汉邦问答 / 问答 / 问答详情

阿基米德螺线详细资料大全

2023-08-15 09:39:29
meira

阿基米德螺线(亦称等速螺线),得名于公元前三世纪希腊数学家阿基米德。阿基米德螺线是一个点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动而产生的轨迹。阿基米德在其著作《螺旋线》中对此作了描述。

基本介绍

  • 中文名 :阿基米德螺线
  • 外文名 :Archimedean spiral
  • 别称 :阿基米德曲线
  • 提出者 :阿基米德
  • 提出时间 :公元前三世纪
  • 套用学科 :数学
方程式,套用,最初套用:螺旋扬水器,工程套用:阿基米德螺旋泵,生活套用:蚊香的几何特征,相关发现,阿基米德螺线的画法,自然界中螺线广泛存在的原因,更多信息,

方程式

阿基米德螺线的极坐标方程式为: 其中 a 和 b 均为实数。当 时, a 为起点到极坐标原点的距离。 , b 为螺旋线每增加单位角度r随之对应增加的数值。改变参数 a 相当于旋转螺线,而参数 b 则控制相邻两条曲线之间的距离。 阿基米德螺线的平面笛卡尔坐标方程式为:

通用的从极坐标系到笛卡尔坐标系的变换方法:

, 通用的从笛卡尔坐标系到极坐标系的变换方法:

根据最新的研究表明,阿基米德螺旋公式可以用指定的半径r,圆周速度v,直线运动速度w来表示,公式为 根据这一公式,当圆周速度与直线速度同时增大一倍时,阿基米德螺旋的形状是不会发生变化的,因此,阿基米德螺旋属于 等速度比 螺旋,同时由于它在每个旋转周期内是等距离外扩的,故又可称它为 等距螺旋 。 阿基米德螺旋的切线角度没有特定的规律,通过数学软体,按照求导数的方法,每隔45°做切线,会得到如右图的效果。

套用

最初套用:螺旋扬水器

为解决用尼罗河水灌溉土地的难题,阿基米德发明了圆筒状的螺旋扬水器,后人称它为“阿基米德螺旋”。 阿基米德螺旋是一个装在木制圆筒里的巨大螺旋状物(在一个圆柱体上螺旋状地绕上中空的管子),把它倾斜放置,下端浸入水中,随着圆柱体的旋转,水便沿螺旋管被提升上来,从上端流出。这样,就可以把水从一个水平面提升到另一个水平面,对田地进行灌溉。“阿基米德螺旋”扬水机至今仍在埃及等地使用。

工程套用:阿基米德螺旋泵

阿基米德螺旋泵的工作原理是当电动机带动泵轴转动时,螺杆一方面绕本身的轴线旋转,另一方面它又沿衬套内表面滚动,于是形成泵的密封腔室。螺杆每转一周,密封腔内的液体向前推进一个螺距,随着螺杆的连续转动,液体螺旋形方式从一个密封腔压向另一个密封腔,最后挤出泵体。螺杆泵是一种新型的输送液体的机械,具有结构简单、工作安全可靠、使用维修方便、出液连续均匀、压力稳定等优点。

生活套用:蚊香的几何特征

将一单盘蚊香光滑面朝上,放置一水平面上,自上俯视,会观察到的蚊香平面图。将这条曲线单独绘制出来,并加上一定的标志,得到了蚊香香条曲线图(如图6示)。点O为直线AB与曲线AB若干交点中位于最中间的一个交点。曲线OA实际上是单盘蚊香的香条外侧边线。观察不同厂牌蚊香的实物,会发现其对应的OA曲线上,接近点的一段(图中以OP表示),也就是所谓“太极头”部位的曲线,在形状上各有不同,但对于剩下的一大段曲线PA,则具有这样的特征:曲线PA E任取一点Q,假使点Q可在曲线PA上移动,则点Q越接近点A,点Q与点O的直线距离(以r表示)越大;而且,每移动一定角度(以0表示),增加的值与该角度成正比。用学语言描述曲线QA的上述特征,可表示为: △φ=k△θ,或 φ=k△θ+C-----(1) 式(1)中,k和C均为恒定常数,若以点O为极点,建立极坐标,则选择适当方位的极轴,可以将式(1)转移为: φ=kθ,θ∈[0,α]------(2) 式(2)中a为点A,即香条末端对应的极角。式(2)所描述的曲线一单擞蚊香香条外侧边线.实际上正是“阿基米德螺线”。 需要说明的是,式(2)所描述的只是蚊香“太极头”之外的香条曲线方程,由于不同厂牌蚊香的“太极头”没有统一固定的形状,所以无法对其作出确切的描述。同时,由于“太极头”一段香条的长度极短,因而其形状对蚊香香条长度的影响事实上也可以忽略不计。

