- kikcik
-
【概率的定义】 随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。 ■概率的频率定义 随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。 ■概率的严格定义 设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件: (1)非负性:对于每一个事件A,有P(A)≥0; (2)规范性:对于必然事件S,有P(S)=1;
概率如何表示?
表示方法如下:只有A发生 [即A发生, B,C不发生] : A (1-B) (1-C)只有B发生 [即B发生, A,C不发生] : (1-A) B (1-C)只有C发生 [即C发生, A,B不发生] : (1-A) (1-B) CABC 同时发生 : ABC不多于一个事件发生: A (1-B) (1-C) + (1-A) B (1-C) + (1-A) (1-B) C不多于两个事件发生 : 1- ABC概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。2023-05-23 01:56:471
概率,几率,频率各是什么意思
概率,又称或然率、机会率、机率(几率)或可能性,它是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。几率就是概率。频率与概率是不同概念。频率,是单位时间内完成周期性变化的次数,是描述周期运动频繁程度的量。2023-05-23 01:58:141
概率的公式是怎么计算的?
1、A52是以下面的数(5)开始乘4乘3……所乘数的个数为上面的数(2).如A73=7×6×5=2102、C52=A52÷2!,即这个组合数(C52)的排列数(A52)除以上面那个数(2)的阶乘(2×1).如C73=A73÷3!=(7×6×5)÷(3×2×1)=35另外,C52=C53,即若两数之和为下面那个数(m+n=5),则C5m=C5n2023-05-23 01:58:231
哪位有排列组合概率方面的公式
1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1).(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2023-05-23 01:58:412
高等数学问题,条件概率(急)要用条件概率的方法算
设甲第一次不能击落乙的事件a,则p(a)=0.8;乙击落甲的事件为bp(b|a)表示在a发生的情况下b发生的概率,p(a|b)=0.3根据p(ab)=p(b|a)×p(a)=0.24第二问,设甲第一次击落乙的事件为c,乙击落甲的事件为d,甲第二次击落乙的事件为f则乙被击落有两种可能:1,第一次被甲击落,p(第一次被甲击落)=p(c)=0.2p(第二次被甲击落)=(1-p(c))×(1-p(d))×p(f)=0.224p(乙被击落)=p(第一次被甲击落)+p(第二次被甲击落)=0.4242023-05-23 01:59:101
条件概率公式 P(A|B)= P(AB)/P(B)是怎么推出来的??
这样想:AB都发生的概率就是B发生的概率乘以B发生的情况下A发生的概率,即就是P(A|B)*P(B)=P(AB)其实也等于P(B|A)*P(A)所以P(A|B)=P(AB)/P(B),P(B|A)=P(AB)/P(A)只要想通就好了!!2023-05-23 01:59:171
条件概率怎么理解
条件概率怎么理解如下:1:样本空间,随机事件E的所有基本结果组成的集合为E的样本空间。样本空间的元素称为样本点或基本事件。2:随机事件:随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件)。随机事件通常用大写英文字母A、B、C等表示。随机试验中的每一个可能出现的试验结果称为这个试验的一个样本点,记作ωi。全体样本点组成的集合称为这个试验的样本空间,记作Ω.即Ω={ω1,ω2,…,ωn,…}。仅含一个样本点的随机事件称为基本事件,含有多个样本点的随机事件称为复合事件。3:随机试验(random experiment)是在相同条件下对某随机现象进行的大量重复观测。开展统计分析的基础。概率统计需要对某随机现象进行大量的重复观测,或在相同条件下重复试验,观察其结果,才能获得统计规律性的认识。任何随机试验都包含试验条件和试验结果两个方面。试验条件必须相同,而试验结果具有随机性。所以,随机试验具有以下特点:(1)在试验前不能断定其将发生什么结果,但可明确指出或说明试验的全部可能结果是什么;(2)在相同的条件下试验可大量地重复;(3)重复试验的结果是以随机方式或偶然方式出现的。2023-05-23 02:00:091
条件概率公式是什么意思?
