我在数学的参考书上看到了“导数”这个概念,但是不知道它指的是什么。 导数我在此之前从来都没有接触过,希望大家可以给我简单的解释一下,谢谢!
- kikcik
-
[编辑本段]导数(derivative function) 亦名纪数、微商,由速度变化问题和曲线的切线问题而抽象出来的数学概念。又称变化率。 如一辆汽车在10小时内走了 600千米,它的平均速度是60千米/小时,但在实际行驶过程中,是有快慢变化的,不都是60千米/小时。为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置s与时间t的关系为s=f(t),那么汽车在由时刻t0变到t1这段时间内的平均速度是[f(t1)-f(t0)]/[t1-t0],当 t1与t0很接近时,汽车行驶的快慢变化就不会很大,平均速度就能较好地反映汽车在t0 到 t1这段时间内的运动变化情况 ,自然就把极限[f(t1)-f(t0)]/[t1-t0] 作为汽车在时刻t0的瞬时速度,这就是通常所说的速度。一般地,假设一元函数 y=f(x )在 x0点的附近(x0-a ,x0 +a)内有定义,当自变量的增量Δx= x-x0→0时函数增量 Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f",称之为f的导函数,简称为导数。函数y=f(x)在x0点的导数f"(x0)的几何意义:表示曲线l 在P0[x0,f(x0)] 点的切线斜率。一般地,我们得出用函数的导数来判断函数的增减性的法则:设y=f(x )在(a,b)内可导。如果在(a,b)内,f"(x)≥0,则f(x)在这个区间是单调增加的。。如果在(a,b)内,f"(x)≤0,则f(x)在这个区间是单调减小的。所以,当f"(x)=0时,y=f(x )有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值。 [编辑本段]导数是微积分中的重要概念。 导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。 导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f"(x)便是x的一个函数,我们称他为f(x)的导函数(derivative function)(简称导数)。 y=f(x)的导数有时也记作y",即 f"(x)=y"=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x 物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。 以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。 为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。 有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。 注意:1.f"(x)<0是f(x)为减函数的充分不必要条件,不是充要条件。 2.导数为零的点不一定是极值点。当函数为常值函数,没有增减性,即没有极值点。但导数为零。 [编辑本段]求导数的方法 (1)求函数y=f(x)在x0处导数的步骤: ① 求函数的增量Δy=f(x0+Δx)-f(x0) ② 求平均变化率 ③ 取极限,得导数。 (2)几种常见函数的导数公式: ① C"=0(C为常数函数); ② (x^n)"= nx^(n-1) (n∈Q); ③ (sinx)" = cosx; ④ (cosx)" = - sinx; ⑤ (e^x)" = e^x; ⑥ (a^x)" = (a^x) * Ina (ln为自然对数) ⑦ (Inx)" = 1/x(ln为自然对数) ⑧ (logax)" =(1/x)*logae,(a>0且a不等于1) 补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。 (3)导数的四则运算法则: ①(u±v)"=u"±v" ②(uv)"=u"v+uv" ③(u/v)"=(u"v-uv")/ v^2 (4)复合函数的导数 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。 导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献! [编辑本段]导数公式及证明 这里将列举几个基本的函数的导数以及它们的推导过程: 1.y=c(c为常数) y"=0 2.y=x^n y"=nx^(n-1) 3.y=a^x y"=a^xlna y=e^x y"=e^x 4.f(x)=logaX f"(x)=1/xlna (a>0且a不等于1,x>0) y=lnx y"=1/x 5.y=sinx y"=cosx 6.y=cosx y"=-sinx 7.y=tanx y"=1/(cosx)^2 8.y=cotx y"=-1/(sinx)^2 9.y=arcsinx y"=1/√1-x^2 10.y=arccosx y"=-1/√1-x^2 11.y=arctanx y"=1/(1+x^2) 12.y=arccotx y"=-1/(1+x^2) 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y"=f"[g(x)]�6�1g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』 2.y=u/v,y"=u"v-uv"/v^2 3.y=f(x)的反函数是x=g(y),则有y"=1/x" 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y"=e^x和y=lnx y"=1/x这两个结果后能用复合函数的求导给予证明。 3.y=a^x, ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1) ⊿y/⊿x=a^x(a^⊿x-1)/⊿x 如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。 所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β 显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。 可以知道,当a=e时有y=e^x y"=e^x。 4.y=logax ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x 因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有 lim⊿x→0⊿y/⊿x=logae/x。 可以知道,当a=e时有y=lnx y"=1/x。 这时可以进行y=x^n y"=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx, 所以y"=e^nlnx�6�1(nlnx)"=x^n�6�1n/x=nx^(n-1)。 