汉邦问答 / 问答 / 问答详情

数学家的一身的成长故事?

2023-05-21 08:46:20
TAG: 数学
墨然殇

瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。

有一次,俄国女皇邀请法国哲学家狄德罗访问她的宫廷。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要是他想听的话,这位数学家将当着所有朝臣的面给出这个证明。狄德罗高兴地接受了挑战。

第二天,在宫廷上,欧拉朝狄德罗走去,用一种非常肯定的声调一本正经地说:“先生,,因此上帝存在。请回答!”对狄德罗来说,这听起来好像有点道理,他困惑得不知说什么好。周围的人报以纵声大笑,使这个可怜的人觉得受了羞辱。他请求女皇答应他立即返回法国,女皇神态自若地答应了。

就这样,一个伟大的数学家用欺骗的手段“战胜”了一个伟大的哲学家。

拉普拉斯和拉格朗日是19世纪初法国的两位数学家。拉普拉斯在数学上十分伟大,在政治上却是一个十足的小人,每次政权更迭,他都能够见风使舵,毫无政治操守可言。拉普拉斯曾把他的巨著《天体力学》献给拿破仑。拿破仑想惹恼拉普拉斯,责备他犯了一个明显的疏忽:“你写了一本关于世界体系的书,却一次也没有提到宇宙的创造者——上帝。”

拉普拉斯反驳说:“陛下,我不需要这样一个假设。”

当拿破仑向拉格朗日复述这句话时,拉格朗日说:“啊,但那是一个很好的假设,它说明了许多问题。”

两个神童19世纪初,在大西洋两岸出现了两个神童:一个是英国少年哈密顿,另一个是美国孩子科尔伯恩哈密顿的天才表现在语言学上,他8岁时就已经掌握了英文、拉丁文、希腊文和希伯莱文;12岁时已熟练地掌握了波斯语、阿拉伯语、马来语和孟加拉语,只是由于没有教科书,他才没有学习汉语。科尔伯恩则在数学上表现出神奇的天才,小时候,有人问他4294967297是否是素数时,他立刻回答不是,因为它有641作为除数。类似的例子多得不胜枚举,但他不能解释他得出正确结论的过程。

人们把两个神童带到一起,这次会面是奇妙的,现在已经无法确知他们交谈了什么,但结果却是完全出人意料的:科尔伯恩的数学天赋完全“移植”给了哈密顿;哈密顿放弃了语言学,投身数学,成为爱尔兰历史上最伟大的数学家。

至于科尔伯恩,他的天才渐渐消失了。

数学家之死挪威数学家阿贝尔22岁的时候就对数学的发展做出了重大的贡献,但并不为当时的数学界所接受。他过着穷困潦倒的生活,这严重地影响了他的健康,他得了肺结核,这在当时是绝症。在最后的几个星期,他一直在考虑他的未婚姐的未来。他写信给他最好的朋友基尔豪:“她并不美丽,有着一头红发和雀斑,但她是一个可爱的女子。”虽然基尔豪和肯普从未见过面,但阿贝尔希望他们两个能够结婚。

肯普小姐照料阿贝尔度过了生命的最后时刻。在葬礼上,她与专程赶来的基尔豪相遇了。基尔豪帮助她克服了悲伤,他们相爱并结了婚。正如阿贝尔所希望的那样,基尔豪和肯普婚后十分幸福,他们经常到阿贝尔墓前去怀念他。随着岁月的流逝,他们发现越来越多的人从各地赶来,为阿贝尔在数学上的贡献向他表达他们迟到的敬意,而他们只是这一朝圣队伍中的一对普通的朝圣者。

1832年5月29日,法国年轻气盛的伽罗瓦为了所谓的“爱情与荣誉”打算和另外一个人决斗。他知道对手的枪法很好,自己获胜的希望很小,很可能会死去。他问自己,如何度过这最后的夜晚?在这之前,他曾写过两篇数学论文,但都被权威轻蔑地拒绝了:一次是被伟大的数学家柯西;另一次是被神圣的法兰西科学院他头脑中的东西是有价值的。整个晚上,他把飞逝的时间用来焦躁地一气写出他在科学上的遗言。在死亡之前尽快地写,把他丰富的思想中那些伟大的东西尽量写出来。他不时中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。

他在天亮之前那最后几个小时写出的东西,一劳永逸地为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一个极为重要的分支——群论。

第二天上午,在决斗场上,他被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去。”他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。

数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。

费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“费马大定理”完全证明的人。自此定理提出后,数学家们奋斗了300多年,还是没有证出来。但这个定理肯定存在,费马知道它。

在数学上,“费马大定理”已成为一座比珠穆朗玛峰更高的山峰,人类的数学智慧只有一次达到过这样的高度,从那以后,再也没有达到过。

铁血嘟嘟

瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。

余辉

美丽人生?

hi投

【基本信息】

姓名:陈景润 (1933—1996)

身高:1.71米

国家或地区:中国

身份:数学家

功绩:哥德巴赫猜想第一人

曾系中国科学院院士

【具体信息】

■简历:

1933年5月22日生于福建闽侯。家境贫寒,学习刻苦,他在中、小学读书时,就对数学情有独钟。一有时间就演算习题,在学校里成了个“小数学迷”。他不善言辞,为人真诚和善,从不计较个人得失,把毕生经历都献给了数学事业。高中没毕业就以同等学历考入厦门大学。1953年毕业于厦门大学数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。

■主要成果:

1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。

陈景润除攻克这一难题外,又把组合数学与现代经济管理、尖端技术和人类密切关系等方面进行了深入的研究和探讨。他先后在国内外报刊上发明了科学论文70余篇,并有《数学趣味谈》、《组合数学》等著作。

陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。他是第四、五、六届全国人民代表大会代表。著有《数学趣味谈》、《组合数学》等。

■巨星的陨落 :

1984年4月27日,陈景润在横过马路时,被一辆急驶而来的自行车撞倒,后脑着地,酿成意外的重伤。雪上加霜,身体本来就不大好的陈景润,受到了几乎致命的创伤。他从医院里出来,苍白的脸上,有时泛着让人忧郁的青灰色,不久,终于诱发了帕金森氏综合症。

1996年3月19日,著名数学家陈景润因病长期住院,经抢救无效逝世,终年63岁。

【他的婚姻】

徐迟的《哥德巴赫猜想》一文的发表,如旋风般震撼着人们的心灵,震撼着中外数学界。国内外评论说:“陈景润成了中国科学春天的一大盛景”。他被邀参加了全国科学大会,邓小平同志亲切地接见了他。当时陈景润身体不太好,小平同志关怀备至,会议结束后,陈景润被送入北京解放军309医院高干病房。他的到来,轰动了整个医院,院领导给予了盛情的接待,医生和护士无不崇敬这位世界上第一位数学圣人。1977年11月从武汉军区派到309医院进修的由昆,被同伴们拉去看中国这位名人,这真是缘分,过去陈景润连女人名字的边都不粘,连句话都不说的人,此次年近半百的陈景润见到由昆,眼睛一亮,亲切地和由昆打招呼,请她们进来坐下,话也多了。后来由昆被派到陈景润的病房当值班医生。这样,接触的机会多了,每次由昆一出现,陈景润都特别高兴。一天,陈景润关切地问由昆,家住在哪?有没有成家、有没有男朋友?由昆毫不设防,她便心真口快地说:“没有,没有,还早着呢。”以后,由昆也十分关心这位中国数学家,斗转星移,彼此产生了爱情,他们在组织的帮助下结婚了。从此这位被称为“痴人”和“怪人”的数字家陈景润有了一个温暖的家了。

【名人轶事】

陈景润不爱玩公园,不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。

有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当他是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。

理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗?

过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。

陈景润进了图书馆,真好比掉进了蜜糖罐,怎么也舍不得离开。可不,又有一天,陈景润吃了早饭,带上两个馒头,一块咸菜,到图书馆去了。

陈景润在图书馆里,找到了一个最安静的地方,认认真真地看起书来。他一直看到中午,觉得肚子有点饿了,就从口袋里掏出一只馒头来,一面啃着,一面还在看书。

“丁零零……”下班的铃声响了,管理员大声地喊:“下班了,请大家离开图书馆!”人家都走了,可是陈景润根本没听见,还是一个劲地在看书呐。

管理员以为大家都离开图书馆了,就把图书馆的大门锁上,回家去了。

时间悄悄地过去,天渐渐地黑下来。陈景润朝窗外一看,心里说:今天的天气真怪!一会儿阳光灿烂,一会儿天又阴啦。他拉了一下电灯的开关线,又坐下来看书。看着看着,忽然,他站了起来。原来,他看了一天书,开窍了。现在,他要赶回宿舍去,把昨天没做完的那道题目,继续做下去。

陈景润把书收拾好,就往外走去。图书馆里静悄俏的,没有一点儿声音。哎,管理员上哪儿去了呢?来看书的人怎么一个也没了呢?陈景润看了一下手表,啊,已经是晚上八点多钟了。他推推大门,大门锁着;他朝门外大声喊叫:“请开门!请开门!”可是没有人回答。

要是在平时,陈景润就会走回座位,继续看书,一直看到第二天早上。可是,今天不行啊!他要赶回宿舍,做那道没有做完的题目呢!

他走到电话机旁边,给办公室打电话。可是没人来接,只有嘟嘟的声音。他又拨了几次号码,还是没有人来接。怎么办呢?这时候,他想起了党委书记,马上给党委书记拨了电话。

“陈景润?”党委书记接到电话,感到很奇怪。他问清楚是怎么一回事,高兴得不得了,笑着说:“陈景润!陈景润!你辛苦了,你真是个好同志。”

党委书记马上派了几个同志,去找图书馆的管理员。图书馆的大门打开了,陈景润向管理员说:“对不起!对不起!谢谢,谢谢!”他一边说一边跑下楼梯,回到了自己的宿舍。

他打开灯,马上做起那道题目来。

【陈景润与哥德巴赫猜想】

陈景润在福州英华中学读书时,有幸聆听了清华大学调来一名很有学问的数学教师讲课。他给同学们讲了世界上一道数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了‘任何一个偶数均可表示两个素数之和",简称1+l。他一生没有证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,但始终没有结果,成为世界数学界一大悬案”。老师讲到这里还打个形象的比喻,自然科学皇后是数学,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取皇冠上宝石的艰辛历程......

