汉邦问答 / 问答 / 问答详情

证明数列收敛,并求极限

2023-05-21 12:53:24

设a > 0 , 0 < X1< 1/a , X n+1= X n (2 - a * X n) (n=1,2,…).证明{X n}收敛,并求lim(n→0)Xn。请数学高手帮忙解答一下,过程详细点,谢谢!

TAG: 数列 极限
小菜G的建站之路

Xn+1=Xn×(2-a*Xn)=-a×(Xn-1/a)²+1/a

→ (1/a-Xn+1)=a×(1/a-Xn)²

令Yn=1/a-Xn,则Yn+1=a×Yn² (Y1=1/a-X1,n≥2)

∴Yn+1=a^(2*n-1)×Y1^(2*n)=1/a×(a*Y1)^(2*n)

∴Xn+1=1/a-1/a×(a*Y1)^(2*n)

∵Y1=1/a-X1,即,0<Y1<1/a

∴0<a*Y1<1

∴0<(a*Y1)^(2*n)<1

∴0<Xn+1<1/a

当n→+∞时,(a*Y1)^(2*n)→0,Xn+1→1/a

豆豆staR

单调有界准则, 0 < X1< 1/a ,所以 0 < X2< 1/a ,用数学归纳法知0 < Xn< 1/a,得出有界

X n+1/ X n=(2 - a * X n)>1,知单调。再推出收敛

n趋于无穷,xn必然等于xn+1,设极限为t,t=t*(2-a*t)知t=1/a

北营

记a的算术平方根为Q

(抱歉我还只有一级不能插图片,连个公式也插不了)

1.当X1>Q时,

证有界:设Xn>Q,(显然N=1时成立),则X(n+1)=(Xn+a/Xn)/2>(Q+a/Q)/2=Q

(y=x+a/x为耐克函数,有Y〉=Q,当且仅当x=Q时取等号),由数学归纳法可知Xn>Q成立

证单调:X(n+1))=(Xn+a/Xn)/2<(Xn+(Xn的平方)/Xn)/2=Xn

2.

当X1=Q,Xn=Q

3.

当0<X1<Q时,

X(n+1)=(Xn+a/Xn)/2>(Q+a/Q)/2=Q,可知X2>Q,那么可暂时不管X1,可知由X2开始的新数列必有Xn〉Q,且单调减小。(其实就是再把1证一遍),数列的极限为n趋向无穷大时的情况,与x1无关。

小结:有界,单调,必收敛。

记数列极限为M

由于X(n+1)与X(n)相同,且X(n+1)=1/2(Xn+a/Xn),故W=(W+a/W),解得W=Q,(W=-Q舍去,因为明显Xn>0)

其实此题解题时应先求出极限Q,再证收敛!!!

此题关键是耐克函数的应用,研究一下吧。

----好累啊----

什么是收敛数列呢?

收敛数列是指:设数列{Xn},如果存在常数a,那么对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称为数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。收敛数列与其子数列间的关系为:子数列也是收敛数列且极限为a恒有Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。收敛数列的推论为:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。
2023-05-21 09:10:571

什么是收敛数列

收敛是数列的通项在n趋向于无穷大时数列的通项趋向于一个数,即有极限。其实高中数学很简单,数列中只学简单的递减递增。数列的收敛性与前面有限项无关:即数列去掉有限项或增加有限项不影响数列的收敛性;如果数列收敛,也不影响数列的极限值. 收敛数列的有界性:如果数列{an}收敛于a,则数列{an}有界,即存在M>0,使得| an|≤M恒成立。同时也说明:(1)如果数列{an}收敛于a,则对任意给定的正数ε,an 最多只有有限项落在以a为中心,ε为半径的邻域U(a,ε)外。(2) 如果数列{an}收敛a,则在此数列中一定有最大数或最小数,但不一定同时有最大数和最小数.(3) 数列收敛一定有界,但是有界的数列不一定收敛!收敛数列的保号性:(1)如果an≥0,数列{an}收敛于a,则a≥0。
2023-05-21 09:11:091

