汉邦问答 / 问答 / 问答详情

求f(x)=x的傅里叶级数

2023-05-23 19:24:24

求f(x)=x的傅里叶级数f(x)=x是以2π为周期的周期函数,在[-π,π)上的表达式为f(x)=x,求f(x)的傅里叶级数

Ntou123

如图所示:

傅里叶级数

傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:

在任何周期内,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个最大值或最小值;在任何有限区间上,x(t)只能有有限个第一类间断点。

扩展资料:

所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性,例如,在三维欧氏空间中,互相垂直的向量之间是正交的。事实上,正交是垂直在数学上的的一种抽象化和一般化。

一组n个互相正交的向量必然是线性无关的,所以必然可以张成一个n维空间,也就是说,空间中的任何一个向量可以用它们来线性表出。三角函数族的正交性用公式表示出来就是:

傅里叶级数

傅里叶级数

傅里叶级数

参考资料:百度百科——傅里叶级数

豆豆staR

简单计算一下即可,答案如图所示

备注

CarieVinne

如图所示:

小白

求f叉等于叉的副理数集数

什么是傅里叶级数 傅里叶级数简介

1、所谓的傅里叶级数,就是将一个复杂函数展开成三角级数,将复杂的函数展开成幂级数,考虑的是在误差允许的范围内,通过熟悉的一元多次函数来研究复杂函数的有关问题。 2、法国数学家傅里叶认为,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。 3、法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯- 博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。
2023-05-23 14:18:161

傅里叶级数是什么?

设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f , ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即   其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。  在做题时,常常看到级数后面跟着一个系数还有一个正弦函数,然后后面给出了这个系数很复杂的一串式子,这时候就容易突然短路了。但是如果再定睛一看,会发现其实那个系数不过是一个有积分的傅立叶系数而已。那么一大串,应该看什么呢?应当先看积分域,一下就可以定出周期了。第二步要明确级数和函数的关系即等价关系。函数不但包含在级数中,而且函数本身也是和级数等价的。但一般那个级数里的函数是一个摆设,不起什么作用
2023-05-23 14:18:251

傅里叶级数

线性时不变系统对复指数信号的响应也是同一个复指数信号,不同的只是在幅度上的变化 系统对信号输出响应是一个常数乘以输入,则该输入信号为系统的特征函数,该常数为特征值(和线代概念类似) 复指数信号就是线性时不变系统的特征函数 输入为:输出为:成谐波关系的复指数信号集一个连续时间周期信号可以由成谐波关系的复指数信号的加权和表示 连续时间周期信号的傅里叶级数表示不同频率的系数为:为直流分量或常数分量 连续时间周期信号的傅里叶级数近似当 时, 1. 在任何周期内, 必须是绝对可积 2. 在任意有限区间内, 具有有限个起伏变化,也就是说,在单个周期内,最大值和最小值的数目是有限的。 3. 在有限区间内,只有有限个不连续点。 满足狄里赫利条件的周期信号,在不连续点傅里叶级数收敛于不连续点左右值的平均值吗,在其他连续点收敛于原信号点。 在不连续点附近的连续位置,当N增加时,傅里叶级数和原信号越来越接近,但是对任意N值,起伏的峰值大小保持不变因为离散时间复指数信号,频率加 和本身相同,因此实际上只需要N个谐波。
2023-05-23 14:18:311

傅里叶级数展开公式是什么?

傅里叶级数展开公式如下:傅里叶级数像三角波,矩形波,梯形波这种波形不连续,因此在仿真软件中很容易出现计算不收敛的情况。所以,在这种情况下,利用一系列谐波叠加的形式来等价于原来的波形,可以很好的优化模型。傅里叶展开式收敛性判别至今还没有判断傅里叶级数的收敛性充分必要条件,但是对于实际问题中出现的函数,有很多种判别条件可用于判断收敛性。比如x(t)的可微性或级数的一致收敛性。在闭区间上满足狄利克雷条件的函数表示成的傅里叶级数都收敛。狄利克雷条件如下:在定义区间上,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个极值点;在任何有限区间上,x(t)只能有有限个第一类间断点。以上资料参考:百度百科-傅里叶展开式
2023-05-23 14:18:391

到底神马是傅里叶级数

一步步讲来:1、序列、数列:sequence、progression,就是一串数字的有规律的排列。.2、级数 series,就是一连串的函数之和形成级数;.3、幂级数,power series,就是由常数跟 x、x²、x³、x⁴、、、之和形成,     其中 x、x²、x³、x⁴、、、可以带有不同的系数 coefficients;     这个幂级数就是麦克劳林级数 Mclaurin series;.4、常数跟 (x-a)、(x-a)²、(x-a)³、(x-a)⁴、、、之和形成泰勒级数,     其中 (x-a)、(x-a)²、(x-a)³、(x-a)⁴、、、也可以带有不同的系数;     泰勒级数 = Taylor series;.5、上面的泰勒级数的幂次没有负数,如有负幂次就是洛朗级数,      洛朗级数 = Laurent series;.5、麦克劳林级数、泰勒级数、洛朗级数,都是由代数项构成,     若麦克劳林级数、泰勒级数的每一项由正弦函数、或余弦函数、     或既有正弦函数又有余弦函数构成,就是傅立叶级数 = Fourier series。.6、请参看下面的图示:.......
2023-05-23 14:18:581

傅里叶级数的公式是?

傅立叶变换的公式为:即余弦正弦和余弦函数的傅里叶变换如下:傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。扩展资料如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值。在一个周期内具有有限个极值点、绝对可积。傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数定义在离散点上而非连续域内,且须满足有限性或周期性条件。参考资料来源:百度百科-傅里叶变换
2023-05-23 14:19:241

简单理解傅里叶级数(Fourier Series)

