- wpBeta
-
简单的说,黎曼几何是微分几何的一个特殊情况。
微分几何的研究对象是一般的微分流形,黎曼几何的研究对象是黎曼流形。
黎曼流形是一种特殊的微分流形,要求流形上存在黎曼联络,一般的微分流形上则没有这样的要求。
所以说,黎曼几何比微分几何的范围要窄,也相对简单一些。
- 豆豆staR
-
你好 微分几何主要研究的是空间曲面和曲线。
利用向量函数和微积分思想解决几何问题。
黎曼几何又称为球面几何,微分几何里研究曲面的高斯曲率,而黎曼几何正是高斯曲率为正常数的球面上的几何。
这样你应该知道它们之间的区别和联系了吧
- 北有云溪
-
微分几何内容很广,包括很多内容,黎曼几何就是其中之一。黎曼几何是在流形上给予一个正定的对称的度量而研究的几何。还有其它几何,比如在流形上给予一个对称但是不正定的度量,则是伪黎曼几何,经常被用在物理中,尤其是广义相对论中来体现时间和空间不一样;如果在流形上给予一个正定但是不对称的,则是Finsler几何。等等。这些都是微分几何的范畴,广义上来说,用微积分的办法来研究几何,都属于微分几何的范畴。
- 北营
-
黎曼几何可以算是微分几何的一个分支
黎曼几何学的黎曼流形
黎曼几何是黎曼流形上的几何学。黎曼流形指的是一个n维微分流形M,在其上给定了一个黎曼度量g,也就是说,在微分流形M的每一个坐标邻域(U,x)内,用一个正定对称的二次微分来度量二个无限邻近的点(x1,x2,…,xn)和(x1+dx1,x2+dx2,…,xn+dxn)之间的距离。这里(gij)构成一个正定对称的n×n阵,并假设gij(x)关于(xi)有一定的可微性,而M上连接两点P、Q的曲线C:xi=xi(t),α≤t≤b的长度l(C)就用积分来计算。为了保证距离的度量与坐标邻域的选取无关,还要求gij满足二阶协变张量的变换规律,用整体黎曼几何的语言来说,就是在微分流形M上给定了一个由分量gij决定的正定对称二阶协变张量场g。M连同g,即(M,g)称为一个n维黎曼流形,g称为度量张量或基本张量。由于历史的原因,黎曼流形又常称黎曼空间,但后者偏重于局部意义,即常指黎曼流形的一个开子集或一个坐标邻域。度量张量g在流形M每点P(x1,x2,…,xn)的切空间Tp(M)中就规定了一个内积gp(或记为:〈,〉)用来计算切向量的长度、交角。即若向量X,Y∈Tp(M),而,,则X 的长度;X、Y的交角 θ由,0≤θ≤π决定。如果cosθ=0,即,就称X、Y 为互相正交。│尣│=1的向量称为单位向量,Tp(M)中由两两互相正交的单位向量组成的基称为正规正交基,对任一点P∈M,在P点的某一邻域U 内总存在n个单位向量场e1,e2,…,en,使得在U的每点它们构成切空间的一个正规正交基,这n个局部向量场称为一个局部正规正交基或局部正规正交标架。运用局部正规正交标架来研究黎曼几何的方法称为活动标架法。黎曼几何中的许多公式和几何量在活动标架下有特别简单明了的表达式,例如取ω1,ω2,…,ωn为局部正规正交标架e1,e2,…,en的对偶形式,也称对偶基,即满足的n个一次微分形式,于是在基{ei}下,由于,度量形式可写为。任一仿紧微分流形总具有黎曼度量,这种黎曼度量的数目是非常繁多的,但也不是完全任意的。微分流形的度量结构是受它的拓扑结构所制约的,而这种制约关系正是黎曼几何研究的一个重要内容,还存在许多没有解决的问题。有了计算曲线长度的方法,黎曼流形(M,g)上任意两点P、Q之间的距离d(P,Q)就可以用M中连接P、Q的所有分段可微分曲线的长度的下确界来定义,即 (连接P,Q的分段可微分曲线C)。于是,M在上述距离下成为一个度量空间,还可以证明,它所导出的度量拓扑与流形M原有的拓扑是等价的。2023-05-20 11:12:041
黎曼流形的黎曼流形
黎曼流行(英文版)作者:J.M.Lee 著出版社:世界图书出版公司出版日期:2003-11-01个人简介内容简介This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds.同类图书推荐·《财富理论的数学原理的研究》·《高考总复习闯关训练:数学——天骄》 微分流形一、 流形的基本概念:流形的定义和基本例子,子流形,切空间和切丛,光滑函数、光滑映射及切映射。要求了解球面、环面、射影空间等基本例子,并了解一维、二维流形的分类。要求了解浸入(immersion)、嵌入(embedding)、淹没(submersion)和微分同胚的概念。二、 正则性、奇异性及其应用:正则点和正则值,临界点和临界值,Sard定理,Morse引理,Thom横截性定理。要求了解映射度的概念,并能运用正则值的概念验证某些空间是流形。三、 光滑向量场和可积性定理:光滑向量场及其奇点的定义,Lie括号,积分曲线和动力系统,Euler-Poincare公式,Frobenius可积性定理。四、 Lie群和Lie 群作用初步:Lie群和Lie代数的定义和基本例子,单参数子群,指数映射,Lie群在流形上的作用,基本向量场,齐性空间等。要求能够验证一些常见的矩阵群为Lie群并计算它们的Lie代数,并对一些低维Lie群的流形结构较为熟悉。要求能将一些常见流形写成齐性流形。五、 微分形式和积分:微分形式和外积的定义和性质,外微分,内积,Lie 导数,Cartan公式,de Rham上同调,Poincare对偶,Laplace算子,Hodge理论初步,定向和微分形式的积分,带边流形和Stokes定理。要求掌握单位分解的技巧,要求了解外微分和Stokes定理的古典形式。要求能够计算常见流形和二维流形的上同调环。六、 Riemann 几何初步:Riemann度量,Levi-Civita联络,Christoffel符号,Rieman曲率,截曲率,常截曲率流形的模 型。要求能够从给定的Riemann度量计算Riemann曲率。要求对向量丛的概念和张量运算较为熟悉。黎曼流形爱因斯坦的广义相对论告诉我们,引力并不是真正的力,而是反映空间扭曲的一个几何现象。对一个考察者来说,他身处在这个空间里,是无法直接体会到空间扭曲的。 但是他可以通过测量自己所处的空间来判断是否存在空间扭曲,测量的标准就是所谓的度量。 度量是内蕴性质。 具有度量的空间就称为黎曼空间。具体的定义如下:黎曼流形是具有黎曼度量的微分流形,换句话说,这个流形上有一个对称 正定 协变 二阶张量场, 亦即每一点处有一个2阶正定矩阵。给了度量以后, 我们就可以向数学分析里做的那样,建立起微积分的理论。欧氏空间有自然的度量ds^2=(dx_1)^2+...+(dx_n)^2.它的矩阵就是单位矩阵。欧氏空间中的子流形当然也就自然地诱导出一个度量。 曲线和曲面的微分几何 里,我们都是把曲线曲面视为三维空间的子流形,所以自然赋予了度量结构。黎曼度量给定后,我们可以有唯一的确定出一个对称(即无挠)联络,并且它是保持黎曼内积。这个联络称为黎曼联络。有了联络,我们就可以定义向量场的协变微分和协变导数,从而建立起流形上的微分学。 在欧氏空间上,联络是0,所以这就是通常意义上的向量函数的微分。黎曼度量还诱导出黎曼曲率的概念,它反映了流形的弯曲程度,是内蕴性质,也就是说这个性质与流形所在的大空间无关。 曲率恒消失的流形称为平坦黎曼流形。欧氏空间就是最常见的平坦流形。大数学家 高斯 最早研究了曲面上的曲率--高斯曲率, 发现这种曲率是内蕴的,尽管它的定义式不是内蕴的。 这是一个非常了不起的发现。2023-05-20 11:12:161
黎曼流形的介绍
黎曼(德,1826-1866年):几何观点,黎曼面。1851年博士论文《单复变函数一般理论基础》,其重要性恰如著名数学家阿尔福斯(芬-美,1907-1996年)所说:这篇论文不仅包含了现代复变函数论主要部分的萌芽,而且开启了拓扑学的系统研究,革新了代数几何,并为黎曼自己的微分几何研究铺平了道路。此外,建立了柯西-黎曼条件,真正使这方程成为复分析大厦的基石,揭示出复函数与实函数之间的深刻区别,黎曼映射定理。2023-05-20 11:12:231
黎曼流形的联络与曲率
流形上的黎曼度量给定后,我们可以得到一个唯一确定的对称(即无挠)联络,并且它保持黎曼度量。这个联络称为这个黎曼度量的Levi-Civita联络。 有了联络,我们就可以定义向量场的协变微分和协变导数,从而建立起流形上的微分学。欧氏空间的联络就是通常意义上的向量函数的微分。 黎曼度量还诱导出曲率的概念,它反映了流形的弯曲程度。曲率处处为零的流形称为平坦黎曼流形。欧氏空间就是最常见的平坦流形。德国数学家高斯最早研究了曲面上的曲率,发现这种曲率是内蕴的,尽管它的定义式不是内蕴的。2023-05-20 11:12:361
有什么关于黎曼流形的好书?
黎曼流行(英文版)作者:J.M.Lee 著出版社:世界图书出版公司出版日期:2003-11-01个人简介内容简介This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds.同类图书推荐·《财富理论的数学原理的研究》·《高考总复习闯关训练:数学——天骄》 微分流形一、 流形的基本概念:流形的定义和基本例子,子流形,切空间和切丛,光滑函数、光滑映射及切映射。要求了解球面、环面、射影空间等基本例子,并了解一维、二维流形的分类。要求了解浸入(immersion)、嵌入(embedding)、淹没(submersion)和微分同胚的概念。二、 正则性、奇异性及其应用:正则点和正则值,临界点和临界值,Sard定理,Morse引理,Thom横截性定理。要求了解映射度的概念,并能运用正则值的概念验证某些空间是流形。三、 光滑向量场和可积性定理:光滑向量场及其奇点的定义,Lie括号,积分曲线和动力系统,Euler-Poincare公式,Frobenius可积性定理。四、 Lie群和Lie 群作用初步:Lie群和Lie代数的定义和基本例子,单参数子群,指数映射,Lie群在流形上的作用,基本向量场,齐性空间等。要求能够验证一些常见的矩阵群为Lie群并计算它们的Lie代数,并对一些低维Lie群的流形结构较为熟悉。要求能将一些常见流形写成齐性流形。五、 微分形式和积分:微分形式和外积的定义和性质,外微分,内积,Lie 导数,Cartan公式,de Rham上同调,Poincare对偶,Laplace算子,Hodge理论初步,定向和微分形式的积分,带边流形和Stokes定理。要求掌握单位分解的技巧,要求了解外微分和Stokes定理的古典形式。要求能够计算常见流形和二维流形的上同调环。六、 Riemann 几何初步:Riemann度量,Levi-Civita联络,Christoffel符号,Rieman曲率,截曲率,常截曲率流形的模 型。要求能够从给定的Riemann度量计算Riemann曲率。要求对向量丛的概念和张量运算较为熟悉。黎曼流形爱因斯坦的广义相对论告诉我们,引力并不是真正的力,而是反映空间扭曲的一个几何现象。对一个考察者来说,他身处在这个空间里,是无法直接体会到空间扭曲的。 但是他可以通过测量自己所处的空间来判断是否存在空间扭曲,测量的标准就是所谓的度量。 度量是内蕴性质。 具有度量的空间就称为黎曼空间。具体的定义如下:黎曼流形是具有黎曼度量的微分流形,换句话说,这个流形上有一个对称 正定 协变 二阶张量场, 亦即每一点处有一个2阶正定矩阵。给了度量以后, 我们就可以向数学分析里做的那样,建立起微积分的理论。欧氏空间有自然的度量ds^2=(dx_1)^2+...+(dx_n)^2.它的矩阵就是单位矩阵。欧氏空间中的子流形当然也就自然地诱导出一个度量。 曲线和曲面的微分几何 里,我们都是把曲线曲面视为三维空间的子流形,所以自然赋予了度量结构。黎曼度量给定后,我们可以有唯一的确定出一个对称(即无挠)联络,并且它是保持黎曼内积。这个联络称为黎曼联络。有了联络,我们就可以定义向量场的协变微分和协变导数,从而建立起流形上的微分学。 在欧氏空间上,联络是0,所以这就是通常意义上的向量函数的微分。黎曼度量还诱导出黎曼曲率的概念,它反映了流形的弯曲程度,是内蕴性质,也就是说这个性质与流形所在的大空间无关。 曲率恒消失的流形称为平坦黎曼流形。欧氏空间就是最常见的平坦流形。大数学家 高斯 最早研究了曲面上的曲率--高斯曲率, 发现这种曲率是内蕴的,尽管它的定义式不是内蕴的。 这是一个非常了不起的发现。2023-05-20 11:12:491
流形的研究历史
第一个清楚地把曲线和曲面本身构想为空间的可能是高斯,他以他的theorema egregium(突出的定理)建立了内在的微分几何。黎曼是第一个广泛的展开真正需要把流形推广到高维的工作的人。流形的名字来自黎曼原来的德语术语Mannigfaltigkeit,William Kingdon Clifford把它翻译为"manifoldness"(多层)。在他的哥廷根就职演说中,黎曼表明一个属性可以取的所有值组成一个Mannigfaltigkeit。他根据值的变化连续与否对stetige Mannigfaltigkeit和离散 [sic] Mannigfaltigkeit(连续流形 和不连续流形)作了区分。作为stetige Mannigfaltikeiten的例子,他提到了物体颜色和在空间中的位置,以及一个空间形体的可能形状。他把一个n fach ausgedehnte Mannigfaltigkeit (n次扩展的或n-维流形)构造为一个连续的(n-1) fach ausgedehnte Mannigfaltigkeiten堆。黎曼直觉上的Mannigfaltigkeit概念发展为今天形式化的流形。 黎曼流形和黎曼曲面以他的名字命名。交换簇的概念在黎曼的时代已经被隐含的作为复流形使用。拉格朗日力学和哈密尔顿力学,从几何方面考虑,本质上也是流形理论。庞加莱研究了三维流形,并提出一个问题,就是现在所谓的庞加莱猜想:所有闭简单连通的三维流形同胚于3维球吗?这个问题已经完全解决,其中最重要的工作是由俄罗斯数学怪才Grigori Perelman做出的。中国数学家朱熹平和曹怀东参与了最后的封顶证明。HermannWeyl在1912年给出了微分流形的一个内在的定义。该课题的基础性方面在1930年代被Hassler Whitney等人运用从19世纪下半叶就开始发展的精确的直觉理清,并通过微分几何和李群理论得到了发展。2023-05-20 11:12:561
希尔伯特空间是黎曼流形吗
亲亲你好,很高兴为你解答广义相对论中所讨论的空间叫“伪黎曼流形”。我发觉很多人在讨论空间的时候满嘴挂着什么123456...N维空间但又不知道具体什么是什么...2023-05-20 11:13:102
黎曼流形的黎曼流形
n维欧氏空间中有自然的度量ds^2=(dx_1)^2+...+(dx_n)^2。它的矩阵表示就是单位矩阵。欧氏空间中的子流形当然也就自然地诱导出一个度量。曲线和曲面的微分几何里,我们都是把曲线曲面视为三维空间的子流形,所以自然赋予了度量结构。2023-05-20 11:13:171
黎曼取得了哪些成就?
