汉邦问答 / 问答 / 问答详情

已知f(x)是定义在r上的奇函数,且f(x)的图像关于直线x=2对称,当0

2023-08-08 09:02:38
Ntou123

奇函数:f(x)=-f(-x),

关于x=1对称:f(1+x)=f(1-x),

那么f(x+2)=f(1-(x+1))=f(-x)=-f(x),即f(x+2)=-f(x)

那么f(x+2)=-f(x+2+2)=-f(x+4)=-f(x)

所以f(x)=f(x+4),以4为周期的周期函数.

已知函数fx是定义在r上的奇函数,当x大于等于0时,f(x)=x2-2x,则f(x)的表达式为

答:f(x)是定义在R上的奇函数,则有:f(-x)=-f(x)f(0)=0x>=0时,f(x)=x^2-2x则x<=0时,-x>=0代入上式得:f(-x)=x^2+2x=-f(x)所以:x<=0时,f(x)=-x^2-2x所以:x>=0,f(x)=x^2-2xx<=0,f(x)=-x^2-2x
2023-08-07 16:50:491

已知函数f x 是定义在r上的奇函数,f(3)=2,且对于一切实数x都有f(x+4)=f(x)则f

2023-08-07 16:50:576

已知函数f(x)是定义在R上的奇函数,当x大于或等于0时,f(x)=x(1+x).求解析式.

解:设x<0,把-x代入f(x)中得,f(-x)=-x(1-x)又因为函数f(x)是定义在R上的奇函数,所以f(-x)=-f(x)f(x)=x(1-x)
2023-08-07 16:51:233

已知函数f(x)是定义在R上的奇函数,且对任意x∈R有f(x)=f(2-x)成立...

函数f(x)是定义在R上,且对任意x∈R有f(x)=f(2-x)成立,所以函数的图象关于直线x=1对称,又因为函数f(x)是定义在R上的奇函数,所以函数以T=4为周期,从而得f(2010)=f(2),便于得到答案.【解析】由已知,f(0)=0,从而f(2)=0. 又f(x+2)=f{2-(x+2)]=f(-x)=-f(x), 则f(x+4)=-f(x+2)=f(x), 所以f(x)是周期为4的周期函数, 于是f(2010)=f(2)=0, 故选A.
2023-08-07 16:51:581

已知函数y=f(x)是定义在R上的奇函数 要详细过程谢谢

1)y=f(x)是定义在R上的奇函数==>>f(-x)=-f(x)x<=0时,-x>=0时,f(-x)=2(-x)-(-x)^2=-2x-x^2=-f(x)所以x<=0时f(x)=2x+x^2当x>=0时,f(x)=2x-x^2(2)1<=a<b,[a,b]属于减区间【1,+∞)f(x)max=f(a)=2a-a^2=1/af(x)min=f(b)=2b-b^2=1/b所以a,b是方程2x^2-x^3=1的解x^2+x^2-x^3-1=0x^2(1-x)+(x+1)(x-1)=0(1-x)(x^2-x-1)=0x=1orx^2-x-1=0x=1orx=(1+根号5)/2orx==(1-根号5)/2因为1<=a<b所以a=1,b=(1+根号5)/2
2023-08-07 16:52:051

已知函数f(x)是定义在R上的奇函数,当x大于或等于0,f(x)=x(1+x)。求出函数的解析式。

分析:题目考的要点就是奇函数的定义,一般的,如果对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数,奇函数图象关于原点(0,0)中心对称,奇函数的定义域必须关于原点(0,0)对称,否则不能成为奇函数。解:由题意易知:f(-x)=-f(x)假设x<0,则-x>0,从而f(-x)=-x(1-x)利用奇函数的性质转换得f(-x)=-f(x)=-x(1-x),从而f(x)=x(1-x) (x<0)综上易知函数f(x)是定义在R上的函数的解析式为f(x)={f(x)=x(1+x) (x>=0);f(x)=x(1-x) (x<0)(备注:用大括号括起来的2个分段表达式,不要搞错的了,电脑打字不好书写!)
2023-08-07 16:52:122