相关发现

阿基米德(约公元前287~前212),古希腊伟大的数学家、力学家。他公元前287年生于希腊叙拉古附近的一个小村庄。 阿基米德 公元前267年,也就是阿基米德十一岁时,阿基米德被父亲送到埃及的亚历山大城跟随欧几里得的学生埃拉托塞和卡农学习。亚历山大城位于尼罗河口,是当时世界的知识、文化贸易中心,学者云集,人才荟萃,被世人誉为“智慧之都”。举凡文学、数学、天文学、医学的研究都很发达。 阿基米德在亚历山大跟随过许多著名的数学家学习,包括有名的几何学大师—欧几里德,阿基米德在这里学习和生活了许多年,他兼收并蓄了东方和古希腊的优秀文化遗产,对其后的科学生涯中作出了重大的影响,奠定了阿基米德日后从事科学研究的基础。 公元前240年,阿基米德由埃及回到故乡叙拉古,并担任了国王的顾问。从此开始了对科学的全面探索,在物理学、数学等领域取得了举世瞩目的成果,成为古希腊最伟大的科学家之一。后人对阿基米德给以极高的评价,常把他和牛顿、高斯并列为有史以来三个贡献最大的数学家。 据说,阿基米德螺线最初是由阿基米德的老师柯农(欧几里德的弟子)发现的。柯农死后,阿基米德继续研究,又发现许多重要性质,因而这种螺线就以阿基米德的名字命名了。

阿基米德螺线的画法

1.阿基米德螺线的几何画法 以适当长度(OA)为半径,画一圆O;作一射线OA;作一点P于射线OA上;模拟点A沿圆O移动,点P沿射线OA移动;画出点P的轨迹;隐藏圆O、射线OA&点P;即可得到螺线 2.阿基米德螺线的简单画法 有一种最简单的方法画出阿基米德螺线,用一根线缠在一个线轴上,在其游离端绑上一小环,把线轴按在一张纸上,并在小环内套一支铅笔,用铅笔拉紧线,并保持线在拉紧状态,然后在纸上画出由线轴松开的线的轨迹,就得到了阿基米德螺线。

自然界中螺线广泛存在的原因

自然界中,在千姿百态的生命体上发现了不少螺旋。如原生动物门中的砂盘虫;软体动物门中梯螺科中的尖高旋螺,凤螺科中的沟纹笛螺,明螺科中的明螺,又如塔螺科的爪哇拟塔螺、奇异宽肩螺、笋螺科的拟笋螺等大多数螺类,它们的外壳曲线都呈现出各种螺旋状;在植物中,则有紫藤、茑萝、牵牛花等缠绕的茎形成的曲线,菸草螺旋状排列的叶片,丝瓜、葫芦的触须,向日葵籽在盘中排列形成的曲线;甚至构成生命的主要物质——蛋白质、核酸及多糖等生物大分子也都存在螺旋结构,如人类遗传基因(DNA)中的双螺旋结构。其中,自然界中的砂盘虫化石,蛇盘绕起来形成的曲线等都可以构成阿基米德螺线。 螺线之所以在生命体中广泛存在,是由于螺线的若干优良性质所确定。而这些优良性质直接或间接地使生命体在生存斗争中获得最佳效果。由于在柱面内过柱面上两点的各种曲线中螺线长度最短,对于茑萝、紫藤、牵牛花等攀缘植物而言,如何用最少的材料、最低的能耗,使其茎或藤延伸到光照充足的地方是至关重要的。而在各种曲线中,螺线就起到省材、节约能量消耗的作用,在相同的空间中使其叶子获取较多的阳光,这对植物光合作用尤为重要,像菸草等植物轮状叶序就是利用形成的螺旋面能在狭小的空间中(其他植物的夹缝中)获得最大的光照面积,以利于光合作用。形成螺线状的某些物体还有一种物理性质,即像弹簧一样具有弹性(或伸缩性)。在植物中丝瓜、葫芦等茎上的拟圆柱螺线状的触须就是利用这个性质,能使其牢固地附着其他植物或物体上。即使有外力(如风等)的作用,由于螺线状触须的弹性(或伸缩性),使得纤细的触须不易被拉断,并且当外力消失后,其弹性(或伸缩性)又能保证茎叶能恢复到原来的位置。螺旋线对于生活在水中的大多数螺类软体动物也是十分有意义的。观察螺类在水中的运动方式,通常是背负著外壳前进,壳体直径较粗大的部分在前,螺尖在后。当水流方向与运动方向相反时,水流沿着壳体螺线由直径较大的部分旋转到直径较小的部分直到螺尖。水速将大大减小,这样位于壳体后水的静压力将大于壳体前端的静压力。在前后压力差的作用下,壳体将会自动向前运动。这样一来,来自水流的阻力经锥状螺线的转化变为前进的动力。除此而外,分布在螺类外壳上的螺线像一条肋筋,大大增加了壳体的强度,也分散了作用在壳体上的水压。