AB上面加一个横杠表示该事件不发生的概率。求出事件发生的概率后用1减去事件发生的概率即可。1、先求P(A∩B)根据之前条件概率公式的变形:P(A∩B) = P(A) × P(B|A)。2、再求P(B)事件B有两种发生方式:与事件A一起发生,不与事件A一起发生。即可以利用下式求出P(B):P(B) = P(A∩B) + P(A′∩B)。加法法则:定理:设A、B是互不相容事件(AB=φ),则:P(A∪B)=P(A)+P(B)-P(AB)推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1条件概率计算公式:当P(A)>0,P(B|A)=P(AB)/P(A)。当P(B)>0,P(A|B)=P(AB)/P(B)。2023-05-23 02:01:301
条件概率三大公式
条件概率三大公式有:乘法公式,全概公式,贝叶斯公式。条件概率是指事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为:P(A|B),读作“在B的条件下A的概率”。 条件概率可以用决策树进行计算。条件概率的谬论是假设P(A|B)大致等于P(B|A)。数学家JohnAllenPaulos在其《数学盲》一书中指出医生、律师以及其他受过很好教育的非统计学家经常会犯这样的错误。这种错误可以通过用实数而不是概率来描述数据的方法来避免。2023-05-23 02:01:451
条件概率与无条件概率的区别
1、所求条件不一样:条件概率是在已知条件下所求的概率,无条件概率则没有限制条件。2、概念不一样:条件概率是指事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为:P(A|B),读作“在B的条件下A的概率”。若只有两个事件A,B,那么, 。无条件概率反映随机事件出现的可能性(likelihood)大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。3、性质不一样:条件概率:设A,B 是两个事件,且A不是不可能事件,则称 为在事件A发生的条件下,事件B发生的条件概率。一般地, ,且它满足以下三条件:非负性;规范性;可列可加性。无条件概率:性质1:P(Φ)=0;性质2:(有限可加性)当n个事件A1,?,An两两互不相容时: P(A1∪...∪An)=P(A1)+...+P(An);性质3:对于任意一个事件A:P(A)=1-P(非A);性质4:当事件A,B满足A包含于B时:P(B-A)=P(B)-P(A),P(A)≤P(B);性质5:对于任意一个事件A,P(A)≤1;性质6:对任意两个事件A和B,P(B-A)=P(B)-P(A∩B);性质7:(加法公式)对任意两个事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B)。参考资料来源:百度百科--条件概率2023-05-23 02:01:541
条件概率
你说条件概率的反面应该是对立事件,集合论的术语叫事件的逆或补,它取决于基本事件的集合,如果基本事件的集合是:对目标射击两次所有可能的结果,那么有(中-中)、(中-不中)、(不中-中)、(不中-不中),你说的就是第三种,其对立事件是其余三种的集合。2023-05-23 02:02:251
概率密度怎么求
具体回答如图:事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小。扩展资料:设随机变量X具有概率密度fX(x),-∞<x<∞,由设函数g(x)处处可导且恒有g"(x)>0(或恒有g"(x)<0),则Y=g(X)是连续型随机变量。把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。参考资料来源:百度百科——概率密度2023-05-23 02:02:431
概率与密度的关系是什么?
设:概率分布函数为:F(x)概率密度函数为:f(x)二者的关系为:f(x) = dF(x)/dx即:密度函数f 为分布函数 F 的一阶导数。或者分布函数为密度函数的积分。定义分布函数,是因为在很多情况下,我们并不想知道在某样东西在某个特定的值的概率,顶多想知道在某个范围的概率,于是,就有了分布函数的概念。而概率密度,如果在x处连续的话。就是分布函数F(x)对x求导,反之,知道概率密度函数,通过负无穷到x的积分,也可以求得分布函数。 概率密度:单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。以上内容参考:百度百科-概率密度2023-05-23 02:02:561
概率密度
概率密度(Probability Density),指事件随机发生的几率。概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小。单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。概率密度的物理概念:电子运动的状态有波函数Ψ来描述,|Ψ|²表示电子在核外空间某处单位体积内出现的概率,即概率密度。处于不同运动状态的电子,它们的|Ψ|各不相同,|Ψ|²当然也不同。密度大则事件发生的分布情况多,反之亦然。若用黑点的疏密程度来表示各个电子概率密度的大小,则|Ψ|²大的地方黑点较密,其概率密度大,反之亦然。在原子核外分布的小黑点,好像一团带负电的云,把原子核包围起来,人们称它为电子云。2023-05-23 02:03:091
概率密度
指事件发生的概率分布。电子运动的状态有波函数Ψ来描述,∣Ψ∣^2表示电子在核外空间某处单位体积内出现的概率,即概率密度。在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。2023-05-23 02:03:271
我想知道概率密度的含义
就像质量密度不是质量一样,概率密度也不是概率。但是,质量密度表达了某一点附近所含有质量的多寡。同样,某一点处的概率密度,也表达了随机变量落入那一点附近的概率的大小程度。假设,在X=a处概率密度为0.1,在X=b处的概率密度为0.2,那么随机变量落入b附近的概率比之随机变量落入a附近的概率要大。2023-05-23 02:03:424
概率密度的概念是什么?