已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(x+1)。画出图像,求解析式。

先画x>=0的图像,是二次函数一部分,然后根据对称性画出另一半;解析式设x <0,则-x>0,f(-x)=-x(—x+1)=-f(x),得f(x)=x(-x+1),最后写出整个解析式,即分段函数的形式即可
2023-08-07 16:53:011

已知函数f(x)是定义在r上的奇函数,对任意的x属于r

f(x)=-f(x+2/3),所以f(-2/3)=-f(-2/3+2/3)=-f(0) 因为f(x)是定义在R上的奇函数,所以f(0)=0 即f(-2/3)=0
2023-08-07 16:53:251

以知f(x)是定义在r上的奇函数

∵对任意x∈R有f(x)=f(2-x)成立 ∴函数f(x)的图象关于直线x=1对称 又∵函数f(x)是定义在R上的奇函数 ∴函数f(x)是一个周期函数 且T=4 故f(2010)=f(0) 又∵定义在R上的奇函数其图象必过原点 ∴f(2010)=0 故答案为:0
2023-08-07 16:53:321

已知f(x)是定义在R上的奇函数,当x属于(0,1)时,f(x)=2^x/4^x+1

当x属于(-1,0)时f(x)=-f(-x)=-2^(-x)/(4^(-x)+1)=-2^x/(1+4^x)f(x)是定义在R上的奇函数,f(0)=0f(x)在(-1,1)上的解析式:x属于(-1,0)时,f(x)=-2^x/(4^x+1)x属于(0,1)时,f(x)=2^x/(4^x+1)x=0时,f(x)=02)0<x1<x2<11/f(x1)-1/f(x2)=(2^x1+1/2^x1)-(2^x2+1/2^x2)=(2^x1-2^x2)-(1/2^x2-1/2^x1)=(2^x1-2^x2)(1-1/2^x12^x2)2^x1>2^x2,2^x1-2^x2>02^x1x2>1,1-1/2^x1x2>0所以,1/f(x1)-1/f(x2)>0x属于(0,1)时,f(x)=2^x/(4^x+1)>0所以,f(x2)>f(x1)f(x)在(0,1)上是减函数
2023-08-07 16:53:391

已知函数f(x)是定义在R上的奇函数,当x大于等于0时,f(x)=x(1+x).求函数解析式。

恩,稍等一下
2023-08-07 16:53:504

已知函数f(x)是定义在R上的奇函数,且当x∈(-∞,0]时,f(x)=e-x-ex2+a,则函数f(x)在x=1处的切线

由题意得,f(0)=1-0+a=0,解得a=-1,∴当x∈(-∞,0]时,f(x)=e-x-ex2-1,设x∈(0,+∞),则-x<0,f(-x)=ex-ex2-1,∵f(x)是定义在R上的奇函数,∴f(x)=-f(-x)=-ex+ex2+1,此时x∈(0,+∞),∴f′(x)=-ex+2ex,∴f′(1)=e,把x=1代入f(x)=-ex+ex2+1得,f(1)=1,则切点为(1,1),∴所求的切线方程为:y-1=e(x-1),化简得ex-y-e+1=0,故选B.
2023-08-07 16:54:001

已知函数f(x)是定义R上的奇函数,在(0,正无穷)是增函数,且f(1)=0

解:由于:y=f(x)是定义在r上的奇函数则有:f(-x)=-f(x)令x=0则有:f(0)=-f(0)则:f(0)=0由于f(x)在[0,+无穷)上是增函数由于:奇函数图像关于原点对称,则:f(x)在r上单调递增由于:f(1/2)=1则:f(-1/2)=-f(1/2)=-1又:-1<f(2x+1)<=0则有:f(-1/2)<f(2x+1)<=f(0)由于:f(x)在r上单调递增则有:-1/2<2x+1<=0则有:-3/4<x<=-1/2
2023-08-07 16:54:152

已知函数f(x)是定义域在R的奇函数,且f(x+3)=-f (x)则f(9)=?