5.y=sinx ⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2) ⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2) 所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)�6�1lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx 6.类似地,可以导出y=cosx y"=-sinx。 7.y=tanx=sinx/cosx y"=[(sinx)"cosx-sinx(cosx)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x"=cosy y"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x"=-siny y"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x"=1/cos^2y y"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x"=-1/sin^2y y"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y"=u"土v" 5.y=uv,y=u"v+uv" 均能较快捷地求得结果。 对于y=x^n y"=nx^(n-1) ,y=a^x y"=a^xlna 有更直接的求导方法。 y=x^n 由指数函数定义可知,y>0 等式两边取自然对数 ln y=n*ln x 等式两边对x求导,注意y是y对x的复合函数 y" * (1/y)=n*(1/x) y"=n*y/x=n* x^n / x=n * x ^ (n-1) 幂函数同理可证 导数说白了它其实就是斜率 上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在. x/x,若这里让X趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1. 建议先去搞懂什么是极限.极限是一个可望不可及的概念,可以很接近它,但永远到不了那个岸. 并且要认识到导数是一个比值. 导数的应用 1.函数的单调性 (1)利用导数的符号判断函数的增减性 利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想. 一般地,在某个区间(a,b)内,如果>0,那么函数y=f(x)在这个区间内单调递增;如果<0,那么函数y=f(x)在这个区间内单调递减. 如果在某个区间内恒有=0,则f(x)是常函数. 注意:在某个区间内,>0是f(x)在此区间上为增函数的充分条件,而不是必要条件,如f(x)=x3在内是增函数,但. (2)求函数单调区间的步骤 ①确定f(x)的定义域; ②求导数; ③由(或)解出相应的x的范围.当时,f(x)在相应区间上是增函数;当时,f(x)在相应区间上是减函数. 2.函数的极值 (1)函数的极值的判定 ①如果在两侧符号相同,则不是f(x)的极值点; ②如果在附近的左侧,右侧,那么,是极大值; ③如果在附近的左侧,右侧,那么,是极小值. 3.求函数极值的步骤 ①确定函数的定义域; ②求导数; ③在定义域内求出所有的可疑点,即求方程及的所有实根; ④检查在可疑点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 4.函数的最值 (1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在[a,b]的端点a或b处取得,极值与最值是两个不同的概念. (2)求f(x)在[a,b]上的最大值与最小值的步骤 ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
- 九万里风9
-
1. 概念 一个变量随某个变量变化时的速度或变化率;例如路程对于时间的导数便是速度。 若变量y 随变量x 变化的函数关系记为y=�0�6(x),则它在一点x处的导数记为y┡=�0�6┡(x),按定义,它是变化量之比的极限: 。 当这个极限存在时,就说函数�0�6(x)在这点x处可导或者可微。 导数y┡=�0�6┡(x),在函数�0�6(x)可导的范围内是x的一个函数,称为函数�0�6(x)的导函数,亦称导数(见微分学)。 2. 应用 导数的概念构成一种思路,当我们在处理真实世界的问题时,常常遵循这个思路来获得对于实际对象的性质的刻画。导数概念具有很强的实际问题的背景,而在实际问题当中总是能够遇到需要应用导数概念来加以刻画的概念。由于当初在几何学问题中,为了要描述斜率这个概念,才启发人们建立了抽象的一般的导数的概念。比方说在物理学领域,需要大量地应用导数的概念,来刻画属于变化率,增长率,强度,通量,流量等等一大类的物理量。例如速度,加速度,电流强度,热容,等等。在实际问题当中,应该善于提取复杂现象当中所蕴涵的导数概念。 3. 求导公式 4. 运算法则 导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。 5. 高阶导数 导函数本身就是一个新的函数,应该同样可以再次对它关于自变量取导数,甚至多次地重复这种步骤,从而得到所谓高阶导数。如加速度的概念,就是基于位移对时间的二次导数,二阶导数的几何意义是极其鲜明的,它能反映曲线的凹向。 公式: 以及一个基本求导法则:
- 康康map
-
导数是指函数在某一点的变化率 和瞬时速度的概念差不多 导数越大就说明函数在这一点的变化率越大 函数的图像就越陡~~~~ 因为函数的图像有的不是直线 所以变化率也不是一成不变的 所以也就有了求导 也就是求函数的变化率随X的变化的函数
- u投在线
-
导数即变量的变化率,在函数图像中就是曲线(包括直线)的斜率
什么是导数?
导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f"(x)便是x的一个函数,我们称他为f(x)的导函数(derivativefunction)(简称导数)。y=f(x)的导数有时也记作y",即f"(x)=y"=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。注意:1.f"(x)<0是f(x)为减函数的充分不必要条件,不是充要条件。2.导数为零的点不一定是极值点。当函数为常值函数,没有增减性,即没有极值点。但导数为零。[编辑本段]求导数的方法(1)求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0)②求平均变化率③取极限,得导数。(2)几种常见函数的导数公式:①C"=0(C为常数函数);②(x^n)"=nx^(n-1)(n∈Q);③(sinx)"=cosx;④(cosx)"=-sinx;⑤(e^x)"=e^x;⑥(a^x)"=(a^x)*Ina(ln为自然对数)⑦(Inx)"=1/x(ln为自然对数)⑧(logax)"=(1/x)*logae,(a>0且a不等于1)补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。(3)导数的四则运算法则:①(u±v)"=u"±v"②(uv)"=u"v+uv"③(u/v)"=(u"v-uv")/v^2(4)复合函数的导数复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献!2023-05-22 16:37:0214
什么是导数?