从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。 这种以时间作为参照来观察动态世界的方法我们称其为时域分析 。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 还是举个栗子并且有图有真相才好理解。 如果我说我能用前面说的正弦曲线波叠加出一个带 90 度角的矩形波来,你会相信吗?你不会,就像当年的我一样。但是看看下图: 第一幅图是一个郁闷的正弦波 cos(x) 第二幅图是 2 个卖萌的正弦波的叠加 cos (x) +a.cos (3x) 第三幅图是 4 个发春的正弦波的叠加 第四幅图是 10 个便秘的正弦波的叠加 随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理?(只要努力,弯的都能掰直!) 随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个正弦波叠加起来才能形成一个标准 90 度角的矩形波呢?不幸的告诉大家,答案是无穷多个。(上帝:我能让你们猜着我?) 不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。 还是上图的正弦波累加成矩形波,我们换一个角度来看看: 在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅都是不同的。一定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为 0 的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。 这里,不同频率的正弦波我们成为频率分量。 好了,关键的地方来了!! 如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。 (好吧,数学称法为——基。在那个年代,这个字还没有其他奇怪的解释,后面还有正交基这样的词汇我会说吗?) 时域的基本单元就是“1”秒,如果我们将一个角频率为ω0的正弦波cos(ω0t)看做基础,那么频域的基本单元就是ω0。 有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢?cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0 频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。 接下来,让我们回到初中,回忆一下已经死去的八戒,啊不,已经死去的老师是怎么定义正弦波的吧。 正弦波就是一个圆周运动在一条直线上的投影。所以频域的基本单元也可以理解为一个始终在旋转的圆。 介绍完了频域的基本组成单元,我们就可以看一看一个矩形波,在频域里的另一个模样了: 这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱,就是— 再清楚一点: 老实说,在我学傅里叶变换时,维基的这个图还没有出现,那时我就想到了这种表达方法,而且,后面还会加入维基没有表示出来的另一个谱——相位谱。 但是在讲相位谱之前,我们先回顾一下刚刚的这个例子究竟意味着什么。记得前面说过的那句“世界是静止的”吗?估计好多人对这句话都已经吐槽半天了。想象一下,世界上每一个看似混乱的表象,实际都是一条时间轴上不规则的曲线,但实际这些曲线都是由这些无穷无尽的正弦波组成。我们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。那么你的脑海中会产生一个什么画面呢? 我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的。在最外面的小齿轮上有一个小人——那就是我们自己。我们只看到这个小人毫无规律的在幕布前表演,却无法预测他下一步会去哪。而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇。这样说来有些宿命论的感觉。说实话,这种对人生的描绘是我一个朋友在我们都是高中生的时候感叹的,当时想想似懂非懂,直到有一天我学到了傅里叶级数…… 上一章的关键词是:从侧面看。这一章的关键词是:从下面看。 在这一章最开始,我想先回答很多人的一个问题:傅里叶分析究竟是干什么用的?这段相对比较枯燥,已经知道了的同学可以直接跳到下一个分割线。 先说一个最直接的用途。无论听广播还是看电视,我们一定对一个词不陌生——频道。频道频道,就是频率的通道,不同的频道就是将不同的频率作为一个通道来进行信息传输。下面大家尝试一件事: 先在纸上画一个sin(x),不一定标准,意思差不多就行。不是很难吧。好,接下去画一个sin(3x)+sin(5x)的图形。别说标准不标准了,曲线什么时候上升什么时候下降你都不一定画的对吧? 好,画不出来不要紧,我把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。但是在频域呢?则简单的很,无非就是几条竖线而已。 所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为 滤波 ,是信号处理最重要的概念之一,只有在频域才能轻松的做到。 再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。 傅里叶分析当然还有其他更重要的用途,我们随着讲随着提。 下面我们继续说相位谱: 通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。 鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。在图中就是那些小红点。小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。 在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。下次偷看女生裙底被发现的话,可以告诉她:“对不起,我只是想看看你的相位谱。” 注意到,相位谱中的相位除了0,就是Pi。因为cos(t+Pi)=-cos(t),所以实际上相位为Pi的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于cos(t+2Pi)=cos(t),所以相位差是周期的,pi和3pi,5pi,7pi都是相同的相位。人为定义相位谱的值域为(-pi,pi],所以图中的相位差均为Pi。 最后来一张大集合: 傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。 所以说,钢琴谱其实并非一个连续的频谱,而是很多在时间上离散的频率,但是这样的一个贴切的比喻真的是很难找出第二个来了。 因此在傅里叶变换在频域上就从离散谱变成了连续谱。那么连续谱是什么样子呢? 你见过大海么? 为了方便大家对比,我们这次从另一个角度来看频谱,还是傅里叶级数中用到最多的那幅图,我们从频率较高的方向看。 以上是离散谱,那么连续谱是什么样子呢? 尽情的发挥你的想象,想象这些离散的正弦波离得越来越近,逐渐变得连续…… 直到变得像波涛起伏的大海: 很抱歉,为了能让这些波浪更清晰的看到,我没有选用正确的计算参数,而是选择了一些让图片更美观的参数,不然这图看起来就像屎一样了。 不过通过这样两幅图去比较,大家应该可以理解如何从离散谱变成了连续谱的了吧?原来离散谱的叠加,变成了连续谱的累积。所以在计算上也从求和符号变成了积分符号。 不过,这个故事还没有讲完,接下去,我保证让你看到一幅比上图更美丽壮观的图片,但是这里需要介绍到一个数学工具才能然故事继续,这个工具就是—— 虚数i这个概念大家在高中就接触过,但那时我们只知道它是-1 的平方根,可是它真正的意义是什么呢? 这里有一条数轴,在数轴上有一个红色的线段,它的长度是1。当它乘以 3 的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1 的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了 180 度。 我们知道乘-1 其实就是乘了两次 i 使线段旋转了 180 度,那么乘一次 i 呢——答案很简单——旋转了 90 度。 同时,我们获得了一个垂直的虚数轴。实数轴与虚数轴共同构成了一个复数的平面,也称复平面。这样我们就了解到,乘虚数i的一个功能——旋转。 现在,就有请宇宙第一耍帅公式欧拉公式隆重登场—— 这个公式在数学领域的意义要远大于傅里叶分析,但是乘它为宇宙第一耍帅公式是因为它的特殊形式——当x等于 Pi 的时候。 经常有理工科的学生为了跟妹子表现自己的学术功底,用这个公式来给妹子解释数学之美:”石榴姐你看,这个公式里既有自然底数e,自然数 1 和0,虚数i还有圆周率 pi,它是这么简洁,这么美丽啊!“但是姑娘们心里往往只有一句话:”臭屌丝……“ 这个公式关键的作用,是将正弦波统一成了简单的指数形式。我们来看看图像上的涵义: 欧拉公式所描绘的,是一个随着时间变化,在复平面上做圆周运动的点,随着时间的改变,在时间轴上就成了一条螺旋线。如果只看它的实数部分,也就是螺旋线在左侧的投影,就是一个最基础的余弦函数。而右侧的投影则是一个正弦函数。 关于复数更深的理解,大家可以参考: 复数的物理意义是什么? 这里不需要讲的太复杂,足够让大家理解后面的内容就可以了。 有了欧拉公式的帮助,我们便知道:正弦波的叠加,也可以理解为螺旋线的叠加在实数空间的投影。而螺旋线的叠加如果用一个形象的栗子来理解是什么呢? 光波 高中时我们就学过,自然光是由不同颜色的光叠加而成的,而最著名的实验就是牛顿师傅的三棱镜实验: 所以其实我们在很早就接触到了光的频谱,只是并没有了解频谱更重要的意义。 但不同的是,傅里叶变换出来的频谱不仅仅是可见光这样频率范围有限的叠加,而是频率从 0 到无穷所有频率的组合。 这里,我们可以用两种方法来理解正弦波: 第一种前面已经讲过了,就是螺旋线在实轴的投影。 另一种需要借助欧拉公式的另一种形式去理解: 将以上两式相加再除2,得到: 这个式子可以怎么理解呢? 我们刚才讲过,e^(it)可以理解为一条逆时针旋转的螺旋线,那么 e^(-it)则可以理解为一条顺时针旋转的螺旋线。而 cos (t)则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了! 举个例子的话,就是极化方向不同的两束光波,磁场抵消,电场加倍。 这里,逆时针旋转的我们称为正频率,而顺时针旋转的我们称为负频率(注意不是复频率)。 好了,刚才我们已经看到了大海——连续的傅里叶变换频谱,现在想一想,连续的螺旋线会是什么样子: 想象一下再往下翻: 是不是很漂亮? 你猜猜,这个图形在时域是什么样子? 哈哈,是不是觉得被狠狠扇了一个耳光。数学就是这么一个把简单的问题搞得很复杂的东西。 顺便说一句,那个像大海螺一样的图,为了方便观看,我仅仅展示了其中正频率的部分,负频率的部分没有显示出来。 如果你认真去看,海螺图上的每一条螺旋线都是可以清楚的看到的,每一条螺旋线都有着不同的振幅(旋转半径),频率(旋转周期)以及相位。而将所有螺旋线连成平面,就是这幅海螺图了。 好了,讲到这里,相信大家对傅里叶变换以及傅里叶级数都有了一个形象的理解了,我们最后用一张图来总结一下: 好了,傅里叶的故事终于讲完了,下面来讲讲我的故事: 这篇文章第一次被卸下来的地方你们绝对猜不到在哪,是在一张高数考试的卷子上。当时为了刷分,我重修了高数(上),但是后来时间紧压根没复习,所以我就抱着裸考的心态去了考场。但是到了考场我突然意识到,无论如何我都不会比上次考的更好了,所以干脆写一些自己对于数学的想法吧。于是用了一个小时左右的时间在试卷上洋洋洒洒写了本文的第一草稿。 你们猜我的了多少分? 6 分 没错,就是这个数字。而这 6 分的成绩是因为最后我实在无聊,把选择题全部填上了C,应该是中了两道,得到了这宝贵的 6 分。说真的,我很希望那张卷子还在,但是应该不太可能了。 那么你们猜猜我第一次信号与系统考了多少分呢? 45 分 没错,刚刚够参加补考的。但是我心一横没去考,决定重修。因为那个学期在忙其他事情,学习真的就抛在脑后了。但是我知道这是一门很重要的课,无论如何我要吃透它。说真的,信号与系统这门课几乎是大部分工科课程的基础,尤其是通信专业。 在重修的过程中,我仔细分析了每一个公式,试图给这个公式以一个直观的理解。虽然我知道对于研究数学的人来说,这样的学习方法完全没有前途可言,因为随着概念愈加抽象,维度越来越高,这种图像或者模型理解法将完全丧失作用。但是对于一个工科生来说,足够了。 后来来了德国,这边学校要求我重修信号与系统时,我彻底无语了。但是没办法,德国人有时对中国人就是有种藐视,觉得你的教育不靠谱。所以没办法,再来一遍吧。 这次,我考了满分,而及格率只有一半。 老实说,数学工具对于工科生和对于理科生来说,意义是完全不同的。工科生只要理解了,会用,会查,就足够了。但是很多高校却将这些重要的数学课程教给数学系的老师去教。这样就出现一个问题,数学老师讲得天花乱坠,又是推理又是证明,但是学生心里就只有一句话:学这货到底干嘛用的? 缺少了目标的教育是彻底的失败。 在开始学习一门数学工具的时候,学生完全不知道这个工具的作用,现实涵义。而教材上有只有晦涩难懂,定语就二十几个字的概念以及看了就眼晕的公式。能学出兴趣来就怪了! 好在我很幸运,遇到了大连海事大学的吴楠老师。他的课全程来看是两条线索,一条从上而下,一条从下而上。先将本门课程的意义,然后指出这门课程中会遇到哪样的问题,让学生知道自己学习的某种知识在现实中扮演的角色。然后再从基础讲起,梳理知识树,直到延伸到另一条线索中提出的问题,完美的衔接在一起! 这样的教学模式,我想才是大学里应该出现的。 最后,写给所有给我点赞并留言的同学。真的谢谢大家的支持,也很抱歉不能一一回复。因为知乎专栏的留言要逐次加载,为了看到最后一条要点很多次加载。当然我都坚持看完了,只是没办法一一回复。 本文只是介绍了一种对傅里叶分析新颖的理解方法,对于求学,还是要踏踏实实弄清楚公式和概念,学习,真的没有捷径。但至少通过本文,我希望可以让这条漫长的路变得有意思一些。 最后,祝大家都能在学习中找到乐趣…
2023-05-23 14:19:521

