汉邦问答 / 问答 / 问答详情

考博中有“矩阵论”,不知和大学时学的矩阵有区别吗?

2023-05-20 08:56:06
TAG: 矩阵
北境漫步

矩阵论是大学时矩阵的拓展。

矩阵轮的基本内容包括:线性空间与线性算子,内积空间与等积变换,λ矩陈与若尔当标准形,赋范线性空间与矩阵范数,矩阵的微积分运算及其应用,广义逆矩阵及其应用,矩阵的分解,矩阵的克罗内克积、阿达马积与反积,几类特殊矩阵(如:非负矩阵与正矩阵、循环矩阵与素矩阵、随机矩阵和双随机矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉大象尔矩阵等),辛空间与辛矩阵等内容。

下面是2013年清华大学出版社出版的《矩阵论》目录:

上篇

第1章线性空间上的线性算子3

1.1线性空间3

1.1.1线性空间的定义及基本性质3

1.1.2基、维数与坐标8

*1.1.3线性子空间15

习题1.121

1.2线性算子及其矩阵24

1.2.1线性空间上的线性算子24

1.2.2同构算子与线性空间同构27

1.2.3线性算子的矩阵表示29

1.2.4线性算子的运算31

1.2.5线性变换与方阵34

1.2.6线性变换的特征值问题42

*1.2.7线性变换的不变子空间54

习题1.256

第2章内积空间上的等积变换62

2.1内积空间62

2.1.1内积与欧几里得空间63

2.1.2酉空间介绍73

习题2.174

2.2等积变换及其矩阵77

2.2.1正交变换与正交矩阵78

2.2.2两类常用的正交变换及其矩阵85

*2.2.3酉变换与酉矩阵介绍95

*2.2.4正交投影变换与正交投影矩阵96

习题2.2101

*2.3埃尔米特变换及其矩阵103

2.3.1对称变换与埃尔米特变换103

2.3.2埃尔米特正定、半正定矩阵106

2.3.3矩阵不等式109

2.3.4埃尔米特矩阵特征值的性质111

2.3.5一般的复正定矩阵114

2.3.6正规矩阵115

习题2.3117

第3章λ矩阵与若尔当标准形119

3.1λ矩阵119

3.1.1λ矩阵的概念119

3.1.2λ矩阵在相抵下的标准形122

3.1.3不变因子与初等因子124

3.2若尔当标准形136

3.2.1数字矩阵化为相似的若尔当标准形136

3.2.2若尔当标准形的应用147

3.3凯莱哈密顿定理与最小多项式149

习题3155

第4章赋范线性空间与矩阵范数158

4.1赋范线性空间158

4.1.1向量的范数158

4.1.2向量范数的性质165

习题4.1167

4.2矩阵的范数168

4.2.1矩阵范数的定义与性质168

4.2.2算子范数170

4.2.3谱范数的性质和谱半径176

习题4.2179

4.3摄动分析与矩阵的条件数180

4.3.1病态方程组与病态矩阵181

4.3.2矩阵的条件数181

*4.3.3矩阵特征值的摄动分析185

习题4.3189

第5章矩阵分析及其应用192

5.1向量序列和矩阵序列的极限192

5.1.1向量序列的极限192

5.1.2矩阵序列的极限194

5.2矩阵级数与矩阵函数198

5.2.1矩阵级数198

5.2.2矩阵函数206

5.3函数矩阵的微分和积分216

5.3.1函数矩阵对实变量的导数217

5.3.2函数矩阵特殊的导数221

5.3.3矩阵的全微分226

5.3.4函数矩阵的积分228

*5.4矩阵微分方程229

5.4.1常系数齐次线性微分方程组的解229

5.4.2常系数非齐次线性微分方程组的解236

5.4.3n阶常系数微分方程的解239

习题5244

下篇

第6章广义逆矩阵及其应用251

6.1矩阵的几种广义逆251

6.1.1广义逆矩阵的基本概念251

6.1.2减号逆A-252

6.1.3自反减号逆A-r256

6.1.4最小范数广义逆A-m262

6.1.5最小二乘广义逆A-l265

6.1.6加号逆A+267

6.2广义逆在解线性方程组中的应用273

6.2.1线性方程组求解问题的提法274

6.2.2相容方程组的通解与A-274

6.2.3相容方程组的极小范数解与A-m277

6.2.4矛盾方程组的最小二乘解与A-l281

6.2.5线性方程组的极小最小二乘解与A+286

习题6288

第7章矩阵分解291

7.1矩阵的三角分解291

7.1.1消元过程的矩阵描述291

7.1.2矩阵的三角分解295

7.1.3常用的三角分解公式300

7.2矩阵的QR(正交三角)分解306

7.2.1QR分解的概念306

7.2.2QR分解的实际求法309

7.3矩阵的最大秩分解316

7.4奇异值分解与谱分解320

7.4.1矩阵的奇异值分解320

7.4.2单纯矩阵的谱分解324

习题7326

第8章几类特殊矩阵330

8.1非负矩阵330

8.1.1非负矩阵与正矩阵330

8.1.2不可约非负矩阵336

8.1.3素矩阵与循环矩阵342

8.2随机矩阵与双随机矩阵343

8.3单调矩阵346

8.4M矩阵与H矩阵348

8.4.1M矩阵348

8.4.2H矩阵353

8.5T矩阵与汉克尔矩阵354

习题8357

第9章矩阵的特殊积及其应用358

9.1克罗内克积358

9.1.1克罗内克积的概念358

9.1.2克罗内克积的性质359

9.2阿达马积364

9.3反积及非负矩阵的阿达马积366

9.4克罗内克积应用举例366

9.4.1矩阵的拉直367

9.4.2线性矩阵方程的解368

习题9370

第10章辛空间与辛变换简介371

10.1反对称双线性函数与辛空间372

10.1.1反对称双线性函数372

10.1.2线性函数的外积372

10.1.3辛空间的定义373

10.2子空间的反对称正交补374

10.2.1反对称正交补374

10.2.2几种特殊的子空间378

10.2.3辛空间的性质379

10.2.4辛基379

10.3辛变换与辛矩阵380

10.3.1辛变换及其矩阵380

10.3.2辛变换的特征值383

10.4辛对合385

习题10390

韦斯特兰
矩阵论 是本科线性代数学科的扩展和提升!

一、课程目的与要求

通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。

本课程要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。

二、课程内容及学时安排

一、线性空间与线性变换式
1. 理解线性空间的概念,掌握基变换与坐标变换的公式;
2. 掌握子空间与维数定理,了解线性空间同构的含义;
3. 理解线性变换的概念,掌握线性变换的矩阵表示。(不变子空间不作要求)

二、内积空间

1. 理解内积空间的概念,掌握正交基及子空间的正交关系;
2. 了解内积空间的同构的含义,掌握判断正交变换的判定方法;
3. 理解酋空间的概念,会判定一个空间是否为酋空间的方法,掌握酋空间与实内积空间的异同;
4. 掌握正规矩阵的概念及判定定理和性质,理解厄米特二次型的含义。
三、矩阵的标准形与若干分解形式
1. 掌握矩阵相似对角化的判别方法;会求矩阵的约当标准形;
2. 掌握哈密顿—开莱定理,会求矩阵的最小多项式;
3. 会求史密斯标准形;
4. 掌握多项式矩阵的互质性与既约性的判别方法,会求有理分式矩阵的标准形及其仿分式分解;
5. 了解舒尔定理及矩阵的QR分解与奇异值分解。

