汉邦问答 / 问答 / 问答详情

求 概率论与数理统计 第四版 沈恒范编 课后习题答案

2023-08-10 10:32:22
大鱼炖火锅

习题二

一、填空题

1.设随机变量的概率密度函数为

若使得,则的取植范围是 .

解:

当时,

当时,

当时,

当时,

当时,

综上,若使得,则的取植范围是.

2.设随机变量服从参数为的二项分布,随机变量服从参数为的二项分布.若,则 .

解:因为,所以,从而有

又,故所求为

3.一实习生用同一台机器接连独立地制造3个同种零件,第个零件是不合格品的概率(),以表示3个零件中合格品的个数,则 .

解: 设表示“第i个零件是合格品”(i=1,2,3),则由题设知事件相互独立,且

故所求概率为

4.设随机变量的概率密度为,以表示对的三次独立重复观察中事件出现的次数,则___________.

解:一次观察中事件出现的该率为

则由题设知,故所求概率为

5.若随机变量服从参数为的正态分布,且,则

解:因为,所以

则有

故所求概率为

6.设随机变量的分布函数为

则的概率分布为 .

解:由题设知的所有可能取值为,且

从而得的概率分布为

X -1 1 3

0.4 0.4 0.2

7.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为 .

解:设该射手的命中率为,表示四次射击中的命中次数,则由题设知,从而有

故所求为

8.设随机变量服从正态分布,且二次方程无实根的概率为0.5,则= .

解:因为,所以由题设知

则有

故所求为

4

9.设连续型随机变量的分布函数为

则 , .

解:因为X为连续型随机变量,故其分布函数F(x)连续,所以

即 1

从而

10.设随机变量服从参数为(10,0.022)的正态分布.已知,,则落在区间(9.95,10.05)内的概率为 .

解:因为,所以则落在区间(9.95,10.05)内的概率为

二、单项选择题

1.设与分别为随机变量与的分布函数,为使F(x)=-是某一随机变量的分布函数,在下列给定的各组数值中应取[ ]

(A), (B),

(C), (D),

解:根据分布函数的性质:,于是有

即.

对比四个选项知,只有(A)中的和值满足,故正确选项为(A).

2.设随机变量服从正态分布,则随的增大,概率,则[ ]

(A)单调增大 (B)单调减 (C)保持不变 (D)增减不定

解:由于,因此,于是有

可见所求概率不随和的变化而变化,故正确选项为(C).

3.设随机变量的密度函数为,且,是的分布函数,则对任意实数, 有[ ]

(A) (B)

(C) (D)

解: 要想最快速度作出选择,首先设法找出随机变量的分布函数满足哪条性质.而其密度函数满足,即为偶函数.为此,先将退到一个特殊位置——把想象成服从标准正态分布的随机变量.

如图,图2—1(1)中阴影部分的面积为,图2—1(2)中阴影部分的面积为,据此很容易选出(B)为正确答案.下面给出证明:

证 由分布函数的定义得

利用积分的可加性,有

(2.2.1)

而由密度函数性质

又因为,所以

(2.2.2)

在积分中作变量替换,令,则

(2.2.3)

将(2.2.2)与(2.2.3)式代入(2.2.1)式,得

故正确选项为(B).

注: 这种转化过程,其实利用的就是由“一般”退到“特殊”以利于寻求答案,待得到答案后再完成由“特殊”进到“一般”的严格推导的辩证思维.这一思想,尤其是在解决选择题上最常用.

4.设随机变量与均服从正态分布,,;记,,则[ ]

(A)对任何实数,都有 (B)对任何实数,都有

(C)只对个别值,才有 (B)对任何实数,都有

解:由于,,因此,于是有

所以对任何实数,都有,故正确选项为(A).

5.设随机变量服从正态分布,对给定的α∈(0,1),数满足,若,则等于[ ]

(A) (B) (C) (D)

解:由于,因此

于是有

从而

又,所以,故正确选项为(B).

6.设随机变量服从正态分布,随机变量服从正态分布,且

则必有[ ]

(A) (B) (C) (D)

解:由于,,因此,于是有

所以

从而

所以,故正确选项为(A).

7.某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好是他第2次命中目标的概率为[ ]

(A) (B) (C) (D)

解:此人第4次射击恰好是他第2次命中目标,即此人前三次射击中只有一次命中且第四次命中目标,设表示“此人前三次射击中的命中次数”,则.另设表示“此人前三次射击中只有一次命中”, 表示“第四次命中目标”,于是有

因此所求为

故正确选项为(C).

8.随机变量的概率密度为,则的概率密度为 [ ]

(A) (B) (C) (D)

解:的分布函数

所以的概率密度为

也可以写成

故正确选项为(B).

9.设随机变量的分布函数,则 [ ]

(A) 1 (B) (C) (D)

解:根据分布函数的性质:,于是有

即,故正确选项为(A).

10.设随机变量的概率分布是

则的概率分布是 ( )

(A)

(B)

(C)

(D)

解:由题设知的所有可能取值为,且

从而得的概率分布为

Y 0 1 4

2/5 1/5 2/5

故正确选项为(A).