黎曼(1826~1866),1826年9月17日,黎曼生于德国北部汉诺威的布雷塞伦茨村,父亲是一个乡村的穷苦牧师。他六岁开始上学,14岁进入大学预科学习,19岁按其父亲的意愿进入哥廷根大学攻读哲学和神学,以便将来继承父志也当一名牧师。由于从小酷爱数学,黎曼在学习哲学和神学的同时也听些数学课。当时的哥廷根大学是世界数学的中心之一,—些著名的数学家如高斯、韦伯、斯特尔都在校执教。黎曼被这里的数学教学和数学研究的气氛所感染,决定放弃神学,专攻数学。1847年,黎曼转到柏林大学学习,成为雅可比、狄利克莱、施泰纳、艾森斯坦的学生。1849年重回哥丁很大学攻读博士学位,成为高斯晚年的学生。1851年,黎曼获得数学博士学位;1854年被聘为哥廷根大学的编外讲师;1857年晋升为副教授;1859年接替去世的狄利克雷被聘为教授。因长年的贫困和劳累,黎曼在1862年婚后不到一个月就开始患胸膜炎和肺结核,其后四年的大部分时间在意大利治病疗养。1866年7月20日病逝于意大利,终年39岁。黎曼是世界数学史上最具独创精神的数学家之一。黎曼的著作不多,但却异常深刻,极富于对概念的创造与想象。黎曼在其短暂的一生中为数学的众多领域作了许多奠基性、创造性的工作,为世界数学建立了丰功伟绩。黎曼是复变函数论的奠基人19世纪数学最独特的创造是复变函数理论的创立,它是18世纪人们对复数及复函数理论研究的延续。1850年以前,柯西、雅可比、高斯、阿贝尔、维尔斯特拉斯已对单值解析函数的理论进行了系统的研究,而对于多值函数仅有柯西和皮瑟有些孤立的结论。1851年,黎曼在高斯的指导下完成题为《单复变函数的一般理论的基础》的博士论文,后来又在《数学杂志》上发表了四篇重要文章,对其博士论文中思想的做了进一步的阐述,一方面总结前人关于单值解析函数的成果,并用新的工具予以处理,同时创立多值解析函数的理论基础,并由此为几个不同方向的进展铺平了道路。柯西、黎曼和维尔斯特拉斯是公认的复变函数论的主要奠基人,而且后来证明在处理复函数理论的方法上黎曼的方法是本质的,柯西和黎曼的思想被融合起来,维尔斯特拉斯的思想可以从柯西—黎曼的观点推导出来。在黎曼对多值函数的处理中,最关键的是他引入了被后人称“黎曼面”的概念。通过黎曼面给多值函数以几何直观,且在黎曼面上表示的多值函数是单值的。他在黎曼面上引入支点、横剖线、定义连通性,开展对函数性质的研究获得一系列成果。经黎曼处理的复函数,单值函数是多值函数的待例,他把单值函数的一些已知结论推广到多值函数中,尤其他按连通性对函数分类的方法,极大地推动了拓扑学的初期发展。他研究了阿贝尔函数和阿贝尔积分及阿贝尔积分的反演,得到著名的黎曼—罗赫定理,首创的双有理变换构成19世纪后期发展起来的代数几何的主要内容。黎曼为完善其博士论文,在结束时给出其函数论在保形映射的几个应用,将高斯在1825年关于平面到平面的保形映射的结论推广到任意黎曼面上,并在文字的结尾给出著名的黎曼映射定理。黎曼几何的创始人黎曼对数学最重要的贡献还在于几何方面,他开创的高维抽象几何的研究,处理几何问题的方法和手段是几何史上一场深刻的革命,他建立了一种全新的后来以其名字命名的几何体系,对现代几何乃至数学和科学各分支的发展都产生了巨大的影响。1854年,黎曼为了取得哥廷根大学编外讲师的资格,对全体教员作了一次演讲,该演讲在其逝世后的两年(1868年)以《关于作为几何学基础的假设》为题出版。演讲中,他对所有已知的几何,包括刚刚诞生的非欧几何之一的双曲几何作了纵贯古今的概要,并提出一种新的几何体系,后人称为黎曼几何。为竞争巴黎科学院的奖金,黎曼在1861年写了一篇关于热传导的文章,这篇文章后来被称为他的“巴黎之作”。文中对他1854年的文章作了技术性的加工,进一步阐明其几何思想。该文在他死后收集在1876年他的《文集》中。黎曼主要研究几何空间的局部性质,他采用的是微分几何的途径,这同在欧几里得几何中或者在高斯、波尔约和罗巴切夫斯基的非欧几何中把空间作为一个整体进行考虑是对立的。黎曼摆脱高斯等前人把几何对象局限在三维欧几里得空间的曲线和曲面的束缚,从维度出发,建立了更一般的抽象几何空间。黎曼引入流形和微分流形的概念,把维空间称为一个流形,维流形中的一个点可以用个可变参数的一组特定值来表示,而所有这些点的全体构成流形本身,这个可变参数称为流形的坐标,而且是可微分的,当坐标连续变化时,对应的点就遍历这个流形。黎曼仿照传统的微分几何定义流形上两点之间的距离、流形上的曲线、曲线之间的夹角。并以这些概念为基础,展开对维流形几何性质的研究。在维流形上他也定义类似于高斯在研究一般曲面时刻划曲面弯曲程度的曲率。他证明他在维流形上维数等于三时,欧几里得空间的情形与高斯等人得到的结果是一致的,因而黎曼几何是传统微分几何的推广。黎曼发展了高斯关于一张曲面本身就是一个空间的几何思想,开展对维流形内蕴性质的研究。黎曼的研究导致另一种非欧几何——椭圆几何学的诞生。在黎曼看来,有三种不同的几何学。它们的差别在于通过给定一点做关于定直线所作平行线的条数。如果只能作一条平行线,即为熟知的欧几里得几何学;如果一条都不能作,则为椭圆几何学;如果存在一组平行线,就得到第三种几何学,即罗巴切夫斯基几何学。黎曼因此继罗巴切夫斯基以后发展了空间的理论,使得一千多年来关于欧几里得平行公理的讨论宣告结束。他断言,客观空间是一种特殊的流形,预见具有某种特定性质的流形的存在性。这些逐渐被后人一一予以证实。由于黎曼考虑的对象是任意维数的几何空间,对复杂的客观空间有更深层的实用价值。所以在高维几何中,由于多变量微分的复杂性,黎曼采取了一些异于前人的手段使表述更简洁,并最终导致张量、外微分及联络等现代几何工具的诞生。爱因斯坦就是成功地以黎曼几何为工具,才将广义相对论几何化。现在,黎曼几何已成为现代理论物理必备的数学基础。对微积分理论的创造性贡献黎曼除对几何和复变函数方面的开拓性工作以外,还以其对19世纪初兴起的完善微积分理论的杰出贡献载入史册。18世纪末到19世纪初,数学界开始关心数学最庞大的分支——微积分在概念和证明中表现出的不严密性。波尔查诺、柯西、阿贝尔、狄利克莱进而到维尔斯特拉斯,都以全力的投入到分析的严密化工作中。黎曼由于在柏林大学从师狄利克莱研究数学,且对柯西和阿贝尔的工作有深入的了解,因而对微积分理论有其独到的见解。1854年黎曼为取得哥廷根大学编外讲师的资格,需要他递交一篇反映他学术水平的论文。他交出的是《关于利用三角级数表示一个函数的可能性的》文章。这是一篇内容丰富、思想深刻的杰作,对完善分析理论产生深远的影响。柯西曾证明连续函数必定是可积的,黎曼指出可积函数不一定是连续的。关于连续与可微性的关系上,柯西和他那个时代的几乎所有的数学家都相信,而且在后来50年中许多教科书都“证明”连续函数一定是可微的。黎曼给出了一个连续而不可微的著名反例,最终讲清连续与可微的关系。黎曼建立了如现在微积分教科书所讲的黎曼积分的概念,给出了这种积分存在的必要充分条件。黎曼用自己独特的方法研究傅立叶级数,推广了保证博里叶展开式成立的狄利克莱条件,即关于三角级数收敛的黎曼条件,得出关于三角级数收敛、可积的一系列定理。他还证明:可以把任一条件收敛的级数的项适当重排,使新级数收敛于任何指定的和或者发散。解析数论的跨世纪成果19世纪数论中的一个重要发展是由狄利克莱开创的解析方法和解析成果的导入,而黎曼开创了用复数解析函数研究数论问题的先例,取得跨世纪的成果。1859年,黎曼发表了《在给定大小之下的素数个数》的论文。这是一篇不到十页的内容极其深到的论文,他将素数的分布的问题归结为函数的问题,现在称为黎曼函数。黎曼证明了函数的一些重要性质,并简要地断言了其它的性质而未予证明。在黎曼死后的一百多年中,世界上许多最优秀的数学家尽了最大的努力想证明他的这些断言,并在作出这些努力的过程中为分析创立了新的内容丰富的新分支。如今,除了他的一个断言外,其余都按黎曼所期望的那样得到了解决。那个未解决的问题现称为“黎曼猜想”,即:在带形区域中的一切零点都位于去这条线上(希尔伯特23个问题中的第8个问题),这个问题迄今没有人证明。对于某些其它的域,布尔巴基学派的成员已证明相应的黎曼猜想。数论中很多问题的解决有赖于这个猜想的解决。黎曼的这一工作既是对解析数论理论的贡献,也极大地丰富了复变函数论的内容。组合拓扑的开拓者在黎曼博士论文发表以前,已有一些组合拓扑的零散结果,其中著名的如欧拉关于闭凸多面体的顶点、棱、面数关系的欧拉定理。还有一些看起来简单又长期得不到解决的问题:如哥尼斯堡七桥问题、四色问题,这些促使了人们对组合拓扑学(当时被人们称为位置几何学或位置分析学)的研究。但拓扑研究的最大推动力来自黎曼的复变函数论的工作。黎曼在1851年他的博士论文中,以及在他的阿贝尔函数的研究里都强调说,要研究函数,就不可避免地需要位置分析学的一些定理。按现代拓扑学术语来说,黎曼事实上已经对闭曲面按亏格分类。值得提到的是,在其学位论文中,他说到某些函数的全体组成(空间点的)连通闭区域的思想是最早的泛函思想。比萨大学的数学教授贝蒂曾在意大利与黎曼相会,黎曼由于当时病魔缠身,自身已无能力继续发展其思想,把方法传授给了贝蒂。贝蒂把黎曼面的拓扑分类推广到高维图形的连通性,并在拓扑学的其他领域作出杰出的贡献。黎曼是当之无愧的组合拓扑的先期开拓者。代数几何的开源贡献19世纪后半叶,人们对黎曼研究阿贝尔积分和阿贝尔函数所创造的双有理变换的方法产生极大的兴趣。当时他们把代数不变量和双有理变换的研究称为代数几何。黎曼在1857年的论文中认为,所有能彼此双有理变换的方程(或曲面)属于同一类,它们有相同的亏格。黎曼把常量的个数叫做“类模数”,常量在双有理变换下是不变量。“类模数”的概念是现在“参模”的特殊情况,研究参模上的结构是现代最热门的领域之一。著名的代数几何学家克莱布什后来到哥廷根大学担任数学教授,他进一步熟悉了黎曼的工作,并对黎曼的工作给予新的发展。虽然黎曼英年早逝,但世人公认,研究曲线的双有理变换的第一个大的步骤是由黎曼的工作引起的。黎曼在数学物理、微分方程等其他领域也取得了丰硕的成果。黎曼不但对纯数学作出了划时代的贡献,他也十分关心物理及数学与物理世界的关系,他写了一些关于热、光、磁、气体理论、流体力学及声学方面的有关论文。他是对冲击波作数学处理的第一个人,他试图将引力与光统一起来,并研究人耳的数学结构。他将物理问题抽象出的常微分方程、偏微分方程进行定论研究得到一系列丰硕成果。黎曼在1857年的论文《对可用高斯级数表示的函数的理论的补充》,及同年写的一个没有发表而后收集在其全集中的一个片断中,他处理了超几何微分方程和讨论带代数系数的阶线性微分方程。这是关于微分方程奇点理论的重要文献。19世纪后半期,许多数学家花了很多精力研究黎曼问题,然而都失败了,直到1905年希尔伯特和Kellogg借助当时已经发展了的积分方程理论,才第一次给出完全解。黎曼在常微分方程理论中自守函数的研究上也有建树,在他的1858~1859年关于超几何级数的讲义和1867年发表的关于极小正曲面的一篇遗著中,他建立了为研究二阶线性微分方程而引进的自守函数理论,即现在通称的黎曼——许瓦兹定理。在偏微分方程的理论和应用上,黎曼在1858年~1859年论文中,创造性的提出解波动方程初值问题的新方法,简化了许多物理问题的难度;他还推广了格林定理;对关于微分方程解的存在性的狄里克莱原理作了杰出的工作……黎曼在物理学中使用的偏微分方程的讲义,后来由韦伯以《数学物理的微分方程》编辑出版,这是一本历史名著。不过,黎曼的创造性工作当时未能得到数学界的一致公认,一方面由于他的思想过于深邃,当时人们难以理解,如无自由移动概念非常曲率的黎曼空间就很难为人接受,直到广义相对论出现才平息了指责;另一方面也由于他的部分工作不够严谨,如在论证黎曼映射定理和黎曼—罗赫定理时,滥用了狄利克雷原理,曾经引起了很大的争议。黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。2023-05-20 11:13:291
Hodge定理的内容是什么?