数列收敛到底是什么意思

简单地说,收敛是数列的通项在n趋向于无穷大时数列的通项趋向于一个数A,即有极限或者说当n趋向于无穷大时,对于任意小的数λ,总有数列的项与极限值A的差小于λ,[lim(n →∞) u(n)]-A<λ
2023-05-21 09:11:265

收敛数列是什么意思

这是一个高等数学上的概念。就是说,当一个数列在n趋于无穷大的时候,这个数列趋于某一个定值,那么就说这个数列收敛。比如,an=(1/2)^n这个数列,当n趋于无穷时,an趋于0,那么这个数列是收敛数列。
2023-05-21 09:12:091

高数中 收敛数列是什么意思

收敛是高数中对于函数及数列极限的一个定义,也就是极限。在数列中即为随着项数n趋近于正无穷的变化过程中,an数列所对应的值无限趋向于一个界,但是不会达到。也可以说它的极限是这个数。 用数学定理解释就是 设 {An} 为实数列,a 为定数.若对任给的正数 ε,总存在正整数N,使得当 n>N 时有∣An-a∣<ε 则称数列 {An} 收敛于 a,定数 a 称为数列 {Xn} 的极限
2023-05-21 09:12:192

什么是收敛数列?

性质1、唯一性思维导图如果数列Xn收敛,每个收敛的数列只有一个极限。2、有界性定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件3、保号性若数列某项起Xn>0(或Xn<0)且{Xn}收敛于a,则a>0(或a<0),扩展资料:收敛数列,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。
2023-05-21 09:12:321

什么是收敛数列?什么是发散数列?求通俗解释。

你好!!! 1.收敛数列如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。 2.发散数列:如果数列{Xn},如果存在实数b>0,对于任意给出的c>0,任意n1,n2满足|n1-n2|<c,有|x(n1)-x(n2)|<b,则数列数为发散数列。3.收敛数列有极限,发散数列没有极限.希望能够帮助你!!
2023-05-21 09:12:391

收敛数列是指什么意思?

数列有界是数列收敛的条件是必要而不充分条件。无界数列一定发散,所以有界是收敛的必要条件,但是有界数列不一定收敛。显然是有界的,但也是发散的。所以有界不是收敛的充分条件。有界数列是指任一项的绝对值都小于等于某一整数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。若数列Xn满足:对一切n有Xn≤M 其中M是与n无关的常数称数列Xn上有界并称M是他的一个上界,对一切n有Xn≥m其中m是与n无关的常数称数列Xn下有界并称m是他的一个下界。数列Xn如果存在常数a,对于任意给定的正数q,总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列Xn收敛于a,即数列Xn为收敛数列,如果数列Xn收敛,每个收敛的数列只有一个极限,收敛数列与其子数列间的关系。
2023-05-21 09:12:451

什么是收敛数列?

有界不一定收敛是指此数列或函数存在上下限,但没有一种趋势是趋向于某一个确定的数,就像正弦函数一样,虽然有正负1给它作为上下限,但随着x的变化,函数值没有趋向于一个确定的1一样。收敛一定有界指的是此数列或函数存在一个趋势,这个趋势的极限是一个确定的值,就像反比例函数一样。收敛数列一定有界(反证,假设无界,肯定不收敛) 有界数列不一定收敛(反例,数列{(-1)^n}是有界的,但它却是发散的)本质的不同数列的收敛是指当n趋于无穷时数列项趋于一个数,而数列的前面的有限项是一个确定的数,显然有界,当n趋于无穷时数列收敛,,说明后面的任意项都是一个有限的数。而函数收不收敛是指当x趋于x0时,函数的敛散情况,当x趋于x0收敛,函数在x0处肯定是有界的,但并不代表x趋于x1就一定收敛,是否有界也不得而知。扩展资料有界数列不一定是收敛数列,例如,摆动数列。 是有界的,因对一切n,有但它是发散的;而数列 也是有界的,因对一切n, 但数列是收敛的,有无界数列一定是发散的,因为如果它是收敛的,根据收敛数列是有界的,得出数列有界的结论。
2023-05-21 09:12:591