四、矩阵函数及其应用

1. 理解向量范数、矩阵范数及向量和矩阵的极限的概念;
2. 掌握矩阵幂级数收敛的判定方法,会求矩阵函数;
3. 会求矩阵的微分与积分;
4. 了解矩阵函数在线性系统理论中的应用。

三、教材及主要参考书
[1]罗家洪,矩阵分析引论,华南理工大学出版社,2002。
[2]北京大学数学系,高等代数,人民教育出版设,1978。
[3]陈公宁,矩阵理论与应用,高等教育出版社,1990。

http://swuni.shnet.edu.cn/wsUni/html/yanlessons/36.htm
肖振

相差不很大。你问问你导师。考博必须找导师,他会给你辅导的。

数学不及格的天才数学家-埃尔米特(Hermite)

埃尔米特(Charles Hermite,1822—1901) 法国数学家。巴黎综合工科学校毕业。曾任法兰西学院、巴黎高等师范学校、巴黎大学教授。法兰西科学院院士。在函数论、高等代数、微分方程等方面都有重要发现。1858年利用椭圆函数首先得出五次方程的解。1873年证明了自然对数的底e的超越性。在现代数学各分支中以他姓氏命名的概念(表示某种对称性)很多,如「 ”埃尔米特二次型”、「 ”埃尔米特算子”等。 埃尔米特是十九世纪最伟大的代数几何学家,但是他大学入学考试重考了五次,每次失败的因都是数学考不好。他的大学读到几乎毕不了业,每次考不好都是为了数学那一科。他大学毕业后考不上任何研究所,因为考不好的科目还是数学。数学是他一生的至爱,但是数学考试是他一生的恶梦。不过这无法改变他的伟大:课本上的「 ”共轭矩阵”是他先提出来的;人类一千多年来解不出「 ”五次方程式的通解”,是他先解出来的;自然对数的底的「 ”超越数性质”,在全世界,他是第一个证明出来的人。他的一生证明「 ”一个不会考试的人,仍然能有胜出的人生”,并且更奇妙的是不会考试成为他一生的祝福。怎么会这样呢?嗯……也许能在本文中找到答案喔! 革命家的血统 翻开欧洲的地图,在法国的东北角嵌着一块小小的版图,名叫洛林(Lorraine)。这个地方自古以来就是兵家必争之地,因为北扼莱茵河口,南由马恩河(Marne River)可以直捣巴黎;濒临的阿登高地(Ardennes)是军事制高点;地层中蕴藏欧洲最大的铁矿。早在神圣罗马帝国时代,洛林草场上就染满骑士的鲜血。1871年德国的铁血雄兵蹂躏法国后,要求法国割让的土地就是洛林。经过百年来战争的洗礼,洛林留下来的是一批苦干、达观的法国人,足能面对环境的苦难。埃尔米特1822年12月24日出生在洛林的小村庄Dieuge,他的父祖辈都参与了法国大革命。祖父被大革命后的极端政治团体巴黎公社(Commune)逮捕,后来死于狱中。有些亲人死在断头台上。他的父亲是杰出的冶矿工程师,因为被公社通缉,逃到法国边界的洛林小村庄,在一家铁矿场中隐姓埋名做矿工。铁矿场的主人叫雷利曼(Lallemand),一个标准强悍的洛林人,有一个比他更强悍的女儿玛德琳(Madeleine)。在那个保守的时代,玛德琳就以「 ”敢在户外穿长裤 *** 裙子”而著名,凶悍地管理矿工。但是一遇到这位巴黎来的工程师,她就软化了,明知对方是死刑通缉犯还是嫁给他,而且为他生了七个孩子。埃尔米特在七个孩子中排名第五,生下来右脚就残障,需扶拐杖行走。他身上一半流着父亲优秀聪明、理想奋斗的血液,一半流着母亲敢作敢为、敢爱敢恨的洛林强悍血统,谱成不凡生涯的第一个升记号。 从大师认识数学之美 埃尔米特从小就是个问题学生,上课时老爱找老师辩论,尤其是一些基本的问题。他尤其痛恨考试。他在后来的文章中写道:「 ”学问像大海,考试像鱼钩。老师老要把鱼挂在鱼钩上,教鱼怎么能在大海中学会自由、平衡的游泳?”老师看他考不好,就用木条打他的脚,他恨死了。他后来写道:「 ”达到教育的目的是用头脑,又不是用脚。打脚有什么用?打脚可以使人头脑更聪明吗?”他的数学考得特别差,主要原因是他的数学特别好。他讲的话更让数学老师抓狂。他说:「 ”数学课本是一滩臭水,是一堆垃圾。数学成绩好的人,都是一些二流头脑的人,因为他们只懂搬垃圾。”他自命为一流的科学狂人。不过他讲的也没错,历史上最伟大的数学家大多是文学、外交、工程、军事等与数学不相干的科系出身的。埃尔米特花许多时间去看数学大师,如牛顿、高斯的原著。他认为只有在那里才能找到「 ”数学的美,是回到基本点的辩论,那里才能饮到数学兴奋的源头。”他在年老时,回顾少年时的轻狂,写道:「 ”传统的数学教育,要学生按部就班地、一步一步地学习,训练学生把数学应用到工程或商业上,因此,不重视启发学生的开创性。但是数学有它本身抽象逻辑的美,例如在解决多次方方程式里,根的存在本身就是一种美感。数学存在的价值,不只是为了生活上的应用,也不应沦为供工程、商业应用的工具。数学的突破仍需要不断地去突破现有格局。” 父母的支持 埃尔米特的表现让父母忧心。父母但求他能把书念好,再多的钱也愿意付出,就把他送到巴黎的路易大帝中学(Louis-le-Grand)。因着超卓的数学天份,他无法把自己塞入数学教育的窠臼,但是为了顺父母的意,又必须每天面对那些细微繁琐的计算,以致痛苦得不得了。这位孝顺的天才,似乎注定终生的自我折磨。巴黎综合工科技术学院(Polytechnique)入学考每年举行两次。他从十八岁开始参加,考到第五次才以吊车尾的成绩通过。