更多信息

阿基米德 螺线 ,亦称“等速螺线”。当一点P沿动射线OP一等速率运动的同时,这射线又以等角速度绕点O旋转,点P的轨迹称为“阿基米德螺线”。 它的极坐标方程为:r = aθ 这种螺线的每条臂的距离永远相等于 2πa。 笛卡尔坐标 方程式为: r=10*(1+t) x=r*cos(t * 360) y=r*sin(t * 360) z=0 一动点沿一直线作等速移动的同时,该直线又绕线上一点O作等角速度旋转时,动点所走的轨迹就是阿基米德涡线。直线旋转一周时,动点在直线上移动的距离称为导程用字母S表示。 阿基米德涡线在凸轮设计、车床卡盘设计、涡旋弹簧、螺纹、蜗杆设计中套用较多。阿基米德涡线画法如图: (1)先以导程S为半径画圆,再将圆周及半径分成相同的n等分,图中n=8; (2)以O为圆心,作各同心圆弧于相应数字的半径相交,得交点Ⅰ、Ⅱ、Ⅲ、…Ⅷ各点,即为阿基米德涡线上的点; (3)依次光滑连线各点,即得阿基米德涡线。 与希皮亚斯割圆曲线相类似,可以用来化圆为方。不过,后者也是阿基米德自己完成的。如图一,螺线P=aθ的极点为 O ,第一圈终于点 A 。以 O 为圆心, a 为半径作圆,则圆周长等于= OA 。这样,阿基米德轻易解决化圆为方问题。 稍迟于阿基米德的阿波罗尼斯用圆柱螺线解决了化圆为方问题,如图4-2-27所示。设圆 O 是一直圆柱之底面, A 是螺旋线之起始点。螺旋线在其上任一点 P 处的切线交底所在平面于 T 。则 PT 在底平面上的投影 BT 与 AB 相等。因此,当 P 点恰好为 A 点所在母线上离A最近的点时, TB 与圆周长相等。从而化圆为方问题得以解决。 图一 在阿波罗尼斯之后,机械师卡普斯(Carpus)也解过化圆为方问题。他所用的“双重运动曲线”今已失传,据数学史家唐内里(P. Tannery, 1843~1904)推测,它是摆线,亦即卡普斯是通过将圆沿直线滚动一周获得圆周长的(图二)。文艺复兴时期,义大利著名艺术大师达·文西(1452~1519)为化圆为方问题所吸引,并获巧妙方法。如图4-2-29,设圆半径为 R ,以圆为底作高为R/2的圆柱,然后将圆柱在平面上滚动一周,得矩形。将矩形化方,即完成化圆为方。 图二 以上我们看到,希腊人很早就意识到(但未能证明)三大难题不能以尺规在有限步骤内完成。但它们看似如此简单,以至希腊人未能抵制诱惑;他们不断寻求尺规以外的方法,结果导致圆锥曲线、割圆曲线、蚌线、蔓叶线和螺线等高次曲线和超越曲线的相继发现。三大难题使一代又一代希腊数学家显示了非凡的聪明才智,并深刻影响了希腊几何的整个发展过程。 三大难题的魅力并未随希腊文明的沦亡而消失。事实上,从希腊以后特别是欧洲文艺复兴时期以来直到本世纪,对于它们的研究从未停止过。 1837年,年轻的法国数学家万采尔(P. L. Wantzel,1814~1848)证明了三等分角和倍立方尺规作图之不可能性。1882年,德国数学家林德曼(C. Lindemann, 1852~1938)证明了π的超越性,从而证明了化圆为方的尺规作图之不可能性。以后数学家们又还建立了两条一般定理: 定理1 任何可用尺规由已知单位长度作出的量必为代数数; 定理 2 若一有理系数三次方程没有有理根,则它的根不可能用尺规由一给定单位长度作出。

螺旋线方程是什么?

螺旋线方程计算公式=n×{√b^2+[π×(D-2×15)]^2}+2×π×(D-2×15)+2×6.25×d。螺旋线(A>0,ω>0)的单调性问题:由于sinz单调递增区间是[2kπ-π/2,2kπ+π/2]. k∈Z, 令z=ωx+φ,则sin(ωx+φ)的单调递增区间是2kπ-π/2≤ωx+φ≤2kπ+π/2. k∈Z。螺旋线由于sinz单调递减区间是[2kπ+π/2,2kπ+3π/2]. k∈Z, 令z=ωx+φ, 则sin(ωx+φ)的单调递减区间是2kπ+π/2≤ωx+φ≤2kπ+3π/2. k∈Z。圆内螺旋线:在固定的大圆中内切一个运动的小圆,在小圆滚动的过程中,其上一个定点所形成的轨迹,,即为圆内螺线。该点会随着两圆半径比值的不同而出现不同轨迹。参数方程:x=cosθ+[cos(nθ)]/ny=sinθ-[sin(nθ)]/n。特别地,当小圆半径等于大圆的一半时,小圆每一点的轨迹都是大圆的一条直径;当小圆半径等于大圆的四分之一时,形成的轨迹则是星形线。
2023-08-14 23:06:111

螺旋线的参数方程,

螺旋线(Helical curve) (此为圆锥螺旋线) 建立环境:PRO/E;圆柱坐标(cylindrical) r=t theta=10+t*(20*360) z=t*3 */10—在圆柱坐标中起始位置与极轴夹角,20—螺旋圈数,3—螺旋线总高!/* 笛卡儿坐标下的螺旋线 (圆柱螺旋线) x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t */4—圆柱螺旋线半径,5—圈数,10—螺旋线总高!/*
2023-08-14 23:06:241