1953年,陈景润毕业于厦门大学数学系,曾被留校,当了一名图书馆的资料员,除整理图书资料外,还担负着为数学系学生批改作业的工作,尽管时间紧张、工作繁忙,他仍然坚持不懈地钻研数学科学。陈景润对数学论有浓厚的兴趣,利用一切可以利用的时间系统地阅读了我国著名数学家华罗庚有关数学的专著。陈景润为了能直接阅读外国资料,掌握最新信息,在继续学习英语的同时,又攻读了俄语、德语、法语、日语、意大利语和西班牙语。学习这些个国家语言对一个数学家来说已是一个惊人突破了,但对陈景润来说只是万里长征迈出的第一步。

为了使自己梦想成真,陈景润不管是酷暑还是严冬,在那不足6平米的斗室里,食不知味,夜不能眠,潜心钻研,光是计算的草纸就足足装了几麻袋。1957年,陈景润被调到中国科学院研究所工作,做为新的起点,他更加刻苦钻研。经过10多年的推算,在1965年5月,发表了他的论文《大偶数表示一个素数及一个不超过2个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”,可是这个世界数学领域的精英,在日常生活中却不知商品分类,有的商品名字都叫不出来,被称为“痴人”和“怪人”。

作家徐迟在《哥德巴赫猜想》中这样描绘陈景润的内心世界:“我知道我的病早已严重起来。我是病入膏肓了。细菌在吞噬我的肺腑内脏。我的心力已到了衰竭的地步。我的身体确实是支持不了啦!唯独我的脑细胞是异常的活跃,所以我的工作停不下来。我不能停止。……”对于陈景润的贡献,中国的数学家们有过这样一句表述:陈景润是在挑战解析数论领域250年来全世界智力极限的总和。中国改革开放总设计师邓小平曾经这样意味深长地告诉人们:像陈景润这样的科学家,“中国有一千个就了不得”。

小白

筹算女杰王贞仪

女数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。

从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。

17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史只有100年。

数学会女前辈高扬芝

高扬芝(1906-1978 ),江西南昌人,从小学习勤奋,特别喜欢数学。

高中毕业后考入北京大学数学系,由于学习成绩优秀,1930年大学毕业后应聘到上海大同大学担任数学教员,后成为教授、数学系主任。在课堂教学中,她遵循《学记》中所说的:“善歌者使人继其声,善教者使人继其志。”所以,高扬芝的数学教学一贯是兢兢业业、讲求实效,深受学生欢迎。

高扬芝长期从事数学分析(旧时叫高等微积分)、高等代数和复变函数等课程的教学与研究。她深知,高等数学比初等数学更加抽象,外行人常常把它看成是由冷酷的定义、定理、法则统治着的王国。因此,高教授常常告诉学生,数学结构严谨,证明简洁,蕴含着数学的美。它像一座迷宫,只要你潜心学习、研究,就能寻求到走出迷宫的正确道路。一旦顺利走出迷宫,成功的愉悦会使你兴奋不已,你会向新的、更复杂的迷宫挑战,这就是数学的魅力。

她在上海大同大学工作不到五年的时间里,自身潜在的科研天赋很快被唤醒催发。经过刻苦钻研教材,结合教学实践,她撰写出论文《Clebsch氏级数改正》,1935年在交通大学主编的《科学通讯》上连载,得到同行好评。解放后,她又著有《极限浅说》《行列式》等科普读物多部。

高扬芝是中国数学会创始时的少数女性前辈之一。1935年7月25日中国数学会在上海交通大学图书馆举行成立大会,共有33人出席,高扬芝就是其中的一位。在这次年会上,她被推选为中国数学会评议会评议,后连任第二、三届评议会评议。1951年8月,中国数学会在北京大学召开了规模空前的第一次全国代表大会,高扬芝出席了大会。她是这次到会代表63人中惟一的女代表。20世纪60年代,她被选为江苏省数学会副理事长。

第一位数学女博士徐瑞云

徐瑞云,1915年6月15日生于上海,1927年2月考入上海著名的公立务本女中读书。徐瑞云从小喜欢数学,读中学时对数学的兴趣更加浓厚,因此,1932年9月高中毕业后报考了浙江大学数学系。当时,浙大数学系的教授有朱叔麟、钱宝琮、陈建功和苏步青。此外,还有几位讲师、助教。数学系的课程主要由陈建功和苏步青担任。当时数学系的学生很少,前一届两个班学生共五人,她这届也不过十几人。

当时苏步青才30岁,看上去十分年轻,因此徐瑞云的同学中有人认为苏步青是助教,可是听完一堂课后就不住地赞叹说:“想不到助教竟能讲得这么好。”这件事引起知情者的哄笑。徐瑞云在陈建功和苏步青的教导下,勤奋学习,专心听讲,认真做笔记,她的考试成绩经常是满分。1936年7月,徐瑞云以优异成绩毕业了,被浙大数学系留校任助教。1937年2月,26岁的徐瑞云与28岁的生物系助教江希明喜结伉俪。新婚三个月后,徐瑞云夫妇获得亨伯特留学德国的奖学金,双双乘船漂洋赴德国留学,攻读博士学位。

徐瑞云有幸被德国著名的数学大师卡拉凯屋独利接受,由他担任她的数学博士指导老师。当时有不少学生想请他作导师,他都没有同意。而徐瑞云这位东方女士因学习勤奋,数学功底扎实,成了卡拉凯屋独利的关门弟子。徐瑞云主要研究三角级数论。这门学科起源于物理学的热传导问题的傅里叶分析的主要部分,是当时国际上研究的热门之一,在中国还是一个空白。

徐瑞云为将来能在分析、函数论方面赶上世界先进水平,废寝忘食,广撷博采,把大部分时间都用在图书馆里。1940年底,徐瑞云获得博士学位,成了中国历史上第一位女数学博士。她的博士论文“关于勒贝格分解中奇异函数的傅里叶展开”,1941年发表在德国《数学时报》上。

完成学业的徐瑞云夫妇,随即离德回国,于1941年4月回到母校,双双被聘为副教授,正式登上在战火硝烟的大后方培养人才的讲台。在艰苦的条件下,陈建功和苏步青没有中断在杭州时共创的函数论和微分几何两个数学讨论班,这是一种教学相长、遴选英彦的科研形式,徐瑞云也参与其间。1944年11月,英国驻华科学考察团团长李约瑟参观了浙大数学系和理学院,连声称赞道:“你们这里是东方的剑桥!”这更加激励了徐瑞云的勤奋工作。她这时教的学生曹锡华、叶彦谦、金福临、赵民义、孙以丰、杨宗道等,后来都成了杰出的数学家和数学教育家。1946年,31岁的徐瑞云提升为正教授。

1952年,徐瑞云调入浙江师院,被任命为数学系主任,从此全身投入了艰苦的创建数学系的工作中。在她的领导下,没有几年功夫,数学系已初具规模,教学质量不断提高。第一届本科毕业生约有三分之一考取了研究生。他们系也成为全国同行的楷模,进入全国同行前列。徐瑞云在建设数学系的同时,没有忘记科学研究。她翻译了苏联那汤松的名著《实变函数论》。译本于1955年由高等教育出版社出版。

第一位女数学院士胡和生

胡和生于1928年出生在南京市一个艺术世家,祖父和父亲都是画家。她从小耳濡目染,聪明好学,画感、乐感很强,祖父和父亲特别喜欢她。读小学和中学时,她不偏科,文理兼优,这些对她后来从事数学事业帮助很大。

胡和生虽然爱好广泛,但她的理想不是成为一位画家,而是考上大学继续深造。抗战胜利以后,胡和生考进大学数学系,1950年毕业,又报考了浙江大学著名数学家、中国微分几何创始人苏步青教授的硕士研究生。1952年院系调整,苏教授与她转入了上海复旦大学。复旦是以苏步青为首的我国微分几何学派的策源地,人才济济,加之老一辈数学家的鼓励指导,同行的互勉竞争,托着这颗新星冉冉升起。

胡和生长期从事微分几何研究,在微分几何领域里取得了系统、深入、富有创造性的成就。例如,对超曲面的变形理论,常曲率空间的特征问题,她发展和改进了法国微分几何大师嘉当等人的工作。19 60-1965年,她研究有关齐次黎曼空间运动群方面的问题,给出了确定黎曼空间运动空隙性的一般有效方法,解决了六十年前意大利数学家福比尼所提出的问题。她把这个结果,整理在与自己的丈夫谷超豪合著的《齐性空间微分几何》一书中,受到同行称赞。她早期在我国最高学术刊物之一《数学学报》上发表了《共轭的仿射联络的扩充》(1953年)、《论射影平坦空间的一个特征》(1958年)、《关于黎曼空间的运动群与迷向群》(1964年)等重要论文。至今,她发表了七十多篇(部)论文、论著。她在射影微分几何、黎曼空间完全运动群、规范场等研究方面都有很好的建树,成为国际上有相当影响和知名度的女数学家。她的一些成果处于国际领先或国际先进水平。例如,在调和映照的研究中,她撰写的专著《孤立子理论与应用》,发展了“孤立子理论与几何理论”的成果,处于世界领先地位。

1982年,胡和生与合作者获国家自然科学三等奖;1984年起担任《数学学报》副主编,并担任中国数学会副理事长;1989年被聘为我国数学界的“陈省身数学奖”的评委;1992年当选为中国科学院数学物理学部委员(1994年改称院士),至今选出来的数学家院士,只有胡和生一人是女性。

华裔算杰张圣蓉

张圣蓉1948年生于陕西省西安市,出生不久便随父母到台湾居住。她从小聪慧,喜爱读书,对数学情有独钟。张圣蓉中学毕业后考入著名的台湾大学数学系,1970年获学士学位。她不满足于此,又以优异成绩考入美国加利福尼亚大学,攻读数学博士学位。

“函数”是数学中最基本、最重要的概念。一位著名数学家说过“函数概念是近现代数学思想之花”。它的产生、发展实质上反映了近现代数学迅速发展的历程,同时也与函数论、解析数学的发展相辅相成。张圣蓉选择了现代数学的重要前沿分支之一“函数论”作为攻读对象。她的导师是一位著名的函数论世界大师,她要同函数论专家一道去摘取函数论皇冠上的明珠。