其间他几乎要放弃时,遇到一位数学老师李察(Richard)。李察老师对埃尔米特说:「 ”我相信你是自拉格朗日(Lagrange)以来的第二位数学天才。”拉格朗日被称为数学界的贝多芬,他所作的求根近似解被誉为「 ”数学之诗”。 但是埃尔米特光有天份不够,李察老师说:「 ”你需要有上帝的恩典,与完成 学业的坚持,才不会被你认为垃圾的传统教育牺牲掉。”因此他一次又一次地落榜,却仍继续坚持应试。 骑在蜗牛背上的人 埃尔米特进技术学院念了一年以后,法国教育当局忽然下一道命令:肢障者不得进入工科学系。埃尔米特只好转到文学系。文学系里的数学已经容易很多了,结果他的数学还是不及格。有趣的是,他同时在法国的数学研究期刊《纯数学与应用数学杂志》发表《五次方方程式解的思索》,震惊了数学界。 在人类历史上,第三世纪的希腊数学家就发现一次方程与二次方程的解法。之后,多少一流数学家埋首苦思四次方程以上到n次方程的解法,始终不得其解。没想到三百年后,一个文学系的学生,一个数学常考不及格的学生,竟然提出正确的解法。埃尔米特知道自己已经「 ”对数学的开创性研究中毒很深,热爱得无法自拔”,幸得好朋友勃特伦(Bertrand)赶忙帮他补习学校要考的数学。对这一个具有开创性的天才,僵化的数学教育带来无边的苦难;惟有友谊的了解与鼓励能够支持他走下去,并使他在二十四岁时,能以及格边缘的成绩自大学毕业。 由于不会应付考试,无法继续升学,他只好找所学校做个批改学生作业的助教。这份助教工作,做了几乎二十五年,尽管他这二十五年中发表了代数连分数理论、函数论、方程论……已经名满天下,数学程度远超过当时所有大学的教授,但是不会考试,没有高等学位的埃尔米特,只能继续批改学生作业。社会现实对他就是这么残忍、愚昧。 不考试的老师 能够使埃尔米特不愤世嫉俗、坦然前行的动力是什么? 有三个重要的因素。一是妻子的了解与同心。埃尔米特的妻子,是他大学好友勃特伦的妹妹,她无怨无悔地跟随这个不会考试的天才丈夫,一年一年地走下去。二是有人真正地赞赏他,不因他外表的残废与没有耀人的学位而轻视他。欣赏他的人后来也都在数学界享有盛名——包括研究无穷级数收敛、发散与微分方程式而著名的柯西(Cauchy),发表椭圆函数、行列式理论而著名的雅科比(Jacobi),《纯数学与应用数学杂志》的主编刘维尔(Liouville)。这些都是行家,而来自真正行家的惺惺相惜,比考试高分的一点虚伪荣耀,更能支助一个失败者走较远的路。三是埃尔米特的信仰。埃尔米特在四十三岁时染患一场大病,柯西来看他,并且把福音传给他。信仰给他另一种价值与满足。 埃尔米特在四十九岁时,巴黎大学才请他去担任教授。此后的二十五年,几乎整个法国的大数学家都出自他的门下。我们无从得知他在课堂上的授课方式,但是有一件事情是可以确定的──没有考试。 三角几何里认识另一个世界 不会考试给他带来许多麻烦:工作不顺利,多次重考,他人的轻视,自卑……。但是给他带来许多祝福:认识妻子、好友、信仰,与整个生命的成熟。 后来美国加州理工学院数学系的教授贝尔(Bell),在他对历史上数学伟人的回顾上,用一段话描述埃尔米特:「 ” 历史上的数学家,愈是天才,愈是好讥诮,讲话愈多嘲讽。只有一个人例外,就是埃尔米特。他有真正完美的人格。”埃尔米特死于1901年1月4日。晚年写道:「 ”三角几何是永恒的、不朽的。自然界里没有任何一个东西是绝对的三角形。但是在人的脑中却存在着完美、绝对的三角形,去衡量外面的形形状状。没有人知道为什么三角的总和就是180度,没有人知道为什么三角形的最长边对应最大角。这些三角几何的基本特性,不是人去发明出来或想象出来的,而是人在懵懂无知的时候,这些三角特性就存在,并且无论时空如何改变,这些特性也不会改变。我只不过是一个无意中发现这些特性的人。 三角几何的存在,证明有一永久不改变的世界存在。” 其他成果 埃尔米特是一位热心的数学传播者,他经常无保留地向数学界提供他的知识、想法以致创造性的思维火花,一般通过书信、便条以及讲演进行这种传播.例如,他与T.J.斯蒂尔切斯(StieltjeS)两人从1882年到1894年间至少写过432封信.只要认真阅读埃尔米特的著作,就会发现,他提供了许多可以作为别人发现的序幕的例子,他的数学传播工作极大地促进了数学的发展. 埃尔米特是一个全面的数学家,除了前述各项工作外,他在数学的各领域中还取得如下成果:他深入研究了矩阵理论,证明了,如果矩阵M=M*(M的伴随矩阵),则其特征值都是实数;提出一个属于代数函数论的埃尔米特原理,是后来著名的黎曼-罗赫定理的特例之一;在不变量方面有较多成果,以致于J.J.西尔威斯特(Sylvester)曾指出,「 ”A.凯莱(Cayley)、埃尔米特和我组成了一个不变量的三位一体”,例如,他提出一个「 ”互反律”,即一个m次二元型的p阶固定次数的共变式和一个p次二元型的m阶固定次数的共变式之间的一种一一对应关系;埃尔米特推广了高斯研究整系数二次型的方法,证明了它们对于任意个变量其类数仍是有限的;还把这一结果应用于代数数,证明了,如果一个数域的判别式已给出,则其范型的数目是有限的;他还把这种「 ”类数有限性”用于不定二次型,取得一些重要的结果;他关于拉梅方程(一种微分方程)的研究在当时也有十分重要的意义
2023-05-19 23:11:321