阿基米德螺线方程

阿基米德螺线的标准极坐标方程:r(θ)=a+b(θ)。b是阿基米德螺旋线系数,mm/°,表示每旋转1度时极径的增加(或减小)量;θ是极角,单位为度,表示阿基米德螺旋线转过的总度数;a是当θ=0°时的极径,mm。 阿基米德螺线介绍 阿基米德螺线(亦称等速螺线),得名于公元前三世纪希腊数学家阿基米德。阿基米德螺线是一个点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动而产生的轨迹。阿基米德在其著作《螺旋线》中对此作了描述。 阿基米德螺线几何画法 1.阿基米德螺线的几何画法 以适当长度(OA)为半径,画一圆O;作一射线OA;作一点P于射线OA上;模拟点A沿圆O移动,点P沿射线OA移动;画出点P的轨迹;隐藏圆O、射线OA&点P;即可得到螺线。 2.阿基米德螺线的简单画法 有一种最简单的方法画出阿基米德螺线,用一根线缠在一个线轴上,在其游离端绑上一小环,把线轴按在一张纸上,并在小环内套一支铅笔,用铅笔拉紧线,并保持线在拉紧状态,然后在纸上画出由线轴松开的线的轨迹,就得到了阿基米德螺线。
2023-08-14 23:06:301

螺旋线方程 长度 十万火急

x^2+y^2=r^2; z=k·[2π+arctan(y/x)]; 其中r为螺旋半径; k·2π是每旋转一周在z轴上上升的距离; 则k,r均为常数. // 先找到极坐标方程形式: r=r0+k·θ k和r0为常数.k为曲率;ro为初始的半径. 则θ=(r-r0)/k; 则cosθ=cos[(r-r0)/k]; r·cosθ=r·cos[(r-r0)/k].① 设(x0,y0)为螺旋的初始点,(a,b)为中心圆的圆心,则(x0-a)^2+(y0-b)^2=r0^2. 螺旋线上一点(x,y)到(a,b)距离为r.于是(x-a)^2+(y-b)^2=r^2. 而x-a=r·cosθ;y-b=r·sinθ. ∴代入式①得: x-a=√[(x-a)^2+(y-b)^2]·cos[(√[(x-a)^2+(y-b)^2] -r0)/k]. 则x=a+√[(x-a)^2+(y-b)^2]·cos[(√[(x-a)^2+(y-b)^2] -r0)/k] 就是以 中心在(a,b),半径为r0的圆 为初始圆的等距螺旋线的方程. 或者写成: y=b+√[(x-a)^2+(y-b)^2]·sin[(√[(x-a)^2+(y-b)^2] -r0)/k].
2023-08-14 23:06:371

阿基米德螺线的方程式是什么?

  阿基米德螺旋线参数方程:  1)极坐标参数方程为:r = aθ    2)笛卡尔坐标下的参数方程式为:  r=x*(1+t)  x=r*cos(t * 360)  y=r*sin(t *360)  z=0  阿基米德螺线(阿基米德曲线) ,亦称“等速螺线”。当一点P沿动射线OP以等速率运动的同时,该射线OP又以等角速度绕点O旋转,点P的轨迹称为“阿基米德螺线”。
2023-08-14 23:06:441

阿基米德螺线方程是怎样的?

阿基米德螺线的平面笛卡尔坐标方程式为:阿基米德螺线(亦称等速螺线),得名于公元前三世纪希腊数学家阿基米德。阿基米德螺线是一个点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动而产生的轨迹。所谓阿基米德螺线,是指一个动点匀速离开一个定点的同时又以固定的角速度绕该定点转动而产生的轨迹。其中,定点就是位置固定的点,不会移动。动点就是位置会发生移动的点。匀速,就是均匀的速度。角速度定义了一个物体绕圆心转动的速度,它的单位是弧度/秒。角速度,也就是一个物体单位时间内所走过的弧度。一圈是360度,在数学中我们记为2π,而弧度就等于是360/2π,约57度左右。如果角速度等于2π弧度/秒,说明它正好每秒绕圆心转一圈。扩展资料自然界中的螺线-动物界:生活在水中的大多数螺类软体动物在水中的运动方式,通常是背负着外壳前进,壳体直径较粗大的部分在前,螺尖在后。当水流方向与运动方向相反时,水流沿着壳体螺线由直径较大的部分旋转到直径较小的部分直到螺尖。水速将大大减小,这样位于壳体后水的静压力将大于壳体前端的静压力。在前后压力差的作用下,壳体将会自动向前运动。这样一来,来自水流的阻力经锥状螺线的转化变为前进的动力。甚至构成生命的主要物质——蛋白质、核酸及多糖等生物大分子也都存在螺旋结构,如人类遗传基因(DNA)中的双螺旋结构。参考资料来源:百度百科-阿基米德螺线
2023-08-14 23:06:571

阿基米德螺线的方程式

阿基米德螺线的极坐标方程式为:其中 a 和 b 均为实数。改变参数 a相当于旋转螺线线,而参数 b 则控制相邻两条曲线之间的距离。阿基米德螺线的平面笛卡尔坐标方程式为:      从笛卡尔坐标系到极坐标系的变换:    ,从极坐标系到笛卡尔坐标系的变换:
2023-08-14 23:07:201

欧拉螺旋曲线参数方程

k(t)=2t。欧拉螺旋曲线参数方程是k(t)=2t,这个曲线的参数形式是以菲涅耳积分表达,欧拉还得到其展开式。欧拉螺线也叫羊角螺线和回旋曲线。该曲线开始于原点,以零曲率零斜率向两边延伸,曲率随着其曲线的长度增长而增长。
2023-08-14 23:07:321

