- 苏州马小云
-
2012年高考考试说明(新课标)——数学(理)
Ⅳ.考试范围与要求
一、必考内容和要求
(1)集合
1.集合的含义与表示
(1) 了解集合的含义,体会元素与集合的属于关系.
(2) 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
2.集合间的基本关系
(1)理解集合之间包含与相等的含义,能识别给定集合的子集.
(2) 在具体情境中,了解全集与空集的含义.
3.集合的基本运算
(1) 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.
(2) 理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
(3) 能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.
(二)函数概念与基本初等函数Ⅰ
1.函数
(1) 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.
(2) 在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.
(3) 了解简单的分段函数,并能简单应用(函数分段不超过三段).
(4) 理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.
(5) 会运用基本初等函数的图像分析函数的性质.
2.指数函数
(1) 了解指数函数模型的实际背景.
(2) 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
(3) 理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.
(4) 体会指数函数是一类重要的函数模型.
3.对数函数
(1) 理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.
(2) 理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像.
(3) 体会对数函数是一类重要的函数模型;
(4) 了解指数函数 与对数函数 互为反函数.
4.幂函数
(1)了解幂函数的概念.
(2)结合函数
的图像,了解它们的变化情况.
5.函数与方程
结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.
6.函数模型及其应用
(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.
(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
(三)立体几何初步
1.空间几何体
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.
(3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.
(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).
2.点、直线、平面之间的位置关系
(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.
◆公理2:过不在同一条直线上的三点,有且只有一个平面.
◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
◆公理4:平行于同一条直线的两条直线互相平行.
◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.
理解以下判定定理.
◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.
◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.
理解以下性质定理,并能够证明.
◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.
◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.
◆垂直于同一个平面的两条直线平行.
◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.
(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.
(四)平面解析几何初步
1.直线与方程
(1)在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.
(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.
(3)能根据两条直线的斜率判定这两条直线平行或垂直.
(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
(5)能用解方程组的方法求两条相交直线的交点坐标.
(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
2.圆与方程
(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
(2)能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.
(3)能用直线和圆的方程解决一些简单的问题.
(4)初步了解用代数方法处理几何问题的思想.
3.空间直角坐标系
(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.
(2)会简单应用空间两点间的距离公式.
(五)算法初步
1.算法的含义、程序框图
(1)了解算法的含义,了解算法的思想.
(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
2.基本算法语句
了解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
(六)统计
1.随机抽样
(1)理解随机抽样的必要性和重要性.
(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.
2.用样本估计总体
(1)了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.
(2)理解样本数据标准差的意义和作用,会计算数据标准差(不要求记忆公式).
(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.
(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.
(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.
3.变量的相关性
(1)会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.
(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).
(七)概率
1.事件与概率
(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.
(2)了解两个互斥事件的概率加法公式.
2.古典概型
(1)理解古典概型及其概率计算公式.
(2)会计算一些随机事件所含的基本事件数及事件发生的概率.
3.随机数与几何概型
(1)了解随机数的意义,能运用模拟方法估计概率.
(2)了解几何概型的意义.
(八)基本初等函数Ⅱ(三角函数)
1.任意角的概念、弧度制
(1)了解任意角的概念和弧度制的概念.
(2)能进行弧度与角度的互化.
2.三角函数
(1)理解任意角三角函数(正弦、余弦、正切)的定义.
(2)能利用单位圆中的三角函数线推导出
α ,π± α 的正弦、余弦、正切的诱导公式,能画出
的图像,了解三角函数的周期性.
(3)理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大值和最小值以及与 x 轴交点等).理解正切函数在区间
)内的单调性.
(4)理解同角三角函数的基本关系式:
(5)了解函数
的物理意义;能画出
的图像,了解参数
对函数图像变化的影响.
(6)体会三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.
(九)平面向量
1.平面向量的实际背景及基本概念
(1)了解向量的实际背景.
(2)理解平面向量的概念和两个向量相等的含义.
(3)理解向量的几何表示.
2.向量的线性运算
(1)掌握向量加法、减法的运算,并理解其几何意义.
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.
(3)了解向量线性运算的性质及其几何意义.
3.平面向量的基本定理及坐标表示
(1)了解平面向量的基本定理及其意义.
(2)掌握平面向量的正交分解及其坐标表示.
(3)会用坐标表示平面向量的加法、减法与数乘运算.
(4)理解用坐标表示的平面向量共线的条件.
4.平面向量的数量积
(1) 理解平面向量数量积的含义及其物理意义.
(2) 了解平面向量的数量积与向量投影的关系.
(3) 掌握数量积的坐标表达式,会进行平面向量数量积的运算.
(4) 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
5.向量的应用
(1)会用向量方法解决某些简单的平面几何问题.
(2)会用向量方法解决简单的力学问题与其他一些实际问题.
(十)三角恒等变换
1.两角和与差的三角函数公式
(1) 会用向量的数量积推导出两角差的余弦公式.
(2) 会用两角差的余弦公式推导出两角差的正弦、正切公式.
(3) 会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.
2.简单的三角恒等变换
能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).
(十一)解三角形
1.正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
2.应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
(十二)数列
1.数列的概念和简单表示法
(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).
(2)了解数列是自变量为正整数的一类特殊函数.
2.等差数列、等比数列
(1) 理解等差数列、等比数列的概念.
(2) 掌握等差数列、等比数列的通项公式与前n项和公式.
(3) 能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.
(4) 了解等差数列与一次函数、等比数列与指数函数的关系.
(十三)不等式
1.不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
2.一元二次不等式
(1) 会从实际情境中抽象出一元二次不等式模型.
(2) 通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.
(3) 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
3.二元一次不等式组与简单线性规划问题
(1) 会从实际情境中抽象出二元一次不等式组.
(2) 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
(3) 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
4.基本不等式:
(1) 了解基本不等式的证明过程.
(2) 会用基本不等式解决简单的最大(小)值问题.
(十四)常用逻辑用语
(1) 理解命题的概念.
(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.
(3) 理解必要条件、充分条件与充要条件的意义.
(4)了解逻辑联结词“或”、“且”、“非”的含义.
(5) 理解全称量词与存在量词的意义.
(6) 能正确地对含有一个量词的命题进行否定.
(十五)圆锥曲线与方程
(1) 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.
(2) 掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质(范围、对称性、定点、离心率).
(3) 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质(范围、对称性、定点、离心率、渐近线).
(4) 了解曲线与方程的对应关系
(5)理解数形结合的思想
(6)了解圆锥曲线的简单应用.
(十六)空间向量与立体几何
(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.
(2) 掌握空间向量的线性运算及其坐标表示.
(3) 掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线与垂直.
(4) 解直线的方向向量与平面的法向量.
(5) 能用向量语言表述线线、线面、面面的平行和垂直关系.
(6)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).
(7) 能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用.
(十七)导数及其应用
(1)了解导数概念的实际背景.
(2) 通过函数图像直观理解导数的几何意义.
(3) 根据导数的定义求函数
(c为常数)的导数.
(4) 能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.
u2022常见基本初等函数的导数公式和常用导数运算公式:
(C为常数);
n∈N+
;
(a>0,且a≠1);
(a>0,且a≠1).
u2022常用的导数运算法则:
法则1
.
法则2
.
法则3
(5)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
(6) 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).
(7)会用导数解决某些实际问题..
(8)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.
(9) 了解微积分基本定理的含义.
(十八)推理与证明
(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.
(2) 了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运“三段论”进行一些简单的演绎推理.
(3) 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.
(4) 了解反证法的思考过程和特点.
(5)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
(十九)数系的扩充与复数的引入
(1)理解复数的基本概念,理解复数相等的充要条件.
(2)了解复数的代数表示法及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对应的复数用代数形式表示.
(3)能进行复数代数形式的四则运算,了解两个具体复数相加、相减的几何意义.
(二十)计数原理
(1)理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.
(2)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.