两点三次埃尔米特插值法

两点三次埃尔米特插值法如下:埃尔米特插值是另一类插值问题,这类插值在给定的节点处,不但要求插值多项式的函数值与原函数值相同。同时还要求在节点处,插值多项式的一阶直至指定阶的导数值,也与被插函数的相应阶导数值相等,这样的插值称为埃尔米特(Hermite)插值。Hermite插值在不同的节点,提出的差值条件个数可以不同,若在某节,要求插值函数多项式的函数值,一阶导数值,直至阶导数值均与被插函数的函数值相同及相应的导数值相等。我们目前已经可以使用牛顿插值法已经拉格朗日插值法求解满足 f(xi)=yi 的多项式了。但是有时候我们还会遇到需要确定某点导数的情况。由于导数条件各不相同,做不到面面俱到,我们这里只给出一个用基函数求解的例子。多项式插值用多项式对一组给定数据进行插值的过程。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。插值:用来填充图像变换时像素之间的空隙。
2023-05-19 23:11:381

埃尔米特的数学成就有哪壹些?尔米特二次型

埃尔米特出生在公元一八二二年,逝世于一九零一年,他是法国著名的数学家,同时他不同于其他的数学家的地方在于他从小到大的考试成绩从来都是不合格的,那么这样一个奇怪的数学家埃尔米特究竟有过如何的一生呢?这个问题的答案就在埃尔米特的简介中。埃尔米特简介要从他的父母开始说起,埃尔米特的家族经历过法国大革命,亲朋好友有不少被送上过断头台,他的父亲是一个有名的冶矿工程师但同时也是一个逃亡在外的死刑通缉犯,他的妈妈是当地出了名剽悍的洛林人,而他继承了优秀的血统,却也天生右脚残疾,这一切似乎预示着他不平凡的一生。上学的时候仇视死板教育的埃尔米特的成绩总是不合格,尽管平时数学非常好,但是到了关键时刻却总是不尽如人意,一直到大学也是徘徊于合格线,后来他在数学期刊上发表的五次方程解法使得所有人震惊,一个数学考试不及格的文学院学生解决了无数人束手无策的难题。之后他又进一步研究并证明了自然对数底的超越性。 前半辈子的坎坷经历使得埃尔米特自卑,但是幸运的是有好友和夫人的理解和支撑,学术界不少识才的数学家也与他交友,到年近半百的时候他被邀请到巴黎大学任教,他的课业没有考试,但却培养了之后许多才华斐然的大数学家,埃尔米特的一生无疑是传奇式的,他用坚持和努力为我们证明了教育和考试的死板是不得行的,数学本就是创造性的学科。 埃尔米特是十九世纪法国著名的数学家,他毕业于巴黎综合工科学校后来辗转在法兰西学等大学任教,同时也是法兰西科学院院士。埃尔米特的数学成就许多,他的一生在函式论、微分方程等各个方面都表现出重大成就。那么埃尔米特的数学成就究竟有哪壹些呢?埃尔米特的数学成就体现今许多方面,其中最出名的要数他在公元一八五八年的时候运用椭圆函式的原理首次得出五次方程的解,这也是数学史上非常有意义的第一次,具有里程碑式的远大意义。在之后不久的公元一八七三年他又一次用超人的智慧论证了自然对数底的超越性,埃尔米特在数学上的伟大成就可以在现代数学各分支中的许多专业名词中看出来,比如「埃尔米特二次型」等根据他名字姓氏命名的名词不但体现出他首次发现并解读这一领域的杰出成就,也体现了埃尔米特的数学成就之高远。 埃尔米特的数学成就影响深远,他是数学史上难得的奇葩,他的数学考试多数不及格但是这却无法抹灭他在学术研究史上的巨大成就,他不但研究「共轭矩阵」而且还提出了埃尔米特原理,他在不变数方面取得的成就尤为多,埃尔米特提出 「互反律」,还致力于推广研究整系数二次型的办法,并且活学活用把这一结果用在代数学。埃尔米特的数学成就直至今还深深影响着人们。 埃尔米特是十九世纪非常有名的数学家,他的一生为数学事业贡献许多,在数学学术研究的历史上取得过许多成就,但是他的一生最为人称道的却是他近乎传奇式的人生经历,埃尔米特的故事究竟有哪壹些传奇之处呢?埃尔米特的故事要从他的家族开始讲起,他的父辈们大多参加过法国大革命,有着不屈的精神,他的父亲甚至是一个死囚犯,他的妈妈也是一个奇女子,有着非常强悍的作风。埃尔米特天生有些跛足,右脚的残障让他必须依靠柺杖行走,他小时候就爱和老师争论,考试非常不理想的他让老师和家长伤透了脑筋,同时他自个非常厌恶死板的教育模式,不止一次的抨击过教育和考试的弊处。他上学的时候因为法令转到文学系,但是他的数学考试一直不及格,导致他无法取得更高的学历,也就是这样一个始终无法考好的末等生研究发表的关于五次方程解得学术报告震惊了全世界,尽管数学成就取得非常高的荣耀但是没有高学历的埃尔米特一直只能当一个小小的助教,这样不平等的待遇使得他的际遇更加传奇起来。 埃尔米特的故事流传到今天,不仅因为他为数学研究做出非常大的进步更是因为他的故事为我们证明了考不好试的数学家的存在,也同时是现代教育体系僵化以及社会只认学历不认研究的死板的讽刺。他用自个传奇式的故事告诉人们只要真正的爱一门学科,考试真的不是非常重要,历史终究会记得他的贡献。
2023-05-19 23:12:001

埃尔米特多项式

在数学中,埃尔米特多项式是一种经典的正交多项式族,得名于法国数学家夏尔·埃尔米特。概率论里的埃奇沃斯级数的表达式中就要用到埃尔米特多项式。在组合数学中,埃尔米特多项式是阿佩尔方程的解。物理学中,埃尔米特多项式给出了量子谐振子的本征态。 扩展资料   多项式Hn是一个n次的多项式。概率论的.埃尔米特多项式是首一多项式(最高次项系数等于1),而物理学的埃尔米特多项式的最高次项系数等于2。
2023-05-19 23:12:061

怎么证明埃尔米特矩阵特征值均为实数,属于不同特征值?

这里给出对称矩阵的特征值均为实数且不同特征值的特征向量正交的证明。厄密矩阵证明相同,把转置变成共轭转置即可。厄米特矩阵(Hermitian Matrix,又译作“埃尔米特矩阵”或“厄米矩阵”),指的是自共轭矩阵。矩阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。由定义得知,厄米特矩阵的对角线上各元素必为实数。通常厄米特矩阵并不对称,除非所有元素均为实数。厄米特矩阵的特殊性质是其本征值一定是实数。在物理系统中,其可观察的物理量(例如坐标、动量、能量等等),在量子力学中可视为一算符,此算符有对应的本征向量和本征值,算符所对应的本征向量代表物理系统的状态,物理量发的结果就是本征值。因此,如用矩阵表示算符,则一定是厄米特矩阵,因为厄米特矩阵的本征值为实数,所以也是可观察的量。函数特征:显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称矩阵是埃尔米特矩阵的特例。若A和B是埃尔米特矩阵,那么它们的和A+B也是埃尔米特矩阵;而只有在A和B满足交换性(即AB=BA)时,它们的积才是埃尔米特矩阵。
2023-05-19 23:12:131

埃尔米特插值为啥构件一个不超过2n+1

不少实际的插值问题不但要求在节点上的函数值相等,而且还要求对应的导数值也相等,甚至要求高阶导数也相等,满足这种要求的插值多项式就是埃尔米特插值多项式。
2023-05-19 23:12:252

埃尔米特插值可以不需要导数条件

题主是否想询问“埃尔米特插值可以不需要导数条件吗”?不可以。埃尔米特插值不可以不需要导数条件,埃尔米特插值实际上也是待定系数法,只不过已知条件除了已知点还有导数的信息。导数埃尔米特(Hermite)插值法不但要求在节点的函数值相等,也要求对应的导数值也相等,甚至更高阶导数也相等。
2023-05-19 23:12:321

Hermite矩阵有哪些性质?

Hermite矩阵 埃尔米特矩阵是共轭对称的方阵。埃尔米特矩阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。对于有:,其中为共轭算符。 记做:例如:就是一个埃尔米特矩阵。显然,埃尔米特矩阵主对角线上的元素必须是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称阵是埃尔米特矩阵的特例。性质 若A 和B 是埃尔米特矩阵,那么它们的和A+B 也是埃尔米特矩阵;而只有在A 和B满足交换性(即AB = BA)时,它们的积才是埃尔米特矩阵。 可逆的埃尔米特矩阵A 的逆矩阵A-1仍然是埃尔米特矩阵。 如果A是埃尔米特矩阵,对于正整数n,An是埃尔米特矩阵. 方阵C 与其共轭转置的和C + C * 是埃尔米特矩阵. 方阵C 与其共轭转置的差C �6�1 C * 是斜埃尔米特矩阵。 任意方阵C 都可以用一个埃尔米特矩阵A 与一个斜埃尔米特矩阵B的和表示: </dd>埃尔米特矩阵是正规阵,因此埃尔米特矩阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着埃尔米特矩阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组Cn的正交基。 n阶埃尔米特矩阵的元素构成维数为n2的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之上的元素有两个自由度。 如果埃尔米特矩阵的特征值都是正数,那么这个矩阵是正定阵,若它们是非负的,则这个矩阵是半正定阵。 埃尔米特序列 埃尔米特序列(抑或Hermite向量)指满足下列条件的序列ak(其中k = 0, 1, …, n):若n 是偶数,则an/2是实数。实数序列的离散傅里叶变换是埃尔米特序列。反之,一个埃尔米特序列的逆离散傅里叶变换是实序列。
2023-05-19 23:12:391

埃尔米特矩阵是什么

埃尔米特矩阵就是Hermite阵。Hermite矩阵又称共轭矩阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。
2023-05-19 23:12:471

三次埃尔米特插值的误差

y=f(x)在x的区间。三次埃尔米特插值的误差y=f(x)在x的区间,插值指的是运用一些数学的方法,“模拟产生”一些新的但又比较可靠的数据,补足题目中的空缺数据,插值也可以用来做预测问题。
2023-05-19 23:12:531

什么是hermitian矩阵??多谢各位大侠了

首先说下实对称矩阵:A=A转置例如1 2 32 4 53 5 6转置之后是其本身,叫实对称矩阵。hermitian矩阵是实对称矩阵的推广,共轭转置等于本身的矩阵A=A共轭转置例如 1 2i 3+i-2i 5 6 3-i 6 4
2023-05-19 23:13:112