求X和Y的联合概率密度。设含有a的二次方程a^2+2Xa+Y=0,试求a有实根的概率?扩展资料:概率指事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小。定理:设随机变量X具有概率密度fX(x),-∞<x<∞,由设函数g(x)处处可导且恒有g"(x)>0(或恒有g"(x)<0),则Y=g(X)是连续型随机变量。参考资料来源:百度百科-概率密度2023-05-23 02:04:191
概率密度函数是什么意思?
概率密度函数是针对连续性随机变量而言的,假设对于连续性随机变量x,其分布函数为f(x),概率密度为f(x)。首先,对于连续性随机变量x,其分布函数f(x)应该是连续的,然而你给出的这个函数在x=-1,x=1点都不连续,所以是没有概率密度函数的,可能你在求解分布函数的时候求错了。如果f(x)求正确了,你可以按照下面的思路计算概率密度:由定义f(x)=∫[-∞,x]。f(y)dy可知f"(x)=f(x),也就是分布函数的导数等于概率密度函数,所以你只需要在原来求出的分布函数基础上求导即可得到概率密度函数。简介概率分布函数是概率论的基本概念之一。在实际问题中,常常要研究一个随机变量ξ取值小于某一数值x的概率,这概率是x的函数,称这种函数为随机变量ξ的分布函数,简称分布函数,记作F(x),即F(x)=P(ξ<x) (-∞<x<+∞),由它并可以决定随机变量落入任何范围内的概率。 例如在桥梁和水坝的设计中,每年河流的最高水位ξ小于x米的概率是x的函数,这个函数就是最高水位ξ的分布函数。实际应用中常用的分布函数有正态分布函数、普阿松分布函数、二项分布函数等等。2023-05-23 02:04:371
概率密度函数怎么求?
根据变量的取值范围,对联合概率密度函数积分,对y积分得到X的边缘概率密度,对x积分得到Y的边缘概率密度过程如下:扩展资料:由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。最简单的概率密度函数是均匀分布的密度函数。对于一个取值在区间[a,b]上的均匀分布函数 ,它的概率密度函数: 也就是说,当x不在区间[a,b]上的时候,函数值等于0;而在区间[a,b]上的时候,函数值等于这个函数 。这个函数并不是完全的连续函数,但是是可积函数。正态分布是重要的概率分布。它的概率密度函数是:随着参数μ和σ变化,概率分布也产生变化。2023-05-23 02:04:451
如何计算概率密度?