(3)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.
(4)会用二项式定理解决与二项展开式有关的简单问题.
(二十一)概率与统计
(1) 理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列.
(2)了解超几何分布及其导出过程,并能进行简单的应用.
(3) 了解条件概率的概念,了解两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.
(4) 理解取有限个值的离散型随机变量均值、方差的概念,会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单问题.
(5) 借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.
(6)了解回归的基本思想、方法及其简单应用.
(7)了解独立性检验的思想、方法及其初步应用.
二、选考内容与要求
(一)几何证明选讲
(1)理解相似三角形的定义与性质,了解平行截割定理.
(2)会证明和应用以下定理:①直角三角形射影定理;②圆周角定理;③圆的切线判定定理与性质定理;④相交弦定理;⑤圆内接四边形的性质定理与判定定理;⑥切割线定理.
(二)坐标系与参数方程
(1)了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.
(2) 了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.
(3) 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.
(4)了解参数方程,了解参数的意义.
(5) 能选择适当的参数写出直线、圆和圆锥曲线的参数方程.
(三)不等式选讲
(1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:
∣a+b∣≤∣a∣+∣b∣;
∣a-b∣≤∣a-c∣+∣c-b∣;
(2)会利用绝对值的几何意义求解以下类型的不等式:
∣ax+b∣≤c;
∣ax+b∣≥c;
∣x-c+∣x-b∣≥a
(3)通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法
魔数师唐 希望对你有用!!!
圆锥曲线的参数方程
圆锥曲线的参数方程:1)直线参数方程:x=x+tcosθy=y+tsinθ(t为参数)2)圆的参数方程:x=x+rcosθy=y+rsinθ(θ为参数)3)椭圆参数方程:x=x+acosθy=y+bsinθ(θ为参数)4)双曲线参数方程:x=x+asecθy=y+btanθ(θ为参数)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)2023-08-12 22:50:022
圆锥曲线参数方程
圆锥曲线的参数方程:1)直线参数方程:x=X+tcosθy=Y+tsinθ(t为参数)2)圆的参数方程:x=X+rcosθy=Y+rsinθ(θ为参数)3)椭圆参数方程:x=X+acosθy=Y+bsinθ(θ为参数)4)双曲线参数方程:x=X+asecθy=Y+btanθ(θ为参数)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)2023-08-12 22:50:112
高中数学圆锥曲线公式定理
圆锥曲线包括椭圆,双曲线,抛物线1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P||PF1|+|PF2|=2a,(2a>|F1F2|)}。2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a,(2a<|F1F2|)}。3.抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。4.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。·圆锥曲线的参数方程和直角坐标方程:1)直线参数方程:x=X+tcosθy=Y+tsinθ(t为参数)直角坐标:y=ax+b2)圆参数方程:x=X+rcosθy=Y+rsinθ(θ为参数)直角坐标:x^2+y^2=r^2(r为半径)3)椭圆参数方程:x=X+acosθy=Y+bsinθ(θ为参数)直角坐标(中心为原点):x^2/a^2+y^2/b^2=14)双曲线参数方程:x=X+asecθy=Y+btanθ(θ为参数)直角坐标(中心为原点):x^2/a^2-y^2/b^2=1(开口方向为x轴)y^2/a^2-x^2/b^2=1(开口方向为y轴)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)直角坐标:y=ax^2+bx+c(开口方向为y轴,a>0)x=ay^2+by+c(开口方向为x轴,a>0)圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e·cosθ)其中e表示离心率,p为焦点到准线的距离。2023-08-12 22:50:181
圆锥参数方程 圆锥曲线参数方程题目
圆锥曲线的参数方程 1、椭圆的参数方程 x =a cos u03d5x 2y 2 由例42+2=1(a >b >0) 的一个参数方程为{(u03d5为参数) y =b sin u03d5a b 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 思考: 类比圆的参数方程中参数的意义,椭圆的参数方程中参数u03d5的意义是什么? (1)如下图,以原点为圆心,分别以a ,b (a >b >0)为半径作两个圆,点B 是大圆 半径OA 与小圆的交点,过点A 作AN ⊥ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,求当半径OA 绕点O 旋转时点M 的轨迹参数方程 . 设以ox 为始边,OA 为终边的角u03d5,点M 的坐标是(x , y ) ,那么点A 的横坐标为x , 点B 的纵坐标为y ,由点A , B 均在角u03d5的终边上,由三角函数的定义有 x =cos u03d5=a cos u03d5y =OB sin u03d5=b sin u03d5 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是{ x =a cos u03d5 (u03d5为参数) y =b sin u03d5 这是中心在原点O ,焦点在x 轴上的椭圆。 在椭圆的参数方程中,通常规定参数u03d5的范围是u03d5∈[0, 2π) u23a7x =b cos u03d5, u23a7x =a cos u03d5, 焦点在Y 轴u23a8焦点在X 轴u23a8 u23a9y =a sin u03d5. u23a9y =b sin u03d5. 练习1:把下列普通方程化为参数方程. 极坐标与参数方程 一、极坐标方程与直角坐标方程的互化 例1. 在直角坐标系xoy 中,以O 为极点,x 正半轴为极轴建立极坐标系,⊙O 1和⊙O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ.曲线C 的极坐标方程为ρcos(θ-M,N 分别为曲线C 与x 轴,y 轴的交点。 (1)写出曲线C 的直角坐标方程,并求M,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程; (3)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (4)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程; 二、参数方程的问题 例2. 在直角坐标系xoy 中,曲线C 1的参数方程为u23a8 π 3 ) =1, u23a7x =3cos αu23a9y =sin α (α为参数) ,以原点O 为极 点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin(θ+ π 4 ) =42. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程; (2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标. (3)若点Q (x , y ) 为曲线C 1上的动点,求x +y 的最大值和最小值. 跟踪训练2:已知直线l 的参数方程为:u23a8 u23a7x =-2+t cos α (t 为参数) ,以坐标原点为极点, u23a9y =t sin α x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sin θ-2cos θ. (Ⅰ)求曲线C 的参数方程;(Ⅱ)当α= 巩固练习:1. 在平面直角坐标系xoy 中,若 π 4 时,求直线l 与曲线C 交点的极坐标. u23a7x =t , u23a7x =3cos u03d5, l :u23a8(t为参数) 过椭圆C :u23a8u23a9y =t -a u23a9y =2sin u03d5(u03d5为参数) 的右顶点,则常数 a 的值为u23a7x =cos α xoy C 2. 在直角坐标系中,曲线1的参数方程为u23a8,(α为参数). 在极坐标系 y =1+sin αu23a9 (与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为ρ (cos θ-sin θ)+1=0,则C 1与C 2的交点个数为 圆锥曲线极坐标及参数方程练习题 一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中, 只有一项是符合题目要求的. 1.曲线u23a8 u23a7x =-2+5t . (t 为参数) 与坐标轴的交点是( ) y =1-2t u23a9 25 12 15 12 59 (,0) B .