级数问题:收敛数列是什么意思

第一个其实就是正项的等比数列的和,公比小于1,是收敛的。第二个项的极限是∞,必然不收敛。拓展资料:简单的说有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。例如:f(x)=1/x 当x趋于无穷是极限为0,所以收敛。f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。收敛数列与其子数列间的关系子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{ }收敛于a,那么它的任一子数列也收敛于a。发散级数指不收敛的级数。一个数项级数如果不收敛,就称为发散,此级数称为发散级数。一个函数项级数如果在(各项的定义域内)某点不收敛,就称在此点发散,此点称为该级数的发散点。按照通常级数收敛与发散的定义,发散级数是没有意义的。然而为了实际的需要,可以确立一些法则,对某些发散级数求它们的“和”,或者说某个发散级数在特定的极限过程中,逐渐逼近某个数。但是在实际的数学研究以及物理等其它学科的应用中,常常需要对发散级数进行运算,于是数学家们就给发散级数定义了各种不同的“和”,比如Cesàro和,Abel和,Euler和等,使得对收敛级数求得的这些和仍然不变,而对某些发散级数,这种和仍然存在。
2023-05-21 09:13:401

收敛数列的性质

收敛数列的性质如下:1. 有界性:收敛数列必定是有界的,即存在一个常数M,使得该数列的所有项都小于等于M。2. 单调性:收敛数列可能是单调递增或单调递减的,也可能是既不单调递增也不单调递减的。3. 极限唯一性:收敛数列的极限是唯一的,即如果一个数列收敛,则其极限是唯一的。4. 保号性:若数列的项都大于(或小于)某个数,且该数列收敛,则其极限也大于(或小于)该数。5. 夹逼定理:如果一个数列的前面项和后面项都夹在两个收敛数列的项之间,那么这个数列也收敛,并且其极限也夹在两个收敛数列的极限之间。6. 收敛数列的子数列也收敛,并且其极限也是原数列的极限。7. 收敛数列的和差、积、商(除数不为0)仍是收敛数列,其极限分别为原数列对应项的和、差、积、商(除数不为0)。
2023-05-21 09:14:091

收敛数列有哪些性质?

第一,有界性,如果函数收敛,那么这个函数一定有界。第二,唯一性,如果函数收敛,那么函数有且只有一个极限值。
2023-05-21 09:14:374

收敛数列如何判断

不算,收敛数列必须是无限趋近于某一个数。
2023-05-21 09:15:063

高数中 收敛数列是什么意思

收敛是高数中对于函数及数列极限的一个定义,也就是极限。在数列中即为随着项数n趋近于正无穷的变化过程中,an数列所对应的值无限趋向于一个界,但是不会达到。也可以说它的极限是这个数。 用数学定理解释就是 设 {An} 为实数列,a 为定数.若对任给的正数 ε,总存在正整数N,使得当 n>N 时有∣An-a∣<ε 则称数列 {An} 收敛于 a,定数 a 称为数列 {Xn} 的极限
2023-05-21 09:15:162

什么是数列的收敛性?

数列趋于稳定于某一个值即收敛,其余的情况,趋于无穷大或在一定的跨度上摆动即发散。收敛数列是求和有个确定的数值,而发散数列则求和等于无穷大没有意义。使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。性质1 极限唯一性质2 有界性性质3 保号性性质4 子数列也是收敛数列且极限为a
2023-05-21 09:15:291