埃尔米特矩阵的推论

(1)n阶埃尔米特矩阵A为正定(半正定)矩阵的充要条件是A的所有特征值大于等于0。(2)若A是n阶埃尔米特矩阵,其特征值对角阵为V,则存在一个酉矩阵U,使AU=UV。(3)若A是n阶埃尔米特矩阵,其弗罗伯尼范数的平方等于其所有特征值的平方和。(4)斜埃尔米特矩阵为A的共轭转置为-A斜埃尔米特矩阵的特征值全是实数。更进一步,斜埃尔米特矩阵都是正规矩阵。因此它们是可对角化的,它们不同的特征向量一定是正交的。
2023-05-19 23:13:231

正交矩阵的共轭等于什么

正交矩阵的共轭等于Hermite矩阵。Hermite矩阵又称作自共轭矩阵、埃尔米特矩阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。根据上述的定义,知道Hermite矩阵的共轭转置矩阵等于其本身。
2023-05-19 23:13:351

厄米多项式表达式前几项

厄米多项式表达式前几项:多项式Hn的次数与序号n相同,所以不同的埃尔米特多项式的次数不一样。对于给定的权函数w,埃尔米特多项式的序列将会是正交序列。在组合数学中,埃尔米特多项式是阿佩尔方程的解。物理学中,埃尔米特多项式给出了量子谐振子的本征态。多项式Hn是一个n次的多项式。概率论的埃尔米特多项式是首一多项式(最高次项系数等于1),而物理学的埃尔米特多项式的最高次项系数等于2的n次。简介在数学中,多项式(polynomial)是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。
2023-05-19 23:13:421

矩阵共轭转置的行列式相同吗

共轭矩阵又称Hermite阵、埃尔米特矩阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。 转置矩阵:把矩阵A的行换成相应的列,得到的新矩阵称为A的转置矩阵,记作AT或A。通常矩阵的第一列作为转置矩阵的第一行,第一行作为转置矩阵的第一列。 所以,共轭矩阵和转置矩阵的区别:共轭矩阵又称Hermite阵、埃尔米特矩阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。 转置矩阵:把矩阵A的行换成相应的列,得到的新矩阵称为A的转置矩阵,记作AT或A。通常矩阵的第一列作为转置矩阵的第一行,第一行作为转置矩阵的第一列
2023-05-19 23:13:571

hermite矩阵是什么 ?

Hermite矩阵的用途主要是在在工程专业方面的应用,可以更加方便地描述工程信息。厄米特矩阵(Hermitian Conjugate Matrix, 又译作“埃尔米特矩阵”或“厄米矩阵”),指的是自共轭矩阵。矩阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。性质:显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称矩阵是埃尔米特矩阵的特例。若A和B是埃尔米特矩阵,那么它们的和A+B也是埃尔米特矩阵;而只有在A和B满足交换性(即AB=BA)时,它们的积才是埃尔米特矩阵。可逆的埃尔米特矩阵A的逆矩阵A仍然是埃尔米特矩阵。如果A是埃尔米特矩阵,对于正整数n,A是埃尔米特矩阵。方阵C与其共轭转置的和是埃尔米特矩阵。任意方阵C都可以用一个埃尔米特矩阵A与一个斜埃尔米特矩阵B的和表示。埃尔米特矩阵是正规矩阵,因此埃尔米特矩阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着埃尔米特矩阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组C的正交基。n-阶埃尔米特矩阵的元素构成维数为n^2-n的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之外的元素有两个自由度。如果埃尔米特矩阵的特征值都是正数,那么这个矩阵是正定矩阵,若它们是非负的,则这个矩阵是半正定矩阵。
2023-05-19 23:14:043

A是m×n矩阵,证明A^HA和AA^H都是半正定埃尔米特矩阵

(1) 因为A是m×n矩阵, 所以A^H 是n×m矩阵,A^HA 是n×n矩阵, 而且(A^HA)^H = A^H(A^H)^H = A^HA. 又因为对于任意的n维非零列向量a,有 a^H(A^HA)a = (Aa)^H(Aa) = ||Aa||^2 大于或等于 0, 因此A^HA是半正定埃尔米特矩阵. (2) 因为A是m×n矩阵, 所以A^H 是n×m矩阵,AA^H 是m×m矩阵, 而且(AA^H)^H = (A^H)^HA^H = AA^H. 又因为对于任意的m维非零列向量b,有 b^H(AA^H)b = (A^Hb)^H(A^Hb) = ||A^Hb||^2 大于或等于 0, 因此AA^H是半正定埃尔米特矩阵.
2023-05-19 23:14:111

设A,B是正定埃尔米特矩阵,若AB是埃尔米特矩阵,证明AB正定。

A = L * L^H,AB = L * L^H * B 相似于 L^H * B * L^{-H},后者正定,因而AB的特征值大于0。
2023-05-19 23:14:171

三点四次埃尔米特插值唯一吗

三点四次次埃米尔特插值多项式存在且唯一。为了避免高次插值可能出现的大幅度波动现象,在实际应用中采用分段低次插值来提高近似程度,可用分段线性插值或分段三次埃尔米特插值来逼近已知函数,但总体光滑性较差。为了克服这一缺点,一种全局化的分段插值方法一一三次样条插值成为比较理想的工具。
2023-05-19 23:14:241

埃尔米特多项式的定义

前六个(概率论中的)埃尔米特多项式的图像。埃尔米特多项式有两种常见定义。第一种是:这是概率论中较为常用的形式。有时也会使用另一种定义:这是物理学中较为常用的形式。这两种定义并不是完全等价的。它们之间的关系是:下文中一般会使用第一种定义,也是概率学家偏好的定义。因为是标准正态分布函数(数学期望等于0,标准差等于1)的概率密度函数。前六个(物理学中的)埃尔米特多项式的图像。前六个概率学的埃尔米特多项式的表达式为:
2023-05-19 23:14:411

为什么埃尔米特对称矩阵的行列式是实数?

比较显然的看法是因为Hermite矩阵所有特征值都是实数...虽然用特征值看行列式好像杀鸡用牛刀了, 不过Hermite矩阵的谱分解确实比较重要
2023-05-19 23:14:561

下列哪位不是法国数学家?A拉格朗日N笛卡尔I埃尔米特O康托尔????????? ????? ??