介绍两个公式:1、若G的概率密度分布函数为g(x),α为常数则αG的分布概率密度函数为[g(x/α)]/α2、若G的概率密度分布函数为g(x);H的概率密度分布函数为h(x);u1为G的期望值;u2为H的期望值,则G+H的概率密度分布函数为:(g(x-u2)+h(x-u1))/2在上述两个公式的提示下,相信可以解决你的题目。2023-05-23 02:05:212
什么是概率密度?他的作用是什么
概率密度摘要电子运动的状态有波函数Ψ来描述,∣Ψ∣2表示电子在核外空间某处单位体积内出现的概率,即概率密度。概率密度的简介 电子运动的状态有波函数Ψ来描述,∣Ψ∣2表示电子在核外空间某处单位体积内出现的概率,即概率密度。处于不同运动状态的电子,它们的∣Ψ∣各不相同,∣Ψ∣2当然也不同。概率指事件随机发生的机率,概率密度的概念也大致如此,指事件发生的概率分布。密度大则事件发生的分布情况多,反之亦然。2023-05-23 02:05:291
概率密度的性质
概率密度的性质连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。注意事项:单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。随机事件和概率,包括样本空间与随机事件;概率的定义与性质(含古典概型、几何概型、加法公式);条件概率与概率的乘法公式;事件之间的关系与运算(含事件的独立性);全概公式与贝叶斯公式;伯努利概型。2.随机变量及其概率分布,包括随机变量的概念及分类;离散型随机变量概率分布及其性质;连续型随机变量概率密度及其性质;随机变量分布函数及其性质;常见分布;随机变量函数的分布。3.二维随机变量及其概率分布,包括多维随机变量的概念及分类;二维离散型随机变量联合概率分布及其性质;二维连续型随机变量联合概率密度及其性质。二维随机变量联合分布函数及其性质;二维随机变量的边缘分布和条件分布;随机变量的独立性;两个随机变量的简单函数的分布。2023-05-23 02:05:461
求概率密度
条件概率密度=联合概率密度/边缘概率密度X的边缘密度:对y进行积分,被积函数是联合密度Y的边缘密度:对x进行积分,被积函数是联合密度积分区域的话,可以画出图来,就比较明了了。对于连续型的随机变量,在一点处的取值概率为0,但是当这个问题出现在求条件概率密度时,思考的方向就变了,不能单纯的应用条件概率公式解题。对于第三问如果你用条件概率公式那么分母P(x=1/3),我的第一想法是这个概率为0啊,这样还怎么解题?此处出现重大认识上的误区!正确的做法应该是你求出x的边缘概率密度,然后看x=1/3处的结果,是多少就是多少,所以对于这道题而言,求出x的边缘概率密度是必须的!扩展资料:定义类条件概率密度函数是指在已知某类别的特征空间中,出现特征值X的概率密度,指第类样品其属性X是如何分布的。假定只用其一个特征进行分类,即n=1,并已知这两类的类条件概率密度函数分布,如图1所示,概率密度函数是正常药品的属性分布,概率密度函数是异常药品的属性分布。例如,全世界华人占地球上人口总数的20%,但各个国家华人所占当地人口比例是不同的,类条件概率密度函数是指条件下出现X的概率密度,在这里指第类样品其属性X是如何分布的。在工程上的许多问题中,统计数据往往满足正态分布规律。正态分布简单、分析方便、参量少,是一种适宜的数学模型。如果采用正态密度函数作为类条件概率密度的函数形式,则函数内的参数,如期望和方差是未知的。那么问题就变成了如何利用大量样品对这些参数进行估计,只要估计出这些参数,类条件概率密度函数也就确定了。在大多数情况下,类条件密度可以采用多维变量的正态密度函数来模拟。2023-05-23 02:05:591
概率,请问y的概率密度怎么求
分享一种解法,应用公式法求解。由题设条件,X的概率密度fX(x)=2x,0<x<1、fX(x)=0,x为其它。又,Y=X/(1+X),∴y=x/(1+x)=1-1/(1+x)。而,0<x<1,∴-1<-1/(1+x)<-1/2。∴0<y<1/2。由y=x/(1+x)得出,x=y/(1-y)。∴dx/dy=1/(1-y)²。∴应用公式法,Y的概率密度为fY(y)=fX(y)*丨dx/dy丨=2y/(1-y)³,0<y<1/2、fY(y)=0,y为其它。供参考。2023-05-23 02:06:471
概率密度函数是什么意思?
概率密度函数:在数学中,连续型随机变里的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变里的输出值,在某个确定的取值点附近的可能性的函数。公式:其中入>0是分布的一个参数,常被称为率参数(rate par ameter)。即每单位时间内发生某事件的次数。指数分布的区间是[o, oo)。如果一个随机变里X呈指数分布,则可以写作:x~Exponential(入 )。分布:在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。2023-05-23 02:06:541
如何计算边际概率密度?
根据变量的范围,对联合概率密度函数进行积分,得到Y积分的边际概率密度,得到X积分的边际概率密度如下:扩展资料:连续型随机变量的概率密度函数有如下性质:如果概率密度函数fX(x)在一点x上连续,那么累积分布函数可导,并且它的导数:由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。2023-05-23 02:07:061
概率密度函数与概率是什么关系?