怎么判断函数和数列是收敛或发散的

收敛数列其实是建立在数列极限的定义上的。即收敛数列的极限唯一,有且仅有一个极限。除此之外就说明他是发散的。
2023-05-21 09:15:498

数列收敛和级数收敛有什么区别和联系

数列收敛和级数收敛区别:1、项数不同:数列收敛是N项是有限项之和收敛,而级数是无穷项之和收敛。2、意义不同:数列收敛是指Un的极限LimUn存在;级数收敛是指Sn的极限LimSn存在。联系:级数是指将数列的项依次用加号连接起来的函数。级数的每一项数列都收敛那么该级数收敛。收敛级数:收敛级数(convergent series)是柯西于1821年引进的,它是指部分和序列的极限存在的级数。收敛级数分条件收敛级数和绝对收敛级数两大类,其性质与有限和(有限项相加)相比有本质的差别,例如交换律和结合律对它不一定成立。收敛数列:设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。数列收敛等价于数列存在唯一极限。扩展资料收敛级数的基本性质主要有:级数的每一项同乘一个不为零的常数后,它的收敛性不变;两个收敛级数逐项相加或逐项相减之后仍为收敛级数;在级数前面加上有限项,不会改变级数的收敛性;原级数收敛,对此级数的项任意加括号后所得的级数依然收敛;级数收敛的必要条件为级数通项的极限为0。收敛数列的基本性质主要有:唯一性、有界性、保号性。参考资料来源:百度百科-收敛级数参考资料来源:百度百科-收敛数列
2023-05-21 09:17:211

如何判断一个数列收敛与否?

极限存在的数列一定是收敛数列,收敛的数列{xn},在n→∞时,xn→A,这个A是一个固定的极限值,是一个常数,所以必然有界。但这个有界不是说上下界都有,只有上界、或只有下界、或上下界都有均可以叫有界。有界的数列不一定收敛,最简单的例子xn=sin(n),或者xn=(-1)^n,它们都是有界数列,但n→∞时,xn的极限不存在,所以不收敛。收敛数列与其子数列间的关系:1、子数列也是收敛数列且极限为a恒有|Xn|<M。2、若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。3、如果数列收敛于a,那么它的任一子数列也收敛于a。全局收敛对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。局部收敛若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。
2023-05-21 09:17:331