傅里叶级数展开公式是什么?

傅里叶展开式(Fourier expansion)是指用三角级数表示的形式,即一个函数的傅里叶级数在它收敛于此函数本身时的一种称呼。若函数f(x)的傅里叶级数处处收敛于f (x),则此级数称为f(x)的傅里叶展开式。傅里叶展开式是一个函数的傅里叶级数在它收敛于此函数本身时的一种称呼。而傅里叶级数得名于法国数学家约瑟夫·傅里叶(1768年–1830年),他提出任何函数都可以展开为三角级数。此前数学家如拉格朗日等已经找到了一些非周期函数的三角级数展开,而认定一个函数有三角级数展开之后,通过积分方法计算其系数的公式,欧拉、达朗贝尔和克莱罗早已发现。傅里叶的工作得到了丹尼尔·伯努利的赞助。傅里叶介入三角级数用来解热传导方程,其最初论文在1807年经拉格朗日、拉普拉斯和勒让德评审后被拒绝出版,他被称为傅里叶逆转定理的理论后来发表于1820年的《热的解析理论》中。将周期函数分解为简单振荡函数的总和的最早想法,可以追溯至公元前3世纪古代天文学家的均轮和本轮学说。
2023-05-23 14:20:001

傅里叶级数的实际意义是什么?

  傅里叶级数展开的实际意义:  傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。  傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。  和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。  从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。  在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:  1) 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;  2) 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;  3) 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;  4) 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。  参考链接:  傅里叶级数展开的实际意义_百度文库  http://wenku.baidu.com/link?url=Dtzm3lpZCOiu6iRxLeW2sK0_8joYJKvidLpkzoCflNm3vdMxuXLtHTIxGRyfk287AOl3T42Yi2eYBGpcrqKqMWmGkEqWCBwJcXlk9qvIxBC
2023-05-23 14:20:121

级数知识点小结3-傅里叶级数

概念 :形如 的级数,其中 都是常数,称为三角级数。 三角函数系的正交性 :三角函数系 中任意不同的两个函数的乘积在区间 上的积分等于零。 概念 :如果 是周期为 的周期函数,且能展开成上述三角级数,当 积分都存在,这时它们定出的系数 叫做函数 的傅里叶系数,带入所得的三角级数叫做函数 的傅里叶级数。 收敛定理,狄利克雷充分条件 :设 是周期为 的周期函数,如果它满足: 那么 的傅里叶级数收敛,并且当 是 的连续点时,级数收敛于 ;当 是 的间断点时,级数收敛于 。 周期延拓 :把一个定义域为有限区间的函数拓展为周期函数,按这种方式拓广函数的定义域的过程称为周期延拓。 正弦级数 :奇函数的傅里叶级数是只含有正弦项的正弦级数。 余弦级数 :偶函数的傅里叶级数是只含有余弦项的余弦级数。 奇(偶)延拓 :设函数 定义在区间 上并且满足收敛定理的条件,我们在开区间 内补充函数 的定义,得到定义在 上的函数 ,使它在 上成为奇(偶)函数。按这种方式拓广函数定义域的过程称为奇(偶)延拓。 对周期为 的周期函数做变量代换 得到以下定理: 定理 :设周期为 的周期函数 满足收敛定理的条件,则它的傅里叶级数展开式为 其中
2023-05-23 14:20:191

傅里叶级数的系数是怎么得到的?

第一步:计算傅里叶系数根据周期函数的定积分性质,由以下公式计算函数f(x)在任意区间长度为2π的区间上的定积分.一般取为直接定义函数的一个周期区间。常取为[-π, π],即第二步:以傅里叶系数为系数,写出三角级数第三步:基于狄利克雷收敛定理判定傅里叶级数的收敛性狄利克雷收敛定理:如果周期为2π的周期函数f(x)在一个周期上分段连续,并且在一个周期上只有有限个极值点和有限个第一类间断点,则函数f(x)的傅立叶级数收敛,并且有期函数f(x)在一个周期上分段连续,并且在一个周期上只有有限个极值点和有限个第一类间断点,则函数f(x)的傅立叶级数收敛,并且有其中f(x+0)和f(x-0)分别为函数f(x)在点x处的右极限与左极限.即在连续点处傅里叶级数收敛于函数本身S(x)=f(x);在间断点处收敛于该点左、右极限的算术平均值.第四步:函数展开成傅里叶级数依据定理得到和函数等于被展开函数f(x)的集合I,最终写出附带集合I的等式注意点:傅立叶级数的部分和有很好的整体逼近性质,幂级数的局部逼近性质比较好.幂级数展开需要函数有很好的“光滑性”,傅里叶级数对“光滑性”的要求较低。如果函数为奇函数,则函数的傅里叶级数仅仅包含正弦项,则这样傅里叶级数称之为正弦级数,此时只需要计算傅里叶级数的系数bn(1,2,…);如果函数为偶函数,则函数的傅里叶级数仅仅包含余弦项和常数项,则这样傅里叶级数称之为余弦级数,此时只需要计算傅里叶级数系数an(0,1,2,…)。以上资料参考百度百科-傅里叶级数
2023-05-23 14:20:381

傅立叶级数怎么求?

上式即为从已知的f(t)求的公式.这样我们即得到了一对相互的变换式(10-2-8)与(...),即将f(t)展开成了复指数形式的傅立叶级数.在(10-2-7)中,由于离散变量n是从...
2023-05-23 14:21:132

傅里叶级数是什么

法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示,后世称为傅里叶级数的一种特殊的三角级数。
2023-05-23 14:21:192

傅里叶级数展开公式

F^(ω)=∫(上限+∞下限-∞)f(t)exp(-iωt)dt。傅里叶展开式是指用三角级数表示的形式,即一个函数的傅里叶级数,在它收敛于此函数本身时的一种称呼。若函数f(x)的傅里叶级数处处收敛于f(x),则此级数称为f(x)的傅里叶展开式。
2023-05-23 14:21:271

傅里叶级数什么时候学

 傅里叶级数高中时候学。若未确定函数f(x)是连续的,则f(x)~其傅里叶级数,一般的,[f(x-0)+f(x+0)]/2=f(x)的傅里叶级数;仅当f(x)是连续函数时,f(x)=其傅里叶级数。傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;*正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内。来源从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯- 博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。
2023-05-23 14:21:331