阿基米德螺线方程怎样换成参数方程

r=αφ是阿基米德螺线极坐标方程
2023-08-14 23:07:523

请问对数螺线参数方程。。。

阿基米德螺线、对数螺线、双曲螺线……还“等”?二维螺线费马螺线……还“...”?各曲线遵循的方程也不给,还要求直接发邮箱?……就你这种问法,500分也不会有人来回答的。参数作图的指令是parametricplot,剩下的你自己看帮助吧。
2023-08-14 23:08:382

螺旋线方程的介绍

螺旋线方程,是一种数学函数方程。
2023-08-14 23:08:451

求圆锥螺线方程

让我思考一下
2023-08-14 23:09:121

求对数数螺线ρ=e^θ在点(ρ,θ)=(e^(π/2),π/2)处的切线的直角坐标方程。如题 谢谢了

把螺线方程改为参数方程:x=sinθe^θ,y=cosθe^θ, 所以点(e^(π/2),π/2)的直角坐标为(0,e^(π/2)),所以y"=-1 所以切线方程为y-e^(π/2)=-(x-0),即x+y=e^(π/2) 望楼主能采纳哦。
2023-08-14 23:09:331

求圆锥螺旋线方程

求圆锥螺旋线方程 已知圆锥顶半角γ,底半径R,请给出自底圆开始往顶部走的定倾角α螺旋线参数方程。优先圆柱坐标系,笛卡尔坐标系也可以。注:1.请注意初始条件,不要从锥顶开始往锥底走的;2.注意不是... 已知圆锥顶半角γ,底半径R...
2023-08-14 23:09:413

阿基米德螺线公式?

阿基米德螺线(阿基米德曲线) ,亦称“等速螺线”。当一点P沿动射线OP以等速率运动的同时,这射线有以等角速度绕点O旋转,点P的轨迹称为“阿基米德螺线”。其首次由阿基米德在著作《论螺线》中给出了定义  它的极坐标方程为:r = aθ   这种螺线的每条臂的距离永远相等于 2πa。  笛卡尔坐标方程式为:  r=10*(1+t)  x=r*cos(t*360)  y=r*sin(t*360)  z=0
2023-08-14 23:09:551

在阿基米德螺线的笛卡尔坐标中参数方程r=x*(1+t)是什么含义

它的极坐标方程为:r = aθ 这种螺线的每条臂的距离永远相等于 2πa。 笛卡尔坐标方程式为:  r=10*(1+t) x=r*cos(t*360) y=r*sin(t*360) z=0 t就是时间!!!
2023-08-14 23:10:041

二维螺旋线的参数方程

cosxaθ=sinyaθ=zb。螺旋线的参数方程为已知螺旋线的参数方程为cosxaθ=sinyaθ=zb。螺旋线的参数方程,绘制曲线x=t*sint,y=t*cost总结plot与fplot的函数调用,注意点乘和点除都是矩阵对应元素的相乘与相除。
2023-08-14 23:10:111

对数螺线的方程:r=ae^(bθ)中,a和b是什么意思?

这个可以理解成以原点为轴心,画圆,其中圆的半径越来越大形成的一个图形,类似一组螺旋线。 这个方程写成X,Y的形式:x=rcosθ,y=rsinθ(r=ae^(bθ),θ取负无穷到正无穷)
2023-08-14 23:10:292

圆锥螺旋线参数方程

圆锥螺旋线方程 设某一底圆半径为Rb,锥度为T的圆锥(后称之为基圆锥)面上有一点M,当M点沿圆锥面作螺旋运动时,则M点的轨迹为一条圆锥螺旋线.如果M的起点M0的Z坐标为Z0(参见图1),那么M点的圆锥螺旋线方程可表示为: 图1 圆锥螺旋线形成 (1) 式中: P——螺距; θ——螺旋运动角参变量; β——圆锥面半顶角. http://cache.baidu.com/c?word=%D4%B2%D7%B6%3B%C2%DD%D0%FD%3B%CF%DF%3B%B7%BD%B3%CC&url=http%3A//yomi%2Evicp%2Enet/wf/%7Ekjqk/jxsj/jxsj99/jxsj9901/990109%2Ehtm&b=0&a=135&user=baidu
2023-08-14 23:10:381

2求螺旋线 x=cost,y=sint,z=sin/(4) 已知它在每一点的线密度等于该之向 的长

螺旋线的参数方程为 x = cos(t), y = sin(t), z = sin(t)/4,其中 t 是参数。要求每一点的线密度等于该线段的长度,我们可以计算每一点的线段长度,然后令线密度等于线段长度。设两个相邻点在参数 t 的值分别为 t1 和 t2,它们对应的坐标分别为 (x1, y1, z1) 和 (x2, y2, z2)。那么线段长度可以使用以下公式计算:线段长度 = sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)由于线密度等于线段长度,我们可以将上述公式改写为:线密度 = sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)将螺旋线的参数方程带入上式,并计算差值,即可得到线密度。希望这能帮到您!如有其他问题,请随时提问。
2023-08-14 23:11:051

求球面螺旋线方程的表达式

球面螺旋线采用球坐标系方程:rho=4 ,theta=t*180 ,phi=t*360*204—球半径。20—圈数。180—整个球(如90就半球了)
2023-08-14 23:11:121