0 f(9)=f(-6)=-f(6)-f(6)=f(3)=f(0)=0
2023-08-07 16:54:264

已知函数f(X)是定义在R上的奇函数,并且当x属于(0,正无穷)时,f(x)=2x方,求f(X)的解析式

f(x)=2x^2,x>0令x<0,则-x>0f(x)为奇函数 -> f(x)=-f(-x)f(x)=-f(-x)=-(2(-x)^2)=-2x^2又f(x)的定义域为R -> f(0)=0综上所诉 -2x^2,x>0f(x)= 0 ,x=0 2x^2 ,x>0
2023-08-07 16:54:352

已知函数fx是定义在r上的周期为2的奇函数,则f(1)是多少

因F(x)是奇函数,所以F(-1)=-F(1),因为F(x)的周期是2,所以 F(-1)=F(-1+2)=F(1) 所以F(1)=-F(1) 所以F(1)=0
2023-08-07 16:55:031

已知函数f(x)是定义在R上的奇函数,当x大于等于0时,f(x)=x(1+x).求函数解析式。

x<0时,-x>0f(-x)=(-x)[1+(-x)]=-x(1-x)函数是奇函数,f(x)=-f(-x)=-[-x(1-x)]=x(1-x)函数的解析式为:f(x)=x(1-x),(x<0)x(1+x),(x≥0)
2023-08-07 16:55:112

已知函数f(x)是定义在r上的奇函数,可以得到过(0,0)的结论吗?

解,f(x)为奇函数,f(-0)=-f(0) 则2f(0)=0,则f(0)=0 则函数过(0,0)
2023-08-07 16:55:463

已知函数fx是定义在R上的奇函数,f(3)=2,且对于一切实数x,都有f(x+4)=f(x),则f

解由f(x+4)=f(x)知函数的周期为4则f(13)=f(3×4+1)=f(1)又有f(x+4)=f(x)且函数f(x)是定义在r上的奇函数则f(-x)=-f(x)则f(x+4)=f(x)=-f(-x)即f(x+4)=-f(-x)取x=-1代入上式即f(-1+4)=-f(-(-1))即f(3)=-f(1)即f(1)=-f(3)=-2即f(13)=-2.
2023-08-07 16:55:521

已知函数f(x)是定义在R上的奇函数,当x>=0时,f(x)=x(1+x),求函数的解析式。

当x>0时,f(x)=x(1+x)当x<=0时,f(x)=-(-x(1-x))=-x^2+x(奇次方不变偶次方添负号)
2023-08-07 16:56:133

已知函数y=f(x)是定义在R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+X的开三次方)求f(x)的解析式

解:设x<0,则-x>0f(-x)=(-x)(1-X的开三次方)=-f(x)所以f(x)=x(1-X的开三次方)综上f(x)=x(1+X的开三次方) x>=0 =x(1-X的开三次方) x<0
2023-08-07 16:56:331

已知函数f(x)是定义域在R上的奇函数,当x大于等于0时,f(x)=x(1+x).求出函数的解析式。? 要详细步骤,辛

当X小于0时,-X>0,F(-X)=x(x-1),f(x)=x(1-x)(x<0)
2023-08-07 16:56:446

已知f(x)是定义在R上的奇函数,且是周期为2的周期函数,当x属于〔0,1)时,...

log(0.5)6≈-2.58log(0.5)6+2≈-0.58-(log(0.5)6+2)≈0.58属于[0,1)所以f(log(0.5)6)=-f(-log(0.5)6-2)=-[2^(-log(0.5)6-2)-1]=-[2^(log(2)6-2)-1]=-[6/(2^2)-1]=-[1.5-1]=-0.5我跟楼主算法一样……可能是答案错了……
2023-08-07 16:57:101

f (x)是定义在r上的奇函数,则下列函数为奇函数的是:①y =(|x|)②y =f (x)③y

由奇函数的定义:f(-x)=-f(x)验证 ①f(|-x|)=f(|x|),故为偶函数 ②f[-(-x)]=f(x)=-f(x),为奇函数 ③-xf(-x)=-xu2022[-f(x)]=xf(x),为偶函数 ④f(-x)+(-x)=-[f(x)+x],为奇函数 可知②④正确 故选D
2023-08-07 16:57:171