康托尔不是法国数学家【附】约瑟夫·拉格朗日(Joseph-Louis Lagrange,1736~1813)全名为约瑟夫·路易斯·拉格朗日,法国著名数学家、物理学家。1736年1月25日生于意大利都灵,1813年4月10日卒于巴黎。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。勒内·笛卡尔(又称勒内·笛卡儿,公元1596年3月31日—公元1650年2月11日),出生于法国安德尔-卢瓦尔省的图赖讷拉海(现改名为笛卡尔以纪念),逝世于瑞典斯德哥尔摩,法国著名哲学家、物理学家、数学家、神学家。笛卡尔是法国著名的哲学家、物理学家、数学家、神学家,他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他与英国哲学家弗兰西斯·培根一同开启了近代西方哲学的“认识论”转向。埃尔米特(Charles Hermite,1822—1901)法国数学家。巴黎综合工科学校毕业。曾任法兰西学院、巴黎高等师范学校、巴黎大学教授。法兰西科学院院士。在函数论、高等代数、微分方程等方面都有重要发现。格奥尔格·康托尔(Cantor,Georg Ferdinand Ludwig Philipp,1845.3.3-1918.1.6)德国数学家,集合论的创始人。生于俄国圣彼得堡。父亲是犹太血统的丹麦商人,母亲出身艺术世家。1856年全家迁居德国的法兰克福。先在一所中学,后在威斯巴登的一所大学预科学校学习。
2023-05-19 23:15:041

若A是正定埃尔米特矩阵,证明若A是酉矩阵,则A=I

A是埃尔米特矩阵说明A^H=AA是酉矩阵说明(A^H)A=I结合上两式有A²=I,或(A+I)(A-I)=0A是正定的说明A的特征值全是正实数,即-1不是A的特征值,∴|-I-A|≠0,或|I+A|≠0,即(A+I)可逆于是A-I=(A+I)^(-1)0=0,即A=I
2023-05-19 23:15:111

半正定二次型化为规范型后还是半正定吗

不是。对于给定的二次型,先将化为标准形,然后根据标准形中平方项系数为正的个数是否等于n来判定二次型的正定性。正定埃尔米特二次型是与实数域上正定二次型相对应的概念。正定、半正定、负定、半负定的埃尔米特二次型统称为定型的。不定的埃尔米特二次型称为不定型的。
2023-05-19 23:15:181

高等代数理论基础68:酉空间介绍

定义:设V是复数域上的线性空间,在V上定义一个二元复函数,称为内积,记作 , 具有性质: 1. , 为 的共轭复数 2. 3. 4. 是非负实数,且 这样的线性空间称为酉空间 例:在线性空间 中,对向量 , ,定义内积为显然满足定义条件,故 成为一个酉空间 由内积定义 1. 2. 3. 称为向量 的长度,记作 4. ,有 ,当且仅当 线性相关时等号成立 柯西-布涅柯夫斯基不等式 5. 时称 正交或互相垂直 注:酉空间中内积 一般为复数,故向量之间不易定义夹角 6.任一组线性无关的向量可用施密特过程正交化,并扩充为一组标准正交基 7.对n级复矩阵 ,用 表示以A的元素的共轭复数作元素的矩阵,若A满足 ,则称为酉矩阵 注: 1)酉矩阵行列式的绝对值为1 2)两组标准正交基的过渡矩阵是酉矩阵 8.若酉空间V的线性变换 满足 ,则称为V的一个酉变换 注: 1)酉变换在标准正交基下的矩阵是酉矩阵 2)酉变换类似欧氏空间的正交变换 9.若矩阵A满足 ,则称为Hermite矩阵 在酉空间 中令 ,则 注:埃尔米特矩阵类似欧氏空间的对称矩阵 10.V是酉空间, 是子空间, 是 的正交补,则 设 是对称变换的不变子空间,则 也是不变子空间 11.埃尔米特矩阵的特征值为实数,它的属于不同特征值的特征向量必正交 12.若A是埃尔米特矩阵,则有酉矩阵C,使 是对角矩阵 13.设A为埃尔米特矩阵,二次齐次函数称为埃尔米特二次型,有酉矩阵C,当 时
2023-05-19 23:15:241

hermite插值多项式是什么?

Hermite插值多项式是2n+1次。hermite插值多项式要求在节点上与被插值函数的函数值相等,且在节点上它们的若干阶导数也相等。多项式插值用多项式对一组给定数据进行插值的过程。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。插值:用来填充图像变换时像素之间的空隙。当节点较多时,为避免多项式次数过高而引起非节点处的偏离过大,仍采用分段插值的方法。若把节点两两分段,在每一小段上作三次Hermite插值,就得到一个分段三次Hermite插值函数。由前面的推导可直接写出分段三次Hermite插值函数的分段表达式。多项式插值目的埃尔米特插值是另一类插值问题,这类插值在给定的节点处,不但要求插值多项式的函数值与原函数值相同。同时还要求在节点处,插值多项式的一阶直至指定阶的导数值,也与被插函数的相应阶导数值相等。多项式插值目的就是寻找一个恰好通过这些数据点的多项式。当我们输入数据点而得到一个插值函数的时候,我们由有限的插值点得到了一个由无限被插值点组成的插值函数,换言之,是由有限的信息估计出了无穷的信息。
2023-05-19 23:15:311

一个矩阵乘以它的共轭转置,得到的是埃尔米特矩阵吗?

是的,一个矩阵乘以它的共轭转置,结果一定是厄米特矩阵。可以用矩阵运算的性质如下图证明。
2023-05-19 23:15:481

埃尔米特插值的三次Hermite插值多项式

当n=1时,H3(x)=f(x0)(1+2(x0-x) / (x0-x1))((x-x1)/(x0-x1))^2+f(x1)(1+2(x1-x) / (x1-x0))((x-x0)/(x1-x0))^2+f"(x0)(x-x0)((x-x1)/(x0-x1))^2+f"(x1)(x-x1)((x-x0)/(x1-x0))^2
2023-05-19 23:16:011

请写出矩阵A是正定矩阵三个充要条件

这道题实在看不懂,没办法回答。
2023-05-19 23:16:154

hilbert遇到的第一位老师是克莱因吗

不是1862年,希尔伯特出生于东普鲁士的柯尼斯堡,祖父和父亲都是法官,母亲是一位富商的女儿,在哲学、数学、天文学方面都略有研究。而母亲就负责了希尔伯特的启蒙教育。后来,希尔伯特不顾父亲的劝阻(父亲想要儿子学习法律),毅然决然跟随闵可夫斯基,去到哥尼斯堡大学攻读数学。到了第二学期,按照学校规定,学生可以选择交换到另一所大学学习一段时间,希尔伯特就选择了海德堡大学。后来,希尔伯特回到哥尼斯堡大学,主要跟从韦伯(Weber)教授学习数论、函数论和不变量理论。而博士论文导师就是赫赫有名的林德曼(Lindemann)教授,希尔伯特出色地完成了关于代数形式的不变性质的论文,于1885年获得哲学博士学位。毕业后,希尔伯特进行了一次短期游学。他去了莱比锡、巴黎等地,参与了德国数学家克莱因(Klein)的讨论班,后来又结识了庞加莱(Poincaré)、若尔当(Jordan)、皮卡(Picard)、埃尔米特(Hermite)等著名数学家。
2023-05-19 23:16:501

有没有大器晚成的数学家?

有的数学家是少年天才型的,因为他的年少的时候有条件,并且对数学感兴趣,那有的科学家是在他人生成长的一段时间后,才深度接触学数学,进而喜欢上数学,想要研究数学。他们各自有不同的爱好特长,经历和思想转变过程,但殊途同归,最后都成为享誉世界的大科学家。法国数学家埃尔米特埃尔米特到成年,还没有显露出他的数学天赋,并且带他上学的过程中,他的数学还总是考不及格,甚至数学成绩之差已经影响到了他毕业的程度,但是数学成绩差,并不代表他在数学方面没有天赋,到了后来他对数学做出很多贡献,包括一千多年,完成了人们都解不出的五次方程式的通解的解答,并且并且对,底e的超越性进行了考证。费马法国的数学家费马,甚至是从文科变成理科,然后去研究数学的。他的本专业是律师,从来没有受过数学方面的专业性教育,但是就是因为兴趣,他自己学习最后成为世纪法国最厉害的数学家,也是几何方面解析的发明者之一,对微积分方面也很有贡献。当然,理科方面除了数学,他的物理学也是非常棒的,可见,只要你想转换方向,不管什么时候都算晚,费马就是从30岁才开始认真学习数学的。德国数学家莱布尼茨德国数学家德国数学家莱布尼茨是微积分的创始人之一,最开始他进入大学学的是也是法律,但后期他开始对数学和科学感兴趣,并且发表了科学方面的论文论,作为毕业论文。
2023-05-19 23:16:581

数学家的小故事

华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。
2023-05-19 23:17:265

关于矩阵正定性的判定

定义如下设M是n阶实系数对称矩阵, 如果对任何非零向量 X=(x_1,...x_n) 都有 X′MX>0,就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型, 即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵.
2023-05-19 23:17:425

共轭矩阵和相似矩阵是不是一个概念

不是的,埃尔米特矩阵(共轭矩阵)要求对角线元素为实数,aij与aji共轭
2023-05-19 23:18:176

hermit、Hermite、hermitian矩阵是一样的吗

都是埃尔米特矩阵~
2023-05-19 23:18:312

什么是共轭序列?