三、解答题

1.分别用随机变量表示下列事件

(1)观察某电话总机每分钟内收到的呼唤次数,试用随机变量表示事件“收到呼唤3次”、“收到呼唤次数不多于6次”;

(2)抽查一批产品,任取一件检查其长度,试用随机变量表示事件“长度等于10cm”、“长度在10cm到10.1cm之间”;

(3)检查产品5件,设为至少有一件次品,为次品不少于两件,试用随机变量表示事件

解:(1)事件“收到呼唤3次”表示为,“收到呼唤次数不多于6次”表示为;

(2)事件“长度等于10cm” 表示为;“长度在10cm到10.1cm之间”表示为

(3)事件

2.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以表示取出的3只球中的最大号码,写出的分布律及分布函数.

解:由题设得

,,

从而得的分布律为

X 3 4 5

的分布函数为

3.汽车需要通过有4盏红绿信号灯的道路才能到达目的地.设汽车在每盏红绿灯前通过(即遇到绿灯)的概率都是0.6;停止前进(即遇到红灯)的概率为0.4,求汽车首次停止前进(即遇到红灯,或到达目的地)时,已通过的信号灯的个数的分布律.

解:设表示“汽车在停止前进时已通过的信号灯数”,则随机变量的所有可能取值为0,1,2,3,4,又设表示事件“汽车将通过时第i盏信号灯开绿灯”,则由题意

表示{已通过的信号灯数是0(即第一盏信号灯是红灯)},故

表示{已通过的信号灯数是1(即第一盏信号灯是绿灯,而第二盏是红灯),故

同理

于是的分布律为

0 1 2 3 4

0.4 0.24 0.144 0.0864 0.1296

4.假设随机变量的概率密度为

现在对进行次独立重复观测,以表示观测值不大于0.1的次数. 试求随机变量的概率分布.

解:事件“观测值不大于0.1”,即事件的概率为

每次观测所得观测值不大于0.1为成功,则作为次独立重复试验成功的次数,服从参数为的二项分布,即的概率分布为

5.假设一大型设备在任何长为的时间内发生故障的次数服从参数为的泊松分布.(1)求相继两次故障之间时间间隔的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率.

解:(1)由题设可知

同时易见T是只取非负值的随机变量,当时,;当时,事件与等价.于是有

故T的分布函数为

即T服从参数为的指数分布.

(2)由于指数分布具有“无记忆”性,因此

6.假设测量的随机误差,试求在100次独立重复测量中,至少有三次误差绝对值大于19.6的概率,并利用泊松分布求出的近似值(要求数点后取两位有效数字).

解:设为每次测量误差的绝对值大于19.6的概率,则

设为100次独立重复测量中事件出现的次数,则服从二项分布,参数为,所以

由泊松定理知,近似服从参数为的泊松分布,故所求为

7.某商品的次品率是0.01.现从一大批该商品中任取500个,问次品数不超过5个的概率.要求:(1)写出二项分布计算公式;(2)用泊松分布计算结果.

解:由题设知X~B(500,0.01),即

所以

(1)次品数不超过5个的概率为

(2) 由泊松定理知,近似服从参数为的泊松分布,故所求为

8.在电源电压不超过200伏、在200—240伏和超过240伏三种情形下,某种电子元件损坏的概率分别为0.1,0.001和0.2.假设电源电压X服从正态分布,试求:(1)该电子元件损坏的概率;(2)该电子元件损坏时,电源电压在200—240伏的概率.

解:设表示“电压不超过200伏”, 表示“电压在200—240伏”, 表示“电压超过240伏”; 表示“电子元件损坏” .

又,所以

(1)由题设可知:,于是由全概率公式有

(2) 由条件概率公式(或贝叶斯公式)得所求为

9.设电流是一个随机变量,它均匀分布在9安~11安之间.若此电流通过2欧姆的电阻,在其上消耗的功率为,求的概率密度.

解:由题意I的概率密度为

对于

由于,所以当时,其分布函数,故

综上,的概率密度为

10.设随机变量在[2,5]上服从均匀分布.现在对进行三次独立观测,试求至少有两次观测值大于3的概率.

解:由题设知,的分布函数为

设为每次观测中观测值大于3的概率,则

设为3次独立观测中事件出现的次数,则服从二项分布,参数为,故所求为

11.设随机变量的分布律为

X 0 1 2 3 4 5

求的分布律.

解:

X 0 1 2 3 4 5

8 2 0 2 8 18

从而有

故的分布律为

Y 0 2 8 18

12.设随机变量的概率密度函数为,求随机变量的概率密度函数.

解:对任意实数,根据定义随机变量的分布函数为

则有

即随机变量的概率密度函数

13.假设随机变量在区间(1,2)上服从均匀分布,试求随机变量的概率密度.

解:由题设知,的密度函数为

对任意实数,根据定义随机变量的分布函数为

(1)当时,,则

(2)当时,,则

所以

当即时,

当或时,

综上可得,随机变量的概率密度为

14.假设随机变量的绝对值不大于1;P,P;在事件出现的条件下,在内的任一子空间上取值的条件概率与该子空间的长度成正比.试求的分布函数.

解:由题设可知

所以有

(1)当时,

(2)当时

(3)当时,

综上可得,随机变量的分布函数为

15. 设随机变量的概率密度为,为的分布函数,求的分布函数.

解:

当时,

当时,

当时,

综上可得,随机变量的分布函数为

对任意实数,根据定义随机变量的分布函数为

当时,

当时

当时,

于是,的分布函数为

16. 假设一厂家生产的每台仪器,以概率0.7可以直接出厂,以概率0.3需进一步调试,终调试后以概率0.8可以出厂,以概率0.2定为不合格品不能出厂.现该厂新生产了台仪器(假设各台仪器的生产过程相互独立).求:(1)全部能出厂的概率;(2)其中恰好有两台不能出厂的概率;(3)其中至少有两台不能出厂的概率.