已知函数y=f(x)是定义在R上的奇函数,且f(2)=0,对任意x∈R,都有f(x+4)=f(x)+f(4)成

aaaaaaaaa
2023-08-07 16:57:263

若f(x)为定义在R上的奇函数,则f(x)是奇函数还是偶函数?

f(-x)=-f(x), -xf(-x)=-x -f(x)=xf(x),所以是偶函数
2023-08-07 16:57:386

已知y=f(x)是定义在R上的奇函数 且当x>0时 f(x)=1 求函数y=f(x)

当x>0时,f(x)=1,则当x<0时,f(x)=-1,则: { 1 x>0 f(x)={ 0 x=0 { -1 x<0
2023-08-07 16:57:552

已知定义在R上的奇函数f(x),设其导函数为f′(x),当x∈(-∞,0]时,恒有xf′(x)<f(-x),令F(

定义在R上的奇函数f(x),所以:f(-x)=-f(x)设f(x)的导函数为f′(x),当x∈(-∞,0]时,恒有xf′(x)<f(-x),则:xf′(x)+f(x)<0即:[xf(x)]′<0所以:函数F(x)=xf(x)在(-∞,0)上是单调递减函数.由于f(x)为奇函数,令F(x)=xf(x),则:F(x)为偶函数.所以函数F(x)=xf(x)在(0,+∞)上是单调递增函数.则:满足F(3)>F(2x-1)满足的条件是:2x?1>03>2x?1解得:12<x<2所以x的范围是:(12,2)故选:A
2023-08-07 16:58:051

高中数学!!必好评!已知函数f x是定义在r上的奇函数 f(x+1)是偶函数, 当X∈(2,4

点击[http://pinyin.cn/1vSMhXtOyaC] 查看这张图片。[访问验证码是:478913请妥善保管]
2023-08-07 16:58:142

已知函数fx是定义在R上的偶函数,gx是定义在R上的奇函数,且gx=f(x-l),

f(x)关于y轴对称关于(1,0)对称
2023-08-07 16:58:362

已知f(x)是定义在r上的偶函数,g(x)是定义在r上的奇函数,且g(x)=f(x-1)若f(0)

g(x)为奇函数,则对称中心为(0,0)g(x)=f(x-1),即g(x)是由f(x)向右平移一个单位得到的所以,f(x)的对称中心为(-1,0)f(0)=0,则:f(-2)=0又f(x)是偶函数,关于y轴对称类比三角函数,对称轴和对称中心之间的距离是T/4所以,f(x)是周期函数,T/4=1得:T=42010=502x4+2所以,f(2010)=f(2)=f(-2)=0
2023-08-07 16:58:501

已知函数饭(x)是定义在r上的奇函数,当x>=0,f(x)=x

f(x)函数,只是抽象了一点点,其实说破了,就一目了然. ∵函数f(x)是定义在R上的奇函数,则有 f(-x)=-f(x), 当x≥0时,f(x)=x(1+x). 令,X≤0,则有-X≥0,(两边同时乘以-1得,则不等式变号,)此时中的X就属于实数R了, 而,X≥0,有f(x)=x(1+x), 那么-X≥0,就有f(-x)=-(x)[1+(-x)]=-x(1-x), 而,f(-x)=-f(x),则有 -f(x)=-x(1-x), 得出, f(x)=x(1-x).即为所求的函数解析式.
2023-08-07 16:59:151

已知函数f(x)是定义在R上的奇函数,当x大于等于0时,f(x)=x(1+x)画出函数f(x)的图像,求出函数的解析式

f(x)=a+(1/4^x)+1满足f(-x)>f(x)
2023-08-07 16:59:472

高一数学,已知函数f(x)是定义在R上的奇函数

(1)因为f(X)为奇函数,关于原点对称且在0处有定义则f(0)=0(2)因为f(X)在(0,正无穷)为增设任意X1>X2>0有f(X1)>f(X2)又f(X)=-f(X)改造上式-f(-X1)+f(-X2)>0则f(-X1)-f(-X2)<0且-X2<X1根据定义在(负无穷,0)也增(3)因为f(X)在R为增则x(X-1)>=2即(X-2)(X+1)>=0则X=<-1或X>=2
2023-08-07 16:59:563