(0,) (,0) C .(0,-4) 、(8,0) (8,0) D .(0,) 、A .(0,) 2.把方程xy =1化为以t 参数的参数方程是( ). 1 u23a7u23a7x =sin t u23a7x =cos t u23a7x =tan t u23aax =t 2u23aau23aau23aaA .u23a8 B . C . D .111 u23a8u23a8u23a81 -y =y =y =u23aay =t 2u23aau23aau23aasin t cos t tan t u23a9u23a9u23a9u23a9 3.若直线的参数方程为u23a8 A . u23a7x =1+2t . (t 为参数) ,则直线的斜率为( ) u23a9y =2-3t 2233 B .- C . D .- 3322 4.点(1,2)在圆u23a8 u23a7x =-1+8cos θ 的( ). u23a9y =8sin θ B .外部 C .圆上 D .与θ的值有关 A .内部 1u23a7 u23aax =t + 5.参数方程为u23a8. t (t 为参数) 表示的曲线是( ) u23aau23a9y =2 A .一条直线 B .两条直线 C .一条射线 D .两条射线 6.两圆u23a8 u23a7x =-3+2cos θu23a7x =3cos θ 与u23a8的位置关系是( ). u23a9y =4+2sin θu23a9y =3sin θ C .相离 D .内含 A .内切 B .外切 7 .与参数方程为u23a8 u23a7u23aax =u23aau23a9y =t 为参数) 等价的普通方程为( ). y 2y 22 =1 B .x +=1(0≤x ≤1) A .x +44 2 y 2y 22=1(0≤y ≤2) D .x +=1(0≤x ≤1,0≤y ≤2) C .x +44 2 8.曲线u23a8 u23a7x =5cos θπ . (≤θ≤π) 的长度是( ) u23a9y =5sin θ3 A .5π B .10π C .5π10π D . 33 9.点P (x , y ) 是椭圆2x 2+3y 2=12上的一个动点,则x +2y 的最大值为( ). A . B . C D 1u23a7x =1+t u23aa2u23aa10 .直线u23a8(t 为参数) 和圆x 2+y 2=16交于A , B 两点, u23aay =-u23aau23a92 则AB 的中点坐标为( ). A .(3,-3) B .( C .-3) D .(3, u23a7x =4t 2 11.若点P (3,m ) 在以点F 为焦点的抛物线u23a8. (t 为参数) 上,则|PF |等于( ) u23a9y =4t A .2 B .3 C .4 D .5 u23a7x =-2+t 12.直线u23a8. (t 为参数) 被圆(x -3) 2+(y +1) 2=25所截得的弦长为( )y =1-t u23a9 A B .401 C D 4 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. t -t u23a7u23aax =e +e (t 为参数) 的普通方程为__________________. 13.参数方程u23a8t -t u23aau23a9y =2(e -e ) u23a7u23aax =-2(t 为参数) 上与点A (- 2,3) _______. 14 .直线u23a8u23aau23a9y =315.直线u23a8u23a7x =t cos θu23a7x =4+2cos α与圆u23a8相切,则θ=_______________. y =t sin θy =2sin αu23a9u23a9 2216.设y =tx (t 为参数) ,则圆x +y -4y =0的参数方程为____________________. 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) u23a7u23aax =1+t (t 为参数 ) 和直线l 2:x -y -=0的交点P 的坐标,及点P 求直线l 1:u23a8u23aau23a9y =-5+与Q (1,-5) 的距离. 18.(本小题满分12分) 过点P 作倾斜角为α的直线与曲线x 2+12y 2=1交于点M , N , 2 求|PM |u22c5|PN |的值及相应的α的值. 19.(本小题满分12分) 已知u2206ABC 中,A (-2,0), B (0,2),C (cosθ, -1+sin θ) (θ为变数) , 求u2206ABC 面积的最大值. 20.(本小题满分12分)已知直线l 经过点P (1,1), 倾斜角α= (1)写出直线l 的参数方程. (2)设l 与圆x +y =4相交与两点A , B ,求点P 到A , B 两点的距离之积. 22π6, 21.(本小题满分12分) 1t u23a7-t x =(e +e ) cos θu23aau23aa2分别在下列两种情况下,把参数方程u23a8化为普通方程: 1u23aay =(e t -e -t )sin θu23aau23a92 (1)θ为参数,t 为常数;(2)t 为参数,θ为常数. 22.(本小题满分12分) 已知直线l 过定点P (-3, -) 与圆C :u23a83 2u23a7x =5cos θ(θ为参数) 相交于A 、B 两点. u23a9y =5sin θ 求:(1)若|AB |=8,求直线l 的方程; (2)若点P (-3, -) 为弦AB 的中点,求弦AB 的方程. 322023-08-12 22:50:581
圆锥曲线 参数方程
原式化为:(x-3)^2+y^2=9令x-3=3cosθ y=3sinθ 所以这个方程的参数方程为:x=3+3cosθ y=3sinθ2023-08-12 22:51:061
请问圆锥曲线怎么化成参数方程? 曲线上点到直线的距离的最值怎么列式?
设圆锥曲线方程为x^2/a^2+y^2/b^2=1,这里a,b都是正数,不限制谁大,谁小。也就是说焦点在哪个轴上不知道。因为(cosφ)^2+(sinφ)^2=1,为了把x^2/a^2=(cosφ)^2 y^2/b^2=(sinφ)^2一定是x与cosφ对着,y与sinφ对着两边开方得x=acosφ y=bsina(φ为参数)这就是参数方程的来历。2023-08-12 22:51:161
高中数学 圆锥曲线的参数方程
1、椭圆斜率为3的弦中点的运动轨迹一定是在椭圆内啊,2、如果这个轨迹你求出来的是直线方程l,那么应该是该直线l在椭圆内的一段,即线段ab3、把该直线l与椭圆c联立,就是求这个线段ab的两个端点,实际上只要求出a<x<b,就可以由l确定ab了2023-08-12 22:51:362
高中圆锥曲线怎么用参数方程解?能举例说明什么情况下能用吗?最好有题目
椭圆x^2/a^2+y^2/b^2=1,a>b>0参数方程为x=acosψ y=bsinψ ψ为参数2023-08-12 22:51:461
圆锥曲线的方程或者参数方程是什么
圆锥曲线的极坐标方程p=ed/(1-ecost)表示离心率为e,焦点到相应准线距离为d的圆锥曲线方程.(1)当e=1时,极点在抛物线的焦点;(2)当e1时,极点在双曲线的右焦点,若p属于实数则表示双曲线,p属于正实数则表示双曲线右支;(3)当0<e<1,极点在椭圆的左焦点.(注:当极点与直角坐标原点重合,极轴与X轴正半轴重合时,圆锥曲线的方程只需利用互化公式转化可得到).2023-08-12 22:51:531
圆锥曲线中一些常见证明题的结论?
[编辑本段]圆锥曲线的参数方程和直角坐标方程 1)椭圆 参数方程:X=acosθ Y=bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 2)双曲线 参数方程:x=asecθ y=btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 3)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e×cosθ) 其中e表示离心率,p为焦点到准线的距离。 焦点到最近的准线的距离等于ex±a 圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a) 椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。 |PF1|=a+ex |PF2|=a-ex 双曲线: P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+ex P在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 圆锥曲线的切线方程:圆锥曲线上一点P(x0,y0)的切线方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y^2 即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2-y0y/b^2=1;抛物线:y0y=p(x0+x) 圆锥曲线中求点的轨迹方程 在求曲线的轨迹方程时,如果能够将题设条件转化为具有某种动感的直观图形,通过观察图形的变化过程,发现其内在联系,找出哪些是变化的量(或关系)、哪些是始终保持不变的量(或关系),那么我们就可以从找出的不变量(或关系)出发,打开解题思路,确定解题方法。2023-08-12 22:52:011
选修4-4:坐标系与参数方程已知在直角坐标系xOy中,圆锥曲线C的参数方程为x=4cosθy=4sinθ(θ为参数
(1)由圆锥曲线C的参数方程为x=4cosθy=4sinθ(θ为参数),消去参数θ化为x2+y2=16.由直线l经过定点P(2,3),倾斜角为π3.可得x=2+12ty=3+32t(t为参数)②(2)把②代入①得,t2+(2+33)t?3=0③设t1,t2是方程③的两个实根,则t1t2=-3∴|PA|?|PB|=|t1||t2|=|t1t2|=32023-08-12 22:52:081
圆锥曲线焦点弦的性质有那些?