1974年,张圣蓉获伯克利加利福尼亚大学博士学位,从此在美国从事函数论的研究工作。她对函数论中复平面上的解析函数、多复变函数以及有界函数的解析函数的逼近等高深领域都有涉猎,1976年,28岁的张圣蓉通过对道格拉斯函数的研究撰写了世人没有发现的这类函数特征的论文,这为第二年著名数学家马歇尔解决著名的道格拉斯猜测铺平了道路。张圣蓉一鸣惊人,1977年又撰写出另一篇令函数论专家惊叹的论文,证明了马歇尔攻克道格拉斯猜测中的一个未发现的难题。在清一色的男数学家主导的函数论领域在中国,数学的起源也可追溯到远古。到西周时期(公元前11世纪~前八世纪),“数”作为贵族弟子必习的“六艺”(礼、乐、射、御、书、数)之一,已形成专门的学问,有些知识后成为中国最早的两部传世数学著作——《周捭算经》与《九章算术》的部分内容。

《周捭算经》同时也是一部天文著述,作者不详,成书年代据考当不晚于公元前2世纪。《周捭算经》在数学方面最主要的有勾股定理、分数运算及测量术等。

《周捭算经》本文没有给出勾股定理的证明,但《周捭算经》赵爽注中的“勾股圆方图”说,却蕴涵了迄今所知中国古代最早的勾股定理证明。赵爽,字君卿,生平不详,大约生活于后汉三国时期(公元三世纪前期)。“勾股圆方图”说短短五百余字,概括了整个汉代勾股算术的主要成就。

《九章算术》是中国古代最重要的数学经典,对中国古代数学的发展有深远影响。刘徽《九章算术注序》称《九章》是由周代“九数”发展而来,并由西汉张苍、耿寿昌等人删补。近年发现的湖北张家山汉初古墓竹简《算数书》(1984年出土),有些内容与《九章算术》类似。可以认为,《九章算术》是从先秦开始在长时期里经众多学者编纂、修改,约于西汉中叶(公元前一世纪)最后成书。

《九章算术》采用术文统率例题形式,全书共收246个数学问题,分成九章(①方田,②粟米,③衰分,④少广,⑤商功,⑥均输,⑦盈不足,⑧方程, ⑨勾股)。《九章算术》所包含的数学成就是丰富的和多方面的,最著名的如分数运算法则、双设法(“盈不足”术)、开方法、线性方程组消元解法(“方程术”)及负数的引进(“正负术”)等,都具有世界意义。

《孙子算经》中国是世界上最早采用十进位值制记数的国家,春秋战国之际已普遍应用的筹算,即严格遵循了十进位值制。关于算筹记数法现在仅见的资料载于《孙子算经》。《孙子算经》三卷,作者名不详,成书年代约为公元4世纪,该书上卷是关于筹算法则的系统介绍,下卷则有著名的“物不知数”题,亦称“孙子问题”。

《张丘建算经》——百鸡术

《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西< <算术之钥》等著作中均出现有相同的问题。

贾宪:〈〈黄帝九章算经细草〉〉

中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。

贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。

秦九韶:〈〈数书九章〉〉

秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。

李冶:《测圆海镜》——开元术

随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。

李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。

朱世杰:《四元玉鉴》

朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)

,她确立了自己的地位。

名师与高徒——陈省生和丘成桐

当今世界数坛,设有两项奖励,可谓举世瞩目,堪于诺贝尔奖相比.一项是在国际数学家大会颁发的菲尔兹(Fields)奖,这项奖只授予不超过40 岁的年轻数学家;一项是由以色列沃尔夫基金会于1978年颁发的沃尔夫奖;每奖10万美元(数目最初于诺贝尔奖接近),授予当代最大的数学家.

1983年,旅美中国年轻数学家丘成桐教授荣获沃尔夫大奖,而他的老师美籍中国数学家陈省身教授则获沃尔夫大奖.

陈省身教授是美国科学院院士,1975年美国国家科学奖获得者,当代世界最有影响的数学家之一,现代微分几何的奠基人.

陈省身1911年10月26日出生于浙江省嘉兴县,陈省身教授是国际数学届整体微分几何研究的领导人物.

他1931年在清华大学研究发表的第一篇研究论文,其题材就是有关"投影微分几何"的.

他写的积分几何,把希拉克学派的积分几何工作推到了更高的阶段.

陈省身对当时数学界知之甚少的示性类理论很感兴趣.1945年他发现复流上有反映复结构特征的不变量,后来被命名为陈省身示性类是微分几何学、代数几何学、复解析几何学中最重要的不变量。“它的应用及于整个数学及理论物理”。(沃尔夫奖评语)魏伊说:“示性类的概念被陈的工作整个地改观了。”陈省身因建立代数拓补与微分几何的联系,推进了整体几何的发展彪炳于数学史册。

在将近半个世纪里,陈省身教授在微分几何研究中,取得了一系列丰硕的成果,其最突出的有:(1)关于卡勒(Kahleian)G结构的同调和形式的分解定理:(2)欧几里得空间中闭子流的全曲率和紧嵌入的理论;(3)满足几何条件的子流形成唯一性定理;(4)积分几何中的运动公式。(5)他同格里菲恩(P.Griffiths)关于网上几何(Web geometry)的工作使这方面获得新生命,最近的发展(I.Gelfand,R.Mcpherson);(6)他同莫泽(J.Moser)关于CR- 流形的工作最近多复变函数论进展的基础;(7)他同西蒙斯(J.Simons)的特征式是量子力学异常(anomaly)现象的基本数学工具;(8)他同沃尔夫森(J.Wolfson)关于调和映射的工作是整体微分几何的一个问题,在理论物理有重要应用.1959年他在芝加哥大学所撰写的《微分几何》是一部经典名著。

丘成桐1949年4月4日出生在广东省,不久他们全家移居香港,1976年,年仅27岁的丘成桐就解决了微分几何中的一个著名难题-“卡拉比猜想”。卡拉比猜想的解决,使丘成桐成为数学天空新升起的一颗名星,他除解决了卡拉比猜想外,他还解决了许多停多年毫无进展的问题,例如:(1)正质猜想,(2)实与复的蒙日-安培方程。(3)丘成桐的一系列文章对某些紧流形(或有边界的流型)上的拉普拉斯算子的第一特征值,以及其它的特征值都作了深刻的估计。(4)丘成桐和肖荫堂合作,利用极小曲面对弗兰克尔猜想给出一个漂亮的证明,也就是证明了完备的单连通的、具有正的全纯截面曲率的恺勒流形与一个复射空间双全纯等价;(5)丘成桐和米斯克利用三维流形的拓补方法解决极小曲面的经典理论中一些老问题。反过来,他们利用极小曲面理论得出三维拓补学的一些结果:得恩引理和等变环圈定理及等球定理等。

由于丘成桐的出色成就,他1981年获美国数学颁发的维布伦奖,1983年,他在华沙举行的国际数学家大会上荣获菲尔兹奖是当之无愧的.

吴文俊

数学家。1919年5月12日生于上海市。1940年毕业于上海交通大学。1947年赴法国留学。在巴黎法国国家科学研究中心进行数学研究, 1949年获法国国家科学博士学位。1951年回国。1957年被聘选为中国科学院院士(学部委员)。历任北京大学数学系教授,中国科学院数学研究所研究员及副所长,中国科学院系统科学研究所研究员及副所长、名誉所长、数学机械化研究中心主任。曾任中国数学会理事长、名誉理事长,中国科学院数学物理学部副主任、主任等职。吴文俊主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人,为中国数学研究和科学事业的发展作出了重要贡献。 1952年刊印出版的博士论文《球纤维示性类》是对球纤维理论基本问题的重要贡献。从40年代起示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名著。这方面成果曾获1956年度国家自然科学奖(中国科学院自然科学奖金)一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为“吴方法”),实现了初等几何与微分几何定理的机器证明,居于世界领先地位。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获1978年全国数学大会重大成果奖和1980年中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面,以及代数几何、中国数学史、对策论等研究中也作出了重要贡献。

杨乐

数学家。1939年11月10日生于江苏南通。1956年考入北京大学数学系,1962年毕业,同年考取中国科学院数学研究所研究生,1966年研究生毕业后留所工作。曾任中国科学院数学研究所所长、中国数学会秘书长、理事长。现任中国科学院数学研究所研究员、学术委员会主任。1980年当选为中国科学院院士(学部委员)。杨乐在函数模分布论、辐角分布论、正规族等领域,以其众多极富创造性的重要贡献,20年来一直站在世界最前列,是国际上的领头数学家之一。一、对整函数、亚纯函数的亏值、亏量函数进行了深入研究与张广厚合作在亚纯函数的亏值数目与Borel方向数目间首次建立了密切联系;在引进亏函数后,给出有穷下级亚纯函数总亏量的估计,从而证明了其亏函数是可数的;给出亚纯函数结合于导数的总亏量的估计,彻底解决了著名学者D.Drasin70年代提出的3个问题。二、对正规族作了系统研究,获得了一些新的重要的正规定则杨乐建立了正规族与不动点之间的联系正规族与微分多项式之间的联系,解决了著名学者W.K.Hayman提出的一个正规族问题等。三、对整函数和亚纯函数的辐角分布进行了系统、深入的研究杨乐研究在亚纯函数涉及的导数的辐角分布时,获得了一种新型的奇异方向;对辐角分布与重值间的关系得到了深入的结果;完全刻划了亚纯函数Borel方向的分布规律;与Hayman合作解决了Littlewood的一个猜想。杨乐的上述各项重要研究成果受到国内外同行的高度评价与许多引用,他所得到的亏量关系,被国外学者称为“杨乐亏量关系‘等。

可桃可挑

query取得iframe中元素的几种方法

在iframe子页面获取父页面元素

代码如下:

$(

高阶等差数列的基本知识

⒈定义:一般地,如果{an+1-an}是K阶等差数列,就称原数列{an}为K+1阶等差数列,二阶以及高于二阶的等差数列统称为高阶等差数列。 ⒉如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列⒊高阶等差数列是二阶或二阶以上等差数列的统称⒋高阶等差数列的性质:⑴如果数列是p阶等差数列,则它的一阶差数列是p-1阶等差数列⑵数列是p阶等差数列的充要条件是:数列的通项是关于n的p次多项式⑶ 如果数列是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式⒌高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基该方法有:⑴逐差法:其出发点是⑵待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得⑶裂项相消法:其出发点是an能写成an=f(n+1)-f(n)⑷化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的
2023-05-21 07:10:491