如果是数字信号处理中的名词,我只听过共轭(反)对称序列。
2023-05-19 23:18:393

什么是共轭矩阵?

共轭矩阵又称Hermite阵。Hermite阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是 ai,j=a*j,i。 对于 A = { a_{i,j} } in C^{n imes n} 有: a_{i,j} = overline{a_{j,i}},其中overline{(cdot)}为共轭算符。 记做: A = A^H quad 例如: egin 3&2+i\ 2-i&1 end 就是一个Hermite阵。 显然,Hermite阵主对角线上的元素必须是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是Hermite阵。也就是说,实对称阵是Hermite阵的特例。 性质 若A 和B 是Hermite阵,那么它们的和A+B 也是Hermite阵;而只有在A 和B满足交换性(即AB = BA)时,它们的积才是Hermite阵。 可逆的Hermite阵A 的逆矩阵A-1仍然是Hermite阵。 如果A是Hermite阵,对于正整数n,An是Hermite阵. 方阵C 与其共轭转置的和C + C^*是Hermite阵. 方阵C 与其共轭转置的差C - C^*是skew-Hermite阵。 任意方阵C 都可以用一个Hermite阵A 与一个skew-Hermite阵B的和表示: C = A+B quadmboxquad A = frac(C + C^*) quadmboxquad B = frac(C - C^*). Hermite阵是正规阵,因此Hermite阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着Hermite阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组Cn的正交基。 n阶Hermite方阵的元素构成维数为n2的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之上的元素有两个自由度。 如果Hermite阵的特征值都是正数,那么这个矩阵是正定阵,若它们是非负的,则这个矩阵是半正定阵。 Hermite序列 Hermite序列(抑或Hermite向量)指满足下列条件的序列ak(其中k = 0, 1, …, n): Im(a_0) = 0 quad mbox quad a_k = overline{a_} quad mbox k=1,2,dots,n. 若n 是偶数,则an/2是实数。 实数序列的离散傅里叶变换是Hermite序列。反之,一个Hermite序列的逆离散傅里叶变换是实序列。
2023-05-19 23:18:582

求埃尔米特(Hermitian)矩阵的特征值和特征向量的C语言程序

搜一下:求埃尔米特(Hermitian)矩阵的特征值和特征向量的C语言程序
2023-05-19 23:19:052

埃尔米特是谁?

埃尔米特,法国数学家。曾任法兰西学院、巴黎高等师范学校、巴黎大学教授、法兰西科学院院士。在函数论、高等代数、微分方程等方面都有重要发现。在现代数学各分支中以他姓氏命名的概念(如表示某种对称性的)很多,如“埃尔米特二次型”、“埃尔米特算子”等。虽然埃尔米特是19世纪最伟大的代数几何学家,但是他大学入学考试重考了五次,每次失败的原因都是数学考不好。他大学几乎没能毕业,每次考不好都是为了数学那一科。他大学毕业后考不上任何研究所,因为考不好的科目还是——数学。数学是他一生的至爱,但是数学考试是他一生的噩梦。不过这无法改变他的伟大。课本上“共轭矩阵”是他先提出来的;人类1000多年来解不出“五次方程式的通解”,是他先解出来的;自然对数的“超越数性质”,他是全世界第一个证明出来的人。他的一生证明了“一个不会考试的人,仍然能有胜出的人生”,并且更奇妙的是不会考试成为他一生的祝福。埃尔米特数学并不是真的那么差劲。只是他认为,当时的数学教学氛围死气沉沉,而数学课本就像一堆废纸,所谓的数学成绩好的人,都是一些二流头脑的人,因为他们只懂得生搬硬套!所以他从小就是个问题学生,上课时老爱找老师辩论,尤其是一些基本的问题。他痛恨考试,因为他一旦考糟了,老师就用木条打他的脚。他在后来的文章中写道:“达到教育的目的是用头脑,又不是用脚,打脚有什么用?打脚可以使人头脑更聪明吗?”在抵制考试的同时,埃尔米特又花了大量时间去看数学大师牛顿、高斯的原著,因为在他看来,只有在那里才能找到“数学的美,是回到基本点的辩论,那里才能饮到数学兴奋的源头”。他在年老时,回顾少年时的轻狂,写道:“传统的数学教育,要学生按部就班地、一步一步地学习,训练学生把数学应用到工程或商业上,因此,不重启发学生的开创性。”但是数学有它本身抽象逻辑的美,例如在解决多次方程式里,根的存在本身就是一种美感。数学存在的价值,不只是为了生活上的应用,也不应沦为供工程、商业应用的工具。数学的突破仍需要不断地去突破现有格局。能够使埃尔米特不愤世嫉俗、坦然前行的动力是什么?有三个重要的因素:一是妻子的了解与同心。埃尔米特的妻子,无怨无悔地跟随这个不会考试的天才丈夫一年一年地走下去。二是有人真正地赞赏他,不因他平凡的外表与没有耀人的学位而轻视他。欣赏他的人后来也都在数学界享有盛名——柯西、雅科比等。三是埃尔米特的信仰。埃尔米特在43岁时染患一场大病,柯西来看他并把福音传给他。信仰给他另一种精神层面的价值与满足。埃尔米特在49岁时,巴黎大学才请他去担任教授。此后的25年,几乎整个法国的大数学家都出自他的门下。我们无从得知他在课堂上的授课方式,但是有一件事情是可以确定的——没有考试。
2023-05-19 23:19:231

不会考试的数学家埃尔米特名人故事

不会考试的数学家埃尔米特名人故事   他是十九世纪最伟大的代数几何学家,但是他大学入学考试重考了五次,每次失败的原因都是数学考不好。他大学几乎没能毕业,每次考不好都是为了数学那一科。他大学毕业后考不上任何研究所,因为考不好的科目还是——数学。数学是他一生的至爱,但是数学考试是他一生的恶梦。不过这无法改变他的伟大:课本上“共轭矩阵”是他先提出来的,人类一千多年来解不出“五次方程式的通解”,是他先解出来的。自然对数的“超越数性质”,全世界,他是第一个证明出来的人。他的一生证明“一个不会考试的人,仍然能有胜出的人生”,并且更奇妙的是不会考试成为他一生的祝福。   埃尔米特数学并不是真的那么差劲,只是他认为,当时,他们当地的数学教学氛围死气沉沉,而数学课本就象一堆废纸,所谓的数学成绩好的"人,都是一些二流头脑的人,因为他们只懂得生搬硬套!所以他从小就是个问题学生,上课时老爱找老师辩论,尤其是一些基本的问题。他尤其痛恨考试;因为他一旦考糟了,老师就用木条打他的脚,这也是他痛悔数学考试的原因之一;他在后来的文章中写道:“达到教育的目的是用头脑,又不是用脚,打脚有什么用?打脚可以使人头脑更聪明吗?”   在抵制考试的同时,埃尔米特又花了大量时间去看数学大师,如牛顿、高斯的原著,因为在他看来,只有在那里才能找到“数学的美,是回到基本点的辩论,那里才能饮到数学兴奋的源头。”他在年老时,回顾少年时的轻狂,写道:“传统的数学教育,要学生按部就班地,一步一步地学习,训练学生把数学应用到工程或商业上,因此,不重启发学生的开创性。但是数学有它本身抽象逻辑的美,例如在解决多次方方程式里,根的存在本身就是一种美感。数学存在的价值,不只是为了生活上的应用,也不应沦为供工程、商业应用的工具。数学的突破仍需要不断地去突破现有格局。 ;
2023-05-19 23:19:301