基尔霍夫第一bai定律第一定律又称基尔霍夫du电流定zhi律,简记为KCL,是电流的连续性在集总参数电dao路上的体现,其物理背景是电荷守恒公理。KCL的第一种陈述:对于任一集总电路中的任一节点,在任一时刻,流出(或流进)该节点的所有支路电流的代数和为零。KCL的第二种陈述:对于任一集总电路中的任一闭合面,在任一时刻,通过该闭合面的所有支路电流的代数和等于零。(2) 基尔霍夫第二定律第二定律又称基尔霍夫电压定律,简记为KVL,是电场为位场时电位的单值性在集总参数电路上的体现,其物理背景是能量守恒公理。KVL可表述为对于任一集总电路中的任一回路,在任一时刻,沿着该回路的所有支路电压降的代数和为零。2023-05-20 11:13:373
高斯和黎曼的微分几何(二)
黎曼研究几何的途径 高斯、罗巴切夫斯基和鲍耶的工作提出了对物理空间欧几里得几何的质疑,推动了19世纪的重大创造——黎曼几何的产生,它的创立者是几何学家黎曼(Georg Friedrich Bernhard Riemann,1826-1866)。黎曼在几何领域追随高斯(他本来就是高斯的学生),在函数论追随柯西和阿贝尔,他对几何的研究也受心理学家赫尔巴特(Johann Friedrich Herbart,1776-1841)的影响。 高斯要求黎曼把几何基础作为其就职演说(大学讲师要取得大学教授资格需要做的演说)课题,1854年黎曼向哥廷根全体教员作了演讲,并在1868年以《关于作为几何学基础的假设》为题出版。 为了竞争巴黎科学院的奖金,1861年黎曼写了一篇关于热传导的文章,常被称为《巴黎之作》,黎曼发现必须进一步考虑他关于几何的思想,在这里他对1854年的文章做了技术性加工。1861年这篇未获奖的文章在他去世后发表于1876年的文集中,在文集的第二版中,韦伯(Heinrich Weber,1795-1878,搞生理的,是搞电磁的那个韦伯的哥哥)在一篇注释中解释了黎曼高度压缩的题材。 黎曼提出的空间几何不只是高斯微分几何的推广,他重新考虑了研究空间的整个途径,对于物理空间我们可以确信什么?在通过经验确定物理空间中成立的特殊公理之前,在真实的经验空间必须预先假定什么条件或事实?黎曼的目的之一是要证明,欧几里得公理与其说是不言自明的,还不如说是经验性的,他采用了解析的方法,因为在几何证明中,由于我们的感觉,可能错误假定一些不是显然可以承认的事实。黎曼的思想是,从关于空间无疑是先验的东西出发,分析后导出必然的结论,可知空间的任何其它性质都是经验的。高斯也研究了相同的课题,但仅发表了论曲面的部分,黎曼对什么是先验的探讨导致他研究空间的局部性质,即微分几何,这和欧几里得几何或高斯、罗巴切夫斯基、鲍耶的非欧几何把空间作为一个整体考虑是相对的。黎曼在1854年讲演以及原稿中表现的思想是模糊的,一个原因是要适应听众(哥廷根教员),也和他的哲学思想有关。 高斯关于欧几里得空间中曲面的内蕴几何学,开辟了一个广泛领域,黎曼对任一空间发展了一种内蕴几何。虽然三维情形显然很重要,但黎曼宁可处理n维几何,他把n维空间称为一个流形,n维流形中的一个点可以用n个可变参数x1,x2,...,xn的一组指定值表示,而所有这种可能的点的集合构成n维流形本身,正如在一个曲面上的所有点构成曲面本身一样。这n个可变参数就叫流形的坐标,当这些xi连续变化时,对应的点遍历了整个流形。 因为黎曼认为我们只能局部地了解空间,所以他从定义两个一般点之间的距离出发,这两个点的坐标相差无穷小,他假定距离的平方是 其中gij是坐标x1,x2,...,xn的函数,gij=gji,且等式右边总是正的,这个表达式是欧几里得距离公式 的推广。他提出可假定ds是微分dx1,dx2,...,dxn的一个四次齐次函数的四个根中的一个,但没有深入研究这种可能性。由于允许gij是坐标的函数,所以黎曼的空间性质可逐点而异。 虽然黎曼在1854年论文未明确阐述下述定义,但在他心中是有的,因为它们等价于高斯对曲面所做的。黎曼流形上的一条曲线由n个函数:x1=x1(t),x2=x2(t),...,xn=xn(t)给定,于是在t=α和t=β之间的曲线长度定义为 ,两点之间的最短曲线——测地线随即可以变分法确定。用变分学记号,这就是适合条件 的曲线。取弧长s为参数,测地线方程可以证明为 ,这是n个二阶常微分方程的方程组。 两条曲线在点(x1,x2,...,xn)处相交,一条曲线由方向dxi/ds决定,另一条由方向dxi"/ds"决定,两条曲线在交点处的交角θ由公式 确定。仿照高斯对曲面的方法,可以推出一种度量的n维几何。所有度量性质由 表达式中的系数gij确定。 黎曼1854年论文第二个重要概念是流形曲率。黎曼企图用其刻画欧几里得空间和更一般的空间,在这种空间中图形可以挪动而不改变其形状或大小。黎曼关于任意n维流形曲率的概念是高斯总曲率概念的推广,和高斯的概念一样,流形曲率可用一些量定义,而这些量可以在流形自身上确定,从而无需想象流形位于某一更高维的流形中。 在n维流形中给定一点P,黎曼考虑在该点的一个二维流形,这个二维流形在n维流形中,由经过P点的无穷多条单参数测地线构成,这些测地线与流形的平面截口在P点相切,现在一条测地线可以用点P和在该点的一个方向描述,设dx1",dx2",...,dxn"是一条测地线的方向,而dx1"",dx2"",...,dxn""是另一条测地线的方向,则在P点的单参数无穷多条测地线中,任一条测地线方向的第i个分量由下式给出: ,λ"和λ""要受条件 的限制,这个条件是由条件Σgij(dxi/ds)(dxj/ds)=1导出的。 这一组测地线构成一个二维流形,它有一个高斯曲率,因为经过P点的这种二维流形有无穷多个,所以在n维流形的一个点处有无穷多个曲率,但在这些曲率的测度中,可以从n(n-1)/2个推出其余的,于是推出曲率测度的一个式子。这是黎曼在1861年文章中完成的,对流形就是一个曲面的情形,黎曼的曲率就是高斯的总曲率,严格来说,和高斯的曲率一样,黎曼的曲率是一种加在流形上而非流形自身的度量性质。 黎曼完成n维几何的一般研究,并说明如何引入曲率后,进而考虑特定的流形,在这种流形上,有限的空间形式能够移动而不改变其大小或形状,并能按任意方向旋转,他由此引入常曲率空间。 当在一点所有曲率的测度都相同,且等于其它任何点的所有曲率的测度时,黎曼称之为常曲率流形。在这种流形上可以讨论全等的图形。黎曼在1854年文章中给出下述结果:如果α是曲率的测度,常曲率流形上无穷小距离元素公式变为(在一适当坐标系中) 黎曼认为曲率α必须≥0,当α>0时为球面空间,α=0时为欧几里得空间,反之亦然。他认为如果一个空间是无限伸展的,其曲率必须为0,然而他也提示过可能有现实的常数负曲率曲面。 对于α=a 2>0,且n=3的情形,得到一种三维的球面几何,虽然不能把它形象化:这个空间在广度上有限但是无界,在其中所有测地线都是定长=2π/a,且回到它们自身,空间体积是$2π^2/a^3$。对a 2>0,n=2的情形,得到通常的球面空间,测地线是大圆且是有限的,任意两条测地线交于两点,我们不清楚黎曼是否认为常数正曲率曲面上的测地线都交于一点或两点,他可能倾向于后者。Felix Klein指出这里涉及两种不同的几何。2023-05-20 11:14:061
有关黎曼几何的公理和基本知识
黎曼几何 黎曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量 ,空间中的点可用n个实数(x1,……,xn)作为坐标来描述。这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上的几何学应基于无限邻近两点(x1,x2,……xn)与(x1+dx1,……xn+dxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。亦即 , (gij)是由函数构成的正定对称矩阵。这便是黎曼度量。赋予黎曼度量的微分流形,就是黎曼流形。 黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2=Edu2+2Fdudv+Gdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。 黎曼几何以欧几里得几何和种种非欧几何作为其特例。例如:定义度量(a是常数),则当a=0时是普通的欧几里得几何,当a>0时 ,就是椭圆几何 ,而当a<0时为双曲几何。 黎曼几何中的一个基本问题是微分形式的等价性问题。该问题大约在1869年前后由E.B.克里斯托费尔和R.李普希茨等人解决。前者的解包含了以他的姓命名的两类克里斯托费尔记号和协变微分概念。在此基础上G.里奇发展了张量分析方法,这在广义相对论中起了基本数学工具的作用。他们进一步发展了黎曼几何学。 但在黎曼所处的时代,李群以及拓扑学还没有发展起来,因此黎曼几何只限于小范围的理论。大约在1925年H.霍普夫才开始对黎曼空间的微分结构与拓扑结构的关系进行了研究。随着微分流形精确概念的确立,特别是E.嘉当在20世纪20年代开创并发展了外微分形式与活动标架法,建立了李群与黎曼几何之间的联系,从而为黎曼几何的发展奠定重要基础,并开辟了广阔的园地,影响极其深远。并由此发展了线性联络及纤维丛的研究。 1915年,A.爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。使黎曼几何(严格地说洛伦茨几何)及其运算方法(里奇算法)成为广义相对论研究的有效数学工具。而相对论近年的发展则受到整体微分几何的强烈影响。例如矢量丛和联络论构成规范场(杨-米尔斯场)的数学基础。 1944年陈省身给出n维黎曼流形高斯-博内公式的内蕴证明,以及他关于埃尔米特流形的示性类的研究,引进了后来通称的陈示性类,为大范围微分几何提供了不可缺少的工具并为复流形的微分几何与拓扑研究开创了先河。半个多世纪,黎曼几何的研究从局部发展到整体,产生了许多深刻的结果。黎曼几何与偏微分方程、多复变函数论、代数拓扑学等学科互相渗透,相互影响,在现代数学和理论物理学中有重大作用。2023-05-20 11:14:141
黎曼几何是研究什么空间的几何问题的
欧几里得空间2023-05-20 11:14:223
几何学的前世今生:这几位大师功不可没
天衣岂无缝,匠心剪接成。浑然归一体,广邃妙绝伦。造化爱几何,四力纤维能。千古寸心事,欧高黎嘉陈。 ——1975年杨振宁先生为陈省身先生作人类首先系统化和公理化地研究几何学,还要追溯到古希腊欧几里得的时代(公元前300年)。欧几里得在他的《几何原本》中,总结了几何学的几条公理和公设。在此后的近2000年里,欧几里得的公理和公设,一直成为平面几何的基本规则和基础。我们中学学习的平面几何,就源于欧几里得的公理系统。在欧几里得的公设中,有一条第五公设(又被称为平行公设):通过已知直线外一点,能作且仅能作一条直线与已知直线平行。正是这条公设导出了三角形的内角和为180度。它是一条根据日常经验总结出的公设,在千百年来很少被人质疑。但到了19世纪早期,偏偏有两个爱吃螃蟹的人——高斯和罗巴切夫斯基——怀疑起平行公设来,他们反复论证后发现,欧几里得的平行公设并不是逻辑上必须的,它是一个人为附加的限制条件。高斯罗巴切夫斯基他们设想存在一类曲面,在这类曲面上平行公设并不成立,三角形的内角和也不是180度。由此构建起来的新几何学便称为非欧几何学。高斯和罗巴切夫斯基的非欧几何学影响深远,它突破了欧几里得旧公理的限制,大大地解放了几何学,具有跨时代的意义。这样,原来的欧几里得几何学便成了新的非欧几何学的一个特例,非欧几何学可被应用于球面和马鞍面上,为后来出现的微分几何奠定了基础。非欧几何学通常又被称为罗巴切夫斯基几何学,这是为了纪念它伟大的创始人罗巴切夫斯基。有时候,它又被称作是高斯-罗巴切夫斯基几何学。为何一代“数学王子”高斯竟然会屈居罗巴切夫斯基之后呢?事实上,高斯研究非欧几何学要比罗巴切夫斯基早几年,早在罗巴切夫斯基发表他的著作之前,高斯就已经深入地研究了非欧几何学,并且已经有了相当高的成熟度,获得了很多重要成果。但“数学王子”一直没有发表他的成果,直到罗巴切夫斯基发表之后,高斯才公布了自己的一些结果。在此后的一些年里,高斯本人也从来没有争夺过非欧几何学的发现权,他总是将非欧几何学归功于罗巴切夫斯基。不少人据此说高斯高风亮节,一代“数学王子”果然气度非凡。这或许是部分原因,但更多的原因是,已经中年的高斯太过保守,担心发表非欧几何学这样轰动的结果会遭到数学保守派的攻击。而罗巴切夫斯基当时正是一个愣头小伙,天不怕地不怕,便把结果发表了出去。果不其然,罗巴切夫斯基受到了“正统数学家”的漠视、嘲讽、排挤和攻击,一生遭遇不公正对待,精神差点崩溃,成为了一代悲情英雄。