关于高阶等差数列……

设A(n)=an^2+bn+c,其中a,b,c为常数 则每相邻两项的差: B(n)=A(n+1)-A(n) =a(n+1)^2+b(n+1)+c-(an^2+bn+c) =a(2n+1)+b 则C(n)=B(n+1)-B(n)=a(2(n+1)+1)+b-(a(2n+1)+b)=2a为常数, 所以A(n)为二阶等差数列 反之 设C(n)=d为常数 B(n)为公差为d的等差数列 则B(n)=B(1)+(n-1)*d 则基于一阶等差数列B(n)的二阶等差数列A(n)的通项为 A(n)=A(1)+B(1)+B(2)+...+B(n-1) =A(1)+B(1)+(B(1)+d)+...+(B(1)+(n-2)*d) =A(1)+(n-1)*B(1)+d*(1+2+...+(n-2)) =A(1)+(n-1)*B(1)+d*(n-2)*(n-1)/2 =d/2*n^2+(B(1)-3d/2)*n+A(1)+d 其中d、A(1)、B(1)为常数 所以A(n)的通项为一个关于n的二次三项式 所有高次多项式都可以表达一个高阶等差数列的通项可以用数学归纳法证明A(n)={-5,-4,1,10,23,40……} 设B(n)=A(n+1)-A(n) B(n)={1,5,9,13,17.....} 设C(n)=B(n+1)-B(n) C(n)={4,4,4,4...} 所以B(n)=1+(n-1)*4 A(n)=-5+(B(1)+B(2)+...+B(n-1)) =-5+(1+5+...+(1+(n-2)*4)) =-5+1*(n-1)+4*(n-2)(n-1)/2 =2n^2-5n-2
2023-05-21 07:11:011

高阶等差数列与差分方法

对一个给定的数列 的相邻两项作差,得到一个新数列 这个数列称为 的一阶差数列.如果记该数列为 ,其中 ,那么再求 的相邻两项之差,所得数列 称为原数列 的二阶差数列. 依此类推,对任意 ,可以定义数列 的 阶差数列. 如果 的 阶差数列是一个非零常数数列,那么称它为 阶等差数列.特别地,一阶等差数列就是我们通常说的等差数列,二阶及二阶以上的等差数列统称为高阶等差数列. 注意到,数列是定义在 上的函数,将上述作差思想予以推广就得到了差分的概念. 设 是定义在 上的函数,令 ,则 也是定义在 上的函数,它称为 的一阶差分,与上类似,我们可以递推地定义 的二阶,三阶, , 阶差分 利用数学归纳法易证下面的定理: 定理1 设 是定义在 上的函数,则 如果函数 是关于 的 次多项式,那么 是关于 的 次多项式, 是关于 的 次多项式, , 是关于 的零次多项式,且 (这里 是 的首项系数),而当 , 时, . 反过来,对函数 ,如果 ,那么 是关于 的一个次数不超过 的多项式. 将这些结论应用于高阶等差数列,我们有 定理2 数列 是一个 阶等差数列的充要条件是数列的通项 为 的一个 次多项式.
2023-05-21 07:11:081

关于高阶等差数列的一些基础知识的疑问

1,相邻两个数的差相等,所以是等差。只减了一次,所以叫一阶。2,1,2,6,9,16,……一次阶差是1,4,3,7,……二次阶差是3,-1,4,……三次阶差是-4,5,……四次阶差是9,……几次阶差是常数列?3,例如数列1,8,27,64,125,216,……一次阶差是7,19,37,61,91……二次阶差是12,18,24,30,……三次阶差是6,6,6,……三次阶差是常数列,所以数列1,8,27,64,125,216,……是三阶等差数列。而数列7,19,37,61,91……一次阶差是12,18,24,30,……二次阶差是6,6,6,……二次阶差是常数列,所以数列7,19,37,61,91……是二阶等差数列。所以数列1,8,27,64,125,216,……的一次阶差是7,19,37,61,91……为二阶等差数列。
2023-05-21 07:11:141

求高阶等差数列通项公式

an=a1+(n-1)dSn=(a1+an)n/2=na1+n(n-1)d/2
2023-05-21 07:11:221

每天递增1的数学公式

每天递增1的数学公式:{x|0<x<101,x∈N}。每日递增的计算公式是:Sn=a[(1+q)^(n-1)]/q。其中:Sn表示n次增长后的总数,a表示第一次开始时的数额,q表示增长率,n表示增长的次数。解析:由题意可知 这是一个以a为首项,q为公比的等比数列前n项的求和公式,这个公式是 Sn=a[(1+q)^(n-1)]/q。当第一天的数额为x时,30=x[(1+1.2)^29]/1.2 ,由此便可求出第一天的数额。高阶等差数列r阶差等比数列的定义,通过对某一数列应用逐差法,使得若干阶差后得到一等比数列。该数列又称为高阶差等比数列。定义 若一数列应用逐差法运算时,其前r阶差不是等比数列,而r+1阶差时是等比数列,则称该数列为r阶差等比数列 。
2023-05-21 07:11:281

高阶等差数列性质证明

和=(前项+后项)×项数÷2
2023-05-21 07:11:421

求高阶等差数列求和法公式【公式中的字母含义麻烦解释一下,我是四年级学生】

天才学生,你真厉害啊
2023-05-21 07:11:492

求高阶等差数列求和法公式。我是四年级学生。

(首项+末项)*项数/2=总和(末项-首项)*公差+1=项数首项+(N-1)*公差=第N项首项,一个等差数列中第一个数,末项,一个等差数列中最后一个数。项数,这个等差数列有几个数,公差,就是相邻两个数的差。
2023-05-21 07:11:561

求教一下,请问有没有高阶等差数列一说?

我记得上小学的奥数教程里就有,不过只是让找规律而已。呵呵
2023-05-21 07:12:032

公差的计算方法

尺寸公差等于最大极限尺寸减去最小极限尺寸的差值;或 尺寸公差等于上偏差减去下偏差的差值。
2023-05-21 07:12:2715

高阶等差数列怎么求

表示还没听说过高阶等差数列这个概念,难道是我孤陋寡闻么? 等差数列都是一次的,怎么可能会出现高阶呢? 麻烦你把你要问的问题表述清楚一点.
2023-05-21 07:13:371

求和 高阶等差*等比数列 1+2^2n+3^2n^2+4^2n^3+……+k^2n^(k-1)=?

提示: 方法1. 令S=1+2^2n+3^2n^2+4^2n^3+……+k^2n^(k-1) 两边同乘n, nS=n+2^2n^2+3^2n^3+4^2n^4+……+k^2n^k 两个等式相减得 (1-n)S=1+3n+5nn+...+(2k-1)n^(k-1)-k^2n^k 再如上法,相减就可以得到一个等比数列求和,然后可以化简了. 方法2. 令f(x)=1+x+xx+...+x^k. 两边求导,得 f"(x)=1+2x+3xx+...+kx^(k-1). 两边同乘以x. f"(x)x=x+2xx+3xxx+...+kx^k 两边再求导,令x=n代入即可. 过程就不详述了.
2023-05-21 07:13:431

实数列{an}满足条件a(n+2)=|a(n+1)|-an,n为整数,证明:存在某个正整数N,当n≥N,有a(n+9)=an

二阶等差数列 高一不学大学一般也不学,除非数学系某些专业。高阶等差数列基本知识  1.定义:对于一个给定的数列,把它的连结两项an+1与an的差an+1-an记为bn,得到一个新数列,把数列bn你为原数列的一阶差数列,如果cn=bn+1-bn,则数列是的二阶差数列依此类推,可得出数列的p阶差数列,其中pÎN  2.如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列  3.高阶等差数列是二阶或二阶以上等差数列的统称  4.高阶等差数列的性质:  (1)如果数列是p阶等差数列,则它的一阶差数列是p-1阶等差数列  (2)数列是p阶等差数列的充要条件是:数列的通项是关于n的p次多项式  (3) 如果数列是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式  5.高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基本方法有:  (1)逐差法:其出发点是an=a1+  (2)待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得  (3)裂项相消法:其出发点是an能写成an=f(n+1)-f(n)  (4)化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的 [编辑本段]例题精讲   例1.数列的二阶差数列的各项均为16,且a63=a89=10,求a51  解:法一:显然的二阶差数列是公差为16的等差数列,设其首项为a,则bn=a+(n-1)×16,于是an= a1+  =a1+(n-1)a+16/2(n-1)(n-2)  这是一个关于n的二次多项式,其中n2的系数为8,由于a63=a89=10,所以  an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658  解:法二:由题意,数列是二阶等差数列,故其通项是n的二次多项式,又a63=a89=10,故可设an=A(n-63)(n-89)+10  由于是二阶差数列的各项均为16,所以(a3-a2)-(a2-a1)=16  即a3-2a2+a1=16,所以  A(3-63)(3-89)+10-2[A(2-63)(2-89)+10]+A(1-63)×(1-89)+10=16  解得:A=8  an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658  例2.一个三阶等差数列的前4项依次为30,72,140,240,求其通项公式  解:由性质(2),an是n的三次多项式,可设an=An3+Bn2+Cn+D  由a1=30、a2=72、a3=140、a4=240得  解得:  所以an=n3+7n2+14n+8  例3.求和:Sn=1×3×22+2×4×32+…+n(n+2)(n+1)2  解:Sn是是数列的前n项和,  因为an=n(n+2)(n+1)2是关于n的四次多项式,所以是四阶等差数列,于是Sn是关于n的五次多项式  k(k+2)(k+1)2=k(k+1)(k+2)(k+3)-2k(k+1)(k+2),故求Sn可转化为求  Kn=和Tn=  k(k+1)(k+2)(k+3)=[ k(k+1)(k+2)(k+3)(k+4)-(k-1) k(k+1)(k+2)(k+3)],所以  Kn==  Tn==  从而Sn=Kn-2Tn=  例4.已知整数列适合条件:  (1)an+2=3an+1-3an+an-1,n=2,3,4,…  (2)2a2=a1+a3-2  (3)a5-a4=9,a1=1  求数列的前n项和Sn  解:设bn=an+1-an,Cn=bn+1-bn  Cn=bn+1-bn= (an+2-an+1)-( an+1-an)=an+2-2an+1+an=(3an+1-3an+an-1) -2an+1+an=an+1-2an+an-1  =Cn-1 (n=2,3,4,…)  所以是常数列  由条件(2)得C1=2,则是二阶等差数列  因此an=a1+  由条件(3)知b4=9,从而b1=3,于是an=n2  例5.求证:二阶等差数列的通项公式为  证明:设的一阶差数列为,二阶差数列为,由于是二阶等差数列
2023-05-21 07:13:501