数列收敛的定义

收敛的解释(1) [retrain oneself]∶减轻 放纵 的 程度 碰了钉子以后,他 收敛 些了 (2) [convergence]∶会聚于一点;向某一值 靠近 收敛 级数 (3) [fade;weaker;lessen;disappear]∶减弱或 消失 笑容从他脸上 收敛 (4) [astringent]∶使 有机 体 组织 收缩、 减少 腺体分泌 收敛 剂 (5) [tax]∶征收租税 收敛 租谷 (6) [gather together]∶ 聚拢 ;收集 收敛 关市之利以实官府 详细解释 亦作“ 收歛 ”。1.收获农作物。 《庄子·让王》 :“春耕种,形 足以 劳动 ;秋 收敛 ,身足以休食。” 宋 陆游 《 晚晴 》 诗:“农家筑塲罢,竭作事 收敛 。” 明 张宁 《方洲杂言》 :“盖自来生长草野世无服役,不过垦植 收敛 。” (2).征收租税。 《礼记·月令》 :“﹝孟秋之月﹞命百官,始 收敛 。” 《北史·崔浩传》 :“列置守宰, 收敛 租谷。” 《东周列国志》 第二回:“ 襃珦 之子 洪德 ,偶因 收敛 ,来到乡间。” (3).聚敛;收集。 《墨子·尚贤中》 :“收歛关市山 林泽 梁之利,以实官府。” 《晋书· 儒林 传·徐邈》 :“﹝帝﹞好为手诏诗章以赐侍臣…… 邈 每应时 收敛 ,还省刊削。” 《宋书·王镇恶传》 :“ 镇恶 极意 收敛 , 子女 玉帛,不可胜计。” (4).归总。 宋 周密 《齐东野语·道学》 :“ 朱公 尤渊洽精诣,盖其以至高之才,至博之学,而一切 收敛 ,归诸义理。” (5).检点行为, 约束 身心。 清 李渔 《比目鱼·狐威》 :“用豪奴,使狠仆,非是我 不知 收歛。” 浩然 《艳阳天》 第八六章:“反击 马之悦 ,就能使落后的富裕中农 收敛 。” (6).停止;消失。 唐 樊宗师 《绛守居园池记》 :“可四时合奇士,观风云霜露雨雪所为发生 收敛 ,赋歌诗。” 清 孙枝蔚 《张良进履》 诗:“莫言豪气全收歛,无限恩仇气未平。” 巴金 《家》 四:“她想到这里,便又 收敛 了笑容。” 郁达夫 《迟桂花》 :“白天的热度,日落之后, 忽然 收敛 了。” (7).医学用语。谓通过药物作用,使肌体皱缩、腺液分泌减少。 宋 张世南 《游宦纪闻》 卷七:“龙涎入香,能 收敛 。” 《医宗 金鉴 ·外科心法要诀·枯筋箭》 “枯筋箭由肝失荣、筋气外发赤豆形”注:“以 月白 珍珠散掺之,其疤 收敛 。” (8).收殓。 《东观汉记·桓典传》 :“相 王吉 以罪被诛, 故人 亲戚 莫敢至者, 典 独弃官 收敛 归葬。” 宋 周密 《癸辛杂 识别 集·杨髠发陵》 :“事竟, 罗铣 买棺制衣 收敛 ,大恸垂绝。” 鲁迅 《呐喊·明天》 :“ 收敛 的时候,给他穿上顶新的 衣裳 。” 见“ 收敛 ”。 词语分解 收的解释 收 ō 接到,接受:收发。收信。收支。收讫。收益。 藏或放置妥当:这是 重要 东西 ,要收好了。 割断 成熟 的农作物:收割。收成。麦收。 招回:收兵。收港。 聚,合拢:收容。收理。收集。 结束:收尾。收煞。收 敛的解释 敛 (敛) ǎ 收拢, 聚集 :敛钱。敛足(收住脚步, 不住 前进)。敛容。敛衣(用收集来的碎布制成的衣)。收敛。聚敛。 征收:横征暴敛。 收束,约束:敛迹。敛手(.缩手,表示 不敢 恣意 妄为;. 拱手 ,表示 恭敬 )
2023-05-21 09:17:461

怎样判断一个数列的收敛性?

在大于某个特定的项数n之后,任选两个项的绝对值总会小于一个数(该数值不确定,但恒大于零),则这个数列就是基本数列(收敛数列)。“柯西准则”又称“柯西收敛原理”,是一个数列极限存在的充要条件。条件:对于任意小数ε>0,存在自然数N,当n>N且n">N时,有|xn-xn"|<ε;结论:数列{xn}有极限x,即对于任意小数ε'>0,存在自然数N",当n>N"时,有|xn-x|<ε'。柯西极限存在准则应用柯西极限存在准则是用来判断某个式子是否收敛的充要条件(不限于数列),主要应用在以下方面:(1)数列。(2)数项级数。(3)函数。(4)反常积分。(5)函数列和函数项级数。
2023-05-21 09:17:531

数列收敛的充分条件是什么

首先,数列收敛就是数列有极限,(-1)^n*(1/n)偶数项和奇数项都是收敛的,极限都为0;其次,一个收敛数列其任意子数列必收敛,这可以结合数列收敛定义反证出;最后强调,子数列收敛针对任意子序列,不分什么奇偶正负之类。
2023-05-21 09:18:211

数列收敛性问题?

刚记错了,又查了下书,对的,一定收敛
2023-05-21 09:18:305

数列收敛的充分条件是什么

理论上讲,充分条件应该很多很多。但归根结底,主要的充分条件应该有以下3条:1)数列收敛的基本定义设{Xn}为一已知数列,A是一个常数。如果对于任意给定的正数ε,总存在一个正整数 N=N(ε),使得当 n>N 时,有 |Xn -A| < ε ,则称数列{Xn}当n趋于无穷时以A为极限,或称数列{Xn}收敛于A。2)夹挤定理如果有三个数列 {Pn} {Xn} {Qn}。且当n足够大以后,满足条件 Pn≤Xn≤Qn。如果 当n趋于无穷时,{Pn}和{Qn}都收敛于A,那么数列{Xn}也收敛于A。3) 单调有界原理任何单调(单调递增或递减)且有界的数列都收敛。===============的确,从逻辑上讲,充要条件也是充分条件。原来对楼主的题目意图理解有误,以为是专门指充分而不必要的条件。现做补充4)柯西收敛准则设有一数列{Xn},该数列收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当 m>n>N 时就有 |Xn-Xm|<ε
2023-05-21 09:19:031

数列有界和收敛的关系是什么?