解:对于新生产的每台仪器,设表示“仪器需进一步调试”,表示“仪器能出厂”,则表示“仪器需进一步调试”,表示“仪器经调试后能出厂”.

由题设可知,,,从而有

设表示“所生产的台仪器中能出厂的台数”,则作为次独立试验成功(仪器能出厂)的次数,服从参数为的二项分布,因此

(1)

(2)

(3)

17. 某种型号的电子管的寿命的分布密度函数为

现从一大批中任取5只,问其中至少有两只寿命大于1500小时的概率.

解:

设Y表示 “寿命大于1500小时的电子管只数”,则Y~B(5,2/3),从而所求为

18. 设顾客在某银行窗口等待服务的时间(单位:分)服从参数为的指数分布.该顾客在窗口等待服务超过10分钟则离开.他一个月到银行5次.以表示未等到服务的次数,试求

(1)的概率分布;

(2).

解:

(1)由题设,即的概率分布为

(2)

19. 设随机变量在上服从均匀分布,试求一元二次方程有实根的概率.

解:由题设知 ,从而所求为

20. 设随机变量在上服从均匀分布,试求:(1);(2)的概率密度函数.

解:由题设 可知

(1)

i)当时,,从而有

ii)当时,,从而有

a)当即时,

b)当即时,

c)当即时,

综上,可得的密度函数为

(2)

所以有

i) 当即时,

ii) 当即时,

综上,可得的密度函数为

21. 某汽车从起点驶出时有30名乘客,设沿途有4个停靠站,且该车只下不上.每个乘客在每个站下车的概率相等,并且乘客与乘客在各个站下车与否相互独立,试求:

(1)全在终点站(即第4个停靠站)下车的概率;

(2)至少有2个乘客在终点站下车的概率;

(3)该车驶过2个停靠站后乘客人数降为15的概率;

(4)至少有一个站无人下车的概率.

解:设X表示 “在终点站(即第4个停靠站)下车的人数”,则X~B(30,1/4),从而所求为

(1)

(2)

(3)设Y表示 “在 前2个停靠站下车的人数”,则Y~B(30,1/2),从而所求为

(4)设Z表示 “无人下车的站数”,则所求为

22. 设甲、乙两人进行投篮比赛,甲的命中率为0.6,乙的命中率为0.7,规定每人投篮两次,谁投进的球数多谁就为优胜者.若投进的球数同样多,则每人再加投一次以决胜负,如仍为同样则为平局.试求:甲获胜,乙获胜,平局的概率各为多少?

解:设X表示“前两次甲投中的次数”,则X~B(2,0.6);设Y表示 “前两次乙投中的次数”,则Y~B(2,0.7);表示“第三次甲投中”,表示“第三次乙投中”;表示“甲获胜”,表示“乙获胜”,表示“平局”,从而所求为

23. 设服从正态分布,试求:

(1) ; (2) ; (3);(4);

(5)确定使得.

解:(1)

(2)

(3)

(4)

(5)由,知

从而有

故有

24. 一个工厂生产的电子管寿命(以小时计),服从参数,的正态分布,若要求,允许最大为多少?

解:由题设可得

从而有

所以

故允许最大为31.25.

25. 设随机变量的概率密度函数为,求:(1) ; (2); (3)分布函数.

解:(1)由得

(2)

(3)

ⅰ)当时,

ⅱ) 当时,

综上,可得的分布函数为

26.设连续型随机变量的分布函数为

其中,求: (1) 和; (2) 的分布密度函数.

解:(1)因为为连续型随机变量,所以连续,故有

从而有

(2)

27.设随机变量的概率密度函数为

试求: (1)系数;(2);(3)的分布函数.

解:(1)由得

(2)

(3)

ⅰ)当时,

ⅱ)当时,

ⅲ)当时,

综上,可得的分布函数为

28. 设随机变量在上服从均匀分布,求的分布函数.

解:由题设可知

所以

ⅰ)当时,

ⅱ)当时,

ⅲ)当时,

ⅳ)当时,

ⅴ)当时,

综上,可得的分布函数为

29. 设随机变量具有对称的概率密度,即为偶函数,,证明:对任意有:

(1) ;

(2) .

证明:(1)

(2)

30. 假设随机变量服从参数为2的指数分布,证明:在区间上服从均匀分布.

证:由题设可知

所以

i)当即时,,从而有

ii)当时,,从而有

于是可得

a)当即时,

b)当时,

综上,可得的密度函数为

即在区间上服从均匀分布.

北营

这个不好找,等找到了再发给你

指数分布的无记忆性是什么?

指数分布的无记忆性是指数函数的无记忆性来自于泊松过程k=0时的 时间指数性,而泊松过程k=0时的 时间指数性 来自于泊松分布时 lambda的恒定性,也就是离散情况下,二项分布的n*p的恒定性。分布:在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。
2023-08-10 09:45:341

指数分布的无记忆性是什么意思?