埃尔米特的原理

埃尔米特是一个全面的数学家,除了前述各项工作外,他在数学的各领域中还取得如下成果:他深入研究了矩阵理论,证明了,如果矩阵M=M*(M的共轭转置矩阵),则其特征值都是实数;提出一个属于代数函数论的埃尔米特原理,是后来著名的黎曼-罗赫定理的特例之一;在不变量方面有较多成果,以致于J.J.西尔威斯特(Sylvester)曾指出,“A.凯莱(Cayley)、埃尔米特和我组成了一个不变量的三位一体”,例如,他提出一个“互反律”,即一个m次二元型的p阶固定次数的共变式和一个p次二元型的m阶固定次数的共变式之间的一种一一对应关系;埃尔米特推广了高斯研究整系数二次型的方法,证明了它们对于任意个变量其类数仍是有限的;还把这一结果应用于代数数,证明了,如果一个数域的判别式已给出,则其范型的数目是有限的;他还把这种“类数有限性”用于不定二次型,取得一些重要的结果;他关于拉梅方程(一种微分方程)的研究在当时也有十分重要的意义.
2023-05-19 23:19:421

世界上伟大的几何数学大师

祖冲之. <<九章算术>>
2023-05-19 23:19:574

埃尔米特矩阵的性质

1.若A和B是埃尔米特矩阵,那么它们的和A+B也是埃尔米特矩阵;而只有在A和B满足交换性(即AB=BA)时,它们的积才是埃尔米特矩阵。2.可逆的埃尔米特矩阵A的逆矩阵仍然是埃尔米特矩阵。3.如果A是埃尔米特矩阵,对于正整数n,是埃尔米特矩阵。4.方阵C与其共轭转置的和是埃尔米特矩阵。5.方阵C与其共轭转置的差是斜埃尔米特矩阵。6.任意方阵C都可以用一个埃尔米特矩阵A与一个斜埃尔米特矩阵B的和表示。7.埃尔米特矩阵是正规矩阵,因此埃尔米特矩阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着埃尔米特矩阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组的正交基。8.n-阶埃尔米特矩阵的元素构成维数为的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之上的元素有两个自由度。9.如果埃尔米特矩阵的特征值都是正数,那么这个矩阵是正定矩阵,若它们是非负的,则这个矩阵是半正定矩阵。斜埃尔米特矩阵的主对角线上的所有元素都一定是纯虚数。如果A是斜埃尔米特矩阵,那么iA是埃尔米特矩阵。如果A, B是斜埃尔米特矩阵,那么对于所有的实数a, b,aA + bB也一定是斜埃尔米特矩阵。如果A是斜埃尔米特矩阵,那么对于所有的正整数k,A2k都是埃尔米特矩阵。如果A是斜埃尔米特矩阵,那么A的奇数次方也是斜埃尔米特矩阵。如果A是斜埃尔米特矩阵,那么e^A是酉矩阵。一个矩阵和它的共轭转置的差()是斜埃尔米特矩阵。任意一个方块矩阵C都可以写成一个埃尔米特矩阵A和一个斜埃尔米特矩阵B的和:
2023-05-19 23:20:041

埃尔米特矩阵是什么

n阶复方阵a的对称单元互为共轭,即a的共轭转置矩阵等于它本身,则a是埃尔米特矩阵(hermitianmatrix)。显然埃尔米特矩阵是实对称阵的推广。a=a^h
2023-05-19 23:20:162

Hermite矩阵的用途

数学上讲的话,我觉的就是实对称阵的推广,变成共轭对称而已。用途的话,个人认为就是Hermite二次型、矩阵的奇值分解、还有求矩阵的Rayleigh商,进而对其特征值进行估计什么的。Hermite矩阵在工程专业方面的应用就是为了描述方便吧。比如通信里面,一个n维信号的互相关特性,正好是共轭对称的,那么用Hermite矩阵来描述就再好不过了。其它工程应用应该还有很多,可以查一下相关资料。
2023-05-19 23:20:253

埃尔米特矩阵是什么

埃尔米特矩阵就是Hermite阵。Hermite矩阵又称共轭矩阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。
2023-05-19 23:20:311

A是m×n矩阵,证明A^HA和AA^H都是半正定埃尔米特矩阵

(1) 因为A是m×n矩阵, 所以A^H 是n×m矩阵,A^HA 是n×n矩阵, 而且(A^HA)^H = A^H(A^H)^H = A^HA. 又因为对于任意的n维非零列向量a,有 a^H(A^HA)a = (Aa)^H(Aa) = ||Aa||^2 大于或等于 0, 因此A^HA是半正定埃尔米特矩阵. (2) 因为A是m×n矩阵, 所以A^H 是n×m矩阵,AA^H 是m×m矩阵, 而且(AA^H)^H = (A^H)^HA^H = AA^H. 又因为对于任意的m维非零列向量b,有 b^H(AA^H)b = (A^Hb)^H(A^Hb) = ||A^Hb||^2 大于或等于 0, 因此AA^H是半正定埃尔米特矩阵.
2023-05-19 23:20:381

什么是共轭?

当一个矩阵里的元素是复数时,如果存在一个矩阵中的每个元素都是原矩阵对应元素的共轭,这两个矩阵互为共轭矩阵 所谓共轭是指,任何复数都可以表示成a+bi的形式,其中a、b为实数,i是-1的平方根对于复数c1=a+bi,它的共轭就是c2=a-bi,你可以看到任何一对共轭复数相乘,结果都是实数(c1*c2=a^2+b^2)
2023-05-19 23:20:472

如何证明埃尔米特矩阵A,B:tr(AB)

这显然是错的!!!!反例很好找A = (-1, 1 1, -1)B = (1, 1 1, 1)AB = (0, 0 0, 0)tr(AB) = 0tr(A)*tr(B) = -4
2023-05-19 23:21:051

埃尔米特多项式的性质

多项式Hn是一个n次的多项式。概率论的埃尔米特多项式是首一多项式(最高次项系数等于1),而物理学的埃尔米特多项式的最高次项系数等于2的n次。 多项式Hn的次数与序号n相同,所以不同的埃尔米特多项式的次数不一样。对于给定的权函数w,埃尔米特多项式的序列将会是正交序列。(对于概率论的埃尔米特多项式) (对于物理学的埃尔米特多项式)也就是说,当m≠ n时:除此之外,还有:(对于概率论的埃尔米特多项式) (对于物理学的埃尔米特多项式) 在所有满足的函数所构成的完备空间中,埃尔米特多项式序列构成一组基。其中的内积定义如下:
2023-05-19 23:21:111