在深度学习中,可以用于函数进行线性推导的数值叫做导数. 模型学习样本特征的整个过程就是在自动求导.多么简单,而美妙的理解.不要在意那些细节2023-05-22 16:38:464
导数的基本公式
导数的基本公式:y=c(c为常数)y"=0、y=x^ny"=nx^(n-1)。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。导数的性质:(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。2023-05-22 16:39:041
什么是导数?
简单分析一下,详情如图所示2023-05-22 16:39:202
导数是什么意思?
简单分析一下,详情如图所示2023-05-22 16:40:382
什么是导数?
简单分析一下,详情如图所示2023-05-22 16:41:522
导数是什么意思?
具体回答如图:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。扩展资料:函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量。设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。参考资料来源:百度百科——导数2023-05-22 16:43:381
导数的概念是什么
导数的概念源于函数变化快慢。y是x的函数表示为y=f(x),大意是y随着x变化而变化,当x变化到x+Δx时,y变化到y+Δy,此时将比值Δy/Δx叫做函数y对自变量x的平均变化率,当Δx->0时,平均变化率的极限值就叫做函数在x的导数。2023-05-22 16:43:533
导数是什么意思?
(x^n)"=nx^n-1。(x^n)"=nx^n-1是一个公式。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。扩展资料:常用导数公式:1.y=c(c为常数) y"=02.y=x^n y"=nx^(n-1)3.y=a^x y"=a^xlna,y=e^x y"=e^x4.y=logax y"=logae/x,y=lnx y"=1/x5.y=sinx y"=cosx6.y=cosx y"=-sinx7.y=tanx y"=1/cos^2x8.y=cotx y"=-1/sin^2x9.y=arcsinx y"=1/√1-x^210.y=arccosx y"=-1/√1-x^211.y=arctanx y"=1/1+x^212.y=arccotx y"=-1/1+x^22023-05-22 16:44:001
导数的概念及其意义是什么?
一、导数的概念导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。二、导数的意义导数与物理、几何、代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如:导数可以表示运动物体的瞬时速度和加速度(就直线运动而言,位移关于时间的一阶导数是瞬时速度,二阶导数是加速度),可以表示曲线在一点的斜率,还可以表示经济学中的边际和弹性。以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。导数的性质之单调性:(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。2023-05-22 16:44:151
什么是导数?
导数 derivative 由速度问题和切线问题抽象出来的数学概念。又称变化率。如一辆汽车在10小时内走了 600千米,它的平均速度是60千米/小时,但在实际行驶过程中,是有快慢变化的,不都是60千米/小时。为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置x与时间t的关系为x=f(t),那么汽车在由时刻t0变到t1这段时间内的平均速度是[f(t1)-f(t2)/t1-t2],当 t1与t0很接近时,汽车行驶的快慢变化就不会很大,平均速度就能较好地反映汽车在t0 到 t1这段时间内的运动变化情况 ,自然就把极限[f(t1)-f(t2)/t1-t2] 作为汽车在时刻t0的瞬时速度,这就是通常所说的速度。一般地,假设一元函数 y=f(x )在 x0点的附近(x0-a ,x0 +a)内有定义,当自变量的增量Δx= x-x0→0时函数增量 Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f′,称之为f的导函数,简称为导数。函数y=f(x)在x0点的导数f′(x0)的几何意义:表示曲线l 在P0〔x0,f(x0)〕 点的切线斜率。 导数的概念就是函数变化率这一概念的精确描述。在数形结合时,导数就是求斜率。如果一工作的投入和回报满足某函数,那该函数导数代表工作的投入和回报过程中的具体变化情况最后所接近的一种极限! 函数的导数:对于函数f(x),当自变量x在x0处有增量Δx,则函数y相应地有改变量Δy=f(x0+Δx)-f (x0),这两个增量的比 叫做函数y=f(x)在x0到x0+Δx之间的平均变化率,即 。如 果当Δx→0时,有极限,我们说函数在x0处可导,并把这个极限叫做f(x)在x0处的导数(或变化率)。记 作f"(x0)或 ,即。2023-05-22 16:44:402
导数的计算是什么?