指数函数的无记忆性来自于泊松过程k=0时的“时间指数性”,而泊松过程k=0时的“时间指数性”来自于泊松分布时 lambda的恒定性,也就是离散情况下,二项分布的n*p的恒定性。以投硬币的例子来说,根据上面公式来理解,投硬币这个重复动作已经投了a 秒,你第一次投到正面朝上还需要x秒的概率与你重新做实验需要x秒投到正面朝上的概率是一样的。延伸来说,第一次正面朝上所需的时间x的概率与实验所在的时间点没有关系。无论是时间已经过了3分钟,还是时间已经过了8分钟,还是刚开始做实验,第一次正面朝上所需的时间x的概率都是一样的。也就是说,过去的实验不影响未来事件发生的概率。前面用的所需时间是针对指数分布来说的。如果用投硬币次数 (几何分布)来理解,对于同一个硬币,硬币正面朝上,还要投x次的概率与你已经投了多少次硬币是没有关系的。以客服电话的例子来理解无记忆性。假设该客服8点开始上班接客服电话。她在刚上班时要等x秒才接到下一个客服电话的概率与已经等了半小时、或者1小时,或者 2小时后,还要等待x秒,才接到下一个客服电话的概率是一样的。
2023-08-10 09:47:401

指数分布具有无记忆性,这如何形象理解?

可以从任何一个地方开始,规律性和长度无关
2023-08-10 09:47:564

指数分布无记忆性

=1-P〔x>a+1|x>a〕=1-P〔x>1〕=P〔x≦1〕
2023-08-10 09:48:044

概率论 指数分布的无记忆性 说明什么 怎么运用?

例如有一种电池标称可以充放电500次(平均寿命),但实际上,很多充放电次数数倍于500次的电池仍然在正常使用,也用很多电池没有使用几次就坏了——这是正常的,不是厂方欺骗你,是因为方差太大的缘故。
2023-08-10 09:48:252

如何理解指数分布的无记忆性

这个概念其实是说lambda不是时间的函数而是常数这个物理量代表瞬时失效率等于密度函数除以(1-分布函数)等于lambda
2023-08-10 09:48:322

简述指数分布的无记忆性与马尔科夫链的无后效性的关系

马尔科夫链无后效性,也就是取决于你当前的状态。所以在分布中,只有指数分布能满足这一点,因为指数分布的无记忆性,不管你之前在某个状态停留了多少时间,并不影响你是否继续停留或者转移。可以通过积分证明的
2023-08-10 09:48:421

概率论的关于指数分布无记忆得出的问题

=.=这个也是分布的自有的性质……possion的无记忆性……意思就是:之前工作了多久与之后还能工作多久是没有关系的,也就是没有影响……于是你现在要知道已经无故障8小时,求再无故障8小时的概率,可以直接求其无故障8小时就可以了,因为之前是否已经无故障多久与之后再无故障多久是没有影响的……于是直接求P(t》8)就可以了,这里还告诉你了t是满足possion的,对于possion……P(t》8)=1-F(x《8)=1-(1-e^(-8t))=e^(-8t)
2023-08-10 09:48:491

蝴蝶效应与指数分布的无记忆性是一个意思吗

蝴蝶效应是系统的放大作用。指数分布的无记忆性,是条件概率。不是一个东西
2023-08-10 09:48:571

如何理解指数分布的无记忆性

记忆力的好坏是和脑蛋白数量成正比 脑蛋白数量越多 记忆力越好所以及时补充脑蛋白数量是记忆好的关键可以试试天天向上片 富含多种氨基酸 可以有效的帮助促进脑蛋白数量的合成改善记忆
2023-08-10 09:49:071

密度函数中含指数都存在无记忆性么?

怎么可能?无记忆性只是指数分布独有的性质,含指数的,比如正态分布,就不具备无记忆性。
2023-08-10 09:49:161

求这个证明题,指数分布的无记忆性。万分感谢!

8538382738
2023-08-10 09:49:262

概率论的几道题,在线等

1、理解随机变量的定义,掌握分布函数、离散型随机变量的概率分布、连续型随机变量的概率密度函数等概念及其性质。2、掌握常见的离散型随机变量及其概率分布:退化分布(也称为单点分布)、二项分布、超几何分布、Poisson分布、几何分布,理解几何分布的无记忆性。3、掌握常见的连续型随机变量及其概率密度函数:均匀分布、正态分布、指数分布,理解指数分布的无记忆性;熟练掌握一般正态分布的标准化,会查标准正态分布表。4、掌握随机变量的边际分布、条件分布及随机变量的独立性。5、能根据已知随机变量的分布去求随机变量的函数的分布,随机向量的变换:两个随机变量和、差、商的分布,卷积公式。
2023-08-10 09:49:501

概率无记忆性

几何分布的例子:比如射击,在第N次首次击中的概率是等于已知已经射击K次为中在第N次首次击中的概率的。指数分布的例子:再如灯泡的寿命,它寿命多少与是否已知它工作过多少小时是无关的。无记忆性也称无后效性。这些是例子,用具体的计算可以导出发现上述结论正确,所以把这个性质定为无记忆性。再通俗地说,就是前面发生的事件对后面的结果没有影响。比如问一个人能活50年的概率是多少,与已知这个人活了20年,求他能活50年的概率是多少是一样的。
2023-08-10 09:49:591