高数fx展开为傅里叶级数

使用傅里叶级数的公式(1)先求a0a0=(1/π) ∫(π,-π) f(x)dx=(1/π) ∫(π,-π) xdx奇函数对称区间积分为0=0(2)再求an,bnan=(1/π) ∫(π,-π) f(x)cos nx dx=(1/π) ∫(π,-π) xcos nx dx设g(x)=xcos nxg(-x)=-xcos(-nx)=-xcos nx可见被积函数是奇函数所以an=0bn=(1/π) ∫(π,-π) f(x)sin nx dx=(1/π) ∫(π,-π) xsin nx dx同理,可以得出xsin nx是偶函数所以bn=(2/π) ∫(π,0) xsin nx dx用分部积分法=(2/π) ∫(π,0) (-1/n) x d(cos nx)=[-2/(nπ)] ∫(π,0) x d(cos nx)=[-2/(nπ)] [x cos nx |(π,0) - ∫(π,0) cosnx dx]=[-2/(nπ)] [πcos nπ - (1/n) sin nπ |(π,0)]=[-2/(nπ)] [πcos nπ - 0]=(-2/n) cos nπ当n为奇数时,bn=2/n当n为偶数时,bn=-2/n所以bn=(-1)^(n+1) (2/n)综上,傅里叶级数f(x)=2 ∑ (-1)^(n+1) sin nx /n
2023-05-23 14:21:491

傅里叶级数问题

楼主有没有注意到答案中an=(2/π)∫f(x)cosnxdx(从0到π)=(1/π)∫f(x)cosnxdx(从-π到π)这个公式是按照2π为周期计算的而楼主自己的an=(2/π)f(x)cos2nxdx在-π/2→π/2上的积分是按照π为周期计算的,且an应该是(1/π)...不是(2/π)...这个题按2π为周期或者π为周期展开都是可以的,所以会出现这样的问题,应该都是对的
2023-05-23 14:22:041

利用傅里叶级数计算级数的和

2023-05-23 14:22:121

傅里叶级数展开

如图所示:
2023-05-23 14:22:301

全波整流信号的傅里叶级数怎么求

任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示,将交流转换为直流,任何隔离式电源都有着整流模块,可以将壁式插座中的交流转为高压直流,或是降压交流转换为低压直流。进一步的过程还有滤波,DC-DC转换等等。 全波整流可以由以下两种方式实现: 1、中央抽头全波整流; 2、桥式整流(使用4个二极管)。 如果一个电路的两支与第三支相连从而组成一个循环,则该网络被称为桥式电路。以上两者最常用的为使用4个二极管的桥式整流电路,因为使用两个二极管的需要一个中央抽头的变压器,而且与桥式相比并不可靠。二极管桥也可以以单一封装的元件实现,比如DB102,GBJ1504,KBU1001等等。
2023-05-23 14:22:421

傅里叶级数

刚才忽然发现和函数部分少写了一种情况:当abs(x)=l时,和函数为[f(l-)+f(-l+)]/2
2023-05-23 14:23:084

傅里叶级数怎么做?

1、门函数F(w)=2w w sin=Sa() w。2、指数函数(单边)f(t)=e-atu(t) F(w)=1,实际上是一个低通滤波器a+jw。3、单位冲激函数F(w)=1,频带无限宽,是一个均匀谱。4、常数1 常数1是一个直流信号,所以它的频谱当然只有在w=0的时候才有值,体现为(w)。F(w)=2(w) 可以由傅里叶变换的对称性得到。5、正弦函数F(ejw0t)=2(w-w0),相当于是直流信号的移位。F(sinw0t)=F((ejw0t-e-jw0t)/2)=((w-w0)-(w+w0))F(sinw0t)=F((e。6、单位冲击序列jw0t-e-jw0t)/2j)=j((w-w0)-(w+w0)) T(t)=(t-Tn) -这是一个周期函数,每隔T出现一个冲击,周期函数的傅里叶变换是离散的F(T(t))=w0(w-nw0)=w0,w0(w) n=-单位冲击序列的傅里叶变换仍然是周期序列,周期是w0=2T。傅立叶变换:傅立叶变换是指将满足一定条件的某个函数表示成三角函数的积分。傅立叶变换是在对傅立叶级数的研究中产生的。在不同的研究领域,傅立叶变换具有不同的作用。在分析信号的时候 主要考虑的频率、幅值、相位。傅里叶变换的作用主要是将函数转化成多个正弦组合(或e指数)的形式,本质上变换之后信号还是原来的信号只是换了一种表达方式 这样可以更直观的分析一个函数里的频率、幅值、相位成分。所以分析一个复杂的信号只需经过傅里叶变换后可以轻易的看出其频率和相位、幅度分量。
2023-05-23 14:23:141

傅里叶级数

由于∫axcosnxdx = AX / N *罪(NX)-A / N∫罪(NX)DX = AX / N *罪(NX)+ A / N 2 * COS(NX)+ C ∫axsinnxdx = - 斧/ N * COS(NX)+ A / N∫COS(NX)DX = A / N 2 *罪(NX)-AX / N * COS(NX)+ C 这样一个=∫( - π到π)axcosnxdx = 0 BN =∫(-π到π)axsinnxdx =-2aπ/ N * COS(Nπ)所以如果n是奇数,则BN =2aπ/ N >如果n为偶数,则BN =-2aπ/ N 所以函数f(x)是傅里叶级数为 F(X)=2aπ*的sinx-2aπ/ 2 * sin2x +2 Aπ/ 3 * sin3x-2aπ/ 4 * sin4x + ......
2023-05-23 14:23:292

请问傅里叶系数和傅里叶级数的区别是什么?谢谢

傅里叶系数是傅里叶级数的系数
2023-05-23 14:23:482

大学电路,傅里叶级数

1、U=√[100^2+(100/√2)^+(40/√2)^]=125.7V2、P=100x10+100x20x0.5x0.707+40x10x0.5x(-0.5)=1000+707-100=1607W五次谐波无功率。
2023-05-23 14:23:551

傅里叶级数求解

解:∵以2l为周期的函数f(x)的傅里叶级数的表达式为f(x)=(1/2)a0+∑[ancos(nπx/l)+bnsin(nπx/l)],其中an=(1/l)∫(-l,l)f(x)cos(nπx/l)dx(n=0,1,2,……),bn=(1/l)∫(-l,l)f(x)cos(nπx/l)dx(n=1,2,……),∴1题,l=1,f(x)=e^x。∴a0=(1/l)∫(-l,l)f(x)dx=∫(-1,1)e^xdx=e-1/e。an=∫(-1,1)e^xcos(nπx)dx=[(-1)^n](a0)/[1+(nπ)^2],bn=∫(-1,1)e^xsin(nπx)dx=-[(-1)^n](a0)nπ/[1+(nπ)^2],∴f(x)=(a0){1/2+∑[(-1)^n][cos(nπx)-nπsin(nπx)]/[1+(nπ)^2]},其中a0=e-1/e,n=1,2,……,∞。2题,l=1/2,f(x)=1-x^2。∴a0=(1/l)∫(-l,l)f(x)dx=2∫(-1/2,1/2)(1-x^2)dx=11/6。an=2∫(-1/2,1/2)(1-x^2)cos(2nπx)dx=-[(-1)^n]/(nπ)^2,bn=2∫(-1/2,1/2)(1-x^2)sin(2nπx)dx=0,∴f(x)=11/12-(1/π^2)∑[(-1)^n][cos(2nπx)]/n^2},其中n=1,2,……,∞。
2023-05-23 14:24:021

傅里叶级数

它的傅里叶展开就是它自己,原因是COS函数的正交性。如果你想深刻理解傅里叶变换的本质的话可以看下面一段文字~这样说吧:首先我们知道线性代数里,一个N维的向量(F)可以由N个完备的正交归一基底叠加而成,叠加系数怎么求呢?就是直接用这个向量(f)点乘各基底(就是用点乘来求它在各基底的分量)。好现在你把一个函数看成一个无限维的向量,每个函数值对应的就是一维,而在这个无限维的空间里,点乘被定义为这两个函数相乘后再积分(就跟高中里a·b=axbx+ayby一个道理)。而sin nx 和 cos nx就是这个空间里的一组正交基底!!按这种点乘的定义他们相互正交!!(现在你明白为什么他们要积分出来个0了吧)所以这就是傅里叶变换的精髓了,任何一个函数都能由这些相互正交的基底叠加出来,而叠加系数怎么求呢?就是前面说的点乘各基底(所以这就是为什么求叠加系数是用被展开函数去和这些sin cos积分)最后注意一个问题就是基底要归一,归一就是基底的模长要等于1,模长就是自己点乘自己
2023-05-23 14:24:081

傅里叶级数展开的实际意义

1.傅立叶变换的物理意义傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。2.图像傅立叶变换的物理意义图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。另外我还想说明以下几点: 1、图像经过二维傅立叶变换后,其变换系数矩阵表明: 若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。 2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。3.傅立叶变换的提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。
2023-05-23 14:24:182

傅里叶级数什么意思?