环形螺旋线(圆环形弹簧)的笛卡尔方程

....一般的螺旋形方程好像就超级复杂了...圆环状的真没见过...下面这是一般的螺旋形方程,你可以常识在上面进行推导....比如xy界面形状,以及z坐标的位置...因为太复杂了无能无力了...
2023-08-14 23:11:191

圆柱螺旋线的参数方程

圆柱螺旋线参数方程为式中θ=ωt, ω为角速度, h 称为螺距, β称为螺旋角,式中对右螺旋线取正号, 对左螺旋线取负号. 如果以弧长s为参数, 则其方程为 图2
2023-08-14 23:11:391

求个螺旋线的函数方程额。数学帝请指教

没有看到题目
2023-08-14 23:12:103

绘制螺旋线的公式是什么?

阿基米德螺旋线阿基米德螺旋线的标准极坐标方程为   ρ=at+P0  式中:  a—阿基米德螺旋线系数,mm/°,表示每旋转1度时极径的增加(或减小)量;  t—极角,单位为度,表示阿基米德螺旋线转过的总度数;  ρo—当t=0°时的极径,mm。  实例  一个具有阿基米德螺旋线的凸轮,点P1至点P2为第一段阿基米德螺旋线,点P3至点P4为第二段阿基米德螺旋线。  1.绘图  1)作圆C1和C2  单击“基本曲线”按钮,在弹出的功能工具栏菜单中单击“圆”按钮,选立即菜单中1:圆心_半径,提示圆心点时,输0,0(回车),提示输入半径时,输10(回车)作出R=10的圆C1,提示输入半径时,输12(回车)作出R=12的圆C2,按鼠标右键结束。因为图形尺寸太小,为了看得更清楚,可将显示的图形放大至屏幕大小。单击屏幕上方常用工具栏中的“动态缩放”按钮,按住鼠标左键,从屏幕下方向上方推动光标时,图形随之放大。  2)作点P1至点P2之间的阿基米德螺旋线  作图前必需先算出这段阿基米德螺旋线条数a和当极角t=0°时的极径ρo。  (1)计算点P1和点P2之间的阿基米德螺旋线系数aP1点的极径为10,P2点的极径为12,P1至P2点转过90°,每转过1度时极径的增大量就是a,故该段的阿基米德螺旋线系数为  a=(12-10)÷90=0.02222mm/° (2)计算当极角t=0°(即X轴正向)时的极径P0P1点(极角为180°)时的极径P180=10mm,极角每减小1度时极径减小a=0.02222mm/°,当极角减小至t=0°时的极径为P0,计算如下P0=10-180°×a=10-180°×0.02222=6mm  (3)起始角和终止角由图8-1中可以直接看出,这段阿基米德螺旋线的起始角为180°,终止角为270°。  (4)绘图单击“高级曲线”按钮,在弹出的功能工具栏菜单中单击“公式曲线”按钮,弹出如图8-2所示的公式曲线对话框,根据图形已知数据特点,应选极坐标系,用光标单击极坐标系前面的小白圆,出现一小黑点,单位选角度,参变量名仍用t表标极角的角度,起始值即起始角输180,终止值即终止角输270,公式名可输P1—P2公式输为P=0.0222222*t+6单击“预显”公式曲线对话框中出现P1至P2两点间的这段阿基米德螺旋线。如图8-2所示,单击“确定”按钮,移动光标时这条绿色的阿基米德螺旋线随光标移动,提示曲线定位点时,输0,0(回车),在P1至P2点之间作出了一条白色阿基米德螺旋线。  3)作点P3至点P4之间的另一段阿基米德螺旋线  (1)计算点P1至点P2之间的阿基米德螺旋线系数aP3点的极径为12,P4点的极径为15,P3点至P4点之间转过45°,故P3点至P4点间的阿基米德螺旋线系数为  a=(15-12)÷45=0.0666666mm/°  (2)计算极角t=0°时的极径P0  P3点(极角t=45°)的极径P45=12mm,极角每减小1度时极径减小a=0.0666666mm/°,当极角减小至t=0°时的极径为P0,计算如下P0=12-45°×a=12-45°×0.0666666=9mm  (3)起始角和终止角  由图中可以直接看出P3至P4点这段阿基米德螺旋线的起始角为45°,终止角为90°。
2023-08-14 23:12:191

阿基米德螺线r=2θ上从θ=0到θ=2π的一段弧长

qaq
2023-08-14 23:12:464

求螺旋线x=2cosθ,y=2sinθ,z=θ在点p0(2,0,2π)处的切线和法平面

x" = -2sinθ,y " = 2cosθ,z" = 1,当 θ = 2π 时得切线方向向量(0,2,1),因此切线方程 (x-2)/0 = (y-0)/2 = (z-2π)/1,法平面方程 2(y-0)+(z-2π) = 0 .
2023-08-14 23:13:281

阿基米徳螺线上某点处的切线方程如何求

阿基米德螺线的极坐标方程为:p=aθ化为直角坐标参数方程,用参数方程的求导法来求切线:x=pcosθ=aθcosθy=psinθ=aθsinθdx/dθ=a(cosθ-θsinθ)dy/dθ=a(sinθ+θcosθ)则dy/dx=(sinθ+θcosθ)/(cosθ-θsinθ)所以在θ=t时的切线方程为:y=(sint+tcost)/(cost-tsint)*(x-atcost)+atsint
2023-08-14 23:13:371

将极坐标ρ=3θ转化成直角坐标方程

ls正解 螺旋线
2023-08-14 23:14:253

数学,这个是什么?有公式吗?