如何利用高阶等差数列来解决堆垛问题。

堆垛问题一般都可以用归纳法归纳为高阶等差数列的问题!三角垛求积法医,茭草垛求积法!
2023-05-21 07:13:562

二次阶差是什么

高阶等差数列 一、基本知识 1.定义:对于一个给定的数列{an},把它的连结两项an+1与an的差an+1-an记为bn,得到一个新数列{ bn},把数列bn称为原数列{an}的一阶差数列,如果cn=bn+1-bn,则数列{cn}是{an}的二阶差数列依此类推,可得出数列{an}的p阶差数列,其中pÎN 2.如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列 3.高阶等差数列是二阶或二阶以上等差数列的统称 4.高阶等差数列的性质: (1)如果数列{an}是p阶等差数列,则它的一阶差数列是p-1阶等差数列 (2)数列{an}是p阶等差数列的充要条件是:数列{an}的通项是关于n的p次多项式 (3) 如果数列{an}是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式 5.高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基本方法有: (1)逐差法:其出发点是an=a1+ (2)待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得 (3)裂项相消法:其出发点是an能写成an=f(n+1)-f(n) (4)化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的 二、例题精讲 例1.数列{an}的二阶差数列的各项均为16,且a63=a89=10,求a51 解:法一:显然{an}的二阶差数列{bn}是公差为16的等差数列,设其首项为a,则bn=a+(n-1)×16,于是an= a1+ =a1+(n-1)a+8(n-1)(n-2) 这是一个关于n的二次多项式,其中n2的系数为8,由于a63=a89=10,所以 an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658 解:法二:由题意,数列{an}是二阶等差数列,故其通项是n的二次多项式,又a63=a89=10,故可设an=A(n-63)(n-89)+10 由于{an}是二阶差数列的各项均为16,所以(a3-a2)-(a2-a1)=16 即a3-2a2+a1=16,所以 A(3-63)(3-89)+10-2[A(2-63)(2-89)+10]+A(1-63)×(1-89)+10=16 解得:A=8 an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658 例2.一个三阶等差数列{an}的前4项依次为30,72,140,240,求其通项公式 解:由性质(2),an是n的三次多项式,可设an=An3+Bn2+Cn+D 由a1=30、a2=72、a3=140、a4=240得 解得: 所以an=n3+7n2+14n+8 例3.求和:Sn=1×3×22+2×4×32+…+n(n+2)(n+1)2 解:Sn是是数列{n(n+2)(n+1)2}的前n项和, 因为an=n(n+2)(n+1)2是关于n的四次多项式,所以{an}是四阶等差数列,于是Sn是关于n的五次多项式 k(k+2)(k+1)2=k(k+1)(k+2)(k+3)-2k(k+1)(k+2),故求Sn可转化为求 Kn= 和Tn= k(k+1)(k+2)(k+3)= [ k(k+1)(k+2)(k+3)(k+4)-(k-1) k(k+1)(k+2)(k+3)],所以 Kn= = Tn= = 从而Sn=Kn-2Tn= 例4.已知整数列{an}适合条件: (1)an+2=3an+1-3an+an-1,n=2,3,4,… (2)2a2=a1+a3-2 (3)a5-a4=9,a1=1 求数列{an}的前n项和Sn 解:设bn=an+1-an,Cn=bn+1-bn Cn=bn+1-bn= (an+2-an+1)-( an+1-an)=an+2-2an+1+an=(3an+1-3an+an-1) -2an+1+an=an+1-2an+an-1 =Cn-1 (n=2,3,4,…) 所以{ Cn}是常数列 由条件(2)得C1=2,则{an}是二阶等差数列 因此an=a1+ 由条件(3)知b4=9,从而b1=3,于是an=n2 例5.求证:二阶等差数列的通项公式为 证明:设{an}的一阶差数列为{bn},二阶差数列为{cn},由于{an}是二阶等差数列,故{cn}为常数列 又c1=b2-b1=a3-2a2+a1 所以 例6.求数列1,3+5+7,9+11+13+15+17,…的通项 解:问题等价于:将正奇数1,3,5,…按照“第n个组含有2n-1个数”的规则分组: (1)、(3,5,7)、(9,11,13,15,17),… 然后求第n组中各数之和an 依分组规则,第n组中的数恰好构成以2为公差的项数为2n-1的等差数列,因而确定了第n组中正中央这一项,然后乘以(2n-1)即得an 将每一组的正中央一项依次写出得数列:1,5,13,25,…这个数列恰为一个二阶等差数列,不难求其通项为2n2-2n+1,故第n组正中央的那一项为2n2-2n+1,从而 an=(2n-2n+1)(2n-1) 例7.数列{an}的二阶差数列是等比数列,且a1=5,a2=6,a3=9,a4=16,求{an}的通项公式 解:易算出{an}的二阶差数列{cn}是以2为首项,2为公比的等比数列,则cn=2n, {an}的一阶差数列设为{bn},则b1=1且 从而 例8.设有边长为1米的正方形纸一张,若将这张纸剪成一边长为别为1厘米、3厘米、…、(2n-1)厘米的正方形,愉好是n个而不剩余纸,这可能吗? 解:原问题即是是否存在正整数n,使得12+32+…+(2n-1)2=1002 由于12+32+…+(2n-1)2=[12+22+…+(2n)2]-[22+42+…+(2n)2]= 随着n的增大而增大,当n=19时 =9129<10000,当n=20时 =10660>10000 故不存在… 例9.对于任一实数序列A={a1,a2,a3,…},定义DA为序列{a2-a1,a3-a2,…},它的第n项为an+1-an,假设序列D(DA)的所有项均为1,且a19=a92=0,求a1 解:设序列DA的首项为d,则序列DA为{d,d+1,d+2,…},它的第n项是d+(n-1),因此序列A的第n项 显然an是关于n的二次多项式,首项等比数列为 由于a19=a92=0,必有 所以a1=819
2023-05-21 07:14:052

怎样是使输入的值超过公差就变色?

等差数列从第二项开始每一项是前项和后项的算术平均数.  如果等差数列的公差是正数,则该等差数列是递增数列;如果等差数列的公差是负数,则该数列是递减数列;如果等差数列的公差等于零,则该数列是常数列.  对于一个数列al,a2,…,an,…,如果它的相邻两项之差a2-a1,a3-a2,…,an+1-an,…构成公差不为零的等差数列,则称数列{an}为二阶等差数列. 运用递归的方法可以依次定义各阶等差数列:对于数列{an},如果{an+1-an}是r阶等差数列,则称数列{an}是r+1阶等差数列.二阶或二阶以上的等差数列称为高阶等差数列.  r阶等差数列的通项公式可以用一个关于项数n的r次多项式来表示,反之,通项公式为项数n的r次多项式的数列必为r阶等差数列. [2]  高阶等差数列的求和方法主要有两种,一种是将其通项(项数n的r次多项式)表成差分多项式的线性组合从而求和.另一种是利用自然数幂的求和公式,如r阶等差数列的前n项和公式是项数n的r+1次多项式,对r不太高的情况也可用待定系数法来确定.
2023-05-21 07:14:121

学习高阶等差数列之前要先学习什么,,

一阶的等差数列总的学呀,简单的等比数列的知道吧,很多都会转化为这两种呀!
2023-05-21 07:14:203

求复杂数列通项公式求法,怎么才能使1,5,13,25 这种的数列通项公式好求点?

事实上,LZ所给出的数列是一个“二阶等差数列”,是一种“高阶等差数列”所谓二阶差数列就是将这个数列前后项之差作为一个新数列的项比如就以这题为例:{5-1,13-5,25-13}={4,8,12}为等差数列,那么我们就把这个数列称之为二阶等差数列有这样一个定理可为解此类数列提供依据“p阶等差数列是关于n的P次多项式”也就是说这一题的二阶差数列是关于n的2次多项式,即可设an=An^2+Bn+C(ABC为待定系数)至此,LZ可以把a1a2a3a4等项代入an=An^2+Bn+C中求出待定系数也可以“拼凑”出同样形式的通项公式:a1=2*1^1-2*1+1=1a2=2*2^2-2*2+1=5a3=2*3^2-2*3+1=13a4=2*4^2-2*4+1=25……an=2*n^2-2n+1当然,“拼凑”法需要有一定题量的训练才能较熟练地掌握推荐还是先适应待定系数法若LZ还有什么不明白的地方可追问希望我的回答对你有帮助另外回复仨X不等于四:二阶差是an-a(n-1)=kn+b那三阶差呢?an-a(n-1)=an^2+bn+cn求和已经有难度了四阶差五阶差以至更高阶差就更不用说了递推累和求二阶差可行,速度也比较快但因为任意p阶差数列的递推累和都会用到Σi^(p-1)以及以下的一些公式所以递推累和用于求高阶段等差数列就不见得那么好求了
2023-05-21 07:14:261

数列的方法

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,且每一项都不为0(常数),这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差通常用字母d表示。如果{cn},cn=an·bn,其中{an}为等差数列,{bn}为等比数列,那么这个数列就叫做差比数列.高阶等差数列r阶差等比数列的定义通过对某一数列应用逐差法,使得若干阶差后得到一等比数列。该数列又称为高阶差等比数列。定义 若一数列应用逐差法运算时,其前r阶差不是等比数列,而r+1阶差时是等比数列,则称该数列为r阶差等比数列 。通项公式:设数列(1)为r阶差等比数列,其各阶差首项分别为d1,…,dr ;且r+1阶差为等比数列,其首项为b,公比为q.则数列(1)的通项公式为(1)等比数列的通项公式是:若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。(2) 任意两项am,an的关系为=(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。性质:①若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;②在等比数列中,依次每 k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.(5) 等比数列前n项之和Sn=a1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1) Sn=n*a1 (q=1)在等比数列中,首项a1与公比q都不为零.注意:上述公式中A^n表示A的n次方。等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式---复利。即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是人们通常说的利滚利。按照复利计算本利和的公式:本利和=本金*(1+利率)^存期
2023-05-21 07:14:331

一个数学题5 21 15 32空格38 答案是11怎么算出来的

把5 ,21, 15, 32,x,38看做高阶等差数列,反复求差:差:16,-6,17,x-32,38-x,差:-22,23,x-39,70-2x,差:45,x-62,109-3x为等差数列,所以2(x-62)=45+109-3x,2x-124=154-3x,5x=278,x=55.6.与您的答案不同,仅供参考。
2023-05-21 07:14:532