导数的计算如下:第一个:无穷等比数列所有项之和,q=2x。第二个,定积分公式,定积分等于原函数积分上下限值之差。这个应该可以用数学归纳法证明:a)duv/dx = u"v + uv"得证b)假设(uv)^(k) = sum(C(n,k)u^(k)v^(n-k))则uv的第k+1次导数(uv)^(k+1) = d((uv)^(k))/dx = dsum(C(n,k)u^(k)v^(n-k))/dx=sum(C(n,k) du^(k)v^(n-k)/dx)=sum(C(n,k)u^(k+1)v^(n-k) + C(n,k) u^k v^(n-k+1))对上市重新整理,考虑上式中的u^(k)v^(n-k+1)项,它的系数应该是C(n,k)+C(n,k-1)根据组合数学知识,C(n,k)+C(n,k-1)=C(n+1,k),带人就是你要的公式导数公式规律:一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。因此有必要研究高阶导数特别是任意阶导数的计算方法。可见导数阶数越高,相应乘积的导数越复杂,但其间却有着明显的规律性,为归纳其一般规律,乘积的 n 阶导数的系数及导数阶数的变化规律类似于二项展开式的系数及指数规律。2023-05-22 16:44:471
导数是什么?
不要被吓住!导数的根本思想:【对割线的斜率取斜率,过渡到切线的斜率】导数的定义运算:【y增量比x增量,取极限】解释:让x变化一个小小的量,称为Δx,Δx=x₂-x₁,也就是x从x₁变到x₂;y就变化一个小小的量,称为Δy,Δy=y₂-y₁,也就是y从y₁变到y₂;Δy/Δx是割线的斜率。Δx越小,Δy也越小,可是Δy/Δx这个比值却不一定变小,很可能是一个常数。当Δx→0时,割线→切线,割线的斜率(Δy/Δx)→切线的斜率(dy/dx)dy,dx中的d表示的就是无穷小,就是Δ→0的意思。以上就是导数的思想和方法。因为自然界、科技上的很多量与量之间是函数关系,一个量的变化引起另一个量的变化,导数就提供了它们变化率之间的关系。dy/dx:就是空间变化率;dx/dt,dy/dt,dz/dt:就是时间变化率。dy/dx就叫做导数,就叫做y对x求导。dx,dy就叫做微分,导数=微商(这样称呼的老先生们又很多很多)。有问题,Hi我。导数不难,很容易学!Don"tworry!Takeeasy!2023-05-22 16:45:031
导数的定义是什么?
导数是当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。扩展资料:导数的求导法则:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。2、两个函数的乘积的导函数:一导乘二+一乘二导。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。4、如果有复合函数,则用链式法则求导。参考资料来源:百度百科-导数2023-05-22 16:45:121
导数怎么算?
导数的四则运算法则公式如下所示:加(减)法则:[f(x)+g(x)]"=f(x)"+g(x)"。乘法法则:[f(x)*g(x)]"=f(x)"*g(x)+g(x)"*f(x)。除法法则:[f(x)/g(x)]"=[f(x)"*g(x)-g(x)"*f(x)]/g(x)^2。导数公式的用法:一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。以上内容参考:百度百科——导数2023-05-22 16:45:251
什么是导数?
导数的几何意义:函数y=f(x) 在x=x0处的导数 f′(x0),表示曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。扩展资料:不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。2023-05-22 16:45:411
什么是导数?
导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f"(x)便是x的一个函数,我们称他为f(x)的导函数(derivativefunction)(简称导数)。y=f(x)的导数有时也记作y",即f"(x)=y"=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。注意:1.f"(x)<0是f(x)为减函数的充分不必要条件,不是充要条件。2.导数为零的点不一定是极值点。当函数为常值函数,没有增减性,即没有极值点。但导数为零。[编辑本段]求导数的方法(1)求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0)②求平均变化率③取极限,得导数。(2)几种常见函数的导数公式:①C"=0(C为常数函数);②(x^n)"=nx^(n-1)(n∈Q);③(sinx)"=cosx;④(cosx)"=-sinx;⑤(e^x)"=e^x;⑥(a^x)"=(a^x)*Ina(ln为自然对数)⑦(Inx)"=1/x(ln为自然对数)⑧(logax)"=(1/x)*logae,(a>0且a不等于1)补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。(3)导数的四则运算法则:①(u±v)"=u"±v"②(uv)"=u"v+uv"③(u/v)"=(u"v-uv")/v^2(4)复合函数的导数复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献!2023-05-22 16:45:551
怎么求导数公式
求导数公式的方法如下:(1)求函数y=f(x)在x0处导数的步骤:① 求函数的增量Δy=f(x0+Δx)-f(x0)② 求平均变化率③ 取极限,得导数。(2)几种常见函数的导数公式:① C"=0(C为常数);② (x^n)"=nx^(n-1) (n∈Q);③ (sinx)"=cosx;④ (cosx)"=-sinx;⑤ (e^x)"=e^x;⑥ (a^x)"=a^xIna (ln为自然对数)⑦ loga(x)"=(1/x)loga(e)(3)导数的四则运算法则:①(u±v)"=u"±v"②(uv)"=u"v+uv"③(u/v)"=(u"v-uv")/ v^2④[u(v)]"=[u"(v)]*v" (u(v)为复合函数f[g(x)])(4)复合函数的导数:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。导数的定义:导数,也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量。2023-05-22 16:46:031
数学中导数是什么意思
函数中某一点的切线的斜率。2023-05-22 16:46:283
常见的导数
导数是高等数学的基础。常见的导数公式有下列25个,加上导数运算公式,基本上所有的初等函数的求导都可以解决了。2023-05-22 16:47:061
常见导数有哪些呢?