圆锥曲线开放分类:数学、几何、椭圆、双曲线、抛物线圆锥曲线包括椭圆,双曲线,抛物线1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P||PF1|+|PF2|=2a,(2a>|F1F2|)}。2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a,(2a<|F1F2|)}。3.抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。4.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。·圆锥曲线的参数方程和直角坐标方程:1)直线参数方程:x=X+tcosθy=Y+tsinθ(t为参数)直角坐标:y=ax+b2)圆参数方程:x=X+rcosθy=Y+rsinθ(θ为参数)直角坐标:x^2+y^2=r^2(r为半径)3)椭圆参数方程:x=X+acosθy=Y+bsinθ(θ为参数)直角坐标(中心为原点):x^2/a^2+y^2/b^2=14)双曲线参数方程:x=X+asecθy=Y+btanθ(θ为参数)直角坐标(中心为原点):x^2/a^2-y^2/b^2=1(开口方向为x轴)y^2/a^2-x^2/b^2=1(开口方向为y轴)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)直角坐标:y=ax^2+bx+c(开口方向为y轴,a<>0)x=ay^2+by+c(开口方向为x轴,a<>0)圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e·cosθ)其中e表示离心率,p为焦点到准线的距离。2023-08-12 22:52:384
直线和圆锥曲线的参数方程
的参数方程2023-08-12 22:52:592
参数是一个什么东西呢?
一个变量。参数,也叫参变量,是一个变量。参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。它可以是一种变量,用来控制随其变化而变化的其它的量,简单来说,参数是可提供给我们参考的。适用于数学、计算机、物理等应用领域上。参数方程的用途主要有以下几个方面:1、求动点的轨迹,如果的关系不好找,我们引入参变量后,很容易找到与和与的等量关系式,消去参变量后即得动点轨迹方程。此时参数方程在求动点轨迹方程中起桥梁作用.2、可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.3、有些曲线参数方程的参变量有几何意义.若能利用参变量的几何意义解题,常会取得意想不到的效果.如利用直线标准参数方程中的几何意义解题,会使难题化易、繁题化简。2023-08-12 22:53:051
圆锥曲线参数方程的几何意义
没意义2023-08-12 22:53:216
圆锥曲线的所有定理 高中以上
圆锥曲线 圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。·圆锥曲线的参数方程和直角坐标方程:1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)直角坐标:y=ax+b 2)圆参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )直角坐标:x^2+y^2=r^2 (r 为半径)3)椭圆参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 14)双曲线参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)5)抛物线参数方程:x=2pt^2 y=2pt (t为参数)直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e·cosθ)其中e表示离心率,p为焦点到准线的距离。2023-08-12 22:53:561
圆锥曲线的特征?
·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e×cosθ) 其中e表示离心率,p为焦点到准线的距离。 焦点到最近的准线的距离等于ex±a 。圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a) 椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。 |PF1|=a+ex |PF2|=a-ex 双曲线: P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+ex P在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 圆锥曲线的光学性质: 1)椭圆:点光源在一个焦点上,光线通过另一个焦点。 2)双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。 3)抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯。2023-08-12 22:54:041
高中直线与圆锥曲线的参数方程应用问题
直线参数方程中,如果参数t在x,y中的系数的平方和为1,则参数t具有几何意义,即直线所通过的定点到参数t所对应点的有向线段长度为tt为正,表示有向线段方向与正方向相同,t为负,表示有向线段方向与正方向相反。线段的长度为有向线段长度的绝对值,即t的绝对值将参数方程代入圆方程,得t^2+2(1+√3)t-8=0该方程的两个根t1、t2即为有向线段PA,PB的长度。由韦达定理,t1*t2=-8,其相反数(绝对值)即为所求。2023-08-12 22:54:141
过圆锥曲线上任意一点的切线方程是什么?
写出圆锥曲线的方程,或者求导,或者用”蝶儿他“等于0求出斜率,再把那点坐标带进去就行了。2023-08-12 22:54:232
如图,求圆锥曲线方程?
用截面法来求解!∭dxdydz=∫(0,1)dz∬dxdy显然,∬dxdy为曲面上的截面面积x^2+y^2=z则截面为半径为√z的圆,则∬dxdy=πz则原式=∫(0,1) πzdz=π/2z^2|(0,1)=π/22023-08-12 22:54:302
直线,圆,圆锥曲线参数方程中参数的意义,举例说明
椭圆是x2/a+y2/b=1,c2=a2-b2不妨画一个椭圆,你可以画成像个水平放置的鸡蛋的形状,那么,a就表示长半轴长,b表示短半轴长,c表示焦点到原点的距离。抛物线是y2=2px,p没有什么确实的几何意义,不过,p的正负可以决定开口方向。双曲线是x2/a-y2/b=1,a2=b2+c2a表示实轴长,b表示虚轴长。a和b可以确定双曲线的渐近线。2023-08-12 22:54:391
这道圆锥曲线题能不能用参数方程解?
1╱(1-cosa)=2╱(1+cosa)~k=二倍根号二,2023-08-12 22:54:582
圆锥曲线的极坐标方程
圆锥曲线的极坐标方程1、圆锥曲线是平面上的曲线。2、极坐标表示法:在直角坐标系中,用直线与平面的夹角作为极轴,把点到直线上各点的距离作为极距(即到定点O的距离),以点P为圆心、极点O为焦点的圆锥曲线称为圆锥曲线。3、设P(x)是过定点O的任意一点p(x0)的轨迹,那么P(x)就是该点在直角坐标系中所对应的极坐标位置X=a+b-c。4、当A0时,有X=a+b-c;B0时X=a+b;C0时 X= a+ b + c - d 。5、若已知抛物线y=2px/2,且p>0,则可知Y=2px*cos2α/2,其中α<0。(1) 椭圆参数方程1 椭圆标准方程2 标准椭圆的焦点在E上3 标准椭圆的准线通过原点4 准线长L=(1/2π*e^2/2)/2 (e^2/2) = 2 L/(2-1) = 1/4 L / 2/3 l / 4/3 l / 3/8 l * 5/8 L / 8/16 l ,其中l 为常数项。注意:如果E和L不同的话,应分别计算后再相减2023-08-12 22:55:061
数学选修讲什么
【2-2】第一章 导数及其应用 第二章 推理与证明 第三章 数系的扩充与复数的引入 【2-3】1.离散型随机变量及分布列 2.二项分布及其应用 3.离散型随机变量均值与方差 4.正态分布 【4-4】第一讲 坐标系 1.平面直角坐标系 2.极坐标系 3.简单曲线的极坐标系 4.柱坐标系与球坐标系 第二讲 参数方程 1.曲线的参数方程 2.圆锥曲线的参数方程 3.直线的参数方程 4.渐近线与摆线 【4-5】 第一讲 不等式和绝对值不等式 1.不等式 2.绝对值不等式 第二讲 证明不等式的基本方法 1.比较法 2.综合法与分析法 3.反证法与放缩法 第三讲 柯西不等式与排序不等式 1.二维形式的柯西不等式 2.一般形式的柯西不等式 3.排序不等式 第四讲 数学归纳法证明不等式 1.数学归纳法 2.用数学归纳法证明不等式 打这么久也不容易,是吧.如要再详细一点再联系.2023-08-12 22:56:001
什么是椭圆的参数方程
