以一条射线为极轴,以射线的端点为极点,用极角(θ)(因教材的不同,也有用φ的)和极径(ρ)(也有用 r 的)一对实数表示平面上的点的坐标系; 2)那个θ(你可以在不同的教材上看到,也有用φ表示的)即是用于在极坐标系中定位一个点的【极角】值(你如果对《直角坐标系》烂熟于胸的话,不妨把它比拟为 x )。它的实际意义是:以《极轴》为始边,按《逆时针》转到《极点》到《已知点》构成射线为终边处(或者说,极轴以极点为顶点,按逆时针转到与已知点重合时),所【扫】过的角度; 你没有问ρ,我就不赘言了; 3)比如:极坐标方程 ρ=2 根据极坐标系的意义,可知:这是一个《极径》都为 2 的点的轨迹,所以这是一个以u《极点》为圆心,以 2 为半径的圆; 再比如:θ=π/4 ,它表示一条直线。 下面这段话,是复制自《百度。百科》: 极坐标系(polar coordinates)是指在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。 问题七:极坐标方程的定义 实际上,极坐标与直角坐标一样,都是为了表示点在空间中的位置而引入的参照系。 问题八:极坐标中的p表示什么意思 如图 问题九:极坐标中θ的含义 ,极坐标系有两个坐标轴:r(半径坐标)和θ(角坐标、极角或方位角,有时也表示为φ或t)。r坐标表示与极点的距离,θ坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的x轴正方向。
2023-05-24 23:28:091

平面极坐标系的极坐标系的概念

在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。当限制ρ≥0,0≤θ<2π时,平面上除极点Ο以外,其他每一点都有唯一的一个极坐标。极点的极径为零 ,极角任意。若除去上述限制,平面上每一点都有无数多组极坐标,一般地 ,如果(ρ,θ)是一个点的极坐标 ,那么(ρ,θ+2nπ),(-ρ,θ+(2n+1)π),都可作为它的极坐标,这里n 是任意整数。平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r 等速螺线的极坐标方程为ρ=aθ 。此外,椭圆、双曲线和抛物线这3种不同的圆锥曲线,可以用一个统一的极坐标方程表示。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θε[0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。
2023-05-24 23:28:181

极坐标是怎么发明的,有何实际意义

对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。意义极坐标提供了一个表达开普拉行星运行定律的自然数的方法。开普勒第一定律,认为环绕一颗恒星运行的行星轨道形成了一个椭圆,这个椭圆的一个焦点在质心上。上面所给出的二次曲线部分的等式可用于表达这个椭圆。 开普勒第二定律,即等域定律,认为连接行星和它所环绕的恒星的线在等时间间隔所划出的区域是面积相等的,即dmathbfover dt是常量。这些等式可由牛顿运动定律推得。在开普勒行星运动定律中有相关运用极坐标的详细推导。
2023-05-24 23:28:343

极坐标的来源

第一个用极坐标来确定平面上点的位置的是牛顿。他的《流数法与无穷级数》,大约于1671年写成,出版于1736年。此书包括解析几何的许多应用,例如按方程描出曲线。书中创建之一,是引进新的坐标系。17甚至18世纪的人,一般只用一根坐标轴(x轴),其y值是沿着与x轴成直角或斜角的方向画出的。牛顿所引进的坐标之一,是用一个固定点和通过此点的一条直线作标准,例如我们使用的极坐标系。牛顿还引进了双极坐标,其中每点的位置决定于它到两个固定点的距离。由于牛顿的这个工作直到1736年才为人们所发现,而瑞士数学家J.贝努利于1691年在《教师学报》上发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者。J.贝努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线。他还给出了从直角坐标到极坐标的变换公式。确切地讲,J.赫尔曼把cosθ,sinθ当作变量来使用,而且用n和m来表示cosθ和sinθ。欧拉扩充了极坐标的使用范围,而且明确地使用三角函数的记号;欧拉那个时候的极坐标系实际上就是现代的极坐标系。有些几何轨迹问题如果用极坐标法处理,它的方程比用直角坐标法来得简单,描图也较方便。1694年,J.贝努利利用极坐标引进了双纽线,这曲线在18世纪起了相当大的作用。在极坐标中,x被ρcosθ代替,y被ρsinθ代替。ρ2=(x2+y2)极坐标系是一个二维坐标系统。该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。
2023-05-24 23:28:531

如何求极坐标和直角坐标的转化公式?

圆的极坐标方程6个公式:ρ²=x²+y²,x=ρcosθ,y=ρsinθ,tanθ=y/x,ρ=2Rcosθ,ρ²-2Rρ(sinθ+cosθ)+R²=0。极坐标属于二维坐标系统,创始人是牛顿,主要应用于数学领域。简单来说极坐标即在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向),而对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示)。相关信息:在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。
2023-05-24 23:29:071

极坐标系与直角坐标系有哪些不同

极坐标是用角度与距离来标示位置。直角坐标是用两个数值(纵横)表标示位置的。后者在一般情况应用更广泛。例如地理坐标。
2023-05-24 23:29:231

极坐标二重积分怎么确定D,如图r范围怎么确定

2023-05-24 23:29:433

极坐标与直角坐标怎么关联起来的?