早在非欧几何学构建之前,还有一个伟大的跨越。17世纪笛卡尔将坐标系引进了几何学,从而将代数学与几何学巧妙地联系在一起,创立了解析几何学。在解析几何方法的帮助之下,射影几何在19世纪走向了成熟。在解析几何、射影几何和非欧几何学成熟之后,现代几何学的集大成者——微分几何便应运而生了。微分几何是利用微积分的方法,通过研究空间的局部来探索出空间的几何性质。提到这,就不得不提黎曼。黎曼不仅开启了微分几何的新纪元,还用它研究了一类弯曲空间,它在局部相似于寻常的欧几里得空间,而在大尺度的非局域上又有不同于欧几里得空间的空间弯曲性质。这一类空间又被称为“黎曼流形”,爱因斯坦的广义相对论便是以“黎曼流形”作为数学基础。黎曼微分几何的出现,建立了弯曲空间局部和欧几里得平直空间的对应,使得我们可以用解析几何和数学分析的方法从空间的每一个局部来研究弯曲的非欧几何空间,这在之前是不可能办到的。微分几何的出现不但是几何学的新纪元,也是整个数学史上的新篇章。它使坐标系和代数学被引入之后,将分析的方法也引入了几何之中。从此,19世纪数学的三大块(俗称“老三高”)——几何学、代数学和数学分析学成为一个整体。毫不夸张地说,微分几何开创了二十世纪数学由分散向统一发展的新篇章。20世纪之前的数学分为三大块——几何学、代数学和数学分析学(与之相对应的数学专业三门主干课程,数学分析、线性代数和解析几何又常被数学系的人称为“老三高”)。而进入二十世纪之后,数学又有了新的发展,从前的分支交叉融合,新的思想涌现出来,构成了新的分支。抽象代数(包括群论、环论、域论)、泛函分析和拓扑学出现了(这三样也被数学系的人称为“新三高”)。二十世纪初期,“老三高”与“新三高”的交织和碰撞,擦出了数学史上炫丽的火花。嘉当在20世纪伊始,当“新三高”出现之后,几何学也取得了新的进步。这一时期,嘉当(法国数学家)深入研究了微分几何流形上的分析学,建立起了外微分的概念。他研究了流形中的联络,提出一般联络的微分几何学。除此之外,嘉当还仔细研究了李群和流形的对应关系,将李群引入“黎曼流形”之中。由于李群同时又可被看做是一种“拓扑空间”或“拓扑群”,嘉当的工作为日后拓扑学在几何学中的自由发展奠定了基础,也是后来诞生的整体微分几何的萌芽。20世纪,以微分几何为代表的现代几何学将物理学带入了新的高度,而20世纪前中期物理学的蓬勃发展也为几何学推波助澜。若论二十世纪中叶的几何学大家,首屈一指的便是陈省身。陈省身先生陈省身是公认的整体微分几何的开创者和推广者。黎曼时期的微分几何,主要是通过研究弯曲空间的每个局部来研究整个弯曲空间,而弯曲空间的整体性质,则不容易直接获得。如果忽略局部而从大范围分析,则是拓扑学的强项。1946年陈省身与美国的斯丁路特和法国的艾勒斯曼共同提出纤维丛的理论,将拓扑学和大范围分析引入几何之中。纤维从理论具有巨大的威力,不但方便了几何学,还方便了物理学。可以证明,纤维从理论与物理学中的规范场有着千丝万缕的关系。在二十世纪后半叶,以陈省身的纤维从理论为代表和以大范围分析为主导思想的整体微分几何推动着现代几何学滚滚向前。1975年,杨振宁先生曾为陈省身先生作了一首小诗:“天衣岂无缝,匠心剪接成。浑然归一体,广邃妙绝伦。造化爱几何,四力纤维能。千古寸心事,欧高黎嘉陈。”诗的最后两句“千古寸心事,欧高黎嘉陈”概括了在千年的几何学发展中的五位大师——欧几里得、高斯、黎曼、嘉当、陈省身。的确,他们的名字本身就是几何学发展的写照。也许,在我看来,还应加上笛卡尔和罗巴切夫斯基。出品:科普中国制作:小曲监制:中国科学院计算机网络信息中心“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。本文由科普中国融合创作出品,转载请注明出处。2023-05-20 11:14:291
请问黎曼几何和微分几何有什么区别和联系?
简单的说,黎曼几何是微分几何的一个特殊情况. 微分几何的研究对象是一般的微分流形,黎曼几何的研究对象是黎曼流形. 黎曼流形是一种特殊的微分流形,要求流形上存在黎曼联络,一般的微分流形上则没有这样的要求. 所以说,黎曼几何比微分几何的范围要窄,也相对简单一些.2023-05-20 11:15:101
黎曼是谁的学生?
1846年,黎曼进入哥廷根大学学习哲学和神学。在此期间他去听了一些数学讲座,包括高斯关于最小二乘法的讲座。在得到父亲的允许后,他改学数学。在大学期间有两年去柏林大学就读 ,受到 C.G.J.雅可比和P.G.L.狄利克雷的影响。1847年春,黎曼转到柏林大学,投入雅戈比、狄利克雷和Steiner门下。两年后他回到哥廷根。2023-05-20 11:15:214
最先提出椭圆函数的物理学家是谁
最先提出椭圆函数的物理学家------波恩哈德·黎曼 波恩哈德·黎曼(1826.9.17-1866.720),德国数学家、物理学家,对数学分析和微分几何做出了重要贡献,其中一些为广义相对论的发展铺平了道路。 他的名字出现在黎曼ζ函数,黎曼积分,黎曼引理,黎曼流形,黎曼映照定理,黎曼-希尔伯特问题,黎曼思路回环矩阵和黎曼曲面中。 他初次登台作了题为"论作为几何基础的假设"的演讲,开创了黎曼几何,并为爱因斯坦的广义相对论提供了数学基础。2023-05-20 11:15:381
流形的介绍
流形(manifold)是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。2023-05-20 11:15:451
黎曼几何学的联络、平行移动
欧氏空间中两不同点的切向量可以用平行移动的方法移动到同一点处加以比较,而且这种平行移动与移动的道路无关。黎曼流形上不同点的切向量也可以用平行移动的方法加以比较,但一般说来,这时由于流形的弯曲,平行移动与移动的道路有关。设P(xi)为流形上任一点,{ei},i=1,2,…,n为P点附近的一个局部标架,P +dP 为P 的一个无限邻近点,坐标为xi+dxi。定义P +dP 点的切空间和P 点的切空间的一个线性对应,使得P +dP点的对应于P点的向量。2023-05-20 11:16:081
黎曼几何中为什么三角形内角和不是180度?哪是几度
黎曼流形上的几何学,简称黎曼几何。是由德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量 。想像在球面上画三角形,其内角和大于180°,全体数度与球的半径有关,没有固定的量。2023-05-20 11:16:233
黎曼定理是什么?
格奥尔格·弗雷德里希·波恩哈德·黎曼[1] (Georg Friedrich Bernhard Riemann,1826年9月17日-1866年7月20日)德国数学家[1],黎曼几何学创始人,复变函数论创始人之一。他对数学分析和微分几何做出了重要贡献,对微分方程也有很大贡献。他引入三角级数理论,从而指出积分论的方向,并奠定了近代解析数论的基础,提出一系列问题;他最初引入黎曼曲面这一概念,对近代拓扑学影响很大;在代数函数论方面,如黎曼-诺赫定理也很重要。在微分几何方面,继高斯之后建立黎曼几何学。他的名字出现在黎曼ζ函数,黎曼积分,黎曼引理,黎曼流形,黎曼映照定理,黎曼-希尔伯特问题,黎曼思路回环矩阵中。2023-05-20 11:16:301
黎曼球面的作为复流形
作为一维复流形,黎曼曲面可以由两个图卡描述,每个的定义域都是复数平面.令ζ和ξ为上的复坐标。将非零复数ζ和非零复数ξ用如下转移映射等同起来:ζ = 1 / ξ, ξ = 1 / ζ. 因为这些变换映射为全纯函数,他们定义了一个复流形,称为黎曼球面。直观地来看,这些变换映射表示了如何将两个平面粘合成一个黎曼球面。两个面用一种从里翻出来的方式粘合,所以他们几乎处处重合,每个平面(用自己的原点)贡献对方平面上缺少的一点。换言之,(几乎)所有黎曼球面上的点既有ζ值也有ξ值,而两个值由ζ = 1 / ξ关联。ξ = 0处的点应该具有ζ-value 1 / 0;从这个意义上讲,ξ-图的原点是ζ-图上的。对称地,ζ-图的原点对应于ξ-图上的.拓扑上,最后的结果是从平面到球面的单点紧致化。但是,黎曼球面不单单是一个拓扑球面。它是具有复结构的拓扑球面,所以球面上的每个点都有一个领域可以通过双全纯函数和同胚。另一方面,黎曼曲面分类的的中心结果单值化定理,断言仅有的三类单连通一维复流形为复平面、双曲平面、和黎曼球面。在这三者中,黎曼球面是唯一的闭曲面(无边界的紧致曲面)。因此二维球面只有唯一的复结构将它变为一维复流形。2023-05-20 11:16:371
比较定理
在黎曼几何的研究中,通过比较一个黎曼流形和与它性质接近的空间形式的集合量,从而定性地或定量地得到该黎曼流形的一些性质,所得到的结果通常被称为比较定理。在黎曼几何的研究中,有一个常用的方法是通过比较一个黎曼流形和与它性质接近(如截面曲率,或里奇曲率相近)的空间形式的集合量(如雅可比向量的长度、切向量的长度和夹角等等),从而定性地或定量地得到该黎曼流形的一些性质,所得到的结果通常被称为比较定理。比较定理是黎曼几何中重要的研究工具。2023-05-20 11:16:521
微分几何学的整体微分几何的兴起
在黎曼流形的研究中,完备性是一个很重要的概念。在黎曼流形上,两点之间可以定义距离,因而可成为一个度量空间,这个度量空间在拓扑意义下的完备与任一测地线均可无限延伸(依弧长或仿射参数)这一性质相等价,从而形成了完备黎曼流形的概念。特别,紧致黎曼流形是完备的黎曼流形。霍普夫与里诺给出了下述结果:完备黎曼流形上每二点均可用一极小测地线相连结,其长度就等于二点的距离。引进了完备性这一概念后,也推进了对三维欧氏空间曲面论的整体性质的研究。例如:对于曲率为常数的曲面的完备性的研究有:1959年P.哈特曼与L.尼伦伯格证明了完备的可展曲面必为柱面,迈尔斯与李卜曼证明了正常数曲率定向的完备曲面必为球面。完备性概念对非紧致黎曼流形的整体几何研究是十分重要的。 在整体微分几何发展中,纤维丛及其上的联络论的产生和发展,占有显著的地位。基本的纤维丛有向量丛和主丛,前者包括切丛、余切丛、张量丛及一般性的推广,后者是由标架丛抽象而成。在黎曼几何研究中所产生的列维-齐维塔联络被推广为仿射联络、射影联络、共形联络、……然后形成了一般向量丛或纤维丛上的联络论,它以优美的形式把几何学的群的结构和流形上的微分结构有机地结合起来,陈省身-外尔映射用代数的方法通过联络和曲率作出了底流形上的一些上同调类,这种上同调类称为示性类包括陈示性类,欧拉示性类,庞特里亚金示性类等,它们都能表示纤维丛的拓扑性质。纤维丛上的联络论成为理论物理学家的有力工具,杨振宁和米尔斯所提出的规范场理论是在物理学中形成的纤维丛上的联络论,不仅如此,他们对纤维丛上的联络提出了一个过去数学家没有想到过的偏微分方程(后称为杨-米尔斯方程),这个方程不仅对物理学,而且对纯粹数学发生了重大影响。此外,联络论中的一些示性类和示性数,也得到了物理学上的解释,成为物理学中的各种“粒子”数,如“磁单极”数、瞬子数等等。由于这些事实,微分几何和理论物理的关系就更其密切了,可以说是在爱因斯坦广义相对论后的一个新的高潮。2023-05-20 11:17:121
黎曼几何学的和乐群
从上面所述不难看出一个向量沿着不同的曲线平行移动到同一点所得到的向量一般是不同的,这种差异刻画了黎曼流形的弯曲程度。设P是(M,g)的任一点,l(P)表示以P为始点和终点的闭曲线的集合,如果с1、с2是l(P)中的元素,则复合曲线с1·с2也是l(P)中的元素。对X∈Tp(M)沿着l(P)中元素C平行移动回到P点就得到 X┡∈Tp(M),这样l(P)中的一个元素就对应于 Tp(M)→Tp(M)的一个同构。这种同构全体构成的群就称为在P点处的和乐群,当M是连通流形时,不同点的和乐群是同构的,和乐群在黎曼几何的研究中有重要的作用。2023-05-20 11:17:251
黎曼几何为什么没有平行线
黎曼几何的研究对象是比较复杂的,不研究简单的平行线。2023-05-20 11:17:427
用学科语言解释下列维 奇维塔联络
黎曼几何基本定理表明存在唯一连接满足 这些属性。在黎曼流形和伪黎曼流形的理论中,共变 导数一词经常用于列维-奇维塔联络。联络 的坐标空间的表达式称为克氏符号(Chris toffel symbols)。设(M,g)为一黎曼流形(或伪黎曼流形), 则仿射联络 在满足以下条件时是列维-奇 维塔联络保度量,也就是,对任何向量场X, Y, Z我们有, 其中Xg(Y,Z)表示函数g(Y,Z)沿向量场 X的 导数。无扭率, 也就是,对任何向量场X,Y我们有, 其中[X,Y]是向量场 X 和Y的李括号。沿曲线的导数列维-奇维塔联络也定义了一个沿曲线的导 数,通常用D表示。2023-05-20 11:18:151
拓扑同胚和微分同胚的联系和区别?