椭圆的参数方程x=acosθ,y=bsinθ。(一个焦点在极坐标系原点,另一个在θ=0的正方向上)r=a(1-e^2)/(1-ecosθ)(e为椭圆的离心率=c/a)求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解x=a×cosβ, y=b×sinβ a为长轴长的一半相关性质由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥曲线(也称圆锥截线)。例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。设两点为F1、F2对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2由定义1知:截面是一个椭圆,且以F1、F2为焦点用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆例:已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3.1.求椭圆C的方程.2.直线l:y=x+1与椭圆交于A,B两点,P为椭圆上一点,求△PAB面积的最大值.3.在⑵的基础上求△AOB的面积.一、分析短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义),可知a=√3,又c/a=√6/3,代入得c=√2,b=√(a^2-c^2)=1,方程是x^2/3+y^2/1=1,二、要求面积,显然以ab作为三角形的底边,联立x^2/3+y^2/1=1,y=x+1解得x1=0,y1=1,x2=-1.5,y2=-0.5.利用弦长公式有√(1+k^2))[x2-x1](中括号表示绝对值)弦长=3√2/2,对于p点面积最大,它到弦的距离应最大,假设已经找到p到弦的距离最大。过p做弦的平行线,可以 发现这个平行线是椭圆的切线是才会最大,这个切线和弦平行故斜率和弦的斜率=,设y=x+m,利用判别式等于0,求得m=2,-2.结合图形m=-2.x=1.5,y=-0.5,p(1.5,-0.5)。三、直线方程x-y+1=0,利用点到直线的距离公式求得√2/2,面积1/2*√2/2*3√2/2=3/42023-08-12 22:56:191
数学三角函数和圆锥曲线
圆锥曲线都有以角度为参数的参数方程;所以圆锥曲线问题常转化为三角问题来解决;联系的纽带就是圆锥曲线的参数方程;通常有一个动点在曲线上运动的问题常设点的坐标为三角形式,例如:P(x,y)是椭圆x^2/16+y^2/4=1 上的任意一点,求2x+y的最大值;另外图形的面积问题;求轨迹问题也很常用2023-08-12 22:56:261
有关圆锥曲线的所有关系式
圆锥曲线通用的离心率公式e=c/a学习圆锥曲线,首先要记熟基本概念,定义式,很多填空,选择题其实可以用定义很快的解决,如果用解析法去算很花时间至于圆锥曲线的大题,高考必有一道,运算量一般都会是相当大的,因此要提高自己运算的速度和正确度。熟悉常考的几种题型:如直线与圆锥曲线相切的问题,中点弦,轨迹方程……以及常用的方法:判别式,韦达定理,点差法,也可用导数求切线方程……初学圆锥曲线,一般学生可能会感到比较困难,这是正常的,实际上高考要求达到的水平不是很高,只要你按照老师要求的去做,自己注意总结,归纳,最好能把考试中的错题收集起来,(圆锥曲线的题不要做很多,高中的只有那些题型)你就能够提高这方面的能力。2023-08-12 22:56:352
圆锥曲线难题
圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)椭圆 参数方程:X=acosθ Y=bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 2)双曲线 参数方程:x=asecθ y=btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 3)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e×cosθ) 其中e表示离心率,p为焦点到准线的距离。 焦点到最近的准线的距离等于ex±a 圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a) 椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。 |PF1|=a+ex |PF2|=a-ex 双曲线: P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+ex P在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 圆锥曲线的切线方程:圆锥曲线上一点P(x0,y0)的切线方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y^2 即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2+y0y/b^2=1;抛物线:y0y=p(x0+x) 圆锥曲线中求点的轨迹方程 在求曲线的轨迹方程时,如果能够将题设条件转化为具有某种动感的直观图形,通过观察图形的变化过程,发现其内在联系,找出哪些是变化的量(或关系)、哪些是始终保持不变的量(或关系),那么我们就可以从找出的不变量(或关系)出发,打开解题思路,确定解题方法。 圆锥曲线漫谈 圆锥曲线包括椭圆、抛物线、双曲线和圆,通过直角坐标系,它们又与二次方程对应,所以,圆锥曲线又叫做二次曲线。圆锥曲线一直是几何学研究的重要课题之一,在我们的实际生活中也存在着许许多多的圆锥曲线。 我们生活的地球每时每刻都在环绕太阳的椭圆轨迹上运行,太阳系其他行星也如此,太阳则位于椭圆的一个焦点上。如果这些行星运行速度增大到某种程度,它们就会沿抛物线或双曲线运行。人类发射人造地球卫星或人造行星就要遵照这个原理。相对于一个物体,按万有引力定律受它吸引的另一物体的运动,不可能有任何其他的轨道了。因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式。 由抛物线绕其轴旋转,可得到一个叫做旋转物面的曲面。它也有一条轴,即抛物线的轴。在这个轴上有一个具有奇妙性质的焦点,任何一条过焦点的直线由抛物面反射出来以后,都成为平行于轴的直线。这就是我们为什么要把探照灯反光镜做成旋转抛物面的道理。 由双曲线绕其虚轴旋转,可以得到单叶双曲面,它又是一种直纹曲面,由两组母直线族组成,各组内母直线互不相交,而与另一组母直线却相交。人们在设计高大的立塔时,就采取单叶双曲面的体形,既轻巧又坚固。 由此可见,对于圆锥曲线的价值,无论如何也不会估计过高。 对于圆锥曲线的最早发现,众说纷法。有人说,古希腊数学家在求解“立方倍积”问题时,发现了圆锥曲线:设x、y为a和2a的比例中项,即。a:x=x:y=y:2a,则x=ay, y=2ax,xy=2a,从而求得x=2a。又有人说,古希腊数学家在研究平面与圆锥面相截时发现了与“立方倍积”问题中一致的结果。还有认为,古代天文学家在制作日晷时发现了圆锥曲线。日晷是一个倾斜放置的圆盘,中央垂直于圆盘面立一杆。当太阳光照在日晷上,杆影的移动可以计时。而在不同纬度的地方,杆顶尖绘成不同的圆锥曲线。然而,日晷的发明在古代就已失传。 早期对圆锥曲线进行系统研究成就最突出的可以说是古希腊数学家阿波罗尼(Apollonius,前262~前190)。他与欧几里得是同时代人,其巨著《圆锥曲线》与欧几里得的《几何原本》同被誉为古代希腊几何的登峰造极之作。 在《圆锥曲线》中,阿波罗总结了前人的工作,尤其是欧几里得的工作,并对前人的成果进行去粗存精、归纳提炼并使之系统化的工作,在此基础上,又提出许多自己的创见。全书8篇,共487个命题,将圆锥曲线的性质网罗殆尽,以致后代学者几乎没有插足的余地达千余年。 现在,我们都知道,用一个平面去截一个双圆锥面,会得到圆、椭圆、抛物线、双曲线以及它们的退化形式:两相交直线,一条直线和一个点,如图1,所示。 在此,我们仅介绍阿波罗尼关于圆锥曲线的定义。如图2,给定圆BC及其所在平面外一点A,则过A且沿圆周移动的一条直线生成一个双锥面。 这个圆叫圆锥的底,A到圆心的直线叫圆锥的轴(未画出),轴未必垂直于底。 设锥的一个截面与底交于直线DE,取底圆的垂直于DE的一条直径BC,于是含圆锥轴的△ABC叫轴三角形.轴三角形与圆锥曲线交于P、P",PP"未必是圆锥曲线的轴,PP"M是由轴三角形与截面相交而定的直线,PM也未必垂直于DE。设QQ"是圆锥曲线平行于DE的弦,同样QQ"被PP"平分,即VQ=QQ"。 现作AF∥PM,交BM于F,再在截面上作PL⊥PM。如图3,PL⊥PP" 对于椭圆、双曲线,取L满足,而抛物线,则满足,对于椭圆、双曲线有QV=PV·VR,对于抛物线有QV=PV·PL,这是可以证明的两个结论。 在这两个结论中,把QV称为圆锥曲线的一个纵坐标线,那么其结论表明,纵坐标线的平方等于PL上作一个矩形的面积。对于椭圆来讲,矩形PSRV尚未填满矩形PLJV;而双曲线的情形是VR>PL,矩形PSRV超出矩形PLJV;而抛物线,短形PLJV恰好填满。故而,椭圆、双曲线、抛物线的原名分别叫“亏曲线”、“超曲线”和“齐曲线”。这就是阿波罗尼引入的圆锥曲线的定义。 阿波罗尼所给出的两个结论,也很容易用现代数学符号来表示: 趋向无穷大时,LS=0,即抛物线,亦即椭圆或双曲线的极限形式。 在阿波罗尼的《圆锥曲线》问世后的13个世纪里,整个数学界对圆锥曲线的研究一直没有什么新进展。