概率密度函数是针对连续性随机变量而言的,假设对于连续性随机变量X,其分布函数为F(x),概率密度为f(x)。可以按照下面的思路计算概率密度:由定义F(x)=∫[-∞,x]。f(y)dy可知F"(x)=f(x),也就是分布函数的导数等于概率密度函数,所以你只需要在原来求出的分布函数基础上求导即可得到概率密度函数。分布函数是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。2023-05-23 02:07:241
高中数学基础10:二项分布与二项式定理
1)每次试验是在同样条件下进行 2)每次试验都是只有两种结果:发生与不发生 3)各次试验中的事件是相互独立的 4)每次试验,某事件发生的概率是相同的 伯努利试验(Bernoulli experiment)是在同样的条件下重复地、相互独立地进行的一种随机试验,其特点是该随机试验只有两种可能结果:发生或者不发生。我们假设该项试验独立重复地进行了n次,那么就称这一系列重复独立的随机试验为n重伯努利试验,或称为伯努利概型。单个伯努利试验是没有多大意义的,然而,当我们反复进行伯努利试验,去观察这些试验有多少是成功的,多少是失败的,事情就变得有意义了,这些累计记录包含了很多潜在的非常有用的信息。 几何分布 (Geometric distribution)是离散型概率分布。其中一种定义为:在n次 伯努利试验 中,试验k次才得到第一次成功的机率。详细的说,是: 前k-1次皆失败,第k次成功的概率 记作X ~ G (p) 概率为p的事件A,以X记A首次发生所进行的试验次数,则X的分布列: 举例:每次投篮命中率0.7,问投篮20第1次命中(第一次命中一次就停止投篮)的概率 P(X = k) = p(1 − p)[图片上传失败...(image-a5250d-1520948688562)] 则k=1,2,3,……19,,20 k=1(表示第一次就命中的概率)P(X = 1)=0.7[图片上传失败...(image-760a66-1520948688562)] =0.7 k=2(表示第一次失败,第二次成功的概率) …… k=20(表示前次19次均失败,第20次成功的概率) 是统计学上一种离散概率分布。它描述了由有限个物件中抽出n个物件, 成功抽出指定种类的物件的次数(不归还 )。 在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,则 参考资料 https://www.zhihu.com/question/381916932023-05-23 01:54:091
超几何分布、二项分布的均值如何证明?
超几何分布是统计学上一种离散概率分布。它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还)。 在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,则P(X=k)=C(M,k)·C(N-M,n-k)/C(N,n), C(a b)为古典概型的组合形式,a为下限,b为上限,此时我们称随机变量X服从超几何分布(hypergeometric distribution) (1)超几何分布的模型是不放回抽样 (2)超几何分布中的参数是M,N,n上述超几何分布记作X~H(N,n,M)。 期望 对X~H(N,M,n),E(x)=nM/N 证明:引理一:∑{C(x,a)*C(d-x,b),x=0..min{a,d}}=C(d,a+b),考察(1+x)^a*(1+x)^b中x^d的系数即得。(另:还可以由超几何分布1=∑P(X=K),k=0,1,2....n得) 引理二:k*C(k,n)=n*C(k-1,n-1),易得。 正式证明: EX=∑{k*C(k,M)*C(n-k,N-M)/C(n,N),k=0..min{M,n}} =1/C(n,N)*∑{M*C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}} //(提取公因式,同时用引理二变形,注意k的取值改变) =M/C(n,N)*∑{C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}} (提取,整理出引理一的前提) =M*C(n-1,N-1)/C(n,N) (利用引理一) =Mn/N (化简即得) 二项分布即重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是伯努利分布。 证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p.因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和. 设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n). 因X(k)相互独立,所以期望:E(X)=E[X(1)+X(2)+X(3)....X(n)]=np. 方差:D(X)=D[X(1)+X(2)+X(3)....X(n)]=np(1-p). 证毕.2023-05-23 01:53:463
超几何分布的期望和方差是多少?
超几何分布的期望和方差是EX=nM/N,超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关,超几何分布中的参数是M,N,n,上述超几何分布记作X-H(n,M,N)。扩展资料:称随机变量X服从超几何分布(hypergeometric distribution)。需要注意的是:(1)超几何分布的模型是不放回抽样。(2)超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N)。2023-05-23 01:53:311
几何分布的期望与方差公式怎么推导?