研究微分流形在微分同胚映射下不变的性质的数学分支。研究的基本对象是微分流形或带边的微分流形以及这样的流形之间的可微映射。m维微分流形 Mm是局部欧几里得空间,即每点x∈M存在邻域u及同胚j:u→v,其中v是Rm的一个开集,(u,j)为Mm在点x的局部坐标且一点的两个局部坐标之间的坐标变换是C¥光滑的。两微分流形之间的可微映射f: Mm→Nn是指它们在每点x∈Mm的局部表示ψof oj1-1:Rm→Rn是C¥光滑的且f连续,此处(u1,j1) (w1,ψ1)分别是x及f(x)的局部坐标。若f:Mm→Nn是可微映射且其逆f--1:Nn→Mm也是可微映射,则称f是微分同胚。微分拓扑学主要研究以下几个方面的问题:①研究微分流形的拓扑结构、组合结构与微分结构的关系,证明了拓扑流形(把微分流形中局部坐标光滑改为连续)与微分流形之间有着本质区别,拓扑流形不一定是微分流形。一个拓扑流形可以存在不同的微分结构(局部坐标系)。例如7维怪球与S7同胚,存在多个相异的微分结构,使其与S7不微分同胚。②嵌入问题:给定两个微分流形Mm和Nn,m≤n,M是否可光滑地嵌入N,即是否存在光滑映射f:M→N,使f:M→f(M)是同胚,且局部表示ψof oj-1的秩等于m,其中j,ψ定义如上。H.惠特尼在20世纪30年代证明了n维紧微分流形可光滑地嵌入于R2n。③配边问题:对给定的一个紧微分流形,判断它是否为一个有边微分流形的边界。④微分动力体系:关于单参数微分同胚群的研究。⑤奇点理论:关于可微映射局部结构的研究及其等价分类;⑥突变论。 从历史上看,微分流形概念的提出及拓扑结构的研究起源于H.庞加莱,他提出了著名的庞加莱猜想。但由于数学工具的限制,相当长一段时间微分流形的拓扑研究一直未取得突破性进展。直到1936年惠特尼的嵌入定理,S.S.凯恩斯证明了微分流形的可剖分性,以及莫尔斯理论的产生,奇点理论这一分支的诞生,伴随着代数拓扑纤维丛、示性类以及同伦群的研究的进展使配边理论及嵌入问题研究进一步发展,从而逐渐形成了“微分拓扑”这一新学科,并进入20世纪数学发展的主流。一类重要的拓扑空间。它除了具有通常的拓扑结构外,还添上了微分结构。微分几何学的研究是建立在微分流形上的。三维欧氏空间R3中的曲面是二维的微分流形,但微分流形的概念远比这广泛得多,非但维数不限于二维,而且流形也不必作为n维欧氏空间Rn中的曲面来定义。此外,一般微分流形也不一定有距离的概念。 具体说来,设M是一个豪斯多夫拓扑空间。U是M的开集,h是U到n维欧氏空间Rn的开集(常取为单位球内部或立方体内部等等)上的一个同胚映射,则(U,h)称为一个坐标图,U称为其中点的一个坐标邻域。设M为开集系{Uα}所覆盖,即,则(Uα,hα)的集合称为M的一个坐标图册。如果M的坐标图册中任何两个坐标图都是Ck相关的,则称M有Ck微分结构,又称M为n维的Ck微分流形。Ck相关是指流形M上同一点的不同坐标之间的变换关系是Ck可微分的(k=0,1,…,∞或ω),依通常记号Cw表示解析函数。具体来说, 如p∈Uα∩Uβ,(x),(x)(i=1,…,n)分别是p在两个坐标图(Uα,hα),(Uβ,hβ)下的(局部)坐标,即那么它们之间的关系式可表为 而ƒ关于x(j=1,2,…,n)具有直到k次的连续导数。k=0时,M是拓扑流形;k>0时,就是微分流形;k=ω时,是解析流形。C∞流形又常称为光滑流形。 如果微分流形M是一个仿紧或紧致拓扑空间,则称M为仿紧或紧致微分流形。如果可选取坐标图册使微分流形M中各个坐标邻域之间的坐标变换的雅可比行列式都大于零,则称这个流形是可定向的。球面是可定向的,麦比乌斯带是不可定向的。 同一拓扑流形可以具有本质上不同的C∞微分结构。J.W.米尔诺对七维球面S7首先发现这个事实, 他证明七维球上可有多种微分结构。近年来,M.弗里得曼等得出如下的重要结果:四维欧氏空间中也有多种微分结构,这与 n(n≠4)维欧氏空间只有惟一的微分结构有着重大区别。 微分流形上可以定义可微函数、切向量、切向量场、各种张量场等对象并建立其上的分析学。以下的叙述对于Ck流形(k任意)也成立,但是,为了简单起见,仅就M为C∞流形来叙述。 可微函数 设p∈U,ƒ是M上点p的邻域中定义的实值函数,(U,h)是C∞坐标图。如果函数ƒ。h-1:h(U)嶅Rn→R在h(p)点是r次连续可微的,则称ƒ在点p是Cr函数。这个定义与C∞坐标图的取法无关。如果在M上所定义的实值函数ƒ在M的各个点都是Cr的,则称ƒ为M上的Cr函数。M上的C∞函数全体组成一个实线性空间,记为F(M)。 切向量 设p∈M,M在点p处的一个切向量是指从F(M)到R的一个线性映射x,使得对于任意的ƒ,g∈F(M),满足: 对于在p点的切向量x1,x2和实数λ1,λ2,定义λ1x1+λ2x2如下: 那么,点p处的切向量全体构成一个n维的实线性空间TP,TP称为在p处M的切空间或切向量空间(也记为TP(M))。如果(x1,x2,…,xn)为点p处的局部坐标系,则由定义的n个独立的切向量,构成TP的一组基,称为自然标架(或坐标标架)。M的切向量全体构成以M为底空间的向量丛(见纤维丛),称为M的切向量丛,简称切丛。M的切丛的一个截面称为M上的一个向量场。在局部坐标系中,向量场可表成 的形式,式中ξi(x)是坐标(x)i的C∞函数。 TP的对偶空间称为M在点p处的余切空间,记为T坝。T坝中的元素称为余切向量,也称协变向量。M的余切向量全体构成M的余切向量丛,简称余切丛,它的截面称为M上的一次微分形式。 由TP和T坝通过张量积的运算可以得到M在点p处的各种(r,s)型张量,M的(r,s)型的张量全体构成张量丛,它的截面就是M上的一个(r,s)型张量场(见多重线性代数、张量)。 可微映射 设φ是从C∞流形M到C∞流形N 的连续映射,如果对于N上的任意Cr函数ƒ,M上的函数ƒ。φ总是Cr的,则称φ是Cr可微映射,或简称Cr映射。如果φ是从M到N上的同胚,而且φ和φ-1都是C∞的,则称φ为微分同胚,此时也称M与N是微分同胚的微分流形。 映射的微分 设φ是从M到N的C∞映射。对M上点p的切向量x可以如下地定义N在点φ(p)处的切向量x┡: 这个对应x→x┡用dφP表示,称为φ在点p处的微分。微分dφP是从切空间TP(M)到(N)的线性映射,有时也称为φ在切空间的诱导映射, 常用φ*P或φ*表示。利用对偶性,φ也自然地诱导了从余切空间T到T坝的线性映射,常记为(dφP)*或φ坝或φ*。由张量积运算,φ还可以诱导对应点之间某些张量空间之间的线性映射。 子流形 设M和N是两个C∞流形,φ:M→N是C∞映射。如果微分dφP在M的每一点都是单射,则称φ是浸入,而φ(M)称为N 的浸入子流形。如果浸入φ还是单射,则称为嵌入,此时φ(M)称为N的嵌入子流形。 在微分流形上还可以定义外微分形式(见外微分形式)。p次外微分形式(2)是一些微分的外积的线性组合,这些微分的外积是反对称的,即是p阶反对称协变张量,M上p次外微分形式的全体构成一个实数域上的无限维向量空间Ep。对外微分形式可以进行加法运算(同次外微分形式可以相加),外积运算(p次外微分形式与q次外微分形式的外积是一个(p+q)次外微分形式),还可以进行外微分运算及积分运算。在局部坐标下,外微分运算为 (3) 设ω∈Ep且dω =0,则称ω为闭形式。M上p次闭形式的全体构成Ep的一个子空间记为Zp。设ω∈Ep,且ω=dσ(σ∈Ep-1,则称ω为正合形式。正合形式一定是闭形式。M上p次正合形式的全体也构成Ep的一个子空间记为Bp,Bp嶅Zp。商空间 (4)称为p次德·拉姆上同调群(或p次上同调空间)。德·拉姆建立了微分结构与拓扑结构的一个重要关系:设M是紧致流形,则Hp(M)是有限维的,且其维数等于M的第p个贝蒂数bp。 仿紧微分流形均可赋予适当的黎曼度量(见黎曼几何学),且不是惟一的。有了黎曼度量,微分流形就有了丰富的几何内容,这时称为黎曼流形。黎曼流形是微分几何的主要的研究对象。2023-05-20 11:18:331
为什么黎曼曲率张量中只有一个是独立的
在微分几何中,黎曼曲率张量或黎曼曲率是表达黎曼流形的曲率的标准方式,更普遍的,它可以表示有仿射联络的流形的曲率 ,包括无挠率或有挠率的。2023-05-20 11:18:522
一维流形分类
流形是局部具有欧几里得空间性质的空间,在数学中用于描述几何形体。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。中文名流形外文名manifold是欧几里得空间中的曲线是局部具有欧几里得空间性质的空间快速导航定义 圆周 重要流形发展历史n维流形的概念,在J.L.Lagrange的力学中已经初见端倪,十九世纪中期,已经知道n维Euclid空间是n个实变量的连续统,但是一般n维流形的概念是B.Riemann研究微分几何学时引进的,他是用归纳法进行构造的。正如曲线的运动形成曲面一样,n维流形是把无限多个(n-1)维流形按照一维流形方式放在一起而形成的。流形的拓扑结构的研究与其局部理论的研究是同时开始的,Riemann、E.Betti、H.Poincaré等人应用的是解析方法,但是,Poincaré为了摆脱这种方法的困难与不利之处,将n维流形定义为一种连通的拓扑空间,其中每一点都具有和n维Euclid空间同胚的邻域,并对之进行研究,从而开辟了组合拓扑学的道路。定义在n维Euclid空间中,由定义的半空间用表示。Hausdorff空间M,当每点p具有与或同胚的开邻域U(p)时,称为n维拓扑流形。U(p)≈(同胚)的点p的全体∂M称为流形M的边缘,其补集称为M的内部,∂M=Φ的流形称为无边缘流形。n维流形M的边缘∂M是n-1维无边缘流形。紧的无边缘的连通流形称为闭流形,非紧的无边缘的连通流形称为开流形。存在连通的但非仿紧的拓扑流形。一维的这种流形称为长直线。[1]圆周圆周是除欧氏空间外最简单的流形。让我们考虑二维平面内一个半径为1,圆心在原点的圆(单位圆)。若x和y是平面上的欧式坐标,那么单位圆的方程就是。局部坐标卡单位圆的任意一点附近的一小段都像一条线。而线是一维的图形,我们只要一个坐标就可以标记这一小段上的一个点。例如单位圆在x轴上方的半圆上的任何一点都可以用x坐标确定。所以,存在双射Xtop,它通过简单的投影到第一个坐标(x)将圆的黄色部分映射到开区间(−1, 1):。这样的一个函数称为一个局部坐标卡(local coordinate chart)。类似的,单位圆的下半圆,左半圆,右半圆上也有相应的坐标卡。这四个半圆可以覆盖整个单位圆,我们称对应的四个局部坐标卡组成这个单位圆的一个坐标图集(atlas)。坐标变换注意上部和右部的坐标卡的重叠部分。它们的交集位于圆上x和y坐标都是正的四分之一弧上。两个图χtop 和χright 将这部分双射到区间(0, 1)。这样我们有个函数T 从(0, 1)到它自己,首先取黄色图的逆到达圆上再通过绿图回到该区间:。这样的函数称为变换映射(坐标变换)。从微积分的观点来看,圆的变换函数T只是开区间之间的函数,所以我们知道它意味着T是可微的。事实上,T在(0, 1)可微而且对于其他变换函数也是一样。所以,这个图集把圆圈变成可微流形。2023-05-20 11:18:591
黎曼球面的度量
黎曼曲面没有特定的黎曼度量。但是,黎曼曲面的复结构的确在共形等价下确定了唯一的度量。(两个度量称为共形等价,如果他们的区别只是一个正光滑函数的因子。)反过来,可定向曲面上的任意度量唯一的决定一个复结构,该结构在共形等价下依赖于该度量。因此可定向曲面的复结构和该曲面上的度量的共形类有一一对应。给定共形类,可以用共形对称性找到一个有合适属性的代表度量。精确地讲,每个共形类总是有一个常曲率完备度量。在黎曼球面的情况,高斯-博内定理表明常曲率度量必须有正的曲率K。因而该度量必须通过球极投影等度于中半径为的球面。对于黎曼球面上的ζ-图,K = 1度量可以给出如下:在实坐标ζ = u + iv中,该公式为:除了一个常数因子,该度量和复射影空间(黎曼球面就是一个特例)中的富比尼-施图迪度量一样。反过来,令S代表(作为微分流形或者拓扑流形的)球面。按照单值化定理,存在唯一的S上的复结构。由此可见,S上的度量和球面度量共形等价。所有这样的度量构成一个共形类。因此圆球度量不是黎曼球面的内在度量,因为圆形并不是共形几何的不变量。黎曼球面只是一个共形流形而非黎曼流形。但是,如果需要用到黎曼球面上的黎曼度量,圆形度量是一个很自然的选择。2023-05-20 11:19:061
谁知道 高分
介绍一本书给你,里面有你要的所有东西,当然还包括你没有问到的。《相对论》经典通读,北京出版社,书城有,要问服务员。 很好的一本书!2023-05-20 11:19:2115
8字曲线是流形吗
是。8字曲线呈流形形状,因此是。流形是局部具有欧几里得空间性质的空间,在数学中用于描述几何形体。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。2023-05-20 11:19:511
波恩哈德·黎曼这个人有多强?