11世纪,阿拉伯数学家曾利用圆锥曲线来解三次代数方程,12世纪起,圆锥曲线经阿拉伯传入欧洲,但当时对圆锥曲线的研究仍然没有突破。直到16世纪,有两年事促使了人们对圆锥曲线作进一步研究。一是德国天文学家开普勒(Kepler,1571~1630)继承了哥白尼的日心说,揭示出行星按椭圆轨道环绕太阳运行的事实;二是意大利物理学家伽利略(Galileo,1564~1642)得出物体斜抛运动的轨道是抛物线。人们发现圆锥曲线不仅是依附在圆锥面上的静态曲线,而且是自然界物体运动的普遍形式。于是,对圆锥曲线的处理方法开始有了一些小变动。譬如,1579年蒙蒂(Guidobaldo del Monte,1545~1607)椭圆定义为:到两个焦点距离之和为定长的动点的轨迹。从而改变了过去对圆锥曲线的定义。不过,这对圆锥曲线性质的研究推进并不大,也没有提出更多新的定理或新的证明方法。 17世纪初,在当时关于一个数学对象能从一个形状连续地变到另一形状的新思想的影响下,开普勒对圆锥曲线的性质作了新的阐述。他发现了圆锥曲线的焦点和离心率,并指出抛物线还有一个在无穷远处的焦点,直线是圆心在无穷远处的圆。从而他第一个掌握了这样的事实:椭圆、抛物线、双曲线、圆以及由两条直线组成的退化圆锥曲线,都可以从其中一个连续地变为另一个,只须考虑焦点的各种移动方式。譬如,椭圆有两个焦点F1、F2,如图4,若左焦点F1固定,考虑F2的移动,当F2向左移动,椭圆逐渐趋向于圆,F1与F2重合时即为圆;当F2向右移动,椭圆逐渐趋向于抛物线,F2到无穷远处时即为抛物线;当F2从无穷远处由左边回到圆锥曲线的轴上来,即为双曲线;当F2继续向右移动,F2又与F1重合时即为两相交直线,亦即退化的圆锥曲线。这为圆锥曲线现代的统一定义提供了一个合乎逻辑的直观基础。 随着射影几何的创始,原本为画家提供帮助的投射、截影的方法,可能由于它与锥面有着天然的联系,也被用于圆锥曲线的研究。在这方面法国的三位数学家笛沙格(Desargue1591- 1661)、帕斯卡(Pascal,1623- 1662)和拉伊尔(Phailippe de La Hire,1640~1718)得出了一些关于圆锥曲线的特殊的定理,可谓别开生面。而当法国另外两位数学家笛卡儿和费马创立了解析几何,人们对圆锥曲线的认识进入了一个新阶段,对圆锥曲线的研究方法既不同于阿波罗尼,又不同于投射和截影法,而是朝着解析法的方向发展,即通过建立坐标系,得到圆锥曲线的方程,进而利用方程来研究圆锥曲线,以期摆脱几何直观而达到抽象化的目标,也可求得对圆锥曲线研究高度的概括和统一。 到18世纪,人们广泛地探讨了解析几何,除直角坐标系之外又建立极坐标系,并能把这两种坐标系相互转换。在这种情况下表示圆锥曲线的二次方程也被化为几种标准形式,或者引进曲线的参数方程。1745年欧拉发表了《分析引论》,这是解析几何发展史上的一部重要著作,也是圆锥曲线研究的经典之作。在这部著作中,欧拉给出了现代形式下圆锥曲线的系统阐述,从一般二次方程。出发,圆锥曲线的各种情形,经过适当的坐标变换,总可以化以下标准形式之一: 继欧拉之后,三维解析几何也蓬勃地发展起来,由圆锥曲线导出了许多重要的曲面,诸如往面、椭球面、单叶和双叶双曲面、以及各种抛物面等。 总而言之,圆锥曲线无论在数学以及其他科学技术领域,还是在我们的实际生活中都占有重要的地位,人们对它的研究也不断深化,其研究成果又广泛地得到应用。这正好反映了人们认识事物的目的和规律。 圆锥曲线的光学性质 椭圆的光学性质:从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上 双曲线的光学性质:从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上 抛物线的光学性质:从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的对称轴2023-08-12 22:56:441
高中数学圆锥曲线公式定理
1.离心率0-1是椭圆,1是抛物线,大于1是双曲线。离心率是标准方程中的c/a,也是图像上某点到焦点的距离比该点到准线的距离。(有些灵活的小题需要这样转化)2.标准方程中的字母关系(这个不用多说了吧)3.圆锥曲线与直线方程联立的综合运用主要就是消去一个字母,再用韦达定理(这里要灵活应用,多做题多总结)。这里还可以引伸出“弦长公式”(不过就是由两点间的距离公式+直线斜率共同推导的)。值得注意的是垂直问题转化为向量方便计算,转化为圆有时候会比较简捷(这种不常用)。这些还都是要学好知识后,做题总结(或者说找到感觉)。无非就是两种方向,一是死算,一是技巧。死算就没啥可说的了,学好课本就行了。技巧也可分为两个方向,一是运用概念来转化问题,一是把代数问题转化为几何问题或解析几何。以上都是本人的观点,仅供参考。2023-08-12 22:57:062
题:圆锥曲线的参数方程,急啊,求求各位了,要过程哇
圆锥曲线的参数方程:1)直线参数方程:x=x+tcosθy=y+tsinθ(t为参数)2)圆的参数方程:x=x+rcosθy=y+rsinθ(θ为参数)3)椭圆参数方程:x=x+acosθy=y+bsinθ(θ为参数)4)双曲线参数方程:x=x+asecθy=y+btanθ(θ为参数)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)2023-08-12 22:58:092
圆锥曲线标准方程的圆锥曲线的标准方程
标准方程:(x-a)^2+(y-b)^2=r^2,圆心(a,b),半径=r>0 离心率:e=0(注意:圆的方程的离心率为0,离心率等于0的轨迹不是圆,而是一个点(c,0)一般方程:x^2+y^2+Dx+Ey+F=0,圆心(-D/2,-E/2),半径r=(1/2)√(D^2+E^2-4F) 标准方程:x^2/a^2+y^2/b^2=1(焦点在x轴上,a>b>0,在y轴上,b>a>0) 焦点:F1(-c,0),F2(c,0)(c^2=a^2-b^2)离心率:e=c/a,0<e<1准线方程:x=±a^2/c焦半径|MF1|=a+ex0,|MF2|=a-ex0两条焦半径与焦距所围三角形的面积:S=b^2*tan(α/2)(α为两焦半径夹角) 标准方程:x^2/a^2-y^2/b^2=1(焦点在x轴上) -x^2/a^2+y^2/b^2=1(焦点在y轴上) 焦点:F1(-c,0),F2(c,0)(a,b>0,b^2=c^2-a^2)离心率:e=c/a,e>1准线方程:x=±a^2/c焦半径|MF1|=a+ex0,|MF2|=a-ex0渐近线:x^2/a^2-y^2/b^2=0(焦点在x轴上) -x^2/a^2+y^2/b^2=0(焦点在y轴上)或焦点在x轴:y=±(b/a)x.焦点在y轴:y=±(a/b)x.两条焦半径与焦距所围成的三角形面积:S=b^2cot(α/2)(α为两焦半径夹角) 标准方程:y^2=2px ,x^2=2py; 焦点:F(p/2,0)离心率:e=1准线方程:x=-p/2圆锥曲线二次方程Ax^2+Bxy+Cy^2+Dx+Ey+F=0定义圆锥曲线的 一条直线x=a方/c圆 参数方程:x=X+rcosθ y=Y+rsinθ 圆心坐标(X,Y)椭圆 参数方程:x=acosθ y=bsinθ a>b时焦点在x轴上,反之在 y轴上双曲线 参数方程:x=asecθ y=btanθ 焦点在平行x轴的直线上(就是x2∕a2-y2∕b2=1)焦点在平行y轴的直线上(即y2∕a2-x2∕b2=1),把正切和正割交换2023-08-12 22:58:181
圆锥曲线的参数方程公式
圆 x-a=rcosA x-b=rsinA 其中(a,b)为圆心 r为半径椭圆 x=acosA y=bsinA 其中a为长半轴 b为短半轴2023-08-12 22:58:332
圆锥曲线与方程
圆锥曲线方程一般指圆锥曲线标准方程。圆锥曲线标准方程是轨迹的方程,也是参数方程的一种;圆锥曲线标准方程的定义和性质是把握圆锥曲线标准方程的两把钥匙。圆锥曲线类型圆、椭圆、双曲线、抛物线。 圆 标准方程:(x-a)^2+(y-b)^2=r^2,圆心(a,b),半径=r:0[1] 离心率:e=0(注意:圆的方程的离心率为0,但离心率等于0的轨迹不一定是圆,还可能是一个点(c,0))一般方程:x^2+y^2+Dx+Ey+F=0,圆心(-D/2,-E/2),半径r=(1/2)radic;(D^2+E^2-4F) 椭圆 标准方程:x^2/a^2+y^2/b^2=1(焦点在x轴上,a:b:0,在y轴上,b:a:0) 焦点:F1(-c,0),F2(c,0)(c^2=a^2-b^2) 离心率:e=c/a,0 准线方程:x=plusmn;a^2/c 焦半径|MF1|=a+ex0,|MF2|=a-ex0 两条焦半径与焦距所围三角形的面积:S=b^2*tan(alpha;/2)(alpha;为两焦半径夹角) 双曲线 标准方程:x^2/a^2-y^2/b^2=1(焦点在x轴上)-x^2/b^2+y^2/a^2=1(焦点在y轴上) 焦点:F1(-c,0),F2(c,0)(a,b:0,b^2=c^2-a^2) 离心率:e=c/a,e:1 准线方程:x=plusmn;a^2/c 焦半径|MF1|=a+ex0,|MF2|=a-ex0 渐近线:y=xb/a或y=-xb/a 两条焦半径与焦距所围成的三角形面积:S=b^2cot(alpha;/2)(alpha;为两焦半径夹角) 抛物线 标准方程:y^2=2px,x^2=2py; 焦点:F(p/2,0) 离心率:e=1 准线方程:x=-p/2 圆锥曲线二次方程 Ax^2+Bxy+Cy^2+Dx+Ey+F=02023-08-12 22:58:421