关于等差数列

  等差数列是一个古老的数学课题。一个数列从第二项起,后项减去前项所得的差是一个相等的常数,则称此数列为 等差数列。  在数学发展的早期已有许多人研究过数列这一课题,特别是等差数列。例如早在公元前2700年以前埃及数学的《莱 因特纸草书》中,就记载着相关的问题。在巴比伦晚期的《泥板文书》中,也有按级递减分物的等差数列问题。其中有一个问题大意是:  10个兄弟分100两银子,长兄最多,依次减少相同数目。现知第八兄弟分得6两,问相邻两兄弟相差多少?  在我国公元五世纪写成的《张丘建算经》中,透过五个具体例子,分别给出了求公差、总和、项数的一般步骤。比 如卷上第23题(用现代语叙述):  有一女子不善织布,逐日所织布按数递减,已知第一日织5尺,最后一日织1尺,共织了30日,问共织布多少?  这是一个已知首项(a1)、末项(an ),以及项数(n)求总数(Sn)的问题,对此, 原书提出的解法是:总数等于首项加末项除2,乘以项数。它相当于现今代数里的求和公式:Sn=(a1+an).n/2。印度数学家婆罗摩笈多在公元七世纪也得出了这个公式,并 给出了求末项公式:an=a1+(n-1)d。  卷上第23题:有一女子善于织布,逐日所织布按同数递增,已知第一日织5尺,经一月共织39丈,问每日比前一日 增织多少?  这是一个已知首项(a1),总数(Sn )以及项数(n),求公差(d)的问题,对此原书给出的解 法是  d=(2Sn/n-2a1)/(n-1)。  等值于现在的求和公式:  Sn=n[2a+(n-1)d]/2  卷中第1题:今有某人拿钱赠人,第一人给3元,第二人给4元,第三人给5元,其余依次递增分给。给完后把这些人 所得的钱全部收回,再平均分派,结果每人得100元,问人数多少?  这是一个已知首项(a1),公差(d)以及 n项的平均数(m),求项数(n)的问题,对此原书给出的 解法是n=[2(m-a1)+d]/d。  我国自张邱建之后,对等差数列的计算日趋重视,特别是在天文学和堆栈求积等问题的推动下,从对一般的等差数 列的研究发展成为对高阶等差数列的研究。在北宋沉括( 1031-1095)的《梦溪笔谈》中,「隙积术」就是第一个关 于高级等差数列的求积法。
2023-05-21 07:15:011

等差数列6+、13+、20+、27+…问前31项的和是多少?

二阶等差数列通项的一般形式为:An=an2+bn+c,类似于二次函数解析式求法,我们可用待定系数法求出其通项公式。二阶等差数列是指后项与前项的差值是等差数列。例如:1,3,7,13,21,31,…,后项与前项的差值依次为:2,4,6,8,10,…,这些差值是等差数列,我们称数列1,3,7,13,21,31,…为二阶等差数列。扩展资料等差数列规律具有一次函数的一般形式,二阶等差数列具有二次函数的一般形式,凡是这样的数列,其通项公式均可以用待定系数法计算。观察下列等式,请写出第n个等式。第1个等式: 32-1=8×1,第2个等式: 52-1=24=8×3,第3个等式: 72-1=48=8×6,第4个等式: 92-1=80=8×10,分析:第一步:找变数与不变数。观察发现,等式左边的底数在变化 ,等式右边与8相乘的数在变化。第二步:左边底数依次为:3,5,7,9, …,显然是等差数列规律,其公差为2,首项减公差等于1,所以第n个底为为2n+1。第三步:右边与8相乘的数依次为1,3,6,10, …,后项与前项的差值依次为2,4,6, …,可判断出原数列为二阶等差数列。参考资料来源:百度百科-高阶等差数列
2023-05-21 07:15:071

找规律15,14,15.5,16,23.5()填什么?

15.5-15=0.5,23.5-15.5=8,8/0.5=1616-14=2,2*16=32,16+32=4848补充:a3-a1=0.5,a4-a2=2,a5-a3=8,分别是0.5*1,0.5*4,0.5*16,则a6=a4+0.5*64=16+32=48.这样子理解更好点,因为数字太少可能还存在其他规律
2023-05-21 07:15:163

几道数学找规律的题目,太难了,麻烦大家帮下忙。

() 7 ( ) 1 8 15 ( ) ( ) 13 ( ) ( ) 3 19 ( )( )( )( ) ( ) 4 ( ) 有什么补充吗? 可能是横竖相加一样吧!
2023-05-21 07:15:423

一个数列,8,8,6,2,问下一个数是多少

每三个数相加为17,所以后两个数相加为11就行了
2023-05-21 07:15:493

词语造句:用等差数列造句(约30个)

等差数列拼音: deng cha shu lie 等差数列解释: 由第二项起,任一项与前一项的差恒等的数列,如10,14,18,22…。它的一般形式为a,a+d,a+2d,a+3d…。 等差数列造句: 1、等差是等差数列最核心的本质特征。 2、对广义等差数列的性质进行探讨,并提出广义等差数列的一阶递归表达式。 3、求阶等差数列的有限和通常是用数学归纳法的方法来解决,其求和公式的建立往往有一定的困难。 4、本文提出用等差数列和不等差数列法来产生新的纱线排列的方法,从而形成了从基础组织快速生成大循环组织的实用办法。 5、并研究了付款额呈高阶等差数列及倒虹式年金等某些特殊的年金变化形式,给出了其期初值和期末值。 6、用幂级数和函数的思想来给出阶等差数列求有限和的公式。 7、首先,简要介绍了三种主要的求和方法。然后,根据高阶等差数列通项的特性,利用新定义的形式导数列对其进行了有效的探讨。 8、本文就《义勇军进行曲》音调为例,运用数理分析方法,揭示其富于规律的数列结构特征 等差数列、等比数列、平衡对称结构等。
2023-05-21 07:16:171

二项式定理中各项系数和公式是什么

二项式定理   binomial theorem   二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664、1665年间提出.   此定理指出:   其中,二项式系数指...   等号右边的多项式叫做二项展开式.   二项展开式的通项公式为:...   其i项系数可表示为:...,即n取i的组合数目.   因此系数亦可表示为帕斯卡三角形(Pascal"s Triangle)   二项式定理(Binomial Theorem)是指(a+b)n在n为正整数时的展开式.(a+b)n的系数表为:   1 n=0   1 1 n=1   1 2 1 n=2   1 3 3 1 n=3   1 4 6 4 1 n=4   1 5 10 10 5 1 n=5   1 6 15 20 15 6 1 n=6   …………………………………………………………   (左右两端为1,其他数字等于正上方的两个数字之和)   在我国被称为「贾宪三角」或「杨辉三角」,一般认为是北宋数学家贾宪所首创.它记载于杨辉的《详解九章算法》(1261)之中.在阿拉伯数学家卡西的著作《算术之钥》(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同.在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图.但一般却称之为「帕斯卡三角形」,因为帕斯卡在1654年也发现了这个结果.无论如何,二项式定理的发现,在我国比在欧洲至少要早300年.   1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了的展开式.   二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用.   1.熟练掌握二项式定理和通项公式,掌握杨辉三角的结构规律   二项式定理: 叫二项式系数(0≤r≤n).通项用Tr+1表示,为展开式的第r+1项,且, 注意项的系数和二项式系数的区别.   2.掌握二项式系数的两条性质和几个常用的组合恒等式.   ①对称性:   ②增减性和最大值:先增后减   n为偶数时,中间一项的二项式系数最大,为:Tn/2+1   n为奇数时,中间两项的二项式系数相等且最大,为:T(n+1)/2+1   3.二项式从左到右使用为展开;从右到左使用为化简,从而可用来求和或证明.掌握“赋值法”这种利用恒等式解决问题的思想.   证明:n个(a+b)相乘,是从(a+b)中取一个字母a或b的积.所以(a+b)^n的展开式中每一项都是)a^k*b^(n-k)的形式.对于每一个a^k*b^(n-k),是由k个(a+b)选了a,(a的系数为n个中取k个的组合数(就是那个C右上角一个数,右下角一个数)).(n-k)个(a+b)选了b得到的(b的系数同理).由此得到二项式定理.   二项式系数之和:   2的n次方   而且展开式中奇数项二项式系数之和等于偶数项二项式系数之和等于2的(n-1)次方   二项式定理的推广:   二项式定理推广到指数为非自然数的情况:   形式为 推广公式   注意:|x|
2023-05-21 07:16:251

求自然数前n项的m次方和的公式

一般性的公式是有 但比较难算 实际上令an=n^m 求前n项和sn的话可以发现 an满足m阶等差数列(参见 百科-高阶等差数列-基本知识-4.性质- (2)) 而根据百科-高阶等差数列-基本知识-5 可知 一般性的公式是用差分方程来求解 不过还是给你一些低阶的公式吧一次和 n(n+1)/2平方和 n(n+1)(2n+1)/6立方和 n^2(n+1)^2/4 4次和 n(n+1)(2n+1)(3n^2+3n-1)/30 5次和 n^2(n+1)^2(2n^2+2n-1)/12参考http://baike.baidu.com/view/441800.html
2023-05-21 07:16:321

牛顿的主要贡献有哪些?

除了万有引力和光的色谱之外,牛顿的主要贡献还有:1、微积分:微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。2、二项式定理:在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步。二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。3、冷却定律:牛顿确定了冷却定律,即当物体表面与周围有温差时,单位时间内从单位面积上散失的热量与这一温差成正比。4、反射望远镜:牛顿1672年创制了反射望远镜。他用质点间的万有引力证明,密度呈球对称的球体对外的引力都可以用同质量的质点放在中心的位置来代替。5、《自然哲学的数学原理》:牛顿最重要的著作,1687年出版。该书总结了他一生中许多重要发现和研究成果,其中包括上述关于物体运动的定律。参考资料:百度百科-艾萨克·牛顿
2023-05-21 07:16:391

中国古代数学中的算法有哪些?