波恩哈德·黎曼这个人强到黎曼的工作直接影响了19世纪后半期的数学发展。黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。黎曼首先提出用复变函数论特别是用ζ函数研究数论的新思想和新方法,开创了解析数论的新时期,并对单复变函数论的发展有深刻的影响 。他是世界数学史上最具独创精神的数学家之一,黎曼的著作不多,但却异常深刻,极富于对概念的创造与想象。他的名字出现在黎曼ζ函数、黎曼积分、黎曼引理、黎曼流形、黎曼空间、黎曼映照定理、黎曼-希尔伯特问题、柯西-黎曼方程、黎曼思路回环矩阵中。黎曼猜想:黎曼留给后人的难题之一就是著名的黎曼猜想,是希尔伯特(Hilbert)在1900年提出的二十三个问题的第八个问题,现在又被列为千禧年七大难题之一。它要求解决的是黎曼Ζeta函数ζ(s)的非平凡零点都位于复平面Re(s)=1/2直线上。数学家们把这条直线称为临界线。运用这一术语,黎曼猜想可以表述为:黎曼ζ(s)函数的所有非平凡零点都位于临界线上。2018年9月,迈克尔·阿蒂亚声明证明黎曼猜想,将于9月24日海德堡获奖者论坛上宣讲。9月24日,迈克尔·阿蒂亚贴出了他证明黎曼假设(猜想)的预印本。2023-05-20 11:19:581
怎样在张量的基础上理解高斯与黎曼的微分几何,比如说高斯的绝妙定理怎样得来?
微分几何就是坐标无关的几何,按照黎曼的说法,几何量就是在坐标变换下不变的量,正好张量就是在做表变换下形式不变,于是微分几何中张量是很常用的。高斯的绝妙定理是个什么啊,高斯定理有好多啊,你说的是Gauss-Bonnet定理么?那个是由结构方程和Stokes公式证出来的。 能说一下你在看什么书么? 具体不明白的是哪个部分?2023-05-20 11:20:162
黎曼几何和微分几何有什么区别和联系
简单的说,黎曼几何是微分几何的一个特殊情况.微分几何的研究对象是一般的微分流形,黎曼几何的研究对象是黎曼流形.黎曼流形是一种特殊的微分流形,要求流形上存在黎曼联络,一般的微分流形上则没有这样的要求.所以说,黎曼几何比微分几何的范围要窄,也相对简单一些.2023-05-20 11:20:262
黎曼几何学是谁提出的几何学理论
黎曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量 ,空间中的点可用n个实数(x1,……,xn)作为坐标来描述。这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上的几何学应基于无限邻近两点(x1,x2,……xn)与(x1+dx1,……xn+dxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。亦即 (gij)是由函数构成的正定对称矩阵。这便是黎曼度量。赋予黎曼度量的微分流形,就是黎曼流形。 黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2=Edu2+2Fdudv+Gdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。 黎曼几何以欧几里得几何和种种非欧几何作为其特例。例如:定义度量(a是常数),则当a=0时是普通的欧几里得几何,当a>0时 ,就是椭圆几何 ,而当a<0时为双曲几何。2023-05-20 11:20:461
什么是黎曼几何?
最简单的说,你看见的是平面几何,而黎曼几何,只是一种几何的假设,(黎曼几何中的很多成立的几何定理在欧几里德几何中都是伪论)它是一种你在一个球面上的所会想到的几何,还有一种,是建立在鞍面上的。三种几何再加上为欧几里德几何,应该是所有你能接触到的几何了(欧几里德几何就是我们正常情况下的平面几何)。2023-05-20 11:20:552
黎曼几何对相对论和大统一场的贡献有哪些?
曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量 ,空间中的点可用n个实数(x1,……,xn)作为坐标来描述。这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上的几何学应基于无限邻近两点(x1,x2,……xn)与(x1+dx1,……xn+dxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。(gij)是由函数构成的正定对称矩阵。这便是黎曼度量。赋予黎曼度量的微分流形,就是黎曼流形。黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2=Edu2+2Fdudv+Gdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。黎曼几何中的一个基本问题是微分形式的等价性问题。该问题大约在1869年前后由E.B.克里斯托费尔和R.李普希茨等人解决。前者的解包含了以他的姓命名的两类克里斯托费尔记号和协变微分概念。在此基础上G.里奇发展了张量分析方法,这在广义相对论中起了基本数学工具的作用。他们进一步发展了黎曼几何学。但在黎曼所处的时代,李群以及拓扑学还没有发展起来,因此黎曼几何只限于小范围的理论。大约在1925年H.霍普夫才开始对黎曼空间的微分结构与拓扑结构的关系进行了研究。随着微分流形精确概念的确立,特别是E.嘉当在20世纪20年代开创并发展了外微分形式与活动标架法,建立了李群与黎曼几何之间的联系,从而为黎曼几何的发展奠定重要基础,并开辟了广阔的园地,影响极其深远。并由此发展了线性联络及纤维丛的研究。1915年,A.爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。使黎曼几何(严格地说洛伦茨几何)及其运算方法(里奇算法)成为广义相对论研究的有效数学工具。而相对论近年的发展则受到整体微分几何的强烈影响。例如矢量丛和联络论构成规范场(杨-米尔斯场)的数学基础。1944年陈省身给出n维黎曼流形高斯-博内公式的内蕴证明,以及他关于埃尔米特流形的示性类的研究,引进了后来通称的陈示性类,为大范围微分几何提供了不可缺少的工具并为复流形的微分几何与拓扑研究开创了先河。半个多世纪,黎曼几何的研究从局部发展到整体,产生了许多深刻的结果。黎曼几何与偏微分方程、多复变函数论、代数拓扑学等学科互相渗透,相互影响,在现代数学和理论物理学中有重大作用。2023-05-20 11:21:061
什么是黎曼空间?
常曲率黎曼空间 Riemannian space of constant curvature 截面曲率为常数的黎曼流形,它包括了欧氏空间、球面、双曲空间为其特例。在曲面论中,高斯曲率K为常数的曲面局部地为球面(K>0),平面(K=0)或双曲平面(K<0)。在高维时高斯曲率的自然推广为截面曲率(见黎曼几何学)。如果黎曼流形M上任何点处的任何二维切平面,其相应的截面曲率均为常数K,则称此黎曼流形为常曲率黎曼空间。又称常曲率空间。由著名的舒尔定理知道,如果dim M≥3并且M上每处的截面曲率的数值与二维切平面的选取无关,则截面曲率也必与点的选取无关,即它必为常曲率黎曼空间。局部地,常曲率K的n维黎曼流形的黎曼曲率张量可表为此处gij为黎曼流形的度量张量,1≤i,j,k,l≤n。在适当的坐标系下它的黎曼度量为 局部地,它是n维球面(K>0)、欧氏空间(K=0)或双曲空间(K<0)。整体地说,单连通的完备常曲率空间只能是下列三种:球面、欧氏空间和双曲空间。如不单连通,则其通用覆盖流形必为上述三类之一。J.A.沃尔夫已完全解决了以球面为其通用覆盖的紧致的正常曲率空间的分类。 人们对常曲率黎曼空间感兴趣的原因在于这类黎曼流形结构简单,具有最大的对称性(即容有最大参数的运动群),直观地说,这类空间是均匀各向同性的。它也同时作为共形平坦空间、爱因斯坦空间、齐性黎曼流形或对称黎曼空间等特殊黎曼流形的一类重要的例子。把它作为模型研究清楚以后,通过与这些标准的模型进行诸如曲率等几何量的比较,从而可得到对一般黎曼流形的一系列几何和拓扑的性质。2023-05-20 11:21:131
黎曼几何空间是什么?
黎曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量 ,空间中的点可用n个实数(x1,……,xn)作为坐标来描述。这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上的几何学应基于无限邻近两点(x1,x2,……xn)与(x1+dx1,……xn+dxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。亦即 (gij)是由函数构成的正定对称矩阵。这便是黎曼度量。赋予黎曼度量的微分流形,就是黎曼流形。黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2=Edu2+2Fdudv+Gdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。黎曼几何以欧几里得几何和种种非欧几何作为其特例。例如:定义曲率(截面曲率处处为常数)(a是常数),则当a=0时是普通的欧几里得几何,当a>0时 ,就是椭圆几何,而当a<0时为双曲几何。2023-05-20 11:21:271
高中文科数学里面关于对数函数的公式有哪些?*^_^*
Zgjfcbj2023-05-20 11:21:374
数学大侠帮帮忙,什么是欧氏几何,黎曼几何,罗氏几何?
分类: 教育/科学 >> 学习帮助 问题描述: 黎曼几何与相对论有什么关系? 解析: 欧氏几何 一、欧氏几何的建立 欧氏几何是欧几里德几何学的简称,其创始人是公元前三世纪的古希腊伟大数学家欧几里德。在他以前,古希腊人已经积累了大量的几何知识,并开始用逻辑推理的方法去证明一些几何命题的结论。欧几里德这位伟大的几何建筑师在前人准备的“木石砖瓦”材料的基础上,天才般地按照逻辑系统把几何命题整理起来,建成了一座巍峨的几何大厦,完成了数学史上的光辉著作《几何原本》。这本书的问世,标志着欧氏几何学的建立。这部科学著作是发行最广而且使用时间最长的书。后又被译成多种文字,共有二千多种版本。它的问世是整个数学发展史上意义极其深远的大事,也是整个人类文明史上的里程碑。两千多年来,这部著作在几何教学中一直占据着统治地位,至今其地位也没有被动摇,包括我国在内的许多国家仍以它为基础作为几何教材。二、一座不朽的丰碑 欧几里德将早期许多没有联系和未予严谨证明的定理加以整理,写下《几何原本》一书,使几何学变成为一座建立在逻辑推理基础上的不朽丰碑。这部划时代的著作共分13卷,465个命题。其中有八卷讲述几何学,包含了现在中学所学的平面几何和立体几何的内容。但《几何原本》的意义却绝不限于其内容的重要,或者其对定理出色的证明。真正重要的是欧几里德在书中创造的一种被称为公理化的方法。 在证明几何命题时,每一个命题总是从再前一个命题推导出来的,而前一个命题又是从再前一个命题推导出来的。我们不能这样无限地推导下去,应有一些命题作为起点。这些作为论证起点,具有自明性并被公认下来的命题称为公理,如同学们所学的“两点确定一条直线”等即是。同样对于概念来讲也有些不加定义的原始概念,如点、线等。在一个数学理论系统中,我们尽可能少地先取原始概念和不加证明的若干公理,以此为出发点,利用纯逻辑推理的方法,把该系统建立成一个演绎系统,这样的方法就是公理化方法。欧几里德采用的正是这种方法。他先摆出公理、公设、定义,然后有条不紊地由简单到复杂地证明一系列命题。他以公理、公设、定义为要素,作为已知,先证明了第一个命题。然后又以此为基础,来证明第二个命题,如此下去,证明了大量的命题。其论证之精彩,逻辑之周密,结构之严谨,令人叹为观止。零散的数学理论被他成功地编织为一个从基本假定到最复杂结论的系统。因而在数学发展史上,欧几里德被认为是成功而系统地应用公理化方法的第一人,他的工作被公认为是最早用公理法建立起演绎的数学体系的典范。正是从这层意义上,欧几里德的《几何原本》对数学的发展起到了巨大而深远的影响,在数学发展史上树立了一座不朽的丰碑。 三、欧氏几何的完善 公理化方法已经几乎渗透于数学的每一个领域,对数学的发展产生了不可估量的影响,公理化结构已成为现代数学的主要特征。而作为完成公理化结构的最早典范的《几何原本》,用现代的标准来衡量,在逻辑的严谨性上还存在着不少缺点。如一个公理系统都有若干原始概念(或称不定义概念),如点、线、面就属于这一类。欧几里德对这些都做了定义,但定义本身含混不清。另外,其公理系统也不完备,许多证明不得不借助于直观来完成。此外,个别公理不是独立的,即可以由其他公理推出。这些缺陷直到1899年德国数学家希尔伯特的在其《几何基础》出版时得到了完善。在这部名著中,希尔伯特成功地建立了欧几里德几何的完整、严谨的公理体系,即所谓的希尔伯特公理体系。这一体系的建立使欧氏几何成为一个逻辑结构非常完善而严谨的几何体系。也标志着欧氏几何完善工作的终结。 -------------------------------------------------------------------- 黎曼几何 黎曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量 ,空间中的点可用n个实数(x1,……,xn)作为坐标来描述。这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上的几何学应基于无限邻近两点(x1,x2,……xn)与(x1+dx1,……xn+dxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。亦即 , (gij)是由函数构成的正定对称矩阵。这便是黎曼度量。赋予黎曼度量的微分流形,就是黎曼流形。 黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2=Edu2+2Fdudv+Gdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。 