羊角螺线(clothoid),又称欧拉螺线(Euler spiral)积分形式为的曲线,其中 、 为Fresnel积分:上面参数方程的参数 ,也是螺线于该点的曲率: 。两个螺线的中心位于Fresnel积分由于此螺线的曲率与长度成正比,故常用于公路工程或铁路工程,以缓和直路 线与圆曲路 线之间的曲率变化(向心力变化)。在光学上,近场衍射(菲涅尔衍射)中会应用Fresnel积分。性质1. 和 是 的奇函数。2. 和 是整函数。3.利用以上的幂级数展开式,可以把Fresnel积分扩展到复数范围,它是解析函数。Fresnel积分可以用误差函数来表示:4. 和 所定义的积分不能表示为初等函数。当 趋于无穷大时,函数的值为:
2023-08-14 23:14:392

阿基米德螺旋线

阿基米德螺线的极坐标方程是r=aθ曲线长度s=∫根号(r^2+r"^2)dθ,θ是0到2π上的任意数值那么以上的定积分可以在这个范围之内任意取线段进行计算s=∫根号(r^2+r"^2)dθ=a^2∫根号(θ^2+1)dθ
2023-08-14 23:14:581

求螺旋线方程!

x^2+y^2=r^2;z=k·[2π+arctan(y/x)];其中r为螺旋半径;k·2π是每旋转一周在z轴上上升的距离;则k,r均为常数. //先找到极坐标方程形式:r=r0+k·θk和r0为常数.k为曲率;ro为初始的半径.则θ=(r-r0)/k;则cosθ=cos[(r-r0)/k];r·cosθ=r·cos[(r-r0)/k].①设(x0,y0)为螺旋的初始点,(a,b)为中心圆的圆心,则(x0-a)^2+(y0-b)^2=r0^2.螺旋线上一点(x,y)到(a,b)距离为r.于是(x-a)^2+(y-b)^2=r^2.而x-a=r·cosθ;y-b=r·sinθ.∴代入式①得:x-a=√[(x-a)^2+(y-b)^2]·cos[(√[(x-a)^2+(y-b)^2] -r0)/k].则x=a+√[(x-a)^2+(y-b)^2]·cos[(√[(x-a)^2+(y-b)^2] -r0)/k]就是以 中心在(a,b),半径为r0的圆 为初始圆的等距螺旋线的方程.或者写成:y=b+√[(x-a)^2+(y-b)^2]·sin[(√[(x-a)^2+(y-b)^2] -r0)/k].
2023-08-14 23:15:191

阿基米德螺旋线参数方程

标准阿基米德螺线
2023-08-14 23:15:285

阿基米德螺旋线坐标方程

它的极坐标方程为:r=aθ这种螺线的每条臂的距离永远相等于2πa。  笛卡尔坐标方程式为:  r=10*(1+t)  x=r*cos(t*360)  y=r*sin(t*360)  z=0
2023-08-14 23:16:142

阿基米德螺旋线参数方程

阿基米德螺线的平面笛卡尔坐标方程式为:阿基米德螺线(亦称等速螺线),得名于公元前三世纪希腊数学家阿基米德。阿基米德螺线是一个点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动而产生的轨迹。所谓阿基米德螺线,是指一个动点匀速离开一个定点的同时又以固定的角速度绕该定点转动而产生的轨迹。其中,定点就是位置固定的点,不会移动。动点就是位置会发生移动的点。匀速,就是均匀的速度。角速度定义了一个物体绕圆心转动的速度,它的单位是弧度/秒。角速度,也就是一个物体单位时间内所走过的弧度。一圈是360度,在数学中我们记为2π,而弧度就等于是360/2π,约57度左右。如果角速度等于2π弧度/秒,说明它正好每秒绕圆心转一圈。扩展资料自然界中的螺线-动物界:生活在水中的大多数螺类软体动物在水中的运动方式,通常是背负着外壳前进,壳体直径较粗大的部分在前,螺尖在后。当水流方向与运动方向相反时,水流沿着壳体螺线由直径较大的部分旋转到直径较小的部分直到螺尖。水速将大大减小,这样位于壳体后水的静压力将大于壳体前端的静压力。在前后压力差的作用下,壳体将会自动向前运动。这样一来,来自水流的阻力经锥状螺线的转化变为前进的动力。甚至构成生命的主要物质——蛋白质、核酸及多糖等生物大分子也都存在螺旋结构,如人类遗传基因(DNA)中的双螺旋结构。参考资料来源:百度百科-阿基米德螺线
2023-08-14 23:16:231