指数分布的优点有

您好,您是不是想问指数分布的优点有哪些?指数分布是一种常见的概率分布,具有以下几个优点:1、数学性质简单:指数分布具有简单的数学形式和性质,使得计算和推导都相对容易。其概率密度函数在非负实数范围内单调递减,且具有连续性,使得在分析和建模过程中更加方便。2、无记忆性:指数分布具有无记忆性质,也就是说,假设一个事件发生的时间符合指数分布,那么无论该事件已经发生了多长时间,发生下一个事件的时间间隔仍然服从相同的指数分布。这一特性在许多实际问题中具有重要意义,比如在可靠性分析、排队论、风险评估等领域。3、应用广泛:指数分布在许多实际问题中都有广泛的应用。例如,在可靠性工程中,指数分布常用于描述产品的寿命。在排队论中,到达和离开服务系统的时间间隔常被假设为指数分布。此外,指数分布还在金融学、统计学、信号处理等领域中得到广泛运用。4、可解释性强:由于其简单的数学形式,指数分布具有较强的可解释性。通过调整分布的参数,我们可以对事件的发生模式进行直观的解释。例如,指数分布的期望值和方差可以用于描述事件发生的平均间隔和波动程度,从而帮助我们了解事件序列的特征。需要注意的是,指数分布的一些限制包括其只适用于非负实数、不具有厚尾特性等。在使用指数分布时,应对问题的具体情况进行充分分析,并结合其他概率分布和统计方法进行综合考虑。
2023-08-10 09:50:071

为什么说电子元件的寿命服从指数分布?

电子元件的寿命服从指数分布原因:指数分布的无记忆性。假设某元件使用了t小时,a小时到a+t小时的条件概率和从b小时到b+t小时的条件概率相等。也就是经过一段时间的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同。电子元件的基本性能指标高,其可靠性不一定高。如果产品可靠性低,即使其初始技术性能再好也得不到发挥。例如,陶瓷贴片电容器的介质击穿电压较高的产品,很可能在高温负载加速寿命试验中失效率较高。可靠性可以综合反映产品的质量。电子元件的可靠性是电子设备可靠性的基础,要提高设备或系统的可靠性必须提高电子元件的可靠性。可靠性是电子元件重要质量指标,须加以考核和检验。首先,我们来了解什么是产品寿命,百度百科中介绍“任何产品都有其自然寿命和经济寿命,自然寿命是指产品从研究设计开始,经过生产制造、市场销售、用户使用,直到没有使用价值,完全报废为止所经历的全部时间。经济寿命是从经济方面考虑产品的寿命,随着经济的发展和科学技术的进步,原有产品的技术性能。后了,经济效益低下,虽然还没有达到它的自然寿命周期,如果连续使用已经很不经济了,就必须淘汰停止使用。”
2023-08-10 09:50:151

几何分布的无记忆性如何理解

无记忆性即:后面事件发生的概率与前面事件是否发生无关。条件事件概率与前面事件发生有关;几何分布就无关了。
2023-08-10 09:50:322

指数分布为什么可以用来表示独立随机事件发生的时间间隔

这主要是因为指数函数有一个非常重要的特征,就是“无记忆性”.这个性质比较抽象,就拿百度百科的回答数来举例子好了.我们现在假设百度知道的回答数增长这一事件遵循指数分布,不妨假设从某个时间t0开始,经过“del(t)”天(del(t)为正整数),知道的回答数就是对指数分布概率密度【入exp(-入x)】从t0开始到t0+del(t)进行积分,这就是从t0开始,在del(t)时间间隔内知道回答数的增长事件的发生概率;很显然可以通过积分计算得到,该概率与从百度知道诞生开始(即假设彼时时刻为0),到时刻del(t)为止的时间段进行积分所得概率数值相等,也就是说,在同等时间间隔内,百度知道回答数增加的事件发生概率都是相等的.
2023-08-10 09:50:591

设总体X服从参数为1的指数分布,X1,X2,...Xn是取自总体X的简单随机样本,当n趋于无穷时,Yn=1/n∑Xi^2依

2023-08-10 09:51:073

高分指数分布和几何分布的比较从无记忆性,独立和,可靠性分析,寿险 这几个方面分析。

用特征函数做
2023-08-10 09:51:423

如果随机变量x的分布具有无记忆性,那么x一定服从几何分布

如果无记忆性,那么如果X是离散变量,则X是几何分布;如果X是连续变量,则X是指数分布。离散的情形容易证:关于连续的情形,虽然你没问,但还是写上吧,因为可能会遇到:
2023-08-10 09:51:521

负指数分布,位移负指数分布,M3分布的区别和联系?

负指数分布、位移负指数分布和M3分布是三种不同的概率分布。下面简要介绍这三种分布的定义、性质和联系。负指数分布(Exponential Distribution):负指数分布是一种连续概率分布,用于描述在恒定平均速率下的独立随机事件之间的时间间隔。其概率密度函数为:f(x; λ) = λe^(-λx),其中x ≥ 0,λ > 0。这里,λ表示事件的平均发生速率。负指数分布具有无记忆性,即过去的事件不会影响未来事件的发生。位移负指数分布(Shifted Exponential Distribution):位移负指数分布是负指数分布的一个变种,其概率密度函数可以表示为:f(x; λ, δ) = λe^(-λ(x-δ)),其中x ≥ δ,λ > 0, δ ≥ 0。这里,δ表示位移参数,它使得分布在x轴上平移δ个单位。当δ = 0时,位移负指数分布就是普通的负指数分布。M3分布(M3 Distribution):M3分布是一种更复杂的连续概率分布,它是由Hawkes过程生成的。Hawkes过程是一种自激励点过程,即事件的发生会影响未来事件发生的概率。M3分布的密度函数具有以下形式:f(x) = a * e^(-bx) * (1 + c * e^(-dx)),其中x > 0,a > 0,b > 0,c > 0, d > 0。M3分布的参数较多,使得它可以描述更丰富的事件发生模式。联系:负指数分布和位移负指数分布在形式上类似,后者可以看作是前者的一个变种,只是多了一个位移参数δ。这使得位移负指数分布在实际应用中更具灵活性。而M3分布则是一种更复杂的分布,可以描述更丰富的事件发生模式。虽然这三种分布在某些情况下可能具有相似的性质,但它们分别适用于不同的应用场景和问题。
2023-08-10 09:52:111