黎曼几何以欧几里得几何和种种非欧几何作为其特例。例如:定义度量(a是常数),则当a=0时是普通的欧几里得几何,当a>0时 ,就是椭圆几何 ,而当a<0时为双曲几何。 黎曼几何中的一个基本问题是微分形式的等价性问题。该问题大约在1869年前后由E.B.克里斯托费尔和R.李普希茨等人解决。前者的解包含了以他的姓命名的两类克里斯托费尔记号和协变微分概念。在此基础上G.里奇发展了张量分析方法,这在广义相对论中起了基本数学工具的作用。他们进一步发展了黎曼几何学。 但在黎曼所处的时代,李群以及拓扑学还没有发展起来,因此黎曼几何只限于小范围的理论。大约在1925年H.霍普夫才开始对黎曼空间的微分结构与拓扑结构的关系进行了研究。随着微分流形精确概念的确立,特别是E.嘉当在20世纪20年代开创并发展了外微分形式与活动标架法,建立了李群与黎曼几何之间的联系,从而为黎曼几何的发展奠定重要基础,并开辟了广阔的园地,影响极其深远。并由此发展了线性联络及纤维丛的研究。 1915年,A.爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。使黎曼几何(严格地说洛伦茨几何)及其运算方法(里奇算法)成为广义相对论研究的有效数学工具。而相对论近年的发展则受到整体微分几何的强烈影响。例如矢量丛和联络论构成规范场(杨-米尔斯场)的数学基础。 1944年陈省身给出n维黎曼流形高斯-博内公式的内蕴证明,以及他关于埃尔米特流形的示性类的研究,引进了后来通称的陈示性类,为大范围微分几何提供了不可缺少的工具并为复流形的微分几何与拓扑研究开创了先河。半个多世纪,黎曼几何的研究从局部发展到整体,产生了许多深刻的结果。黎曼几何与偏微分方程、多复变函数论、代数拓扑学等学科互相渗透,相互影响,在现代数学和理论物理学中有重大作用。 -------------------------------------------------------------------- 罗氏几何 罗式几何学的公理系统和欧式几何学不同的地方仅仅是把欧式一对分散直线在其唯一公垂线两侧无限远离几何平行公理用“从直线外一点,至少可以做两条直线和这条直线平行”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。 我们知道,罗式几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗式几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,再罗式几何中都不成立,他们都相应地含有新的意义。下面举几个例子加以说明: 欧式几何: 同一直线的垂线和斜线相交。 垂直于同一直线的两条直线或向平行。 存在相似的多边形。 过不在同一直线上的三点可以做且仅能做一个圆。 罗式几何 同一直线的垂线和斜线不一定相交。 垂直于同一直线的两条直线,当两端延长的时候,离散到无穷。 不存在相似的多边形。 过不在同一直线上的三点,不一定能做一个圆。 从上面所列举得罗式几何的一些命题可以看到,这些命题和我们所习惯的直观形象有矛盾。所以罗式几何中的一些几何事实没有象欧式几何那样容易被接受。但是,数学家们经过研究,提出可以用我们习惯的欧式几何中的事实作一个直观“模型”来解释罗式几何是正确的。 1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现。这就是说,非欧几何命题可以“翻译”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾。 人们既然承认欧几里是没有矛盾的,所以也就自然承认非欧几何没有矛盾了。直到这时,长期无人问津的非欧几何才开始获得学术界的普遍注意和深入研究,罗巴切夫斯基的独创性研究也就由此得到学术界的高度评价和一致赞美,他本人则被人们赞誉为“几何学中的哥白尼”。2023-05-20 11:21:511
三角形内角和的前世今生,有谁知道
三角形形内角和是通过平行线性质及平角定义推出来的,可以说前世为平行线性质由三角形内角和可生出多边形内角和,所以今生为多边形内角和2023-05-20 11:21:582
拜求:黎曼曲面几何有关教程
黎曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量 ,空间中的点可用n个实数(x1,……,xn)作为坐标来描述。这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上的几何学应基于无限邻近两点(x1,x2,……xn)与(x1+dx1,……xn+dxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。亦即 , (gij)是由函数构成的正定对称矩阵。这便是黎曼度量。赋予黎曼度量的微分流形,就是黎曼流形。 黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2=Edu2+2Fdudv+Gdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。 黎曼几何以欧几里得几何和种种非欧几何作为其特例。例如:定义度量(a是常数),则当a=0时是普通的欧几里得几何,当a>0时 ,就是椭圆几何 ,而当a<0时为双曲几何。 黎曼几何中的一个基本问题是微分形式的等价性问题。该问题大约在1869年前后由E.B.克里斯托费尔和R.李普希茨等人解决。前者的解包含了以他的姓命名的两类克里斯托费尔记号和协变微分概念。在此基础上G.里奇发展了张量分析方法,这在广义相对论中起了基本数学工具的作用。他们进一步发展了黎曼几何学。 但在黎曼所处的时代,李群以及拓扑学还没有发展起来,因此黎曼几何只限于小范围的理论。大约在1925年H.霍普夫才开始对黎曼空间的微分结构与拓扑结构的关系进行了研究。随着微分流形精确概念的确立,特别是E.嘉当在20世纪20年代开创并发展了外微分形式与活动标架法,建立了李群与黎曼几何之间的联系,从而为黎曼几何的发展奠定重要基础,并开辟了广阔的园地,影响极其深远。并由此发展了线性联络及纤维丛的研究。 1915年,A.爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。使黎曼几何(严格地说洛伦兹几何)及其运算方法(里奇算法)成为广义相对论研究的有效数学工具。而相对论近年的发展则受到整体微分几何的强烈影响。例如矢量丛和联络论构成规范场(杨-米尔斯场)的数学基础。 1944年陈省身给出n维黎曼流形高斯-博内公式的内蕴证明,以及他关于埃尔米特流形的示性类的研究,引进了后来通称的陈示性类,为大范围微分几何提供了不可缺少的工具并为复流形的微分几何与拓扑研究开创了先河。半个多世纪,黎曼几何的研究从局部发展到整体,产生了许多深刻的结果。黎曼几何与偏微分方程、多复变函数论、代数拓扑学等学科互相渗透,相互影响,在现代数学和理论物理学中有重大作用。黎曼猜想,即素数的分布最终归结为如下所谓的黎曼ζ函数:∞ 1 ζ(z)= ∑ ——— ,z=x+iy n=1 nz 的零点问题,他做出这样的猜想:ζ(z)函数位于0≤x≤1之间的全部零点都在x=1/2之上,即零点的实部都是1/2,这至今仍是未解决的问题。2023-05-20 11:22:171
什么是黎曼叶
黎曼函数 下面这样定义的函数称为黎曼函数: R(x)=0,如果x=0,1或(0,1)内的无理数; R(x)=1/q,如果x=p/q(p/q为即约真分数),即x为(0,1)内的有理数; 此函数是一个特殊函数,由德国数学家黎曼发现提出,在高等数学中被广泛应用,在很多情况下可以作为反例来验证某些函数方面的待证命题。 此函数在微积分中有着重要应用。 1826年9月17日,黎曼生于德国北部汉诺威的布雷塞伦茨村,父亲是一个乡村的穷苦牧师。他六岁开始上学,14岁进入大学预科学习,19岁按其父亲的意愿进入哥廷根大学攻读哲学和神学,以便将来继承父志也当一名牧师。 由于从小酷爱数学,黎曼在学习哲学和神学的同时也听些数学课。当时的哥廷根大学是世界数学的中心之一,—些著名的数学家如高斯、韦伯、斯特尔都在校执教。黎曼被这里的数学教学和数学研究的气氛所感染,决定放弃神学,专攻数学。 1847年,黎曼转到柏林大学学习,成为雅可比、狄利克莱、施泰纳、艾森斯坦的学生。1849年重回哥廷根大学攻读博士学位,成为高斯晚年的学生。 l851年,黎曼获得数学博士学位;l854年被聘为哥廷根大学的编外讲师;1857年晋升为副教授;1859年接替去世的狄利克雷被聘为教授。 因长年的贫困和劳累,黎曼在1862年婚后不到一个月就开始患胸膜炎和肺结核,其后四年的大部分时间在意大利治病疗养。1866年7月20日病逝于意大利,终年39岁。 黎曼是世界数学史上最具独创精神的数学家之一。黎曼的著作不多,但却异常深刻,极富于对概念的创造与想象。黎曼在其短暂的一生中为数学的众多领域作了许多奠基性、创造性的工作,为世界数学建立了丰功伟绩。 复变函数论的奠基人 19世纪数学最独特的创造是复变函数理论的创立,它是18世纪人们对复数及复函数理论研究的延续。1850年以前,柯西、雅可比、高斯、阿贝尔、维尔斯特拉斯已对单值解析函数的理论进行了系统的研究,而对于多值函数仅有柯西和皮瑟有些孤立的结论。 1851年,黎曼在高斯的指导下完成题为《单复变函数的一般理论的基础》的博士论文,后来又在《数学杂志》上发表了四篇重要文章,对其博士论文中思想的做了进一步的阐述,一方面总结前人关于单值解析函数的成果,并用新的工具予以处理,同时创立多值解析函数的理论基础,并由此为几个不同方向的进展铺平了道路。 柯西、黎曼和维尔斯特拉斯是公认的复变函数论的主要奠基人,而且后来证明在处理复函数理论的方法上黎曼的方法是本质的,柯西和黎曼的思想被融合起来,维尔斯特拉斯的思想可以从柯西—黎曼的观点推导出来。 在黎曼对多值函数的处理中,最关键的是他引入了被后人称“黎曼面”的概念。通过黎曼面给多值函数以几何直观,且在黎曼面上表示的多值函数是单值的。他在黎曼面上引入支点、横剖线、定义连通性,开展对函数性质的研究获得一系列成果。 经黎曼处理的复函数,单值函数是多值函数的待例,他把单值函数的一些已知结论推广到多值函数中,尤其他按连通性对函数分类的方法,极大地推动了拓扑学的初期发展。他研究了阿贝尔函数和阿贝尔积分及阿贝尔积分的反演,得到著名的黎曼—罗赫定理,首创的双有理变换构成19世纪后期发展起来的代数几何的主要内容。 黎曼为完善其博士论文,在结束时给出其函数论在保形映射的几个应用,将高斯在1825年关于平面到平面的保形映射的结论推广到任意黎曼面上,并在文字的结尾给出著名的黎曼映射定理。 黎曼几何的创始人 黎曼对数学最重要的贡献还在于几何方面,他开创的高维抽象几何的研究,处理几何问题的方法和手段是几何史上一场深刻的革命,他建立了一种全新的后来以其名字命名的几何体系,对现代几何乃至数学和科学各分支的发展都产生了巨大的影响。 1854年,黎曼为了取得哥廷根大学编外讲师的资格,对全体教员作了一次演讲,该演讲在其逝世后的两年(1868年)以《关于作为几何学基础的假设》为题出版。演讲中,他对所有已知的几何,包括刚刚诞生的非欧几何之一的双曲几何作了纵贯古今的概要,并提出一种新的几何体系,后人称为黎曼几何。 为竞争巴黎科学院的奖金,黎曼在1861年写了一篇关于热传导的文章,这篇文章后来被称为他的“巴黎之作”。文中对他1854年的文章作了技术性的加工,进一步阐明其几何思想。该文在他死后收集在1876年他的《文集》中。 黎曼主要研究几何空间的局部性质,他采用的是微分几何的途径,这同在欧几里得几何中或者在高斯、波尔约和罗巴切夫斯基的非欧几何中把空间作为一个整体进行考虑是对立的。黎曼摆脱高斯等前人把几何对象局限在三维欧几里得空间的曲线和曲面的束缚,从维度出发,建立了更一般的抽象几何空间。 黎曼引入流形和微分流形的概念,把维空间称为一个流形,维流形中的一个点可以用个可变参数的一组特定值来表示,而所有这些点的全体构成流形本身,这个可变参数称为流形的坐标,而且是可微分的,当坐标连续变化时,对应的点就遍历这个流形。 黎曼仿照传统的微分几何定义流形上两点之间的距离、流形上的曲线、曲线之间的夹角。并以这些概念为基础,展开对维流形几何性质的研究。在维流形上他也定义类似于高斯在研究一般曲面时刻划曲面弯曲程度的曲率。他证明他在维流形上维数等于三时,欧几里得空间的情形与高斯等人得到的结果是一致的,因而黎曼几何是传统微分几何的推广。 黎曼发展了高斯关于一张曲面本身就是一个空间的几何思想,开展对维流形内蕴性质的研究。黎曼的研究导致另一种非欧几何——椭圆几何学的诞生。 在黎曼看来,有三种不同的几何学。它们的差别在于通过给定一点做关于定直线所作平行线的条数。如果只能作一条平行线,即为熟知的欧几里得几何学;如果一条都不能作,则为椭圆几何学;如果存在一组平行线,就得到第三种几何学,即罗巴切夫斯基几何学。黎曼因此继罗巴切夫斯基以后发展了空间的理论,使得一千多年来关于欧几里得平行公理的讨论宣告结束。他断言,客观空间是一种特殊的流形,预见具有某种特定性质的流形的存在性。这些逐渐被后人一一予以证实。 由于黎曼考虑的对象是任意维数的几何空间,对复杂的客观空间有更深层的实用价值。所以在高维几何中,由于多变量微分的复杂性,黎曼采取了一些异于前人的手段使表述更简洁,并最终导致张量、外微分及联络等现代几何工具的诞生。爱因斯坦就是成功地以黎曼几何为工具,才将广义相对论几何化。现在,黎曼几何已成为现代理论物理必备的数学基础。 微积分理论的创造性贡献 黎曼除对几何和复变函数方面的开拓性工作以外,还以其对l9世纪初兴起的完善微积分理论的杰出贡献载入史册。 18世纪末到l9世纪初,数学界开始关心数学最庞大的分支——微积分在概念和证明中表现出的不严密性。波尔查诺、柯西、阿贝尔、狄利克莱进而到维尔斯特拉斯,都以全力的投入到分析的严密化工作中。黎曼由于在柏林大学从师狄利克莱研究数学,且对柯西和阿贝尔的工作有深入的了解,因而对微积分理论有其独到的见解。 