一种特殊的三角级数。法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值
2023-05-23 14:24:252

傅里叶级数的公式

给定一个周期为T的函数x(t),那 么它可以表示为无穷级数: (j为虚数单位)(1)其中,可以按下式计算:(2)注意到;是周期为T的函数,故k 取不同值时的周期信号具有谐波关系(即它们都具有一个共同周期T)。k=0时,(1)式中对应的这一项称为直流分量,k=1时具有基波频率,称为一次谐波或基波,类似的有二次谐波,三次谐波等等。
2023-05-23 14:24:451

傅里叶级数

设分段函数为f(x),那么S(x)与f(x)的关系如下:在f(x)的连续点处的值S(x)与f(x)一样, 在f(x)的间断点处S(x)的值等于 F(x)在此点处的左右极限的算术平均值设分段函数为f(x),那么S(x)与f(x)的关系如下:在f(x)的连续点处的值S(x)与f(x)一样, 在f(x)的间断点处S(x)的值等于 F(x)在此点处的左右极限的算术平均值
2023-05-23 14:25:002

如何计算傅里叶级数

符号函数不是绝对可积的函数,不存在常义下的傅里叶变换。在考虑广义函数的条件下是可求的,但不能用定义式F(jw)=∫f(t)e^{-jwt}dt来求,可以这样求:首先已知F{δ(t)}=1,且2δ(t)=d(sgn(t))/dt。根据频域微分定理F{f"(t)}=jwF{f(t)},有F{2δ(t)}=jwF{sgn(t)},得到F{sgn(t)}=2/(jw)
2023-05-23 14:25:071

什么是傅立叶级数,它的表达式是怎样?

一定要看
2023-05-23 14:27:145

傅里叶级数的和函数

 傅里叶级数的三角函数形式 ,设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f ,ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即其中A0/2称为直流分量或恒定。给定一个周期为T的函数x(t),那 么它可以表示为无穷级数:(j为虚数单位)可以按下式计算:扩展资料:法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的)。后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。
2023-05-23 14:27:301

傅里叶级数是什么,在电学中的应用

傅里叶级数的三角函数形式 设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f , ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即 其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。
2023-05-23 14:27:551

傅里叶级数有哪些性质?

法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称为傅里叶级数(法文:série de Fourier,或译为傅里叶级数)。傅里叶系数的重要性质  列举下面两条:   ① 若�0�6(x∈l(-π,π),则�0�6的傅里叶系数αn,bn(或сn),当n→∞时趋于0,称为黎曼-勒贝格定理。   ② 若�0�6(x∈l(-π,π),则有 。这个等式称为帕舍伐尔等式;反之假如{сk}是一列双向的数列,满足条件,那么必存在惟一的函数�0�6(x∈l(-π,π),它的傅里叶系数等于{сk}(k=0,±1,±2,…)。这个逆命题称为里斯-费希尔定理。   三角级数与单位圆内解析函数的关系 设z=e(0≤x<2π)是复平面单位圆周上的点,于是级数    (6)的实部就是三角级数(1),虚部    (7)称为三角级数(1)的共轭级数。假如(6)中的z表示单位圆内的点,即z=re(0≤r<1),那么(6)就是复变数z=re的幂级数,当它收敛时,其和函数是单位圆内的解析函数。所以三角级数(1)可以看做单位圆内解析函数边界值的实部。   多元三角级数与多元傅里叶级数 设为m 维欧氏空间R的点,级数    (8)称为m元三角级数,其中,而n1,n2,…,nm为整数。假如�0�6(x)=�0�6(x1,x2,…,xm)关于每个变量xi(1≤i≤m)都是周期为2π的周期函数,且在立方体 Q:-π ≤xj≤π (j=1,2,…,m)   (9)上,�0�6是勒贝格可积的。类似于(5),如果(8)中系数 那么称(8)为�0�6的傅里叶级数,并记为 多元傅里叶系数也有类似于一元傅里叶系数的许多性质,但多元三角级数与多元傅里叶级数的许多问题,却远较一元复杂。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的惟一性定理,并揭示了多元傅里叶级数的里斯-博赫纳球形平均的许多特性。
2023-05-23 14:28:021

傅里叶级数的应用

傅立叶级数的应用有傅里叶变换,信号频谱等。1、傅立叶变换将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。2、信号频谱我们在生活中经常遇到信号。比如说,股票的走势图,心跳的脉冲图等等。在通信领域,无论是的GPS、手机语音、收音机、互联网通信,我们发送和接收的都是信号。最近,深圳地铁通信系统疑似与WiFi信号冲突,也就是地铁的天线收到了WiFi的信号,而误把该信号当作地铁通信信号。我们的社会信息化,是建立在信号的基础上的。傅里叶级数的特点1、周期性:傅里叶级数只能用来表示周期信号,因为它只考虑一个周期内的信号特征。2、可分解性:傅里叶级数可以将一个周期信号分解为若干个正弦和余弦函数的和,因此它具有较好的可分解性。3、线性性:傅里叶级数具有线性性,即对于两个信号的傅里叶级数,它们的和的傅里叶级数等于这两个信号傅里叶级数的和。4、可逆性:傅里叶级数是可逆的,即对于一个周期信号的傅里叶级数,可以通过对其进行傅里叶反演得到原信号的时域表达式。
2023-05-23 14:28:081

傅里叶级数起源

【学者傅立叶】[编辑本段]【简介】傅立叶(Fourier,Jean Baptiste Joseph,1768-1830)法国数学家、物理学家。【履历】1768年3月21日生于欧塞尔, 1830年5月16日卒于巴黎。9岁父母双亡, 被当地教堂收养。12岁由一主教送入地方军事学校读书。17岁(1785)回乡教数学,1794到巴 黎,成为高等师范学校的首批学员, 次年到巴黎综合工科学校执教。1798年随拿破仑远征埃及时任军中文书和埃及研究院秘书,1801年回国后任伊泽尔 省地方长官。1817年当选为科学院院 士,1822年任该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务委员会主席。 【主要贡献】■数学方面主要贡献是在研究热的传播时创立了一套数学理论。1807年向巴黎科学院呈交《热的传播》论文, 推导出著名的热传导方程 ,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函数的无穷级数。傅立叶级数(即三角级数)、傅立叶分析等理论均由此创始。其他贡献有:最早使用定积分符号,改进了代数方程符号法则的证法和实根个数的判别法等。傅里叶变换的基本思想首先由傅里叶提出,所以以其名字来命名以示纪念。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅立叶变换属于调和分析的内容。"分析"二字,可以解释为深入的研究。从字面上来看,"分析"二字,实际就是"条分缕析"而已。它通过对函数的" 条分缕析"来达到对复杂函数的深入理解和研究。从哲学上看,"分析主义"和"还原主义",就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。 在数学领域,也是这样,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 ■物理方面他是傅立叶定律的创始人,1822 年在代表作《热的分析理论》中解决了热在非均匀加热的固体中分布传播问题,成为分析学在物理中应用的最早例证之一,对19 世纪的理论物理学的发展产生深远影响。◎傅立叶定律相关简介英文名称:Fourier law傅立叶定律是传热学中的一个基本定律。可以用来计算热量的传导量。相关的公式为:Φ=-λA(dt/dx),q=-λ(dt/dx)其中Φ为导热量,单位为W,λ为导热系数,A为传热面积,单位为m^2,t为温度,单位为K,x为在导热面上的坐标,单位为m,q为热流密度,单位为W/m^2 ,负号表示传热方向与温度梯度方向相反,λ表征材料导热性能的物性参数(λ越大,导热性能越好)
2023-05-23 14:28:321

傅里叶级数如何理解?

傅里叶级数,就是将一个复杂函数展开成三角级数。法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。性质1、收敛性傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:在任何周期内,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个最大值或最小值;在任何有限区间上,x(t)只能有有限个第一类间断点。2、正交性所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性。
2023-05-23 14:28:511

什么是傅里叶级数?