阿基米德螺旋线的极坐标方程

r:极径 ; θ:极角 ; a:常数函数的意义是:这个螺线的极径正比于极角。
2023-08-14 23:16:323

求螺线ρ=θ上点M0(π/2,π/2)处的切线方程

这不是个函数吗,怎么还能求出θ呀,根据x=ρcosθ=θcosθy=ρsinθ=θsinθ那么y"x=(dy/dθ)/(dx/dθ)=(sinθ+θcosθ)/(cosθ-θsinθ)在点(π/2,π/2)处,θ=π/2,带入y"x=-2/π所以切线为y-π/2=-(2/π)(x-π/2)整理后是(2/π)x+y=(π/2)+1你好像少写了后面那个1
2023-08-14 23:16:412

考研高数阿基米德等速螺线的方程怎么理解啊

阿基米德螺线的极坐标方程式为:其中a和b均为实数。改变参数a相当于旋转螺线线,而参数b则控制相邻两条曲线之间的距离。阿基米德螺线的平面笛卡尔坐标方程式为:从笛卡尔坐标系到极坐标系的变换:,从极坐标系到笛卡尔坐标系的变换:
2023-08-14 23:16:501

请教,螺旋线的参数方程

螺旋线(Helical curve) (此为圆锥螺旋线) 建立环境:PRO/E;圆柱坐标(cylindrical) r=t theta=10+t*(20*360) z=t*3 */10—在圆柱坐标中起始位置与极轴夹角,20—螺旋圈数,3—螺旋线总高!/* 笛卡儿坐标下的螺旋线 (圆柱螺旋线) x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t */4—圆柱螺旋线半径,5—圈数,10—螺旋线总高!/*
2023-08-14 23:17:271

阿基米德螺旋线的参数方程?

  阿基米德螺旋线参数方程:  1)极坐标参数方程为:r = aθ    2)笛卡尔坐标下的参数方程式为:  r=x*(1+t)  x=r*cos(t * 360)  y=r*sin(t *360)  z=0  阿基米德螺线(阿基米德曲线) ,亦称“等速螺线”。当一点P沿动射线OP以等速率运动的同时,该射线OP又以等角速度绕点O旋转,点P的轨迹称为“阿基米德螺线”。
2023-08-14 23:17:341

阿基米德螺线方程怎样换成参数方程

热心网友最快回答极坐标方程为:r=aθ这种螺线的每条臂的距离永远相等于2πa。笛卡尔坐标方程式为:r=10*(1+t)x=r*cos(t*360)=r*sin(t*360)z=0
2023-08-14 23:17:493

对数螺线的方程:r=ae^(bθ)中,

a,b均为常数
2023-08-14 23:17:561

阿基米德螺线直角坐标方程

极坐标方程:R =Aθ 从这个螺旋形的每个臂总是等于2πa。 直角坐标方程: R = 10 *(1 + T) X = R * COS(T * 360) = R * SIN(T * 360) > Z = 0
2023-08-14 23:18:041

proe中螺旋线的方程是什么

x=r*cos(t*360*n)x=r*sin(t*360*n)z=h*t式中,r为螺旋线半径,n为螺旋线圈数,h为螺旋线高度
2023-08-14 23:18:281

数学螺旋线的方程。。如题

这应该是心形线。
2023-08-14 23:18:371

等角螺线的表达式是什么

hdsh
2023-08-14 23:19:041

阿基米德螺旋线的极坐标方程为什么是r=aθ?3个字母各表示什么意义

螺旋线表示一个点绕原点以角速度θ做圆周运动的同时,向偏离原点的位置做平移运动。r表示当前点离圆心的距离,a是一个常数,可以理解为远离原点的线速度,θ是绕原点的角速度。可求得任意点的坐标位置x = r*cosθ=a*θ*cosθ ;y = r*sinθ =a*θ*sinθ ;
2023-08-14 23:19:192

圆锥螺旋线方程

圆锥螺旋线方程 设某一底圆半径为Rb,锥度为T的圆锥(后称之为基圆锥)面上有一点M,当M点沿圆锥面作螺旋运动时,则M点的轨迹为一条圆锥螺旋线。如果M的起点M0的Z坐标为Z0(参见图1),那么M点的圆锥螺旋线方程可表示为:图1 圆锥螺旋线形成 (1)式中: P——螺距; θ——螺旋运动角参变量; β——圆锥面半顶角。http://cache.baidu.com/c?word=%D4%B2%D7%B6%3B%C2%DD%D0%FD%3B%CF%DF%3B%B7%BD%B3%CC&url=http%3A//yomi%2Evicp%2Enet/wf/%7Ekjqk/jxsj/jxsj99/jxsj9901/990109%2Ehtm&b=0&a=135&user=baidu
2023-08-14 23:19:271

如何求得阿基米德螺线?

  阿基米德螺旋线参数方程:  1)极坐标参数方程为:r = aθ    2)笛卡尔坐标下的参数方程式为:  r=x*(1+t)  x=r*cos(t * 360)  y=r*sin(t *360)  z=0  阿基米德螺线(阿基米德曲线) ,亦称“等速螺线”。当一点P沿动射线OP以等速率运动的同时,该射线OP又以等角速度绕点O旋转,点P的轨迹称为“阿基米德螺线”。
2023-08-14 23:19:341

阿基米德螺线 极坐标方程转换成直角坐标方程

极坐标方程:R =Aθ从这个螺旋形的每个臂总是等于2πa。 直角坐标方程: R = 10 *(1 + T) X = R * COS(T * 360) = R * SIN(T * 360) > Z = 0
2023-08-14 23:19:471