常见的导数有如下:1、y=c(c为常数)y"=0。2、y=xAn y"=nx^(n-1)。3、y=aAx y"=aAxlna,y=eAxy"=eAx。4、y=logax y"=logae/x,y=Inx y"=1/x。5、y=sinx y"=cosx。6、y=cosx y"=-sinx。7、y=tanx y"=1/cos^2x。8、y=cotx y"=-1/sin A2x。9、y=arcsinx y"=1/V1-x^2。10、y=arccosx y"=-1/V1-x^2。11、y=arctanx y"=1/1+x^2。12、y=arccotx y"=-1/1+xA2。2023-05-22 16:47:201
常见的导数公式大全
导数,也叫导函数值。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。接下来我就给大家分享常见的导数公式,一起看一下具体内容,供参考! 三角函数的导数公式 正弦函数:(sinx)"=cosx 余弦函数:(cosx)"=-sinx 正切函数:(tanx)"=sec²x 余切函数:(cotx)"=-csc²x 正割函数:(secx)"=tanx·secx 余割函数:(cscx)"=-cotx·cscx 反三角函数的导数公式 反正弦函数:(arcsinx)"=1/√(1-x^2) 反余弦函数:(arccosx)"=-1/√(1-x^2) 反正切函数:(arctanx)"=1/(1+x^2) 反余切函数:(arccotx)"=-1/(1+x^2) 其他函数导数公式 常函数:y=c(c为常数) y"=0 幂函数:y=xn y"=nx^(n-1) 指数函数:①y=ax y"=axlna ②y=ex y"=ex 对数函数:①y=logax y"=1/xlna ②y=lnx y"=1/x 什么是导数 设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数。2023-05-22 16:47:351
导数公式有那些呢?
16个基本导数公式(y:原函数;y":导函数):1、y=c,y"=0(c为常数)。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax,y"=1/(xlna)(a>0且a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。10、y=arccosx,y"=-1/√(1-x^2)。11、y=arctanx,y"=1/(1+x^2)。12、y=arccotx,y"=-1/(1+x^2)。13、y=shx,y"=ch x。14、y=chx,y"=sh x。15、y=thx,y"=1/(chx)^2。16、y=arshx,y"=1/√(1+x^2)。导数的性质:1、单调性:(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。2、凹凸性:可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。以上内容参考:百度百科-导数2023-05-22 16:47:411
如何求函数的导数呢?
分式函数的求导公式如下:1、用汉字表示为:(分子的导数*分母-分子*分母的导数)/分母的平方。2、用字母表示为:(u/v)" = (u"v-uv")/v²。求导:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数公式:1、C"=0(C为常数)2、(Xn)"=nX(n-1) (n∈R)3、(sinX)"=cosX4、(cosX)"=-sinX5、(aX)"=aXIna (ln为自然对数)2023-05-22 16:47:551
高数函数求导公式有哪些?
高数常见函数求导公式如下图:求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。扩展资料:一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性,定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:(1)若在(a,b)内f"(x)>0,则f(x)在[a,b]上的图形单调递增;(2)若在(a,b)内f"(x)<0,则f(x)在[a,b]上的图形单调递减;(3)若在(a,b)内f"(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。函数的导数就是一点上的切线的斜率。当函数单调递增时,斜率为正,函数单调递减时,斜率为负。导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f"(x)dx。参考资料:百度百科——导数2023-05-22 16:48:031
怎样求导数?
1. 常函数即常数y=c(c为常数),y"=0 。2. 幂函数y=x^n,y"=n*x^(n-1)(n∈R) 。3. 基本导数公式3指数函数y=a^x,y"=a^x * lna。4. 对数函数y=logaX,y"=1/(xlna) (a>0且a≠1,x>0)。拓展资料:导数是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。几何意义:函数y=fx在x0点的导数f"x0的几何意义表示函数曲线在P0[x导数的几何意义0fx0] 点的切线斜率,导数的几何意义是该函数曲线在这一点上的切线斜率。2023-05-22 16:48:281
导数到底是什么?