指数分布与相关分布的关系

我思考一下啊,很多东西不是记得那么清楚了:你的问题我一个个来回答:(1)“possion分布表示的是一个状态更新的过程,那么t1时间来的人和t2时间来的人之间是独立的,是否是一个累加的过程,例如t1时间是1个人,t2时间来了2个人” 我举的排队的例子,同一时间是不会出现两个人的,也就是说每个人到的时间都不同的,不存在t2的时候到达两个人的情况。 也就是说t2时间只能来1个人,但是加上t1时间来的那个人,在t2时间段内就是来了两个人(如果按你说的t2来2个人的话t2时间段内就来了3个人了,这不符合泊松分布的假设) (2)“那么实际上在这点的possion分布的对应概率值是什么呢?”你的问题可以翻译成:t1来了1个人t2来了1个人所对应的概率是什么?也就是P(t1来了1个人t2来了1个人) 如果写的规范点,记t1为第一个人来的时间,t2为第二个人来的时间,这个t1不是固定的值,有可能t1=1,也有可能t1=2 那t1到底等于多少呢?它是一个服从参数为λ的指数分布,也就是P(t1=t)=e^-λt ,同样的由假设的独立增量性,在(t1,t2)阶段也是服从参数为λ的指数分布的,且有独立性 具体来说就是P(t1来了1个人t2来了1个人) =P(t1=t,t2=s)=P(t1=t,t2-t1=s-t)=P(t1=t)P(t2-t1=s-t)=e^-λt*e^-λ(s-t)=e^-λs 这是一个指数分布 ,所以并没有这点的possion分布这一说法。那么在排队模型里什么东西服从泊松分布呢?是在单位时间内排队的人数服从了泊松分布……如果你初学概率的话可能比较难以理解,因为这个算是随机过程里面的东西了,初学概率论只要知道有泊松分布这个东西就好了,具体怎么出来的,等你学到后面的东西了自然会知道的。(3)"其中的λ是怎么转换为指数分布的呢?"其实是先有指数分布的λ然后才推出泊松也是满足这个λ的。具体推导我这里不说,查任意一本随机过程的书都会有的。(4)"指数分布可不可以理解为是很多分布的“原型”不可以,这里只是正好和泊松分布有关系,因为指数分布有无记忆性,正好对应了泊松分布的独立增量,其他分布是没有这样的性质的。需要注意的是,指数分布是一种特殊的Γ分布,所以你可以研究一下Γ分布。而研究最多的是高斯分布,因为它最标准,正如之前那位说的有各向同性。(5)“有哪些分布可以这样联系起来呢”?首先说了指数分布和Γ分布,之后,二项分布是独立的伯努利分布之和,而卡方分布,t分布,F分布都是统计量,属于数理统计方面的概念,因此你可以查阅任意一本数理统计的书都能得到他们的推导。(6)“有没有推荐比较系统的比较便于理解的基础些的教材等资料” 这方面我可能没有,感觉都差不多吧,可以先看一下测度论的相关知识,因为概率空间和概率测度还是很重要的。测度论或者实变函数。具体的我不知道哪本最通俗易懂(7)"怎么理解固定的平均瞬时速率λ" 平均瞬时速率就相当于物理中的平均速度: 比如排队的时候,时间T内来了N个人,那么瞬时速率就是N/T ,但是这个N是不固定的,所以说瞬时速率也不固定,但是有个平均,平均出来是λ,也就是说,在固定的T时间段内,大概会有λT个人来排队,这其实就是期望的概念。如果去T为单位时间1 ,那么大概会有λ个人排队,正好就是泊松分布的期望。这也就是(2)中最后我提到的“在单位时间内排队的人数服从了泊松分布”
2023-08-10 09:52:201

如何证明指数分布的无记忆性

见图。
2023-08-10 09:52:411

随机变量的指数分布无记忆性?

是的,这是指在t的间隔内其概率之差是相等的!书上有详细解答!
2023-08-10 09:53:421

如何理解指数分布的无记忆性

这个概念其实是说lambda不是时间的函数而是常数这个物理量代表瞬时失效率等于密度函数除以(1-分布函数)等于lambda
2023-08-10 09:53:511

指数分布和卡方分布的关系是什么?