已知函数f(x)是定义在R上的奇函数,当x大于等于0时,f(x)=x(1+x).求函数解析式

函数f(x)是定义在R上的奇函数 f(-x)=-f(x) 当x大于等于0时,f(x)=x(1+x) 当x小于等于0时,-x
2023-08-07 17:00:092

已知函数y=f(x)是定义在R上的奇函数,且当x>0时f(x)=2^x,试求函数y=f(x)的表达式

当x>0时,f(x)=2^x;当x<0时,f(x)=-2^-x
2023-08-07 17:00:453

已知函数f(x)是定义在R上的奇函数,当x大于等于0时,f(x)=x(x+1),画出函数f(x)的图像,并求出函

f(x)=x(x+1),当x<0,f(-x)=-x(-x+1)=-f(x),所以当x<0时f(x)=x(1-x),x>=0,f(x)=x(x+1)至于图像,直接根据解析式画就行了
2023-08-07 17:00:581

设fx是定义在r上的奇函数,gx是定义在r上的偶函数,则f[g(x)]是什么函数

由于g(x)是偶函数,所以g(-x)=g(x)于是 f[g(-x)]=f[g(x)],即 f[g(x)]是偶函数
2023-08-07 17:01:182

已知函数f(x)是定义在实数集R上的奇函数

1、X<0时,因为函数为奇函数,则f(x)=-f(-x),f(x)=ax-ln-x ,x=0,f(x)=0再加上X>0那部分就是函数的解析式2、f`(x)=a-1/x<0即a<1/x,又X属于(负无穷,-1),那a属于(-1,0)
2023-08-07 17:01:311

已知函数F(X)是定义在R上的奇函数,当X≥0时,F(X)=X(1+X),求出函数的解析式

x>=0时, f(x)=x(1+x)x<0时, -x>0, 由奇数性质,f(x)=-f(-x)=-[-x(1-x)]=x(1-x)
2023-08-07 17:02:072

已知函数f(x)为定义在R上的奇函数

你的题目错了吧,应该是“当x大于零时,f(x)=Inx+2x-6”,不然x<0是lnx没有意义的。。。如果我猜的对的话过程如下:(如果不对你照着我这样的思路做就行了)函数f(x)为定义在R上的奇函数因此,f(-x)=-f(x)且f(0)=0因为当x>0时f(x)=Inx+2x-6所以,当x<0时,f(x)=-f(-x)=-[In(-x)-2x-6]=-ln(-x)+2x+6[f(x)在R上的解析式就可以写出来了,是一个分段函数]当x>0时f(x)=Inx+2x-6当x=0时f(x)=0当x<0时f(x)=-ln(-x)+2x+6当x>0时f(x)=Inx+2x-6f"(x)=2+(1/x)是恒大于零的即 当x>0时f(x)是单调递增的,又因为当x从大于0的方向趋近于0时,f(x)是负无穷大的,所以在x>0这部分f(x)有一个零点,由奇函数的对称性可知,在x<0这部分f(x)也有一个零点因此,函数f(x)的零点的个数为3(因为f(0)=0)
2023-08-07 17:02:471

已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=log2x(1)求f...

解:(1)设x<0,则-x>0∵当x>0时,f(x)=log2x∴f(-x)=log2(-x),又∵函数f(x)是奇函数∴f(x)=-f(-x)=-log2(-x).当x=0时,f(0)=0综上所述f(x)=log2x,x>00,x=0-log2(-x),x<0(2)由(1)得不等式f(x)≤12可化为x>0时,log2x≤12,解得0<x≤2x=0时,0≤12,满足条件x<0时,-log2(-x)≤12,解得x≤-22综上所述原不等式的解集为{x|x≤-22,或0≤x≤2}
2023-08-07 17:02:541

已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时f(x)+xf′(x)<0恒成立,若a=30.3f(30.3