圆锥曲线的参数方程公式 圆、椭圆等
圆的参数方程 x=a+rcosθ y=b+rsinθ 椭圆的参数方程 x=acosθ y=bsinθ2023-08-12 22:58:521
圆锥曲面的参数方程
椭圆:x=a*cosθ,y=b*sinθ 双曲线:x=a*secθ,y=b*tanθ(焦点在横轴) x=a*tanθ,y=b*secθ(焦点在纵轴) 以上θ为参数. 抛物线:x=2pt^2,y=2pt(开口向左右) x=2pt,y=2pt^2(开口向上下) t为参数.2023-08-12 22:59:011
高中数学圆锥曲线的所有有用公式
圆锥曲线 圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e·cosθ) 其中e表示离心率,p为焦点到准线的距离。 双曲线 数学上指一动点移动于一个平面上,与平面上两个定点的距离的差始终为一定值时所成的轨迹叫做双曲线(Hyperbola)。两个定点叫做双曲线的焦点(focus)。 ● 双曲线的第二定义: 到定点的距离与到定直线的距离之比=e , e∈(1,+∞) ·双曲线的一般方程为(x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之差为定值2a ·双曲线的参数方程为: x=X+a·secθ y=Y+b·tanθ (θ为参数) ·几何性质: 1、取值区域:x≥a,x≤-a 2、对称性:关于坐标轴和原点对称。 3、顶点:A(-a,0) A"(a,0) AA"叫做双曲线的实轴,长2a; B(0,-b) B"(0,b) BB"叫做双曲线的虚轴,长2b。 4、渐近线: y=±(b/a)x 5、离心率: e=c/a 取值范围:(1,+∞] 6 双曲线上的一点到定点的距离和到定直线的距离的比等于双曲线的离心率 椭圆 目录·定义 ·标准方程 ·公式 ·相关性质 ·历史 定义 椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义: 1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距); 2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的 标准方程 高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程为:x^2/a^2+y^2/b^2=1 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,准线方程是x=a^2/c和x=-a^2/c 椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ 公式 椭圆的面积公式: S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长). 椭圆的周长公式: C=2Bπ(圆周率)/A×根号下(2A的平方-2B的平方)(其中A,B分别是椭圆的长半轴和短半轴) 相关性质 由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。 例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义): 将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。 设两点为F1、F2 对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2 则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2 由定义1知:截面是一个椭圆,且以F1、F2为焦点 用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆 椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明) 历史 关于圆锥截线的某些历史:圆锥截线的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截线的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册《圆锥截线论》集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截线不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。 抛物线 1.什么是抛物线? 平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线. 另外,F称为"抛物线的焦点",l称为"抛物线的准线". 定义焦点到抛物线的距离为"焦准距",用p表示.p>0. 以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面 直至与其一边平行,就可以做一条抛物线。 2.抛物线的标准方程 右开口抛物线:y^2=2px 左开口抛物线:y^2=-2px 上开口抛物线:y=x^2/2p 下开口抛物线:y=-x^2/2p 3.抛物线相关参数(对于向右开口的抛物线) 离心率:e=1 焦点:(p/2,0) 准线方程l:x=-p/2 顶点:(0,0) 4.它的解析式求法:三点代入法 5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴. 抛物线:y = ax* + bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x-h)* + k 就是y等于a乘以(x-h)的平方+k h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py2023-08-12 23:00:002
选修4-4:坐标系与参数方程已知在直角坐标系xOy中,圆锥曲线C的参数方程为x=4cosθy=4sinθ(θ为参数
(1)由圆锥曲线C的参数方程为x=4cosθy=4sinθ(θ为参数),消去参数θ化为x2+y2=16.由直线l经过定点P(2,3),倾斜角为π3.可得x=2+12ty=3+32t(t为参数)②(2)把②代入①得,t2+(2+33)t?3=0③设t1,t2是方程③的两个实根,则t1t2=-3∴|PA|?|PB|=|t1||t2|=|t1t2|=32023-08-12 23:00:152
参数是什么意思?
一个变量。参数,也叫参变量,是一个变量。参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。它可以是一种变量,用来控制随其变化而变化的其它的量,简单来说,参数是可提供给我们参考的。适用于数学、计算机、物理等应用领域上。参数方程的用途主要有以下几个方面:1、求动点的轨迹,如果的关系不好找,我们引入参变量后,很容易找到与和与的等量关系式,消去参变量后即得动点轨迹方程。此时参数方程在求动点轨迹方程中起桥梁作用.2、可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.3、有些曲线参数方程的参变量有几何意义.若能利用参变量的几何意义解题,常会取得意想不到的效果.如利用直线标准参数方程中的几何意义解题,会使难题化易、繁题化简。2023-08-12 23:00:251
圆锥曲线焦点弦的性质有那些?
圆锥曲线 开放分类: 数学、几何、椭圆、双曲线、抛物线 圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e·cosθ) 其中e表示离心率,p为焦点到准线的距离。2023-08-12 23:00:411
为什么在椭圆里有时x=rcos,有时候=acos
圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e×cosθ) 其中e表示离心率,p为焦点到准线的距离。 焦点到最近的准线的距离等于ex±a 。圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a) 椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。 |PF1|=a+ex |PF2|=a-ex 双曲线: P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+ex P在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 圆锥曲线的光学性质: 1)椭圆:点光源在一个焦点上,光线通过另一个焦点。 2)双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。 3)抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯。2023-08-12 23:01:031
参数是什么意思?