“四元术”(多元高次方程列式与消元解法),“垛积术”(高阶等差数列求和),“招差术”(高次内插法)我只知道这些了
2023-05-21 07:16:551

中国古代数学成就

中国古代没有数学
2023-05-21 07:17:153

关于高阶等差数列的来源及历史背景

000000001414014014
2023-05-21 07:17:352

高阶等差数列的例题精讲

例1.数列的二阶差数列的各项均为16,且a63=a89=10,求a51 解:法一:显然{an}的二阶差数列{bn}是公差为16的等差数列,设其首项为a,则bn=a+(n-1)×16,于是=a1+(n-1)a+8(n-1)(n-2)这是一个关于n的二次多项式,其中n2的系数为8,由于a63=a89=10,所以an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658解:法二:由题意,数列是二阶等差数列,故其通项是n的二次多项式,又a63=a89=10,故可设an=A(n-63)(n-89)+10由于是二阶差数列的各项均为16,所以(a3-a2)-(a2-a1)=16即a3-2a2+a1=16,所以A(3-63)(3-89)+10-2[A(2-63)(2-89)+10]+A(1-63)×(1-89)+10=16解得:A=8an=8(n-63)(n-89)+10,得a51=8(51-63)(51-89)+10=3658例2.一个三阶等差数列的前4项依次为30,72,140,240,求其通项公式解:由性质⑵,an是n的三次多项式,可设an=An3+Bn2+Cn+D由a1=30、a2=72、a3=140、a4=240得A+B+C+D=30 A=18A+4B+2C+D=72 解得: B=727A+9B+3C+D=140 C=1464A+16B+4C+D=240 D=8所以an=n3+7n2+14n+8例3.求和:Sn=1×3×22+2×4×32+…+n(n+2)(n+1)2解:Sn是是数列{n(n+2)(n+1)2}的前n项和,因为an=n(n+2)(n+1)2是关于n的四次多项式,所以{an}是四阶等差数列,于是Sn是关于n的五次多项式k(k+2)(k+1)2=k(k+1)(k+2)(k+3)-2k(k+1)(k+2),故求Sn可转化为求Kn=和Tn=k(k+1)(k+2)(k+3)=[ k(k+1)(k+2)(k+3)(k+4)-(k-1) k(k+1)(k+2)(k+3)],所以Kn==Tn==从而Sn=Kn-2Tn=例4.已知整数列适合条件:⑴an+2=3an+1-3an+an-1,n=2,3,4,…⑵2a2=a1+a3-2⑶a5-a4=9,a1=1求数列{an}的前n项和Sn解:设bn=an+1-an,Cn=bn+1-bnCn=bn+1-bn= (an+2-an+1)-(an+1-an)=an+2-2an+1+an=(3an+1-3an+an-1) -2an+1+an=an+1-2an+an-1=Cn-1 (n=2,3,4,…)所以{ Cn}是常数列由条件⑵得C1=2,则{an}是二阶等差数列因此由条件⑶知b4=9,从而b1=3,于是an=n2,例5.求证:二阶等差数列的通项公式为证明:设{an}的一阶差数列为{bn},二阶差数列为{cn},由于{an}是二阶等差数列,故{cn}为常数列又c1=b2-b1=a3-2a2+a1所以===例6.求数列1,3+5+7,9+11+13+15+17,…的通项解:问题等价于:将正奇数1,3,5,…按照“第n个组含有2n-1个数”的规则分组:⑴、(3,5,7)、(9,11,13,15,17),… 然后求第n组中各数之和an依分组规则,第n组中的数恰好构成以2为公差的项数为2n-1的等差数列,因而确定了第n组中正中央这一项,然后乘以(2n-1)即得an将每一组的正中央一项依次写出得数列:1,5,13,25,…这个数列恰为一个二阶等差数列,不难求其通项为2n2-2n+1,故第n组正中央的那一项为2n2-2n+1,从而an=(2n-2n+1)(2n-1)例7.数列{an}的二阶差数列是等比数列,且a1=5,a2=6,a3=9,a4=16,求{an}的通项公式解:易算出的二阶差数列是以2为首项,2为公比的等比数列,则cn=2n,的一阶差数列设为bn,则b1=1且bn=,从而an=例8.设有边长为1米的正方形纸一张,若将这张纸剪成一边长为别为1厘米、3厘米、…、(2n-1)厘米的正方形,恰好是n个而不剩余纸,这可能吗?解:原问题即是是否存在正整数n,使得12+32+…+(2n-1)2=1002由于12+32+…+(2n-1)2=[12+22+…+(2n-1)2]-[22+42+…+(2n)2]=随着n的增大而增大,当n=19时=9129<10000,当n=20时=10660>10000故不存在…例9.对于任一实数序列A={a1,a2,a3,…},定义DA为序列{a2-a1,a3-a2,…},它的第n项为an+1-an,假设序列D(DA)的所有项均为1,且a19=a92=0,求a1解:设序列DA的首项为d,则序列DA为{d,d+1,d+2,…},它的第n项是d+(n-1),因此序列A的第n项显然an是关于n的二次多项式,首项等比数列为由于a19=a92=0,必有所以a1=819
2023-05-21 07:17:431

等差数列问题

 1.定义:对于一个给定的数列,把它的连结两项an+1与an的差an+1-an记为bn,得到一个新数列,把数列bn你为原数列的一阶差数列,如果cn=bn+1-bn,则数列是的二阶差数列依此类推,可得出数列的p阶差数列,其中pÎN  2.如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列  3.高阶等差数列是二阶或二阶以上等差数列的统称  4.高阶等差数列的性质:  (1)如果数列是p阶等差数列,则它的一阶差数列是p-1阶等差数列  (2)数列是p阶等差数列的充要条件是:数列的通项是关于n的p次多项式  (3) 如果数列是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式  5.高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基本方法有:  (1)逐差法:其出发点是an=a1+  (2)待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得  (3)裂项相消法:其出发点是an能写成an=f(n+1)-f(n)  (4)化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的
2023-05-21 07:17:571

什么是n^数列?什么是2^数列?什么是3^数列|

我学了4年数学都没见过呀!你在哪里见的?
2023-05-21 07:18:054

求高阶等差数列求和法公式。我是四年级学生。

和 Sn首相 a1末项 an公差 d项数 n等差数列求和=(首项+末项)*项数/2
2023-05-21 07:18:144

关于高阶等差数列的的问题。。。高分求解!

我以为是高中等差数列,没想到是大学的
2023-05-21 07:18:225

高阶等差数列公式是什么意思

通项公式:an=a1+(n-1)d1+(n-1)(n-2)d2/2!+…+(n-1)(n-2)…(n-r)dr/r!求和公式可由通项公式推出,自己试试.
2023-05-21 07:18:382

高阶等差数列,急~~

可以证明结果是5次表达式待定系数法就好了。
2023-05-21 07:18:452

求和 高阶等差*等比数列

裂项相消法最常见的就是an=1/n(n+1)=1/n-1/(n+1)sn=1/1*2+1/2*3+.....+1/n(n+1)=1-1/2+1/2-1/3+1/3-1/4+....+1/(n-1)-1/n+1/n-1/(n+1)(中间相消,最后只剩首尾两项)=1-1/(n+1)错位相减法这个在求等比数列求和公式时就用了sn=1/2+1/4+1/8+....+1/2^n两边同时乘以1/21/2sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些)两式相减1/2sn=1/2-1/2^(n+1)sn=1-1/2^n倒序相加法这个在证明等差数列求和公式时就应用了sn=1+2+..+nsn=n+n-1+....+2+1两式相加2sn=(1+n)+(2+n-1)+...+(n+1)=(n+1)*nsn=n(n+1)/2
2023-05-21 07:18:512

求和 高阶等差*等比数列

提示:方法1。令S=1+2^2n+3^2n^2+4^2n^3+……+k^2n^(k-1)两边同乘n,nS=n+2^2n^2+3^2n^3+4^2n^4+……+k^2n^k两个等式相减得(1-n)S=1+3n+5nn+...+(2k-1)n^(k-1)-k^2n^k再如上法,相减就可以得到一个等比数列求和,然后可以化简了。方法2.令f(x)=1+x+xx+...+x^k.两边求导,得f"(x)=1+2x+3xx+...+kx^(k-1).两边同乘以x.f"(x)x=x+2xx+3xxx+...+kx^k两边再求导,令x=n代入即可。过程就不详述了。
2023-05-21 07:18:581

求和 高阶等差*等比数列

裂项相消法最常见的就是an=1/n(n+1)=1/n-1/(n+1)sn=1/1*2+1/2*3+.....+1/n(n+1)=1-1/2+1/2-1/3+1/3-1/4+....+1/(n-1)-1/n+1/n-1/(n+1)(中间相消,最后只剩首尾两项)=1-1/(n+1)错位相减法这个在求等比数列求和公式时就用了sn=1/2+1/4+1/8+....+1/2^n两边同时乘以1/21/2sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些)两式相减1/2sn=1/2-1/2^(n+1)sn=1-1/2^n倒序相加法这个在证明等差数列求和公式时就应用了sn=1+2+..+nsn=n+n-1+....+2+1两式相加2sn=(1+n)+(2+n-1)+...+(n+1)=(n+1)*nsn=n(n+1)/2
2023-05-21 07:19:161

一堆的数列求和定式?