学科间紧密联系的关系。在概率理论和统计学中,指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
2023-08-10 09:54:111

寻求指数分布的历史介绍,或者相关指数分布的发展史之类的资料

上市少于两年的大型股获纳入恒生指数指引于检讨指数时大型股平均市值排名最少上市时间第五或以上3个月第六至十五6个月第十六至二十12个月第二十一至二十五18个月第二十五以下24个月 其中λ > 0是分布的一个参数,常被称为率参数(rate parameter)。指数分布的区间是[0,∞)。 如果一个随机变量X呈指数分布,则可以写作:X~ Exponential(λ)。比方说:如果你平均每个小时接到2次电话,那么你预期等待每一次电话的时间是半个小时。若随机变量x服从参数为λ的指数分布,则记为 X~ e(λ).指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布当s,t≥0时有P(T>s+t|T>t)=P(T>s)率参数λ的四分位数函数(Quartile function)是:F^-1(P;λ)= -LN(1-P)λ第一四分位数:ln(4/3)λ中位数: ln(2)λ第三四分位数:ln(4)/λ在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。在电子元器件的可靠性研究中,通常用于描述对发生的缺陷数或系统故障数的测量结果。这种分布表现为均值越小,分布偏斜的越厉害。指数分布应用广泛,在日本的工业标准和美国军用标准中,半导体器件的抽验方案都是采用指数分布。此外,指数分布还用来描述大型复杂系统(如计算机)的平均故障间隔时间MTBF的失效分布。但是,由于指数分布具有缺乏“记忆”的特性.因而限制了它在机械可靠性研究中的应用,所谓缺乏“记忆”,是指某种产品或零件经过一段时间t0的工作后,仍然如同新的产品一样,不影响以后的工作寿命值,或者说,经过一段时间t0的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同,显然,指数分布的这种特性,与机械零件的疲劳、磨损、腐蚀、蠕变等损伤过程的实际情况是完全矛盾的,它违背了产品损伤累积和老化这一过程。所以,指数分布不能作为机械零件功能参数的分布形式。指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。指数分布比幂分布趋近0的速度慢很多,所以有一条很长的尾巴。指数分布很多时候被认为是长尾分布。互联网网页链接的出度入度符合指数分布指数分布的参数为λ,则指数分布的期望为1/λ,方差为(1/λ)的平方。
2023-08-10 09:54:251

指数分布公式

指数分布公式为f(x)=λexp(-λx)。指数分布的ex和dx求:当X,Y无关时,E(XY)=E(X)E(Y),D(X)=E(X^2)-(E(X))^2,此时,E(X(X+Y-2))=E(X^2+XY-2X)=E(X^2)+E(XY)-2E(X)。D(x)指方差,E(x)指期望。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率理论和统计学中:指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。指数分布的可加性公式:f(x)=λe^(-λx)。正态分布是所有分布趋于极限大样本的分布,属于连续分布。二项分布与泊松分布,则都是离散分布,二项分布的极限分布是泊松分布、泊松分布的极限分布是正态分布。即np=λ,当n很大时,可以近似相等。指数函数的一个重要特征:是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
2023-08-10 09:54:341

gamma的分布是什么?

Gamma分布:是指在地震序列的有序性、地震发生率的齐次性、计数特征具有独立增量和平稳增量情况下,可以导出地震发生i次时间的概率密度为Gamma密度函数。α=n,Γ(n,β)就是Erlang分布。Erlang分布常用于可靠性理论和排队论中,如一个复杂系统中从第1次故障到恰好再出现n次故障所需的时间;从某一艘船到达港口直到恰好有n只船到达所需的时间都服从Erlang分布。当α= 1 , β = 1/λ 时,Γ(1,λ) 就是参数为λ的指数分布,记为exp (λ) ;当α =n/2 ,β=2时,Γ (n/2,2)就是数理统计中常用的χ2( n) 分布。学科间紧密联系的关系。在概率理论和统计学中,指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
2023-08-10 09:55:001

超几何分布有记忆性吗?

以1/θ为参数的指数分布,期望是θ,方差是θ的平方 这是同济大学4版概率论的说法。当然,一般参考书说成:以λ为参数的指数分布,期望是1/λ,方差是(1/λ)的平方 ,其实是一回事!!!!
2023-08-10 09:55:152

什么分布函数与伽马分布有关

卡方(n)~gamma(n/2,1/2)指数分布exp(k)~gamma(1,k)
2023-08-10 09:55:442

指数分布ex和dx怎么求?

指数分布的ex和dx求:当X,Y无关时,E(XY)=E(X)E(Y),D(X)=E(X^2)-(E(X))^2,此时,E(X(X+Y-2))=E(X^2+XY-2X)=E(X^2)+E(XY)-2E(X)。D(x)指方差,E(x)指期望。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率理论和统计学中指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。
2023-08-10 09:56:031

具有无记忆性特征的分布有()

具有无记忆性特征的分布有() A.二项分布B.几何分布C.指数分布D.正态分布正确答案:BC
2023-08-10 09:56:171

n个指数分布相加还是指数分布吗

f(z)=(αβ/(β-α))(exp(-αz)-exp(-βz))分布相加得到的分布还是原来的分布。因为n个均匀分布随机变量相加得到的新的随机变量符合高斯分布,这叫中心极限定理。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性。这表示如果一个随机变量呈指数分布,当s、t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
2023-08-10 09:56:361

指数分布为什么可以用来表示独立随机事件发生的时间间隔

在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。   许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。   指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。
2023-08-10 09:56:442

指数分布的ex和dx求是什么意思?

指数分布的ex和dx求:当X,Y无关时,E(XY)=E(X)E(Y),D(X)=E(X^2)-(E(X))^2,此时,E(X(X+Y-2))=E(X^2+XY-2X)=E(X^2)+E(XY)-2E(X)。D(x)指方差,E(x)指期望。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率理论和统计学中指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。
2023-08-10 09:56:521

卡方2为什么是指数

指数分布是自由度为2的卡方分布,其中 ,因为 。 自由度为2的卡方分布,是参数为1/2的指数分布 伽马分布: 自由度为n的卡方分布~gamma(n/2...
2023-08-10 09:57:072

为什么指数分布有两种表示方法?