一个变量。参数,也叫参变量,是一个变量。参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。它可以是一种变量,用来控制随其变化而变化的其它的量,简单来说,参数是可提供给我们参考的。适用于数学、计算机、物理等应用领域上。参数方程的用途主要有以下几个方面:1、求动点的轨迹,如果的关系不好找,我们引入参变量后,很容易找到与和与的等量关系式,消去参变量后即得动点轨迹方程。此时参数方程在求动点轨迹方程中起桥梁作用.2、可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.3、有些曲线参数方程的参变量有几何意义.若能利用参变量的几何意义解题,常会取得意想不到的效果.如利用直线标准参数方程中的几何意义解题,会使难题化易、繁题化简。2023-08-12 23:01:121
圆锥上定点到定直线公式
圆锥曲线 圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e·cosθ) 其中e表示离心率,p为焦点到准线的距离。 双曲线 数学上指一动点移动于一个平面上,与平面上两个定点的距离的差始终为一定值时所成的轨迹叫做双曲线(Hyperbola)。两个定点叫做双曲线的焦点(focus)。 ● 双曲线的第二定义: 到定点的距离与到定直线的距离之比=e , e∈(1,+∞) ·双曲线的一般方程为(x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之差为定值2a ·双曲线的参数方程为: x=X+a·secθ y=Y+b·tanθ (θ为参数) ·几何性质: 1、取值区域:x≥a,x≤-a 2、对称性:关于坐标轴和原点对称。 3、顶点:A(-a,0) A"(a,0) AA"叫做双曲线的实轴,长2a; B(0,-b) B"(0,b) BB"叫做双曲线的虚轴,长2b。 4、渐近线: y=±(b/a)x 5、离心率: e=c/a 取值范围:(1,+∞] 6 双曲线上的一点到定点的距离和到定直线的距离的比等于双曲线的离心率2023-08-12 23:01:431
求高中数学书4-4目录!
选修4-4坐标系与参数方程第一讲:坐标系第1节平面直角坐标系第2节极坐标第3节简单曲线的极坐标方程第4节柱坐标系与球坐标系简介第二讲参数方程第1节曲线的参数方程第2节圆锥曲线的参数方程第3节直线的参数方程第4节渐开线与摆线2023-08-12 23:02:051
参数是什么意思呀?
一个变量。参数,也叫参变量,是一个变量。参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。它可以是一种变量,用来控制随其变化而变化的其它的量,简单来说,参数是可提供给我们参考的。适用于数学、计算机、物理等应用领域上。参数方程的用途主要有以下几个方面:1、求动点的轨迹,如果的关系不好找,我们引入参变量后,很容易找到与和与的等量关系式,消去参变量后即得动点轨迹方程。此时参数方程在求动点轨迹方程中起桥梁作用.2、可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.3、有些曲线参数方程的参变量有几何意义.若能利用参变量的几何意义解题,常会取得意想不到的效果.如利用直线标准参数方程中的几何意义解题,会使难题化易、繁题化简。2023-08-12 23:02:111
参数是什么?
一个变量。参数,也叫参变量,是一个变量。参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。它可以是一种变量,用来控制随其变化而变化的其它的量,简单来说,参数是可提供给我们参考的。适用于数学、计算机、物理等应用领域上。参数方程的用途主要有以下几个方面:1、求动点的轨迹,如果的关系不好找,我们引入参变量后,很容易找到与和与的等量关系式,消去参变量后即得动点轨迹方程。此时参数方程在求动点轨迹方程中起桥梁作用.2、可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.3、有些曲线参数方程的参变量有几何意义.若能利用参变量的几何意义解题,常会取得意想不到的效果.如利用直线标准参数方程中的几何意义解题,会使难题化易、繁题化简。2023-08-12 23:02:251
一道圆锥曲线题,椭圆,要求用参数方程解!!!
这题是有个结论很好用1/|OM|^2+1/|ON|^2=1/a^2+1/b^2设M(|OM|cost,|OM|sint) N(|ON|cos(t+π/2),|ON|sin(t+π/2))=(-|ON|sint,|ON|cost)代入方程得到:|OM|^2cos^2t/9+|OM|^2sin^2t/4=1得到:cos^2t/9+sin^2t/4=1/|OM|^2同样可以得到 sin^2t/9+cos^t/4=1/|ON|^2相加所以有:1/9+1/4=1/|OM|^2+1/|ON|^2>=2/|OM|*|ON|所以|OM|*|ON|>=72/13最大值取得就是|OM|=|ON|严格说来这并不是椭圆方程的标准参数方程,但是却有奇效望采纳~~~2023-08-12 23:02:371
高中数学 《圆锥曲线》解题技巧归纳
1、数列问题(1)熟练掌握等差、等比数列的性质、通项公式和求和公式;(2)深刻理解课本上等差和等比数列求和公式是怎么推导出来的,其中蕴含的如“倒序相加”等解题思想是解题中经常用到的;(3)熟练掌握将分母代数式连乘的分数转化成单项分式差,实现“消去中间,剩下两头”的题型;(4)熟练掌握从现有数列(如{An})中抽取满足某个条件的若干项,组成一个新数列(如{Ank}),然后求新数列的通项和前多少项和的题型;(5)熟练掌握通过化简或待定系数法,将不规则数列“凑”成等差或等比数列来解题的题型;(6)熟练掌握数学归纳法的原理并应用它解决个别“先猜测再证明”的探究类题型。(7)熟练掌握数列求极限的题型,尤其是通过化简让分母的指数比分子的指数高,以便n无穷大的时候分式等于02、圆锥曲线问题(1)熟练掌握圆锥曲线的几何定义和准线定义,深刻理解“数形结合”的思想,这是解析几何的灵魂和精髓:用代数思想研究几何问题,实现定量求解;(2)熟练运用圆锥曲线(椭圆、双曲线和抛物线)的普通方程求解线段、点到线的距离和两条线的夹角等问题;(3)熟练运用圆锥曲线的参数方程辅助解题,尤其是椭圆和双曲线的参数方程跟三角函数结合非常紧密,而且三角函数的有界性又跟不等式求最大最小值关系密切。(4)由于平面解析几何解决的是平面内的问题,如果在求解立体几何中的问题中,我们能确证点到面的距离或二面角可以在某个平面内解决,但从纯几何角度不容易记计算,这时候我们可以在立体图的某个面建立坐标系,把立体几何中的问题转化成平面解析几何的问题(点到线的距离,线的夹角)来求解,有时候这样效果很好。顺便说一下,下面几个“数学思想”在平时考试和高考中尤为重要:(1)方程的思想:从形式上变未知为已知,然后找出关系,求出这个形式上的已知得解;(2)不等式的思想:利用不等式进行放大和缩小来判断变量或表达式的极限,求解最大、最小值;(3)函数的思想:把现实问题抽象成代数问题,根据变量的范围动态考察函数规律的变化规律;(4)数形结合的思想:充分利用图像的直观、形象性辅助分析和计算;(5)分类讨论的思想:体现理性思维的严密性,具体情况具体分析。(6)反证法的思想:逆向思维,从相反的角度看问题;(7)数学归纳思想:根据有限的数据试图探寻总体的规律,然后用归纳法验证猜测的正确性。2023-08-12 23:02:442
圆锥曲线和直线的参数方程问题,请帮忙解答,过程与答案都挺重要的,与自己的比较因为我没答案,也不确定
收2023-08-12 23:02:522
圆锥曲线为什么这么神奇?
圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e×cosθ) 其中e表示离心率,p为焦点到准线的距离。 焦点到最近的准线的距离等于ex±a 。圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a) 椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。 |PF1|=a+ex |PF2|=a-ex 双曲线: P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+ex P在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 圆锥曲线的光学性质: 1)椭圆:点光源在一个焦点上,光线通过另一个焦点。 2)双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。 3)抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯。2023-08-12 23:03:141