傅里叶级数 Fourier series 一种特殊的三角级数。形如 [239-1] (1)的级数,其中(=0,1,2,…)和(=1,2,…)是与无关的实数,称为三角级数。特别,当(1)中的系数,可通过某个函数()用下列公式表示时,级数(1)称为的傅里叶级数: [239-2] (2)式中是周期2的可积函数,即[kg2][kg2]((-,)。此时,由公式(2)得到的系数,称为的傅里叶系数。的傅里叶级数记为 [239-4]。 (3)当然,的傅里叶级数并不一定收敛;即使收敛,也不一定收敛于()。假如已知三角级数一致收敛于(),即[239-5],那么双方都乘以cos或sin后,在(-,)上可以逐项积分,由三角函数系的正交性,即得公式(2)。所以,如果三角级数(1)一致收敛于(),级数(1)必为的傅里叶级数。 问题往往是,给定函数,需要把它表示成三角级数(1)。J.-B.-J.傅里叶的建议是,利用公式(2),求出的傅里叶系数,,[kg2]就得到傅里叶级数(3)可以证明,只要满足一定的条件,那么的傅里叶级数[]收敛于。 傅里叶级数的收敛判别法 常用的判别法有: ① 迪尼判别法 对固定的点,如有数,使得函数()/=((+)+(-)-2)/在[-,]上勒贝格可积,则[]在点收敛于由此可知,当在点连续,并满足李普希茨条件,即[239-6](0<≤),那么[]在收敛于(),其中 ,,均为正数,且≤1。另外,当()具有连续的导函数()时,[]一致收敛于()。 ② 狄利克雷-若尔当判别法 假设函数在含有点的某区间,例如〔-,+〕上分段单调,则的傅里叶级数在点收敛于((+0)+(-0))/2。 上面提到的收敛判别法,对函数所提的要求,都是充分条件,并非必要的。关于收敛性判别法,还有几种。值得注意的是,至今还没有收敛的充分且必要的条件。 傅里叶级数的复数形式 三角级数(1)还可用指数函数来表示。事实上,[239-7]/2,[239-07](表示的共轭复数),[kg2]那么级数(1)可写成复数形式 [239-8], (4)这里,(4)的部分和理解为[239-9]。假如(1)是的傅里叶级数,那么它的复数形式也是(4),但系数 [239-10]。 (5)上式表达的称为的复傅里叶系数,又称的傅里叶系数的复形式。 傅里叶系数的重要性质 列举下面两条: ① 若()[kg2][kg2](-,),则的傅里叶系数,(或),当→∞时趋于0,称为黎曼-勒贝格定理。 ② 若()[kg2][kg2]((-,),则有 [239-11]。这个等式称为帕舍伐尔等式;反之假如{}是一列双向的数列,满足条件[239-12],那么必存在惟一的函数()[kg2][kg2]((-,),它的傅里叶系数等于{}(=0,±1,±2,…)。这个逆命题称为里斯-费希尔定理。 三角级数与单位圆内解析函数的关系 设=e(0≤<2)是复平面单位圆周上的点,于是级数 [239-13] (6)的实部就是三角级数(1),虚部 [239-14] (7)称为三角级数(1)的共轭级数假如(6)中的表示单位圆内的点,即=e(0≤<1),那么(6)就是复变数=e的幂级数,当它收敛时,其和函数是单位圆内的解析函数所以三角级数(1)可以看做单位圆内解析函数边界值的实部。 多元三角级数与多元傅里叶级数 设[239-15]为 维欧氏空间的点,级数 [239-16] (8)称为元三角级数,其中[239-17],而1,2,…,为整数。假如()=(1,2,…,)关于每个变量(1≤≤)都是周期为2的周期函数,且在立方体 Q:- ≤≤ (=1,2,…,) (9)上,是勒贝格可积的。类似于(5),如果(8)中系数 [239-20] [239-18]那么称(8)为的傅里叶级数,并记为 [239-19]。多元傅里叶系数也有类似于一元傅里叶系数的许多性质,但多元三角级数与多元傅里叶级数的许多问题,却远较一元复杂。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的惟一性定理,并揭示了多元傅里叶级数的里斯-博赫纳球形平均的许多特性。 傅里叶级数在数学物理以及工程中都具有重要的应用。 参考书目 A. Zygmund, Trionometric Series, Vol. 1~2, Cambridge Univ.Press,Cambridge,1959.
2023-05-23 14:29:063

傅里叶级数是什么? 无

一. 傅里叶级数的三角函数形式   设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f ,ω1.由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数.即   其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量.A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等.基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波.式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加.   上式有可改写为如下形式,即   当A0,An,ψn求得后,代入式 (10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式.   把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析.工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用.   从式(10-2-3)中看出,将n换成(-n)后即可证明有   a-n=an   b-n=-bn   A-n=An   ψ-n=-ψn   即an和An是离散变量n的偶函数,bn和ψn是n的奇函数.   二. 傅里叶级数的复指数形式   将式(10-2-2)改写为   可见 与 互为共轭复数.代入式(10-2-4)有   上式即为傅里叶级数的复指数形式.   下面对和上式的物理意义予以说明:   由式(10-2-5)得的模和辐角分别为   可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅.   的求法如下:将式(10-2-3a,b)代入式(10-2-5)有   上式即为从已知的f(t)求的公式.这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即   即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数.   在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1).但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量.即   引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便.   高等数学中的傅立叶级数   傅立叶系数   傅立叶系数包括系数 ,积分号和它的积分域,以及里面的两个周期函数的乘积——其中一个是关于f的,另一个是关于x的函数f(x),另一个则是和级数项n有关的三角函数值.这个三角函数可以是正弦,也可以是余弦,因此傅立叶系数包括正弦系数和余弦系数.其中当n=0时,余弦值为1,此时存在一个特殊的系数 ,它只与x有关.正弦系数再成一个正弦,余弦再乘一个余弦,相加并且随n求和,再加上一半的 ,就称为了这个特别的函数f(x)的傅立叶级数.为什么它特别呢,我想因为这里只有它只限于一个周期函数而已,而级数的周期就是f(x)的周期,2 .   如果函数f(x)存在一个周期,但是不是2 了,而是关于y轴对称的任意一个范围,它还能写成傅立叶级数么?也可以的.只要把傅立叶系数里的 换成l,并且把积分号里的三角函数中的n 下除一个l,同时把系数以外的那个n 底下也除一个l.其他的都不动.也可以认为,2 周期的傅立叶级数其实三角函数中x前面的系数应该是 ,其他的 (积分域和系数)应该是x,只不过这时所有的l都是 罢了.   前面提及了,周期或是积分域,是关于y轴的一个任意范围.其实周期函数不用强调这个,但是为什么还要说呢?因为要特别强调一下定义域是满的.有些函数的定义域不是满的,是0到l,当然这样它有可能不是周期的.这些函数能写成傅立叶级数么?同样可以.而且,它的写法不再是正弦和余弦函数的累积,而是单独的一个正弦函数或是余弦函数.具体怎么写,就取决于怎么做.因为域是一半的,所以自然而然想到把那一半补齐,f就成了周期函数.补齐既可以补成奇函数也可以补成偶函数.补成积函数,写成的级数只有正弦项,即 为0.补成偶函数,写成的级数就只含有余弦项和第一项,即 为0.而,傅立叶系数相比非积非偶的函数要大一倍.   其实,如果不经延拓,上面那些对于奇偶函数同样使用.   在做题时,常常看到级数后面跟着一个系数还有一个正弦函数,然后后面给出了这个系数很复杂的一串式子,这时候就容易突然短路了.但是如果再定睛一看,会发现其实那个系数不过是一个有积分的傅立叶系数而已.那么一大串,应该看什么呢?应当先看积分域,一下就可以定出周期了.第二步要明确级数和函数的关系即等价关系.函数不但包含在级数中,而且函数本身也是和级数等价的.但一般那个级数里的函数是一个摆设,不起什么作用
2023-05-23 14:29:141

傅里叶级数有什么用啊?

傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯- 博赫纳球形平均的许多特性。扩展资料:收敛性傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:在任何周期内,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个最大值或最小值;在任何有限区间上,x(t)只能有有限个第一类间断点。吉布斯现象:在x(t)的不可导点上,如果我们只取(1)式右边的无穷级数中的有限项作和x(t),那么x(t)在这些点上会有起伏。一个简单的例子是方波信号。参考资料:百度百科-傅里叶级数
2023-05-23 14:29:211

傅立叶级数的三种形式分别是什么?