Dξ=∑(ξ-Eξ)^2*Pξ =∑(ξ^2+Eξ^2-2*ξ*Eξ)*Pξ =∑(ξ^2*Pξ+Eξ^2*Pξ-2*Pξ*ξ*Eξ) =∑ξ^2*Pξ+Eξ^2*∑Pξ-2*Eξ*∑Pξ*ξ因为∑Pξ=1而且Eξ=∑ξ*Pξ所以Dξ=∑ξ^2*Pξ-Eξ^2而∑ξ^2*Pξ,表示E(ξ^2)所以Dξ =E(ξ^2)-Eξ^2 下面计算几何分布的学期望,Eξ=∑{ξ=1,∞}ξ*(1-p)^(ξ-1)*pEξ=p+∑{ξ=2,∞}ξ*(1-p)^(ξ-1)*p ①当然(1-p)*Eξ=∑{ξ=1,∞}ξ*(1-p)^ξ*p(1-p)*Eξ=∑{ξ=2,∞}(ξ-1)*(1-p)^(ξ-1)*p ②①-②得p*Eξ=p+∑{ξ=2,∞}(1-p)^(ξ-1)*p所以Eξ=1+∑{ξ=2,∞}(1-p)^(ξ-1) =∑{ξ=1,∞}(1-p)^(ξ-1) =lim{x→∞}[1-(1-p)^x]/p =1/p 若要计算方差,可以根据公式Dξ =E(ξ^2)-Eξ^2计算, 其中E(ξ^2)的计算过程如下:E(ξ^2)=∑{ξ=1,∞}ξ^2*(1-p)^(ξ-1)*pE(ξ^2)-Eξ=∑{ξ=1,∞}ξ^2*(1-p)^(ξ-1)*p -∑{ξ=1,∞}ξ*(1-p)^(ξ-1)*pE(ξ^2)-Eξ=∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*pE(ξ^2)=1/p+∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p ①(1-p)*E(ξ^2)=(1-p)/p+∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^ξ*p(1-p)*E(ξ^2)=(1-p)/p+∑{ξ=2,∞}(ξ-1)*(ξ-2)*(1-p)^(ξ-1)*p ②由①得E(ξ^2)=1/p+∑{ξ=2,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p ③③-②得p*E(ξ^2)=1+∑{ξ=2,∞}2*(ξ-1)*(1-p)^(ξ-1)*p E(ξ^2)=1/p+∑{ξ=2,∞}2*(ξ-1)*(1-p)^(ξ-1) ④(1-p)*E(ξ^2)=(1-p)/p+2*∑{ξ=2,∞}(ξ-1)*(1-p)^ξ(1-p)*E(ξ^2)=(1-p)/p+2*∑{ξ=3,∞}(ξ-2)*(1-p)^(ξ-1) ⑤由④得E(ξ^2)=1/p+2*(1-p)+2*∑{ξ=3,∞}(ξ-1)*(1-p)^(ξ-1) ⑥ ⑥-⑤得.p*E(ξ^2)=1+2*(1-p)+2*∑{ξ=3,∞}(1-p)^(ξ-1).p*E(ξ^2)=1+2*(1-p)+2*lim{x→∞}(1-p)^2*[1-(1-p)^x]/p.p*E(ξ^2)=1+2*(1-p)+2*(1-p)^2/p.E(ξ^2)=1/p+2*(1-p)/p+2*(1-p)^2/p/p =1/p+2*(1-p)/p/p =(2-p)/p/p 若求方差,根据公式Dξ =E(ξ^2)-Eξ^2得,.Dξ =(2-p)/p/p-1/p/p =(1-p)/p^22023-05-23 01:53:241
二项分布 几何分布 超几何分布 应该怎么区分
二项分布:实验n次,成功m次的概率;几何分布:实验n次,前n-1次失败,第n次成功的概率;超几何分布:(1)超几何分布的模型是不放回抽样(2)超几何分布中的参数是M,N,n上述超几何分布记作X~H(N,n,M)总数N个,抽取n次,抽到M个某类型(比如次品)的概率。2023-05-23 01:53:161
【几何分布】 和 【超几何分布】 它们【名称】的来源是什么?