分类: 生活 >> 起名 问题描述: 导数是什么? 解析: 导数 是为了解决日常生活中,尤其是数学专业的人而发明的 常数的导数是0 而非常数的导数 比如说X的3次方的导数就是2倍的X的平方 依次类推 X的5次方的导数就是4倍的X的3次方 就是这样的2023-05-22 16:48:401
函数的导数怎么求
1、(x^n)"=nx^(n-1)2、a"=0(常数的导数为0)例题(x^3+2)"=(x^3)"+2"=3x^23、(longax)"=(1/x)logae (log以a为底);特别的以e为底例:log3x=(1/x)log3e4、(a^x)"=(lna)a^x (ln3=loge3)例:3^x=(ln3)3^x若有疑问可以追问!望采纳这种他人劳动!谢谢新年快乐2023-05-22 16:48:492
关于导数所有公式
函数导数公式这里将列举几个基本的函数的导数以及它们的推导过程:1.y=c(c为常数)y"=02.y=x^ny"=nx^(n-1)3.y=a^xy"=a^xlnay=e^xy"=e^x4.y=logaxy"=logae/xy=lnxy"=1/x5.y=sinxy"=cosx6.y=cosxy"=-sinx7.y=tanxy"=1/cos^2x8.y=cotxy"=-1/sin^2x9.y=arcsinxy"=1/√1-x^210.y=arccosxy"=-1/√1-x^211.y=arctanxy"=1/1+x^212.y=arccotxy"=-1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y"=f"[g(x)]&8226;g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』2.y=u/v,y"=(u"v-uv")/v^23.y=f(x)的反函数是x=g(y),则有y"=1/x"证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到y=e^xy"=e^x和y=lnxy"=1/x这两个结果后能用复合函数的求导给予证明。3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。可以知道,当a=e时有y=e^xy"=e^x。4.y=logax⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有lim⊿x→0⊿y/⊿x=logae/x。可以知道,当a=e时有y=lnxy"=1/x。这时可以进行y=x^ny"=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,所以y"=e^nlnx&8226;(nlnx)"=x^n&8226;n/x=nx^(n-1)。5.y=sinx⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)&8226;lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx6.类似地,可以导出y=cosxy"=-sinx。7.y=tanx=sinx/cosxy"=[(sinx)"cosx-sinx(cos)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x8.y=cotx=cosx/sinxy"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x9.y=arcsinxx=sinyx"=cosyy"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^210.y=arccosxx=cosyx"=-sinyy"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^211.y=arctanxx=tanyx"=1/cos^2yy"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^212.y=arccotxx=cotyx"=-1/sin^2yy"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与4.y=u土v,y"=u"土v"5.y=uv,y=u"v+uv"均能较快捷地求得结果。对数指数的导数公式:(a^x)"=xIna,(Inx)"=1/x,(logax)"=1/xIna,(e^x)"=e^x所有三角函数和反三角函数的导数公式(arcsinx)"=1/根下1-x^2,(arccosx)"=-1/根下1-x^2,(arctanx)"=1/(1+x^2),(arccotx)"=-1/(1+x^2),((secx)"=secxtanx,(cscx)"=-cscxcotx符号函数(shx)"=chx,(chx)"=shx,(thx)"=1/(chx)^2,(arshx)"=1/根下x^2-1(sinx)"=cosx(cosx)"=-sinx(tanx)"=(secx)^2(x^a)"=ax^(a-1)c"=02023-05-22 16:48:562
导数的法则
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。 导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下: 1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。 2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。 3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。 4、如果有复合函数,则用链式法则求导。高阶导数的求法 1.直接法:由高阶导数的定义逐步求高阶导数。一般用来寻找解题方法。 2.高阶导数的运算法则: (二项式定理) 3.间接法:利用已知的高阶导数公式,通过四则运算,变量代换等方法。注意:代换后函数要便于求,尽量靠拢已知公式求出阶导数。2023-05-22 16:49:051
导函数的导数怎么求?
(tan x )"=(sin x /cos x)"=[(sin x)"cos x-sin x(cos x)"]/cosx*cos x=[cos x*cos x-(-sin x*sin x)]/cos x*cos x=1/cos x*cos x=sec x*sec x扩展资料不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。2023-05-22 16:49:111
导数公式有哪些?
24个基本求导公式如下:1、C"=0(C为常数)。2、(xAn)"=nxA(n——1)。3、(sinx)"=cosx。4、(cosx)"=——sinx。5、(Inx)"=1/x。6、(enx)"=enx。7、 (logaX)"=1/(xlna)。8、 (anx)"=(anx)*ina。9、(u±V)"=u"±V"。10、 (uv)"=u"v+uv"。11、 (u/v)"=(u"v——uv")/v。12、 f(g(x))"=(f(u))"(g(x))"u=g(x)。导函数:如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f"(x)。如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间【a,b】上可导,f"(x)为区间【a,b】上的导函数,简称导数。条件:如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是在定义域上处处可导是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。2023-05-22 16:49:231
函数的导数是什么?
函数的导数等于反函数导数的倒数x=siny即(arcsinx)"=(1/siny)"=1/cosy=1/sqrt((1-sin^2(y)))=1/sqrt(1-x^2)sqrt为开平方根扩展资料在微分方面,十七世纪人类也有很大的突破。费马(Fermat)在一封给罗贝瓦(Roberval)的信中,提及计算函数的极大值和极小值的步骤,而这实际上已相当于现代微分学中所用,设函数导数为零,然后求出函数极点的方法。另外,巴罗(Barrow)亦已经懂得透过「微分三角形」(相当于以dx、dy、ds为边的三角形)求出切线的方程,这和现今微分学中用导数求切线的方法是一样的。由此可见,人类在十七世纪已经掌握了微分的要领。2023-05-22 16:50:241
导数极限定理的详细讲解
我们开始比较难,问的也比较难以理解,最终是什么意思?你可以到网站一看一看2023-05-22 16:50:334
导数是什么意思?