1854年黎曼为取得哥廷根大学编外讲师的资格,需要他递交一篇反映他学术水平的论文。他交出的是《关于利用三角级数表示一个函数的可能性的》文章。这是一篇内容丰富、思想深刻的杰作,对完善分析理论产生深远的影响。 柯西曾证明连续函数必定是可积的,黎曼指出可积函数不一定是连续的。关于连续与可微性的关系上,柯西和他那个时代的几乎所有的数学家都相信,而且在后来50年中许多教科书都“证明”连续函数一定是可微的。黎曼给出了一个连续而不可微的著名反例,最终讲清连续与可微的关系。 黎曼建立了如现在微积分教科书所讲的黎曼积分的概念,给出了这种积分存在的必要充分条件。 黎曼用自己独特的方法研究傅立叶级数,推广了保证博里叶展开式成立的狄利克莱条件,即关于三角级数收敛的黎曼条件,得出关于三角级数收敛、可积的一系列定理。他还证明:可以把任一条件收敛的级数的项适当重排,使新级数收敛于任何指定的和或者发散。 解析数论跨世纪的成果 19世纪数论中的一个重要发展是由狄利克莱开创的解析方法和解析成果的导入,而黎曼开创了用复数解析函数研究数论问题的先例,取得跨世纪的成果。 1859年,黎曼发表了《在给定大小之下的素数个数》的论文。这是一篇不到十页的内容极其深到的论文,他将素数的分布的问题归结为函数的问题,现在称为黎曼函数。黎曼证明了函数的一些重要性质,并简要地断言了其它的性质而未予证明。 在黎曼死后的一百多年中,世界上许多最优秀的数学家尽了最大的努力想证明他的这些断言,并在作出这些努力的过程中为分析创立了新的内容丰富的新分支。如今,除了他的一个断言外,其余都按黎曼所期望的那样得到了解决。 那个未解决的问题现称为“黎曼猜想”,即:在带形区域中的一切零点都位于去这条线上(希尔伯特23个问题中的第8个问题),这个问题迄今没有人证明。对于某些其它的域,布尔巴基学派的成员已证明相应的黎曼猜想。数论中很多问题的解决有赖于这个猜想的解决。黎曼的这一工作既是对解析数论理论的贡献,也极大地丰富了复变函数论的内容。 组合拓扑的开拓者 在黎曼博士论文发表以前,已有一些组合拓扑的零散结果,其中著名的如欧拉关于闭凸多面体的顶点、棱、面数关系的欧拉定理。还有一些看起来简单又长期得不到解决的问题:如哥尼斯堡七桥问题、四色问题,这些促使了人们对组合拓扑学(当时被人们称为位置几何学或位置分析学)的研究。但拓扑研究的最大推动力来自黎曼的复变函数论的工作。 黎曼在1851年他的博士论文中,以及在他的阿贝尔函数的研究里都强调说,要研究函数,就不可避免地需要位置分析学的一些定理。按现代拓扑学术语来说,黎曼事实上已经对闭曲面按亏格分类。值得提到的是,在其学位论文中,他说到某些函数的全体组成(空间点的)连通闭区域的思想是最早的泛函思想。 比萨大学的数学教授贝蒂曾在意大利与黎曼相会,黎曼由于当时病魔缠身,自身已无能力继续发展其思想,把方法传授给了贝蒂。贝蒂把黎曼面的拓扑分类推广到高维图形的连通性,并在拓扑学的其他领域作出杰出的贡献。黎曼是当之无愧的组合拓扑的先期开拓者。 代数几何的开源贡献 19世纪后半叶,人们对黎曼研究阿贝尔积分和阿贝尔函数所创造的双有理变换的方法产生极大的兴趣。当时他们把代数不变量和双有理变换的研究称为代数几何。 黎曼在1857年的论文中认为,所有能彼此双有理变换的方程(或曲面)属于同一类,它们有相同的亏格。黎曼把常量的个数叫做“类模数”,常量在双有理变换下是不变量。“类模数”的概念是现在“参模”的特殊情况,研究参模上的结构是现代最热门的领域之一。 著名的代数几何学家克莱布什后来到哥廷根大学担任数学教授,他进一步熟悉了黎曼的工作,并对黎曼的工作给予新的发展。虽然黎曼英年早逝,但世人公认,研究曲线的双有理变换的第一个大的步骤是由黎曼的工作引起的。 在数学物理、微分方程等其他领域的丰硕成果 黎曼不但对纯数学作出了划时代的贡献,他也十分关心物理及数学与物理世界的关系,他写了一些关于热、光、磁、气体理论、流体力学及声学方面的有关论文。他是对冲击波作数学处理的第一个人,他试图将引力与光统一起来,并研究人耳的数学结构。他将物理问题抽象出的常微分方程、偏微分方程进行定论研究得到一系列丰硕成果。 黎曼在1857年的论文《对可用高斯级数表示的函数的理论的补充》,及同年写的一个没有发表而后收集在其全集中的一个片断中,他处理了超几何微分方程和讨论带代数系数的阶线性微分方程。这是关于微分方程奇点理论的重要文献。 19世纪后半期,许多数学家花了很多精力研究黎曼问题,然而都失败了,直到1905年希尔伯特和Kellogg借助当时已经发展了的积分方程理论,才第一次给出完全解。 黎曼在常微分方程理论中自守函数的研究上也有建树,在他的1858~1859年关于超几何级数的讲义和1867年发表的关于极小正曲面的一篇遗著中,他建立了为研究二阶线性微分方程而引进的自守函数理论,即现在通称的黎曼——许瓦兹定理。 在偏微分方程的理论和应用上,黎曼在1858年~1859年论文中,创造性的提出解波动方程初值问题的新方法,简化了许多物理问题的难度;他还推广了格林定理;对关于微分方程解的存在性的狄里克莱原理作了杰出的工作,…… 黎曼在物理学中使用的偏微分方程的讲义,后来由韦伯以《数学物理的微分方程》编辑出版,这是一本历史名著。 不过,黎曼的创造性工作当时未能得到数学界的一致公认,一方面由于他的思想过于深邃,当时人们难以理解,如无自由移动概念非常曲率的黎曼空间就很难为人接受,直到广义相对论出现才平息了指责;另一方面也由于他的部分工作不够严谨,如在论证黎曼映射定理和黎曼—罗赫定理时,滥用了狄利克雷原理,曾经引起了很大的争议。 黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。2023-05-20 11:22:232
谁能讲解一下黎曼几何中纤维丛和联络的概念呢
黎曼几何 黎曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量 ,空间中的点可用n个实数(x1,……,xn)作为坐标来描述。这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上的几何学应基于无限邻近两点(x1,x2,……xn)与(x1+dx1,……xn+dxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。亦即 , (gij)是由函数构成的正定对称矩阵。这便是黎曼度量。赋予黎曼度量的微分流形,就是黎曼流形。 黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2=Edu2+2Fdudv+Gdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。 黎曼几何以欧几里得几何和种种非欧几何作为其特例。例如:定义度量(a是常数),则当a=0时是普通的欧几里得几何,当a>0时 ,就是椭圆几何 ,而当a<0时为双曲几何。 黎曼几何中的一个基本问题是微分形式的等价性问题。该问题大约在1869年前后由E.B.克里斯托费尔和R.李普希茨等人解决。前者的解包含了以他的姓命名的两类克里斯托费尔记号和协变微分概念。在此基础上G.里奇发展了张量分析方法,这在广义相对论中起了基本数学工具的作用。他们进一步发展了黎曼几何学。 但在黎曼所处的时代,李群以及拓扑学还没有发展起来,因此黎曼几何只限于小范围的理论。大约在1925年H.霍普夫才开始对黎曼空间的微分结构与拓扑结构的关系进行了研究。随着微分流形精确概念的确立,特别是E.嘉当在20世纪20年代开创并发展了外微分形式与活动标架法,建立了李群与黎曼几何之间的联系,从而为黎曼几何的发展奠定重要基础,并开辟了广阔的园地,影响极其深远。并由此发展了线性联络及纤维丛的研究。 1915年,A.爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。使黎曼几何(严格地说洛伦兹几何)及其运算方法(里奇算法)成为广义相对论研究的有效数学工具。而相对论近年的发展则受到整体微分几何的强烈影响。例如矢量丛和联络论构成规范场(杨-米尔斯场)的数学基础。 1944年陈省身给出n维黎曼流形高斯-博内公式的内蕴证明,以及他关于埃尔米特流形的示性类的研究,引进了后来通称的陈示性类,为大范围微分几何提供了不可缺少的工具并为复流形的微分几何与拓扑研究开创了先河。半个多世纪,黎曼几何的研究从局部发展到整体,产生了许多深刻的结果。黎曼几何与偏微分方程、多复变函数论、代数拓扑学等学科互相渗透,相互影响,在现代数学和理论物理学中有重大作用。 黎曼猜想,即素数的分布最终归结为如下所谓的黎曼ζ函数: ∞ 1 ζ(z)= ∑ ——— ,z=x+iy n=1 nz 的零点问题,他做出这样的猜想:ζ(z)函数位于0≤x≤1之间的全部零点都在x=1/2之上,即零点的实部都是1/2,这至今仍是未解决的问题。 黎曼几何和欧氏几何的不同功能 在数学界,欧氏几何仍占主流;而物理界,则用的是黎曼几何。 因为据黎曼几何,光线按曲线运动;而欧氏几何中,光线按直线运动。2023-05-20 11:22:321
欧式空间诱导的球面上的度量
01:欧几里德空间(Euclidean Space),简称为欧氏空间(也可以称为:平直空间),在数学中是对欧几里德所研究的2维和3维空间的一般化。这个一般化把欧几里德对于距离、以及相关的概念长度和角度,转换成任意数维的坐标系。 这是有限维、实和内积空间的“标准”例子。 欧氏空间是一个特别的度量空间,它使得我们能够对其的拓扑性质,例如紧性加以调查。内积空间是对欧氏空间的一般化。内积空间和度量空间都在泛函分析中得到了探讨。 欧几里德空间在对包含了欧氏几何和非欧几何的流形的定义上发挥了作用。一个定义距离函数的数学动机是为了定义空间中围绕点的开球。这一基本的概念正当化了在欧氏空间和其他流形之间的微分。微分几何把微分,会同导入机动性手法,局部欧氏空间,探讨了非欧氏流形的许多性质。 当一个线性空间定义了内积运算之后它就成为了欧几里德空间。02:黎曼空间 常曲率黎曼空间 Riemannian space of constant curvature 截面曲率为常数的黎曼流形,它包括了欧氏空间、球面、双曲空间为其特例。在曲面论中,高斯曲率K为常数的曲面局部地为球面(K>0),平面(K=0)或双曲平面(K 局部地,它是n维球面(K>0)、欧氏空间(K=0)或双曲空间(K 人们对常曲率黎曼空间感兴趣的原因在于这类黎曼流形结构简单,具有最大的对称性(即容有最大参数的运动群),直观地说,这类空间是均匀各向同性的。它也同时作为共形平坦空间、爱因斯坦空间、齐性黎曼流形或对称黎曼空间等特殊黎曼流形的一类重要的例子。把它作为模型研究清楚以后,通过与这些标准的模型进行诸如曲率等几何量的比较,从而可得到对一般黎曼流形的一系列几何和拓扑的性质。2023-05-20 11:22:391
有谁知道“拓扑流形”的准确定义吗
流形(Manifold),一般可以认为是局部具有欧氏空间性质的空间。 而实际上欧氏空间就是流形最简单的实例。像地球表面这样的球面是一个稍为复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。流形在数学中用于描述几何形体,它们提供了研究可微性的最自然的舞台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。他们也用于组态空间(configuration space)。环(torus)就是双摆的组态空间。如果把几何形体的拓扑结构看作是完全柔软的,因为所有变形(同胚)会保持拓扑结构不变,而把解析簇看作是硬的,因为整体的结构都是固定的(譬如一个1维多项式,如果你知道(0,1)区间的取值,则整个实属范围的值都是固定的,局部的扰动会导致全局的变化),那么我们可以把光滑流形看作是介于两者之间的形体,其无穷小的结构是硬的,而整体结构是软的。这也许是中文译名流形的原因(整体的形态可以流动),该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理上的模型。最容易定义的流形是拓扑流形,它局部看起来象一些"普通"的欧氏空间Rn。形式化的讲,一个拓扑流形是一个局部同胚于一个欧氏空间的拓扑空间。这表示每个点有一个领域,它有一个同胚(连续双射其逆也连续)将它映射到Rn。这些同胚是流形的坐标图。通常附加的技术性假设被加在该拓扑空间上,以排除病态的情形。可以根据需要要求空间是豪斯朵夫的并且第二可数。这表示下面所述的有两个原点的直线不是拓扑流形,因为它不是豪斯朵夫的。流形在某一点的维度就是该点映射到的欧氏空间图的维度(定义中的数字n)。连通流形中的所有点有相同的维度。有些作者要求拓扑流形的所有的图映射到同一欧氏空间。这种情况下,拓扑空间有一个拓扑不变量,也就是它的维度。其他作者允许拓扑流形的不交并有不同的维度。2023-05-20 11:22:471
黎曼空间是什么
常曲率黎曼空间Riemannian space of constant curvature 截面曲率为常数的黎曼流形,它包括了欧氏空间、球面、双曲空间为其特例。在曲面论中,高斯曲率K为常数的曲面局部地为球面(K>0),平面(K=0)或双曲平面(K<0)。在高维时高斯曲率的自然推广为截面曲率(见黎曼几何学)。如果黎曼流形M上任何点处的任何二维切平面,其相应的截面曲率均为常数K,则称此黎曼流形为常曲率黎曼空间。又称常曲率空间。由著名的舒尔定理知道,如果dim M≥3并且M上每处的截面曲率的数值与二维切平面的选取无关,则截面曲率也必与点的选取无关,即它必为常曲率黎曼空间。局部地,常曲率K的n维黎曼流形的黎曼曲率张量可表为此处gij为黎曼流形的度量张量,1≤i,j,k,l≤n。在适当的坐标系下它的黎曼度量为局部地,它是n维球面(K>0)、欧氏空间(K=0)或双曲空间(K<0)。整体地说,单连通的完备常曲率空间只能是下列三种:球面、欧 展现黎曼空间的埃舍尔画作《画廊》氏空间和双曲空间。如不单连通,则其通用覆盖流形必为上述三类之一。J.A.沃尔夫已完全解决了以球面为其通用覆盖的紧致的正常曲率空间的分类。2023-05-20 11:22:541