收敛的函数一定有界,但有界不一定收敛,收敛是有界的充分不必要条件。数列收敛则一定有界。 请注意这里是数列,而不是函数。例子:数列{1/x}(xu003e0),x是正整数,当然有上界且有下界。注意数列的定义域都是正整数。要看是不是正向级数,是的话是充分必要条件,不是的话,是前者是后者的充分条件,正向级数的证明思路:正向级数是单调增加数列,如果有界,根据单调有界必收敛定理,正向级数收敛,反之,级数收敛则有界(同济第一章很前面的定理) 。首先,收敛和有极限是一个概念。其次,函数收敛能推出它是局部有界的。【关于这个局部,如果已知的是x→x0时函数有极限,则这个局部是指x0的某个δ临域。如果已知的是x→∞时函数有极限,则这个局部指的是xu003e+∞或xu003c-∞】但是有界不一定能推出收敛(有极限)【如函数F(x)=sinx,它是有界的,但当x→∞时它并不收敛。】 综上,收敛u003c=u003e有极限,收敛=u003e有界。函数收敛定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。收敛的定义方式很好的体现了数学分析的精神实质。如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数。对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项级数 ,因而有一确定的和s。这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)。记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0。
2023-05-21 09:19:101

判断下列数列是否收敛,写步骤?

数列的敛散性判断要有一定的技巧,并且数列敛散性有许多性质,也要灵活运用。1、将分数多项式中的n都化到相应整数的分母上,这样有利于后续计算;2、对n进行取极限,数列的极限就是随着n的增大观察数列的变化情况,最终得到的是数列成振荡趋近于无穷,不收敛;3、数列收敛的性质之一是唯一性,当数列对奇数和偶数有不同的表达式时,分别取极限,当从奇数趋近于无穷时数列趋近于0;4、另取偶数极限,发现趋近于1,不等于0,所以原数列发散;5、直接对数列进行取极限,小于1的分式的无穷次方为0,数列收敛于4。
2023-05-21 09:19:341

某个数列的任何子数列都收敛于a,那么这个数列收敛于a,这句话对吗

证明如下:假设这个数列不收敛于a 那么必然存在ε0>0,那么对于任意的n∈N+ 总是存在n0,使得|a(n0)-a|>ε0 而且我们可以构造一个下标是递增的子列{a(nk)} 对于任意的nk∈N+,|a(nk)-a|>ε0 这是矛盾的
2023-05-21 09:19:432

数列sin n是收敛还是发散的?

n趋于无穷大是发散,趋于无穷小是收敛!
2023-05-21 09:20:014

高等数学 收敛函数和发散函数的区别?

高等数学收敛函数和发散函数的区别是不一样的。
2023-05-21 09:20:175

常数列收敛吗?

常数列收敛吗?收敛
2023-05-21 09:21:226

1、2、3、4、5、6、7、8、9……这种数列是收敛的吗?

这个数列的通项公式是 an=n,明显随着项数的增加,数列的值无限增加,所以这个数列是发散的,不收敛。
2023-05-21 09:21:421

什么叫收敛函数??

就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性。从字面可以含义,就可理解为,函数的值总被某个值约束着,就是收敛
2023-05-21 09:21:502

有极限的数列一定收敛吗?

数列的极限存在与收敛是一回事,按定义,数列的极限存在时称数列收敛,极限不存在时,称极限发散。互为充分必要条件。怎么举例呢。
2023-05-21 09:22:031

数列收敛的定义是什么?