具体回答如下:[e^(1/x)]"=e^(1/x)*(1/x)"=-e^(1/x)/x^2导数的意义:不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。2023-05-22 16:52:031
什么叫导数
导数也叫导函数值。又名微商,是微积分中的重要基础概念。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。 微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。导数定义:一、导数第一定义。设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时相应地函数取得增量 △y = f(x0 + △x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f"(x0) ,即导数第一定义。二、导数第二定义。设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时相应地函数变化 △y = f(x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f"(x0) ,即导数第二定义。三、导函数与导数。如果函数 y = f(x) 在开区间I内每一点都可导就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数 y = f(x) 的导函数记作 y", f"(x), dy/dx, df(x)/dx。导函数简称导数。2023-05-22 16:52:112
什么叫导数?
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。2023-05-22 16:53:143
导数是什么?
导数就是斜率。设y=f(x),x=x0处的斜率=f"(x0)。举例说明如下:y=x²,求x=1处斜率。y"=2x,斜率=2×1=2。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。扩展资料如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y"、f"(x)、dy/dx或df(x)/dx,简称导数。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。2023-05-22 16:53:331
导数是什么意思?
导数的几何意义:函数y=f(x) 在x=x0处的导数 f′(x0),表示曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。扩展资料:不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。2023-05-22 16:53:451
什么是导数?
求导是数学计算中的一个计算方法,导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。数学中的名词,即对函数进行求导,用f"(x)表示。2023-05-22 16:53:591
什么是导数?
1、f"(x)=lim(h->0)[(f(x+h)-f(x))/h],即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数。2、f(x)=a的导数, f"(x)=0, a为常数,即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。就是当幂函数的指数等于1的时候的导数。可以根据幂函数的求导公式求得。3、f(x)=x^n的导数, f"(x)=nx^(n-1), n为正整数,即系数为1的单项式的导数,以指数为系数, 指数减1为指数. 这是幂函数的指数为正整数的求导公式。4、f(x)=x^a的导数, f"(x)=ax^(a-1), a为实数,即幂函数的导数,以指数为系数,指数减1为指数。5、f(x)=a^x的导数, f"(x)=a^xlna, a>0且a不等于1,即指数函数的导数等于原函数与底数的自然对数的积。6、f(x)=e^x的导数, f"(x)=e^x,即以e为底数的指数函数的导数等于原函数。常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^22023-05-22 16:54:111
什么是导数
分类: 教育/学业/考试 >> 学习帮助 问题描述: 如题什么是导数,偶菜鸟一只,目前高一水平,希望走过的路过的都写几句,导数的应用啊,导数的定义,扯远了到微分也行,再远点积分也行 解析: 1、导数的定义 设函数y=f(x)在点x=x0及其附近有定义,当自变量x在x0处有改变量△x(△x可正可负),则函数y相应地有改变量△y=f(x0+△x)-f(x0),这两个改变量的比叫做函数y=f(x)在x0到x0+△x之间的平均变化率. 如果当△x→0时,有极限,我们就说函数y=f(x)在点x0处可导,这个极限叫做f(x)在点x0处的导数(即瞬时变化率,简称变化率),记作f′(x0)或,即函数f(x)在点x0处的导数就是函数平均变化率当自变量的改变量趋向于零时的极限.如果极限不存在,我们就说函数f(x)在点x0处不可导. 2、求导数的方法 由导数定义,我们可以得到求函数f(x)在点x0处的导数的方法: (1)求函数的增量△y=f(x0+△x)-f(x0); (2)求平均变化率; (3)取极限,得导数 3、导数的几何意义 函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率f′(x0). 相应地,切线方程为y-y0= f′(x0)(x-x0). 4、几种常见函数的导数 函数y=C(C为常数)的导数 C′=0. 函数y=xn(n∈Q)的导数 (xn)′=nxn-1 函数y=sinx的导数 (sinx)′=cosx 函数y=cosx的导数 (cosx)′=-sinx 5、函数四则运算求导法则 和的导数 (u+v)′=u′+v′ 差的导数 (u-v)′= u′-v′ 积的导数 (u·v)′=u′v+uv′ 商的导数 . 6、复合函数的求导法则 一般地,复合函数y=f[φ(x)]对自变量x的导数y′x,等于已知函数对中间变量u=φ(x)的导数y′u,乘以中间变量u对自变量x的导数u′x,即y′x=y′u·u′x. 7、对数、指数函数的导数 (1)对数函数的导数 ①; ②.公式输入不出来 其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式. (2)指数函数的导数 ①(ex)′=ex ②(ax)′=axlna 其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式. 导数又叫微商,是因变量的微分和自变量微分之商;给导数取积分就得到原函数(其实是原函数与一个常数之和)。2023-05-22 16:54:201
数学导数基本公式
导数的基本公式:y=c(c为常数)y"=0、y=x^ny"=nx^(n-1)。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。导数的性质:(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。2023-05-22 16:54:291
导数公式是什么?