1.定义:对于一个给定的数列,把它的连结两项an+1与an的差an+1-an记为bn,得到一个新数列,把数列bn你为原数列的一阶差数列,如果cn=bn+1-bn,则数列是的二阶差数列依此类推,可得出数列的p阶差数列,其中pÎN   2.如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列   3.高阶等差数列是二阶或二阶以上等差数列的统称   4.高阶等差数列的性质:   (1)如果数列是p阶等差数列,则它的一阶差数列是p-1阶等差数列   (2)数列是p阶等差数列的充要条件是:数列的通项是关于n的p次多项式   (3) 如果数列是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式   5.高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基本方法有:   (1)逐差法:其出发点是an=a1+   (2)待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得   (3)裂项相消法:其出发点是an能写成an=f(n+1)-f(n)4)化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的[编辑本段]例题精讲   例1.数列的二阶差数列的各项均为16,且a63=a89=10,求a51   解:法一:显然的二阶差数列是公差为16的等差数列,设其首项为a,则bn=a+(n-1)×16,于是an= a1+   =a1+(n-1)a+16/2(n-1)(n-2)   这是一个关于n的二次多项式,其中n2的系数为8,由于a63=a89=10,所以   an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658   解:法二:由题意,数列是二阶等差数列,故其通项是n的二次多项式,又a63=a89=10,故可设an=A(n-63)(n-89)+10   由于是二阶差数列的各项均为16,所以(a3-a2)-(a2-a1)=16   即a3-2a2+a1=16,所以   A(3-63)(3-89)+10-2[A(2-63)(2-89)+10]+A(1-63)×(1-89)+10=16   解得:A=8   an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658   例2.一个三阶等差数列的前4项依次为30,72,140,240,求其通项公式   解:由性质(2),an是n的三次多项式,可设an=An3+Bn2+Cn+D   由a1=30、a2=72、a3=140、a4=240得   解得:   所以an=n3+7n2+14n+8   例3.求和:Sn=1×3×22+2×4×32+…+n(n+2)(n+1)2   解:Sn是是数列{n(n+2)(n+1)2}的前n项和,   因为an=n(n+2)(n+1)2是关于n的四次多项式,所以是四阶等差数列,于是Sn是关于n的五次多项式   k(k+2)(k+1)2=k(k+1)(k+2)(k+3)-2k(k+1)(k+2),故求Sn可转化为求   Kn=和Tn=   k(k+1)(k+2)(k+3)=[ k(k+1)(k+2)(k+3)(k+4)-(k-1) k(k+1)(k+2)(k+3)],所以   Kn==   Tn==   从而Sn=Kn-2Tn=   例4.已知整数列适合条件:   (1)an+2=3an+1-3an+an-1,n=2,3,4,…   (2)2a2=a1+a3-2   (3)a5-a4=9,a1=1   求数列的前n项和Sn   解:设bn=an+1-an,Cn=bn+1-bn   Cn=bn+1-bn= (an+2-an+1)-( an+1-an)=an+2-2an+1+an=(3an+1-3an+an-1) -2an+1+an=an+1-2an+an-1   =Cn-1 (n=2,3,4,…)   所以是常数列   由条件(2)得C1=2,则是二阶等差数列   因此an=a1+   由条件(3)知b4=9,从而b1=3,于是an=n2   例5.求证:二阶等差数列的通项公式为   证明:设的一阶差数列为,二阶差数列为,由于是二阶等差数列,故为常数列   又c1=b2-b1=a3-2a2+a1   所以   例6.求数列1,3+5+7,9+11+13+15+17,…的通项   解:问题等价于:将正奇数1,3,5,…按照“第n个组含有2n-1个数”的规则分组:   (1)、(3,5,7)、(9,11,13,15,17),… 然后求第n组中各数之和an   依分组规则,第n组中的数恰好构成以2为公差的项数为2n-1的等差数列,因而确定了第n组中正中央这一项,然后乘以(2n-1)即得an   将每一组的正中央一项依次写出得数列:1,5,13,25,…这个数列恰为一个二阶等差数列,不难求其通项为2n2-2n+1,故第n组正中央的那一项为2n2-2n+1,从而   an=(2n-2n+1)(2n-1)   例7.数列的二阶差数列是等比数列,且a1=5,a2=6,a3=9,a4=16,求的通项公式   解:易算出的二阶差数列是以2为首项,2为公比的等比数列,则cn=2n,   的一阶差数列设为,则b1=1且   从而   例8.设有边长为1米的正方形纸一张,若将这张纸剪成一边长为别为1厘米、3厘米、…、(2n-1)厘米的正方形,愉好是n个而不剩余纸,这可能吗?   解:原问题即是是否存在正整数n,使得12+32+…+(2n-1)2=1002   由于12+32+…+(2n-1)2=[12+22+…+(2n)2]-[22+42+…+(2n)2]=随着n的增大而增大,当n=19时=9129<10000,当n=20时=10660>10000   故不存在…   例9.对于任一实数序列A={a1,a2,a3,…},定义DA为序列{a2-a1,a3-a2,…},它的第n项为an+1-an,假设序列D(DA)的所有项均为1,且a19=a92=0,求a1   解:设序列DA的首项为d,则序列DA为{d,d+1,d+2,…},它的第n项是d+(n-1),因此序列A的第n项   显然an是关于n的二次多项式,首项等比数列为   由于a19=a92=0,必有   所以a1=819   摘自数学教育之窗   ---------------------------------------------------------------   五、公式法(缺少证明)只适用于“规则型高阶等差数列”   因为编辑问题,只能用描述的方法,如果有问提请留言    http://hi.baidu.com/w359405949/board  “an等于C(排列符号)上标:p-2下标:“n+(p-3)乘以(a1+(n-1)*d/(p-1) )……⑴式   说明:"p"和"d"的意义可暂不考虑,关于推导过程,有兴趣的联系,我可以给你解答,   下面只给出"p"和"d"的确定方法:   “ a1*p^2-(a1+2*a2)*P+2*a3=0”……⑵式   解出的p取整数且较小的那个并代入“d=a2-(p-1)a1” ……⑶式 求出d,将"p"和"d"代入上式,得到的方程为通项公式   例:1^2+2^2+3^2+4^2+……+n^2=?   a1=1^2=1 a2=1^2+2^2=5 a3=1^2+2^2+3^2=14   代入⑵式得:p^2-11p+28=0   解得p=4,p=7(舍去)   将p=4代入⑶式得:d=5-(4-1)*1=2   将p=4和d=2代入⑴式得:an=C上标2下标n+1乘以(1+(n-1)*2/(4-1))   整理得:an=C上标2下标n+1乘以(2n+1/3)   即:an=(n+1)*n*(2n+1)/6   ---------------------------------------------------------------   【r阶等差分布函数】(注明:以下内容独立于以上内容,但只是形式不同,二者之间是可以转化的)   建立:自然数直角坐标系O-xyz   定义:F(x,y)=z满足[1],[2] <==def==> F(x,y)=z是等差分布函数   [1]任意y∈N, F(0,y)=F(0,0)   [2]任意x,y∈N, F(x+1,y+1)=F(x,y)+F(x+1,y)   [1],[2]==>[3]任意x≥0, 第x列F(x,0),F(x,1),…F(x,n),…为x阶等差数列   [2]==>[4]任意x≥0,y≥0, F(x,y)+F(x,y+1)+F(x,y+2)+…F(x,y+n)=F(x+1,y+n+1)-F(x+1,y)   [2]==>[5]任意x≥0,y≥0, F(x+1,y)+F(x+2,y+1)+F(x+3,y+2)+…F(x+n,y+n-1)=F(x+n,y+n)-F(x,y)   �6�1当输入F(x_i,y)(任意i∈N). 即若在每一列的任意格内输入一个数,则F(x,y)=z就被确定下来   �6�1当输入F(0,0)=1,F(x_i,0)=0(i≥1)或输入F(x,x)=1(任意x≥0),则结果得出F(x,y)=z就是杨辉三角!
2023-05-21 07:19:231

杨辉三角 等差数列

 1.定义:对于一个给定的数列,把它的连结两项an+1与an的差an+1-an记为bn,得到一个新数列,把数列bn你为原数列的一阶差数列,如果cn=bn+1-bn,则数列是的二阶差数列依此类推,可得出数列的p阶差数列,其中pÎN  2.如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列  3.高阶等差数列是二阶或二阶以上等差数列的统称  4.高阶等差数列的性质:  (1)如果数列是p阶等差数列,则它的一阶差数列是p-1阶等差数列  (2)数列是p阶等差数列的充要条件是:数列的通项是关于n的p次多项式  (3) 如果数列是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式  5.高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基本方法有:  (1)逐差法:其出发点是an=a1+  (2)待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得  (3)裂项相消法:其出发点是an能写成an=f(n+1)-f(n)  (4)化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的
2023-05-21 07:19:301

找规律11,16,26,(),127

把11,16,26,(x),127看成高阶等差数列,反复求差:差:5,10,x-26,127-x,差:.....5,x-36,153-2x,所以5+153-2x=2(x-36),158-2x=2x-72,230=4x,x=57.5.
2023-05-21 07:19:391

25、16、10、7、()、4括号里填什么

把25、16、10、7、(x)、4看成高阶等差数列,反复求差。差:-9,-6,-3,x-7,4-x,把最后三项看成等差数列,则2(x-7)=-3+4-x,2x-14=1-x,3x=15,x=5
2023-05-21 07:19:451

公差怎么确定?

从第二项起,每一项都等于前一项加上同一个数d的有限数列或无限数列.又叫算术数列.这个数d称为等差数列的公差.等差数列可以记作:等差数列从第二项开始每一项是前项和后项的算术平均数。如果等差数列的公差是正数,则该等差数列是递增数列。如果等差数列的公差是负数,则该数列是递减数列。如果等差数列的公差等于零,则该数列是常数列。对于一个数列al,a2,…,an,…,如果它的相邻两项之差a2-a1,a3-a2,…,an+1-an,…构成公差不为零的等差数列,则称数列{an}为二阶等差数列. 运用递归的方法可以依次定义各阶等差数列:对于数列{an},如果{an+1-an}是r阶等差数列,则称数列{an}是r+1阶等差数列.二阶或二阶以上的等差数列称为高阶等差数列。r阶等差数列的通项公式可以用一个关于项数n的r次多项式来表示,反之,通项公式为项数n的r次多项式的数列必为r阶等差数列。高阶等差数列的求和方法主要有两种,一种是将其通项(项数n的r次多项式)表成差分多项式的线性组合从而求和.另一种是利用自然数幂的求和公式,如r阶等差数列的前n项和公式是项数n的r+1次多项式,对r不太高的情况也可用待定系数法来确定。二阶等差数列的通项:式中an是第n项,a1是第一项,n为项数,d1是数列的后项减去紧邻的前一项所得的第一次差构成的数列的首项,d2是第二次差.例如二阶等差数列1,4,9,16,25,36,49,…,通项:二阶等差数列钱n项和例如二阶等差数列{n^2}前n项和{  }是等差数列   =常数d,d为等差数列{  }的公差。
2023-05-21 07:19:521

二阶等差数列的通项公式是什么形式?

等差数列的前n项和是 二次函数的形式 s=an^2+bn,通项公式是一次的
2023-05-21 07:20:555

牛顿最有名的发明是什么?

除了万有引力和光的色谱之外,牛顿的主要贡献还有:1、微积分:微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。2、二项式定理:在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步。二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。3、冷却定律:牛顿确定了冷却定律,即当物体表面与周围有温差时,单位时间内从单位面积上散失的热量与这一温差成正比。4、反射望远镜:牛顿1672年创制了反射望远镜。他用质点间的万有引力证明,密度呈球对称的球体对外的引力都可以用同质量的质点放在中心的位置来代替。5、《自然哲学的数学原理》:牛顿最重要的著作,1687年出版。该书总结了他一生中许多重要发现和研究成果,其中包括上述关于物体运动的定律。参考资料:百度百科-艾萨克·牛顿
2023-05-21 07:22:001