数列收敛的定义是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。扩展资料收敛数列与其子数列间的关系子数列也是收敛数列且极限为a恒有|Xn|<M,若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列收敛于a,那么它的任一子数列也收敛于a。
2023-05-21 09:22:111

请问,什么是收敛数列,通俗点,谢谢。我是一个初中刚毕业的人,因为兴趣开始学习高等数学。

我也说不清楚,大概就是有界如数列1/x它无限接近0,0就是它的界
2023-05-21 09:22:395

什么是收敛数列?

收敛数列就是越来越小的等差数列。
2023-05-21 09:23:083

数列收敛是什么意思

设数列{Xn }如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|X n - a|<q成立,就称数列{Xn }收敛于a(极限为a),即数列{Xn }为收敛数列。数列收敛等价于:数列存在唯一极限。收敛数列具有如下性质:唯一性如果数列Xn收敛,每个收敛的数列只有一个极限。有界性定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列 {Xn } 有界。定理:如果数列{Xn }收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件保号性如果数列{Xn} 收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有x n >0(或x n <0)。相互关系收敛数列与其子数列间的关系子数列也是收敛数列且极限为a恒有| Xn |<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{Xn} 收敛于a,那么它的任一子数列也收敛于a。收敛是高数中对于函数及数列极限的一个定义,也就是极限。在数列中即为随着项数n趋近于正无穷的变化过程中,Xn数列所对应的值无限趋向于一个界,但是不会达到。也可以说它的极限是这个数。用数学定理解释就是:设 {Xn} 为实数列,a 为常数.若对任给的正数 ε,总存在正整数N,使得当 n>N 时有∣Xn-a∣<ε 则称数列 {Xn} 收敛于 a,常数 a 称为数列 {Xn} 的极限。
2023-05-21 09:23:247

数列收敛是什么意思?

数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a)。如果数列{Xn}收敛,那么该数列必定有界。无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。扩展资料:用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。函数不一定有解析式,同样数列也并非都有通项公式。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
2023-05-21 09:23:521

什么是收敛数列?

数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a)。收敛数列与其子数列间的关系:子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{Xn}收敛于a,那么它的任一子数列也收敛于a。相互关系收敛数列与其子数列间的关系子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{}收敛于a,那么它的任一子数列也收敛于a。以上内容参考:百度百科-收敛数列
2023-05-21 09:24:051

什么是收敛数列?

数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a)。收敛数列与其子数列间的关系:子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{Xn}收敛于a,那么它的任一子数列也收敛于a。相互关系收敛数列与其子数列间的关系子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{}收敛于a,那么它的任一子数列也收敛于a。以上内容参考:百度百科-收敛数列
2023-05-21 09:24:201

数列收敛的条件是什么?

数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a)。如果数列Xn收敛,每个收敛的数列只有一个极限。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0扩展资料:数列收敛与其子数列间的关系:1、子数列也是收敛数列且极限为a恒有|Xn|<M。2、若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。3、如果数列{Xn}收敛于a,那么它的任一子数列也收敛于a。参考资料来源:百度百科-收敛数列参考资料来源:百度百科-收敛
2023-05-21 09:24:361

什么是数列的收敛?

收敛是数列的通项在n趋向于无穷大时数列的通项趋向于一个数,即有极限。其实高中数学很简单,数列中只学简单的递减递增。数列的收敛性与前面有限项无关:即数列去掉有限项或增加有限项不影响数列的收敛性;如果数列收敛,也不影响数列的极限值. 收敛数列的有界性:如果数列{an}收敛于a,则数列{an}有界,即存在M>0,使得| an|≤M恒成立。同时也说明:(1)如果数列{an}收敛于a,则对任意给定的正数ε,an 最多只有有限项落在以a为中心,ε为半径的邻域U(a,ε)外。(2) 如果数列{an}收敛a,则在此数列中一定有最大数或最小数,但不一定同时有最大数和最小数.(3) 数列收敛一定有界,但是有界的数列不一定收敛!收敛数列的保号性:(1)如果an≥0,数列{an}收敛于a,则a≥0。
2023-05-21 09:24:481

证明数列收敛,两种方法,帮忙写下过程

数列收敛的定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。证明数列收敛通常是落实到定义上或者证明数列的极限是固定值。比如数列an=a0+1/n,随着n增大,lim(an)=a0,因此可证明数列{an}是收敛的。
2023-05-21 09:25:066

收敛数列有哪些性质?