导数公式指的是基本初等函数的导数公式,导数运算法则主要包括四则运算法则、复合函数求导法则(又叫“链式法则”)。一、什么是导数?导数就是“平均变化率“△y/△x”,当△x→0时的极限值”。可导函数y=f(x)在点(a,b)处的导数值为f"(a)。二、基本初等函数的导数公式高中数学里基本初等函数的导数公式里涉及到的函数类型有:常函数、幂函数、正弦函数、余弦函数、指数函数、对数函数。它们的导数公式如下图所示:高中数学基本初等函数导数公式三、导数加、减、乘、除四则运算法则导数加、减、乘、除四则运算法则公式如下图所示:1、加减法运算法则导数的加、减法运算法则公式2、乘除法运算法则导数的乘、除法运算法则公式【注】分母g(x)≠0.为了便于记忆,我们可以把导数的四则运算法则简化为如下图所示的、比较简洁的四则运算公式。简化后的导数四则运算法则公式【注】分母v≠0.四、复合函数求导公式(“链式法则”)求一个基本初等函数的导数,只要代入“基本初等函数的导数公式”即可。对于基本初等函数之外的函数如“y=sin(2x)”的导数,则要用到复合函数求导法则(又称“链式法则”)。其内容如下。(1)若一个函数y=f(g(x)),则它的导数与函数y=f(u),u=g(x)的导数间的关系如下图所示。复合函数导数公式(2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积”。【例】求y=sin(2x)的导数。解:y=sin(2x)可看成y=sinu与u=2x的复合函数。因为(sinu)"=cosu,(2x)"=2,所以,[sin(2x)]"=(sinu)"×(2x)"=cosu×2=2cosu=2cos(2x)。五、可导函数在一点处的导数值的物理意义和几何意义(1)物理意义:可导函数在该点处的瞬时变化率。(2)几何意义:可导函数在该点处的切线斜率值。【注】一次函数“kx+b(k≠0)”的导数都等于斜率“k”,即(kx+b)"=k。2023-05-22 16:54:451
导数的概念是什么?
函数的导数等于反函数导数的倒数x=siny即(arcsinx)"=(1/siny)"=1/cosy=1/sqrt((1-sin^2(y)))=1/sqrt(1-x^2)sqrt为开平方根扩展资料:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。2023-05-22 16:55:411
求导公式表
1、f"(x)=lim(h->0)[(f(x+h)-f(x))/h],即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数。2、f(x)=a的导数, f"(x)=0, a为常数,即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。就是当幂函数的指数等于1的时候的导数。可以根据幂函数的求导公式求得。3、f(x)=x^n的导数, f"(x)=nx^(n-1), n为正整数,即系数为1的单项式的导数,以指数为系数, 指数减1为指数. 这是幂函数的指数为正整数的求导公式。4、f(x)=x^a的导数, f"(x)=ax^(a-1), a为实数,即幂函数的导数,以指数为系数,指数减1为指数。5、f(x)=a^x的导数, f"(x)=a^xlna, a>0且a不等于1,即指数函数的导数等于原函数与底数的自然对数的积。6、f(x)=e^x的导数, f"(x)=e^x,即以e为底数的指数函数的导数等于原函数。常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^22023-05-22 16:55:482
导数和偏导数的区别?
我只说我的理解,导数可以将整个一元函数的变化率等概括完,因为一元函数仅仅只有两个方向的变化,而多元函数变化很多样,不是你所能概括完的,所以偏导数仅仅概括了一部分,并且是最简单的一部分。(概括你可以理解为解释)我也才学而已,望大家指摘。2023-05-22 16:56:0414
导数什么意思?
导数就是斜率。设y=f(x),x=x0处的斜率=f"(x0)。举例说明如下:y=x²,求x=1处斜率。y"=2x,斜率=2×1=2。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。扩展资料如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y"、f"(x)、dy/dx或df(x)/dx,简称导数。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。2023-05-22 16:57:061
什么是导数?
导数的除法公式:(u/v)"=(u"v-uv")/v²。求导是数学计算中的一个计算方法,导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。运算法则:减法法则:(f(x)-g(x))=f(x)-g(x)加法法则:(f(x)+g(x))=f(x)+g(x)乘法法则:(f(x)g(x))=f(x)g(x)+f(x)g(x)除法法则:(g(x)/f(x))=(g(x)f(x)-f(x)g(x))/(f(x))^2导数公式:1、y=c(c为常数)y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlnay=e^x y"=e^x4、y=logax y"=logae/xy=lnx y"=1/x5、y=sinx y"=cosx6.y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x2023-05-22 16:57:191
导数概念是什么呢?
导数的概念:导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数的性质之单调性:(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。2023-05-22 16:57:321