我把前面的解释修改一下,因为有个小漏洞,呵呵X=r×cosθY=r×sinθ极坐标系与直角坐标系原点重合,设A(r,θ)同时这点坐标也是(x,y).d r ,d θ,产生一个近似小矩形的面积,r×∆θ是一条边的弧长,∆r是另外一条边长,当θ很小时,这块扇环形的面积就等于矩形的面积,s =r×∆θ×∆r 。我们知道同一点的直角坐标系x,y,产生的d x,dy,面积s=∆X*∆y,也是一个小矩形,和上面那个小矩形,有θ夹角。请大家自己画图,把两个小矩形的交角θ画出来,就能得到以下结论。当∆θ很小时,有∆x=∆r*cosθ→dx=dr*cosθ∆y*cosθ=r*∆θ→dy*cosθ=r*dθ两个等式左右同乘,消去cosθ,得到dx *dy=r*dr*dθ所以,这两个小方块的面积当∆θ很小时是相等的,所以dx *dy=r*dr*dθ。
2023-05-24 23:30:061

极坐标的定义和概念是什么?

坐标系的一种。引一条射线OX,端点设为O。对于平面内任意一点M,连接OM。射线OX逆时针旋转到OM所在射线角度为θ(0<=θ<2pai).OM的长度记做ρ(ρ>=0)。那么M点就可以记做(ρ,θ),这就是M点的极坐标。此坐标系就称作极坐标系!
2023-05-24 23:30:162

极坐标转换为直角坐标的方法有哪些?

极坐标转换为直角坐标转化方法及其步骤: 第一步:把极坐标方程中的θ整理成cosθ和sinθ的形式 第二步:把cosθ化成x/ρ,把sinθ化成y/ρ;或者把ρcosθ化成x,把ρsinθ化成y第三步:把ρ换成(根号下x2+y2);或将其平方变成ρ2,再变成x2+y2 第四步:把所得方程整理成让人心里舒服的形式. 例:把 ρ=2cosθ化成直角坐标方程. 将ρ=2cosθ等号两边同时乘以ρ,得到:ρ2=2ρcosθ 把ρ2用x2+y2代替,把ρcosθ用x代替,得到:x2+y2=2x 再整理一步,即可得到所求方程为: (x-1)^2+y2=1 这是一个圆,圆心在点(1,0),半径为1直角坐标转换为极坐标第一:两个坐标原点重合.x轴相重合.第二:长度单位相同.第三:通常使用“弧度制”.在此情况下,我们有设直角坐标系里的曲线上的一个任一点的坐标为A(x,y).则它在极坐标系里的坐标为A(ρ,θ).扩展资料:在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。通常情况下,M的极径坐标单位为1(长度单位),极角坐标单位为rad(或°)。极坐标系是一个二维坐标系统。该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。直角坐标系又叫笛卡尔坐标系,它通过一对数字坐标在平面中唯一地指定每个点,该坐标系是以相同的长度单位测量的两个固定的垂直有向线的点的有符号距离。每个参考线称为坐标轴或系统的轴,它们相遇的点通常是有序对(0,0)。坐标也可以定义为点到两个轴的垂直投影的位置,表示为距离原点的有符号距离。为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线。它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。这样就构成了一个笛卡尔坐标。在三维笛卡尔坐标系中,三个平面,xy-平面,yz-平面,xz-平面,将三维空间分成了八个部分,称为卦限(octant) 空。第Ⅰ卦限的每一个点的三个坐标都是正值。参考资料:百度百科-直角坐标  百度百科-极坐标
2023-05-24 23:30:291

极坐标的公式是什么?

 圆的极坐标方程公式为:ρ²-2aρcosθ-2bρsinθ+a²+b²=r² a和b分别是此圆的坐标,r为半径,带入上述方程,即可求出此园的极坐标方程。扩展内容:极坐标与直角坐标的转换:极坐标转直角坐标:x=ρcosθ,y=ρsinθ。直角坐标转极坐标:ρ = sqrt(x² + y²),θ= arctan y/x。在 x = 0的情况下:若 y 为正数 θ = 90° (π/2 radians); 若 y 为负,则 θ = 270° (3π/2 radians)。极坐标方程:在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。
2023-05-24 23:30:441

极坐标方程怎么求?

可由柱坐标系和球坐标系来解答,柱坐标系是先在面上二重积分用极坐标然后在单积分在z轴上;球坐标系类似一个地球仪(实心的),由球上任意一点到原点的距离r和经度和纬度表示,一个实际的例子就是在地球上任意一点可由全球定位系统唯一的表示出。另一种做法是用一般函数图形绕x轴旋转的旋转体体积公式,换元x=rcosθ,y=rsinθ即可得到此公式。扩展资料:极坐标系是一个二维坐标系统。该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海以及机器人等领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。参考资料来源:百度百科-极坐标
2023-05-24 23:30:551

极坐标通常的用途

求极大极小值,一部分化简,通常只要掌握最基础的就行
2023-05-24 23:31:161