在概率理论和统计学中,指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
2023-08-10 09:57:141

为什么指数分布服从参数为1/2的卡方分布?

不是的,只是根据各自定义,“X服从参数为1/2的指数分布,则X服从参数为2的卡方分布”是特殊的不是对n普遍适用的。只是把1/2和2分别代进两个式子里面,正好结果是一样的而已。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。指数分布指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。每单位时间内发生某事件的次数。指数分布的区间是[0,∞)。 如果一个随机变量X呈指数分布,则可以写作:X~ E(λ)。指数分布的图形表面上看与幂律分布很相似,实际两者有极大不同,指数分布的收敛速度远快过幂律分布。
2023-08-10 09:57:331

呼损率的爱尔兰呼损公式

占用概率服从爱尔兰分布情况下,按时间计算的呼损率为:B=(A/n!)/(∑A/i!)。其中A为流入话务量,n为公用信道数。爱尔兰分布该分布与指数分布一样多用来表示独立随机事件发生的时间间隔。相比于指数分布,爱尔兰分布能更好地对现实数据进行拟合(更适用于多个串行过程,或无记忆性假设不显著的情况下)。除非退化为指数分布,爱尔兰分布不具有无记忆性(或马尔可夫性质),因此对其进行分析相对困难一些。一般通过将爱尔兰过程分解为多个指数过程的技巧来对爱尔兰分布进行分析。扩展资料:呼损率有三种计算方法:1、按呼叫计算的方法,表示在所考察的时间内,不能得到服务的损失呼叫数与发生的总呼叫数之比,即呼叫损失概率;2、按时间计算的方法,表示在所考察的时间内,能为负载源服务的设备被阻塞的时间与所考察的总时间之比,也就是线束发生阻塞的概率;3、按负载计算的方法,表示在所考察的时间内,损失负载与这段时间的流入负载之比,也就是负载所损失的概率。对同一系统由三种算法得出的呼损值不一定相同。只是在爱尔兰分布情况下(见无限负载源全利用度损失系统),三种算法的值是相等的。参考资料来源:百度百科——呼损率
2023-08-10 09:57:481

为什么指数分布是对称的?

不是的,只是根据各自定义,“X服从参数为1/2的指数分布,则X服从参数为2的卡方分布”是特殊的不是对n普遍适用的。只是把1/2和2分别代进两个式子里面,正好结果是一样的而已。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。指数分布指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。每单位时间内发生某事件的次数。指数分布的区间是[0,∞)。 如果一个随机变量X呈指数分布,则可以写作:X~ E(λ)。指数分布的图形表面上看与幂律分布很相似,实际两者有极大不同,指数分布的收敛速度远快过幂律分布。
2023-08-10 09:58:041

问一个数学的问题什么是服从指数分布

指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t≥0时有P(T>s+t|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
2023-08-10 09:58:201

如何求指数分布的ex和dx?

指数分布的ex和dx求:当X,Y无关时,E(XY)=E(X)E(Y),D(X)=E(X^2)-(E(X))^2,此时,E(X(X+Y-2))=E(X^2+XY-2X)=E(X^2)+E(XY)-2E(X)。D(x)指方差,E(x)指期望。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率理论和统计学中指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。
2023-08-10 09:58:511

参数为5的指数分布是什么

据查询官方网站暂无参数为5的指数分布是什么相关信息。指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t≥0时有P(T>s+t|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。希望我的回答对你有所帮助。
2023-08-10 09:59:061

一个概率问题。“X服从参数为1/2的指数分布,则X服从参数为2的卡方分布”是如何得出的?n的指数

不是的,只是根据各自定义,“X服从参数为1/2的指数分布,则X服从参数为2的卡方分布”是特殊的不是对n普遍适用的。只是把1/2和2分别代进两个式子里面,正好结果是一样的而已。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。扩展资料:指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。每单位时间内发生某事件的次数。指数分布的区间是[0,∞)。如果一个随机变量X呈指数分布,则可以写作:X~E(λ)。指数分布的图形表面上看与幂律分布很相似,实际两者有极大不同,指数分布的收敛速度远快过幂律分布。参考资料来源:百度百科——指数分布
2023-08-10 09:59:121

水果英语怎么写单词?

水果的英语是fruit.
2023-08-10 09:59:3314

水果的单词,带音标

apple,
2023-08-10 10:01:172

He shed tears while reading Shakespeareu2019s plays.

他在读莎士比亚的戏剧时流下了眼泪。
2023-08-10 09:43:371

quote怎么读

英音:/kwu0259u028at/美音:/kwou028at/1、vt.引用,引述;援引,援用She quoted several verses to us. (或 She quoted us several verses.)她给我们引用了几句诗。quote Homer引用荷马作品quote a passage from the Bible引用《圣经》中的一段文字2、vi.引用,引述quote from Shakespeare引用莎士比亚作品报价Ask the refuse department to come and quote for removing the stuff.请环卫部门来开价清理这堆垃圾。3、n.引文;引语a quote from the Bible引自《圣经》的语句quotes引号I put this in quotes.我把它加上引号。single (double) quotes一对单(双)引号4、int.作插入语引文开始The president said, quote, I shall not run for office in November, unquote.总统说,引文开始,我将不参加11月份的竞选,引文结束。
2023-08-10 09:43:091