∵当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立即:(xf(x))′<0,∴xf(x)在 (-∞,0)上是减函数.又∵函数y=f(x)是定义在R上的奇函数∴xf(x)是定义在R上的偶函数∴xf(x)在 (0,+∞)上是增函数.又∵30.3>1>logπ3>0>log319,?log319>30.3>1>logπ3>0所以(log319)f(log319)>30.3?f(30.3)>(logπ3)?f(logπ3)即:c>a>b故答案为:D
2023-08-07 17:03:041

设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x)

解:因为设f(x)是定义在r上的奇函数,所以:f(x+2)=-f(x+2)又因为:对任意实数x,恒有f(x+2)=-f(x)所以:-f(x+2)=-f(x)所以:f(x+2)=f(x)所以:f(x)是周期函数,周期为2
2023-08-07 17:03:212

已知定义在R上的函数fx是奇函数,

定义域为R的任意奇函数,都有f(0)=0f(0+2)=f(0)-f(2),f(2)=0所以 f(x+2)=f(x)-f(2)=f(x)f(x)为周期函数,周期T=2f(-8)=f(-8+2*4)=f(0)=0或者直接这样:f(4)=f(2+2)=f(2)-f(2)=0f(6)=f(4+2)=f(4)-f(2)=0f(8)=f(6+2)=f(6)-f(2)=0
2023-08-07 17:03:361

已知函数y=f(x)是定义在R上的奇函数,且当x>0时,f(x)=2的X次幂,试求y=f(x)的表达式

2023-08-07 17:03:551

已知函数f(x)是定义在r上的奇函数,可以得到过(0,0)的结论吗

奇函数f(-x)=-f(x) 令x=0 变形一下得到2f(0)=0 所以f(0)=0
2023-08-07 17:04:031

已知函数f(x)是定义在R上的奇函数,且x>0时,f(x)=x

你没有要求的东西呀,看不懂你需要我给你解决什么?
2023-08-07 17:04:172

已知f(x)是定义在R上的奇函数,当x>=0时,f(x)=x(1+x),求f(1),f(-2)及f(x)的解析式

∵1>0∴f(1)=1×(1+1)=2∵f(x)是定义在R上的奇函数∴f(-x)=-f(x)∴f(-2)=-f(2)=-2×(1+2)=-6设x<0,则-x>0,f(-x)=(-x)[1+(-x)]=x(x-1)又f(-x)=-f(x),则-f(x)=x(x-1),即,x<0时,f(x)=x(1-x),答:f(1)=2f(-2)=-6当x>=0时,f(x)=x(1+x)当x<0时,f(x)=x(1-x)
2023-08-07 17:04:511

设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x)

(1)由于f(x+2)=-f(x),那么(用x+2代替x,可以得到)f[(x+2)+2]=-f(x+2)=-[-f(x)]=f(x)则f(x+4)=f(x),f(x)是以4为周期的周期函数——————————————————————————————————(2)由题设我们知道x∈[0,2]时,f(x)=2x-x^2当x∈[-2,0]时,-x∈[0,2],那么f(-x)=2*(-x)-(-x)^2=-2x-x^2又因为f(x)为奇函数,所以f(x)=-f(-x)可以得到在x∈[-2,0]时,f(x)=-(-2x-x^2)=2x+x^2——————————————————————————————————x∈[2,4],那么x-4∈[-2,0],那么f(x-4)=2(x-4)+(x-4)^2=x^2-6x+8由于f(x)的周期是4,所以f(x)=f(x-4)=x^2-6x+8因此,在x∈[2,4]时,f(x)=x^2-6x+8——————————————————————————————————(3)由x∈[0,2]时,f(x)=2x-x^2,得到f(0)=f(4)=f(8)=……=0f(1)=f(5)=f(9)=……=1由x∈[2,4]时,f(x)=x^2-6x+8得到f(2)=f(6)=f(10)=……0f(3)=f(7)=f(11)=……-1f(0)+f(1)+f(2)+……+f(2008)总共是2009个f()相加,每四个的和为0,所以前2008个的和都为0,f(2008)=f(0+4*502)=f(0)=0所以f(0)+f(1)+f(2)+……+f(2008)=0
2023-08-07 17:05:051