几何分布是离散型概率分布的一种。所描述的是n重伯努利试验成功的概率率。(所谓的伯努利实验指的是指在一次试验中只考虑两种结果:A发生和A不发生.在相同条件下将伯努利实验重复n次,每次实验A发生的概率都相同,称这样的一系列实验为n重伯努利实验。)在 n次重伯努利试验中,前n-1次皆失败,第n次才成功的概率就叫做几何分布。独立重复试验中,试验首次成功所需的试验次数就是服从几何分布。如果用一个事件描述,它就像你向靶子上无规则地乱投,正中耙心的概率。这个当时的概率抽样事件是不同的。比如,从五个小球中拿一个出来,就像面前挖五个小洞,扔出去看它掉在哪个里面,不管中不中,都能掉一个洞里。而这种,是只有一个目标,但能掉的位置很多,而且不固定。正因为这样,它有当时的那种选号码的分布是不同的。那些类似于点,和线上来选择,而这种类似于面上。超几何分布是产品抽样检查中用的,其实,它是二项分布的变体。三项分面是,前面五个洞,扔一次之后,拿出来再扔,还是那样。你所投递的目标,也就耙的面积没有变。但超几何分布是,当你投过一个小球时,如果不对,你所投递那个位置就不会再投中了。这好比投一次,就把那个耙重新换一个,各个相独立。而且,前面那个结果也会带到这个新耙上来。这就像原来投一个平面,现在的新平面既和原来的无关,不又不包含已经投过的那个点,就相当于在多维面中,每个面依次选择一次。你无法像二项分面那样,回到原来那个平面上去投中目标了,因为你试验一次,它就变一次。这也是,明明二项分布和超几何分布极其相似却迥异的原因。二项分布就像一件事在平面上重复多次。而超几何分布就像,一件事在每个维度上都只做一次。2023-05-23 01:53:091
n个服从几何分布的独立同分布随机变量,加起来之后服从什么分布
加起来之后服从离散型概率分布;在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。在伯努利试验中,成功的概率为p,若ξ表示出现首次成功时的试验次数,则ξ是离散型随机变量,它只取正整数,且有P(ξ=k)=(1-p)的(k-1)次方乘以p (k=1,2,…,0<p<1),此时称随机变量ξ服从几何分布。它的期望为1/p,方差为(1-p)/(p的平方)。扩展资料:正态分布是一种很重要的连续型随机变量的概率分布,许多统计分析方法都是以正态分布为基础的。还有不少随机变量的概率分布在一定条件下以正态分布为其极限分布,因此在统计学中,正态分布无论在理论研究上还是实际应用中,均占有重要的地位。关于正态分布的概率计算,先从标准正态分布着手,这是因为一方面标准正态分布在正态分布中形式最简单,而且任意正态分布都可化为标准正态分布来计算;另一方面,人们已经根据标准正态分布的分布函数编制成正态分布表以供直接查用。2023-05-23 01:52:541
什么叫超几何分布?
在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k 则P(X=k) 此时我们称随机变量X服从超几何分布 1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n 上述超几何分布记作X~H(n,M,N)。2023-05-23 01:52:482
超几何分布的期望和方差是什么?
几何分布的期望和方差是EX=nM/N,超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关,超几何分布中的参数是M,N,n,上述超几何分布记作X-H(n,M,N)。统计学意义当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。2023-05-23 01:52:401
什么是超几何分布?
超几何分布是统计学上一种离散概率分布。它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还)。在产品质量的不放回抽检中,若n件产品中有m件次品,抽检n件时所得次品数x=k则p(x=k)=c(mk)·c(n-mn-k)/c(nn),c(ab)为古典概型的组合形式,a为下限,b为上限此时我们称随机变量x服从超几何分布1)超几何分布的模型是不放回抽样2)超几何分布中的参数是m,n,n上述超几何分布记作x~h(n,m,n)。2023-05-23 01:52:211
几何分布的特征函数是什么
P(k)=p*q^(k-1)楼主具体看下面的链接2023-05-23 01:52:142
几何分布和超几何分布的区别
几何分布是事件发生的概率为p,则第一次事件发生,实验了k次的概率,公式为:p=(1-p)^k*p,超几何分布是在含有M件次品的N件产品中取出n件,其中恰好有X件次品的概率,公式为:p(X=k)=C(M,k)*C(N-M,n-k)/C(N,n)。 几何,就是研究空间结构及性质的一门学科,它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。2023-05-23 01:52:051
几何分布的和为什么趋近 1?
几何的我感觉还是比较好的呀!2023-05-23 01:51:583
几何分布问题
如果在第i次发生了,那么是P(X=i)P(X>k)当然是指第1,2,3.。。k次都不发生。2023-05-23 01:51:405
二项分布和超几何分布的区别是什么?