一.傅里叶级数的三角函数形式设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f,ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。上式有可改写为如下形式,即当A0,An,ψn求得后,代入式(10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式。把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析。工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用。从式(10-2-3)中看出,将n换成(-n)后即可证明有a-n=anb-n=-bnA-n=Anψ-n=-ψn即an和An是离散变量n的偶函数,bn和ψn是n的奇函数。二.傅里叶级数的复指数形式将式(10-2-2)改写为可见与互为共轭复数。代入式(10-2-4)有上式即为傅里叶级数的复指数形式。下面对和上式的物理意义予以说明:由式(10-2-5)得的模和辐角分别为可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅。的求法如下:将式(10-2-3a,b)代入式(10-2-5)有上式即为从已知的f(t)求的公式。这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数。在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1)。但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量。即引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便。
2023-05-23 14:29:341

到底神马是傅里叶级数

1、级数 series,就是一连串的函数之和形成级数; . 2、幂级数,power series,就是由常数跟 x、x²、x³、x⁴、、、之和形成, 其中 x、x²、x³、x⁴、、、可以带有不同的系数 coefficients; 这个幂级数就是麦克劳林级数 Mclaurin series; . 3、常数跟 (x-a)、(x-a)²、(x-a)³、(x-a)⁴、、、之和形成泰勒级数, 其中 (x-a)、(x-a)²、(x-a)³、(x-a)⁴、、、也可以带有不同的系数; 泰勒级数 = Taylor series; . 4、上面的泰勒级数的幂次没有负数,如有负幂次就是洛朗级数, 洛朗级数 = Laurent series; . 5、麦克劳林级数、泰勒级数、洛朗级数,都是由代数项构成, 若麦克劳林级数、泰勒级数的每一项由正弦函数、或余弦函数、 或既有正弦函数又有余弦函数构成,就是傅立叶级数 = Fourier series。 . 6、请参看下面的图释: . . . . . . . . . . . . .
2023-05-23 14:29:461

傅里叶级数怎么求导?

  公式如下图:  傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。  Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。  傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。   ①傅里叶变换  ②傅里叶逆变换  傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。
2023-05-23 14:29:531

到底神马是傅里叶级数

2023-05-23 14:30:171

什么是傅里叶级数?

定义:如果一个给定的非正弦周期函数f(t)满足狄利克雷条件,它能展开为一个收敛的级数:任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的)。为法国数学家傅里叶发现。
2023-05-23 14:30:242

傅里叶级数展开公式有哪些?

傅里叶级数展开公式如下:傅里叶级数像三角波,矩形波,梯形波这种波形不连续,因此在仿真软件中很容易出现计算不收敛的情况。所以,在这种情况下,利用一系列谐波叠加的形式来等价于原来的波形,可以很好的优化模型。傅里叶展开式收敛性判别至今还没有判断傅里叶级数的收敛性充分必要条件,但是对于实际问题中出现的函数,有很多种判别条件可用于判断收敛性。比如x(t)的可微性或级数的一致收敛性。在闭区间上满足狄利克雷条件的函数表示成的傅里叶级数都收敛。狄利克雷条件如下:在定义区间上,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个极值点;在任何有限区间上,x(t)只能有有限个第一类间断点。以上资料参考:百度百科-傅里叶展开式
2023-05-23 14:30:421

简单理解傅里叶级数(Fourier Series)