还有保不等式性。
2023-05-21 09:25:513

如何判断一个数列是否收敛?

数列是否收敛或者发散:1、设数列{Xn},如果存在常数,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。3、加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n * sin(1/n) 用1/n^2 来代替。4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。扩展资料:1、数列收敛与存在极限的关系:数列收敛则存在极限,这两个说法是等价的;2、数列收敛与有界性的关系:数列收敛则数列必然有界,但是反过来不一定成立。例如:Xn=1,-1,1,-1,.....|Xn|<=1,是有界的,但是Xn不收敛。设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散,数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。
2023-05-21 09:26:091

收敛数列的定义是什么?

收敛是数列的通项在n趋向于无穷大时数列的通项趋向于一个数,即有极限。其实高中数学很简单,数列中只学简单的递减递增。数列的收敛性与前面有限项无关:即数列去掉有限项或增加有限项不影响数列的收敛性;如果数列收敛,也不影响数列的极限值. 收敛数列的有界性:如果数列{an}收敛于a,则数列{an}有界,即存在M>0,使得| an|≤M恒成立。同时也说明:(1)如果数列{an}收敛于a,则对任意给定的正数ε,an 最多只有有限项落在以a为中心,ε为半径的邻域U(a,ε)外。(2) 如果数列{an}收敛a,则在此数列中一定有最大数或最小数,但不一定同时有最大数和最小数.(3) 数列收敛一定有界,但是有界的数列不一定收敛!收敛数列的保号性:(1)如果an≥0,数列{an}收敛于a,则a≥0。
2023-05-21 09:26:331

什么是收敛数列?

收敛数列是指:设数列{Xn},如果存在常数a,那么对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称为数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。收敛数列与其子数列间的关系为:子数列也是收敛数列且极限为a恒有Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。收敛数列的推论为:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。
2023-05-21 09:26:471

如何判断一个数列是发散还是收敛?

看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察,加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来。基本公式:1.一般数列的通项an与前n项和Sn的关系:an=Sn-Sn-1。2.等差数列的通项公式:an=a1+(n-1)d      an=ak+(n-k)d     (其中a1为首项、ak为已知的第k项)  当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。3.等差数列的前n项和公式:Sn=An^2+Bn     Sn=na1+[n(n-1)]d/2   Sn=(a1+an)n/2。当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。4.等比数列的通项公式: an= a1 qn-1    an= ak qn-k  (其中a1为首项、ak为已知的第k项,an≠0)。5.等比数列的前n项和公式:当q=1时,Sn=n a1     (是关于n的正比例式)。
2023-05-21 09:27:023

什么是收敛数列,什么是发散数列

收敛数列是求和有个确定的数值,而发散数列则求和等于无穷大没有意义了
2023-05-21 09:27:222

收敛数列举例有哪些?

如下图:收敛数列,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。相互关系:收敛数列与其子数列间的关系:子数列也是收敛数列且极限为a恒有|Xn|<M。若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。
2023-05-21 09:27:281

收敛数列的

数列收敛的定义:设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a,即数列{Xn}为收敛数列。其定义与极限定义相同,意即数列收敛于a则可以说其极限为a。所以数列收敛和数列有极限是等价的。但是对于数列{n²},当n趋于无穷时,n²趋于无穷,在广义上可以称其收敛于无穷大,但在狭义上称其发散。一般情况下我们称这个数列是发散的。按照收敛数列和发散数列的定义,前者有极限而后者没有极限。
2023-05-21 09:27:422