一、抽取情况不同1、二项分布:二项分布是“有放回”抽取(独立重复)。2、超几何分布:超几何分布是“不放回”抽取。二、计算问题不同1、二项分布:二项分布中的概率计算实质上是相互独立事件的概率问题。2、超几何分布:超几何分布的概率计算实质上是古典概率问题。三、要求不同1、二项分布:二项分布不需要知道总体的容量。2、超几何分布:超几何分布需要知道总体的容量。参考资料来源:百度百科-超几何分布百度百科-二项分布2023-05-23 01:51:241
超几何分布的概念是什么?
简单分析一下,详情如图所示2023-05-23 01:50:593
几何分布有哪些特点?
几何分布的期望是1/p,方差公式推导为s^2=[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/(n),其中x为平均数。几何就是研究空间结构及性质的一门学科,而且它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。2023-05-23 01:50:501
几何分布的方差如何证明
Eξ=1/p,Dξ=(1-p)/p^2 Dξ=E(ξ^2)-(Eξ)^2 E(ξ^2)=p+2^2*qp+3^2*q^2*p+……+k^2*q^(k-1)*p+…… =p(1+2^2*q+3^2*q^2+……+k^2*q^(k-1)+……) 对于上式括号中的式子,利用导数,关于q求导:k^2*q^(k-1)=(k*q^k)",并用倍差法求和,有 1+2^2*q+3^2*q^2+……+k^2*q^(k-1)+…… =(q+2*q^2+3*q^3+……+k*q^k+……)" =[q/(1-q)^2]" =[(1-q^2)+2(1-q)q]/(1-q)^4 =(1-q^2)/(1-q)^4 =(1+q)/(1-q)^3 =(2-p)/p^3 因此E(ξ^2)=p[(2-p)/p^3]=(2-p)/p^2 则Dξ=E(ξ^2)-(Eξ)^2=(2-p)/p^2-(1/p)^2=(1-p)/p^22023-05-23 01:50:431
几何分布的期望和方差公式推导是什么?
几何分布的期望是1/p,方差公式推导为s^2=[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/(n),其中x为平均数。相关介绍:几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的几率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。在伯努利试验中,成功的概率为p,若ξ表示出现首次成功时的试验次数,则ξ是离散型随机变量,它只取正整数,且有P(ξ=k)=(1-p)的(k-1)次方乘以p (k=1,2,…,0<p<1),此时称随机变量ξ服从几何分布。它的期望为1/p,方差为(1-p)/(p的平方)。求几何分布的期望公式:Eε=1/p。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。2023-05-23 01:50:301
一道关于几何分布的概率论题
此题分析如下:先做此题的一个简化版:设Y1为从12张卡片中放回抽取,直到抽出A,B,C其中任何一个为止的次数。那么显然 Y1满足几何分布 :其中p1为抽中目标牌ABC的成功率,即3/12=1/4则右几何分布的期望公式可得那么此题的X和Y1是什么关系呢?想下载抽出A,B,C中任何一个后,无论是A,B,C中的哪一个,因为对称性,对X的大小是没有影响的。不妨设先抽出的是C。那么第二阶段,设Y2为从12张卡片中放回抽取,直到抽出A,B中任何一个为止的次数。同理:不妨设第二阶段抽中的是B。第三阶段,设Y3为从12张卡片中放回抽取,直到抽出A的次数。同理:X可以分为上述三个阶段分别抽取的次数,即:2023-05-23 01:49:291
实际生活中几何分布存在于哪里
实际生活中几何分布存在于遇到概率问题时。根据查询相关公开信息,几何分布广泛地存在于现实生活中,如产品中的合格品与不合格品,盒子中的红球与黑球,学生中的男生和女生等。2023-05-23 01:49:221
二项分布与超几何分布的区别
.....2023-05-23 01:48:2412
超几何分布有哪几个特征?
超几何分布的期望和方差是EX=nM/N,超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关,超几何分布中的参数是M,N,n,上述超几何分布记作X-H(n,M,N)。扩展资料:称随机变量X服从超几何分布(hypergeometric distribution)。需要注意的是:(1)超几何分布的模型是不放回抽样。(2)超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N)。2023-05-23 01:48:091