从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。 这种以时间作为参照来观察动态世界的方法我们称其为时域分析 。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 还是举个栗子并且有图有真相才好理解。 如果我说我能用前面说的正弦曲线波叠加出一个带 90 度角的矩形波来,你会相信吗?你不会,就像当年的我一样。但是看看下图: 第一幅图是一个郁闷的正弦波 cos(x) 第二幅图是 2 个卖萌的正弦波的叠加 cos (x) +a.cos (3x) 第三幅图是 4 个发春的正弦波的叠加 第四幅图是 10 个便秘的正弦波的叠加 随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理?(只要努力,弯的都能掰直!) 随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个正弦波叠加起来才能形成一个标准 90 度角的矩形波呢?不幸的告诉大家,答案是无穷多个。(上帝:我能让你们猜着我?) 不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。 还是上图的正弦波累加成矩形波,我们换一个角度来看看: 在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅都是不同的。一定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为 0 的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。 这里,不同频率的正弦波我们成为频率分量。 好了,关键的地方来了!! 如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。 (好吧,数学称法为——基。在那个年代,这个字还没有其他奇怪的解释,后面还有正交基这样的词汇我会说吗?) 时域的基本单元就是“1”秒,如果我们将一个角频率为ω0的正弦波cos(ω0t)看做基础,那么频域的基本单元就是ω0。 有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢?cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0 频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。 接下来,让我们回到初中,回忆一下已经死去的八戒,啊不,已经死去的老师是怎么定义正弦波的吧。 正弦波就是一个圆周运动在一条直线上的投影。所以频域的基本单元也可以理解为一个始终在旋转的圆。 介绍完了频域的基本组成单元,我们就可以看一看一个矩形波,在频域里的另一个模样了: 这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱,就是— 再清楚一点: 老实说,在我学傅里叶变换时,维基的这个图还没有出现,那时我就想到了这种表达方法,而且,后面还会加入维基没有表示出来的另一个谱——相位谱。 但是在讲相位谱之前,我们先回顾一下刚刚的这个例子究竟意味着什么。记得前面说过的那句“世界是静止的”吗?估计好多人对这句话都已经吐槽半天了。想象一下,世界上每一个看似混乱的表象,实际都是一条时间轴上不规则的曲线,但实际这些曲线都是由这些无穷无尽的正弦波组成。我们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。那么你的脑海中会产生一个什么画面呢? 我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的。在最外面的小齿轮上有一个小人——那就是我们自己。我们只看到这个小人毫无规律的在幕布前表演,却无法预测他下一步会去哪。而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇。这样说来有些宿命论的感觉。说实话,这种对人生的描绘是我一个朋友在我们都是高中生的时候感叹的,当时想想似懂非懂,直到有一天我学到了傅里叶级数…… 上一章的关键词是:从侧面看。这一章的关键词是:从下面看。 在这一章最开始,我想先回答很多人的一个问题:傅里叶分析究竟是干什么用的?这段相对比较枯燥,已经知道了的同学可以直接跳到下一个分割线。 先说一个最直接的用途。无论听广播还是看电视,我们一定对一个词不陌生——频道。频道频道,就是频率的通道,不同的频道就是将不同的频率作为一个通道来进行信息传输。下面大家尝试一件事: 先在纸上画一个sin(x),不一定标准,意思差不多就行。不是很难吧。好,接下去画一个sin(3x)+sin(5x)的图形。别说标准不标准了,曲线什么时候上升什么时候下降你都不一定画的对吧? 好,画不出来不要紧,我把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。但是在频域呢?则简单的很,无非就是几条竖线而已。 所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为 滤波 ,是信号处理最重要的概念之一,只有在频域才能轻松的做到。 再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。 傅里叶分析当然还有其他更重要的用途,我们随着讲随着提。 下面我们继续说相位谱: 通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。 鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。在图中就是那些小红点。小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。 在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。下次偷看女生裙底被发现的话,可以告诉她:“对不起,我只是想看看你的相位谱。” 注意到,相位谱中的相位除了0,就是Pi。因为cos(t+Pi)=-cos(t),所以实际上相位为Pi的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于cos(t+2Pi)=cos(t),所以相位差是周期的,pi和3pi,5pi,7pi都是相同的相位。人为定义相位谱的值域为(-pi,pi],所以图中的相位差均为Pi。 最后来一张大集合: 傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。 所以说,钢琴谱其实并非一个连续的频谱,而是很多在时间上离散的频率,但是这样的一个贴切的比喻真的是很难找出第二个来了。 因此在傅里叶变换在频域上就从离散谱变成了连续谱。那么连续谱是什么样子呢? 你见过大海么? 为了方便大家对比,我们这次从另一个角度来看频谱,还是傅里叶级数中用到最多的那幅图,我们从频率较高的方向看。 以上是离散谱,那么连续谱是什么样子呢? 尽情的发挥你的想象,想象这些离散的正弦波离得越来越近,逐渐变得连续…… 直到变得像波涛起伏的大海: 很抱歉,为了能让这些波浪更清晰的看到,我没有选用正确的计算参数,而是选择了一些让图片更美观的参数,不然这图看起来就像屎一样了。 不过通过这样两幅图去比较,大家应该可以理解如何从离散谱变成了连续谱的了吧?原来离散谱的叠加,变成了连续谱的累积。所以在计算上也从求和符号变成了积分符号。 不过,这个故事还没有讲完,接下去,我保证让你看到一幅比上图更美丽壮观的图片,但是这里需要介绍到一个数学工具才能然故事继续,这个工具就是—— 虚数i这个概念大家在高中就接触过,但那时我们只知道它是-1 的平方根,可是它真正的意义是什么呢? 这里有一条数轴,在数轴上有一个红色的线段,它的长度是1。当它乘以 3 的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1 的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了 180 度。 我们知道乘-1 其实就是乘了两次 i 使线段旋转了 180 度,那么乘一次 i 呢——答案很简单——旋转了 90 度。 同时,我们获得了一个垂直的虚数轴。实数轴与虚数轴共同构成了一个复数的平面,也称复平面。这样我们就了解到,乘虚数i的一个功能——旋转。 现在,就有请宇宙第一耍帅公式欧拉公式隆重登场—— 这个公式在数学领域的意义要远大于傅里叶分析,但是乘它为宇宙第一耍帅公式是因为它的特殊形式——当x等于 Pi 的时候。 经常有理工科的学生为了跟妹子表现自己的学术功底,用这个公式来给妹子解释数学之美:”石榴姐你看,这个公式里既有自然底数e,自然数 1 和0,虚数i还有圆周率 pi,它是这么简洁,这么美丽啊!“但是姑娘们心里往往只有一句话:”臭屌丝……“ 这个公式关键的作用,是将正弦波统一成了简单的指数形式。我们来看看图像上的涵义: 欧拉公式所描绘的,是一个随着时间变化,在复平面上做圆周运动的点,随着时间的改变,在时间轴上就成了一条螺旋线。如果只看它的实数部分,也就是螺旋线在左侧的投影,就是一个最基础的余弦函数。而右侧的投影则是一个正弦函数。 关于复数更深的理解,大家可以参考: 复数的物理意义是什么? 这里不需要讲的太复杂,足够让大家理解后面的内容就可以了。 有了欧拉公式的帮助,我们便知道:正弦波的叠加,也可以理解为螺旋线的叠加在实数空间的投影。而螺旋线的叠加如果用一个形象的栗子来理解是什么呢? 光波 高中时我们就学过,自然光是由不同颜色的光叠加而成的,而最著名的实验就是牛顿师傅的三棱镜实验: 所以其实我们在很早就接触到了光的频谱,只是并没有了解频谱更重要的意义。 但不同的是,傅里叶变换出来的频谱不仅仅是可见光这样频率范围有限的叠加,而是频率从 0 到无穷所有频率的组合。 这里,我们可以用两种方法来理解正弦波: 第一种前面已经讲过了,就是螺旋线在实轴的投影。 另一种需要借助欧拉公式的另一种形式去理解: 将以上两式相加再除2,得到: 这个式子可以怎么理解呢? 我们刚才讲过,e^(it)可以理解为一条逆时针旋转的螺旋线,那么 e^(-it)则可以理解为一条顺时针旋转的螺旋线。而 cos (t)则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了! 举个例子的话,就是极化方向不同的两束光波,磁场抵消,电场加倍。 这里,逆时针旋转的我们称为正频率,而顺时针旋转的我们称为负频率(注意不是复频率)。 好了,刚才我们已经看到了大海——连续的傅里叶变换频谱,现在想一想,连续的螺旋线会是什么样子: 想象一下再往下翻: 是不是很漂亮? 你猜猜,这个图形在时域是什么样子? 哈哈,是不是觉得被狠狠扇了一个耳光。数学就是这么一个把简单的问题搞得很复杂的东西。 顺便说一句,那个像大海螺一样的图,为了方便观看,我仅仅展示了其中正频率的部分,负频率的部分没有显示出来。 如果你认真去看,海螺图上的每一条螺旋线都是可以清楚的看到的,每一条螺旋线都有着不同的振幅(旋转半径),频率(旋转周期)以及相位。而将所有螺旋线连成平面,就是这幅海螺图了。 好了,讲到这里,相信大家对傅里叶变换以及傅里叶级数都有了一个形象的理解了,我们最后用一张图来总结一下: 好了,傅里叶的故事终于讲完了,下面来讲讲我的故事: 这篇文章第一次被卸下来的地方你们绝对猜不到在哪,是在一张高数考试的卷子上。当时为了刷分,我重修了高数(上),但是后来时间紧压根没复习,所以我就抱着裸考的心态去了考场。但是到了考场我突然意识到,无论如何我都不会比上次考的更好了,所以干脆写一些自己对于数学的想法吧。于是用了一个小时左右的时间在试卷上洋洋洒洒写了本文的第一草稿。 你们猜我的了多少分? 6 分 没错,就是这个数字。而这 6 分的成绩是因为最后我实在无聊,把选择题全部填上了C,应该是中了两道,得到了这宝贵的 6 分。说真的,我很希望那张卷子还在,但是应该不太可能了。 那么你们猜猜我第一次信号与系统考了多少分呢? 45 分 没错,刚刚够参加补考的。但是我心一横没去考,决定重修。因为那个学期在忙其他事情,学习真的就抛在脑后了。但是我知道这是一门很重要的课,无论如何我要吃透它。说真的,信号与系统这门课几乎是大部分工科课程的基础,尤其是通信专业。 在重修的过程中,我仔细分析了每一个公式,试图给这个公式以一个直观的理解。虽然我知道对于研究数学的人来说,这样的学习方法完全没有前途可言,因为随着概念愈加抽象,维度越来越高,这种图像或者模型理解法将完全丧失作用。但是对于一个工科生来说,足够了。 后来来了德国,这边学校要求我重修信号与系统时,我彻底无语了。但是没办法,德国人有时对中国人就是有种藐视,觉得你的教育不靠谱。所以没办法,再来一遍吧。 这次,我考了满分,而及格率只有一半。 老实说,数学工具对于工科生和对于理科生来说,意义是完全不同的。工科生只要理解了,会用,会查,就足够了。但是很多高校却将这些重要的数学课程教给数学系的老师去教。这样就出现一个问题,数学老师讲得天花乱坠,又是推理又是证明,但是学生心里就只有一句话:学这货到底干嘛用的? 缺少了目标的教育是彻底的失败。 在开始学习一门数学工具的时候,学生完全不知道这个工具的作用,现实涵义。而教材上有只有晦涩难懂,定语就二十几个字的概念以及看了就眼晕的公式。能学出兴趣来就怪了! 好在我很幸运,遇到了大连海事大学的吴楠老师。他的课全程来看是两条线索,一条从上而下,一条从下而上。先将本门课程的意义,然后指出这门课程中会遇到哪样的问题,让学生知道自己学习的某种知识在现实中扮演的角色。然后再从基础讲起,梳理知识树,直到延伸到另一条线索中提出的问题,完美的衔接在一起! 这样的教学模式,我想才是大学里应该出现的。 最后,写给所有给我点赞并留言的同学。真的谢谢大家的支持,也很抱歉不能一一回复。因为知乎专栏的留言要逐次加载,为了看到最后一条要点很多次加载。当然我都坚持看完了,只是没办法一一回复。 本文只是介绍了一种对傅里叶分析新颖的理解方法,对于求学,还是要踏踏实实弄清楚公式和概念,学习,真的没有捷径。但至少通过本文,我希望可以让这条漫长的路变得有意思一些。 最后,祝大家都能在学习中找到乐趣…
2023-05-23 14:31:011

傅里叶级数展开公式是什么?

傅里叶级数展开公式是 F^(ω)=∫(上限+∞,下限-∞)f(t)exp(-iωt)dt。傅里叶展开式是指用三角级数表示的形式,即一个函数的傅里叶级数在它收敛于此函数本身时的一种称呼。若函数f(x)的傅里叶级数处处收敛于f (x),则此级数称为f(x)的傅里叶展开式。来源法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出,从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯- 博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。
2023-05-23 14:31:071