汉邦问答 / 问答 / 问答详情

有哪些数学家?

2023-05-20 08:56:04

有哪些数学家呀?我知道有:高斯...... 还有谁?

TAG: 数学
mlhxueli

1.业余数学家之王——费尔马

费尔马,1601年生于法国南部图鲁斯附近的波蒙,父亲是个商人,从小费尔马就受到良好的家庭教育。他在大学攻读法律,毕业后当了律师。从30岁起,他才开始迷恋上数学,直至逝世的34年里,他的精神世界始终被数学牢牢地统治着。费尔马结交了不少数学高手和哲学家,如梅森、罗伯瓦、迈多治、笛卡尔等,他们每周一次在梅森寓所聚会,讨论科学、研究数学。费尔马除了这些之外,还经常和友人通信交流数学研究工作的信息,但对发表著作非常淡漠。费尔马在世时,没有完整的著作问世。当他去世后,他的儿子萨缪尔·费尔马在数学家们帮助之下,将费尔马的笔记、批注及书信加以整理汇成《数学论集》在图鲁斯出版。

高等数学发展的起点是解析几何与微积分。费尔马为此作出实质性的贡献。从费尔马与罗伯瓦、帕斯卡的通信中可以看出,他在笛卡尔《几何学》发表前至少8年就已相当清晰地掌握了解析几何一些基本原理。费尔马在《平面和立体轨迹引论中》得出一些重要结论,还在一定程度上掌握了利用移轴和转轴的方法化简方法的技法;在解析几何的圆锥曲线的研究上已经初步系统化。因此说费尔马和笛卡尔分享创立解析几何的荣誉是当之无愧的。

费尔马也是微积分的先驱者,微积分的发明人牛顿曾坦率地说:“我从费尔马的切线作法中得到了这种方法的启示、我推广了它,把它直接并且反过来应用于抽象方程上。”费尔马是从研究透镜的设计和光学理论出发,致力于探求曲线的切线的。他1692年在《求最大值和最小值的方法》手稿中就提出了求切线的方法。可是当时的费尔马没有清晰的极限概念,没有得出导数即切线的结论,因此与微积分失去了交臂之缘,只能做为微积分的杰出的先驱者而写入史册。

费尔马还开创了近代数论的研究。对数的性质的研究从古希腊数学家欧几里得、丢番图等人就已经开始了,但是他们的研究缺乏系统化。费尔马注意到了这个问题,并且指出对数的性质的研究应当有独自的园地——(整)数论。同时,费尔马认为在数论中素数的研究非常重要,因为数论中的大量问题都与素数有关。在这方面的研究成果是费尔马在数学许多部门中最为突出的,其中最为著名是“费尔马小定理”、“费尔马大定理”,值得一提的是,300多年来“费尔马大定理”一直困扰着数学界,直到1993年才被普林斯顿大学的数学教授安德鲁·怀尔斯完全证明。在“完全数”的研究上,费尔马也有着两个重要的结论,虽然这两个结论未能解决寻找完全数的方法,但是在解决问题的途径上前进了一大步。

1653年,法国骑士梅累曾向帕斯卡提出“赌点问题”,1654年帕斯卡向费尔马转告了这个问题,费尔马经研究后得到和帕斯卡同样的结果。由于费尔马、帕斯卡及惠更斯等人的深入研究,使16世纪卡丹诺等已开始探讨的赌博问题引起数学家们广泛研究,使之进一步数学理论化,形成古典概率论。可以说是费尔马点燃了古典概率论的火种。

勿庸置疑,费尔马尽管是业余数学家,但他在微积分、解析几何、概率论、数论等数学领域中,都做出了开创性的贡献。他在数学史上的作用与地位是不可低估的。

2.失明的数学家欧拉

欧拉的惊人成就并不是偶然的。他可以在任何不良的环境中工作,经常抱着孩子在膝上完成论文,也不顾较大的孩子在旁边喧哗。欧拉在28岁时,不幸一支眼睛失明,过了30年以后,他的另一只眼睛也失明了。在他双目失明以后,也没有停止过数学研究。他以惊人的毅力和坚韧不拔的精神继续工作着,在他双目失明至逝世的十七年间,还口述著作了几本书和400篇左右的论文。由于欧拉的著作甚多,出版欧拉全集是十分困难的事情,1909年瑞士自然科学会就开始整理出版,直到现在还没有出完,计划是72卷。

欧拉在他的886种著作中,属于他生前发表的有530本书和论文,其中不少是教科书。他的著作文笔流畅、浅显、通俗易懂,读后引人入胜十分令读者敬佩。尤其值得一提的是他编写的平面三角课本,采用的记号如sinx,cosx,……等等直到现今还在用。

欧拉1720年秋天入巴塞尔大学,由于异常勤奋和聪慧,受到约翰·伯努利的尝识,给以特别的指导。欧拉同约翰的两个儿子尼古拉·伯努力和丹尼尔·伯努利也结成了亲密的朋友。

欧拉19岁写了一篇关于船桅的论文,获得巴黎科学院的奖金,从此开始了创作生涯。以后陆续得奖多次。1725年丹尼尔兄弟赴俄国,向沙皇喀德林一世推荐欧拉,于是欧拉于1727年5月17曰到了彼得堡,1733年丹尼尔回巴塞尔,欧拉接替他任彼得堡科学院数学教授,时年仅26岁。

1735年,欧拉解决一个天文学的难题(计算慧星轨道)。

这个问题几个著名数学家,几个月的努力才得以解决,欧拉却以自已发明的方法,三曰而成。但过度的工作使他得了眼病,不幸右眼失明,这时才28岁。

1741—1766年,欧拉应普鲁士腓特烈大帝的邀请,在柏林担任柏林科学院物理数学所所长,1766年,在俄国沙皇喀德林二世的诚恳敦聘了重回彼得堡。不料没有多久,他左眼视力衰退,只能依稀看到前方物体,最后完全失明。这时欧拉已年近花甲。

不幸的事情接踵而来。1771年彼得堡失火,殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火之中。紧急关头,为他做家务的一个工人冒着生命危险,冲进火中把欧拉抢救出来,欧拉的书库及大量研究成果全部化为灰烬。沉重的打击,仍然没有使欧拉倒下。他发誓要把损失夺回来。欧拉在完全失明之前,左眼还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生和大儿子A·欧拉(1734—1800年,也是数学家和物理学家)笔录。欧拉完全失明之后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世。

欧拉的记忆和心算能力是罕见的,他能够复述青年时代笔记的内容,高等数学一样可以用心算去完成。有一次,欧拉的两个学生,分别把一个很复杂的收敛级数的17项加起来,算到第50位数字时,结果相差一个单位。欧拉为了确定究竟谁计算得对,用心算进行了全部运算,最后把错误找了出来。欧拉在失明的十七年中,还解决了使牛顿头痛的月离(月球运行)问题和很多复杂的分析问题。

欧拉的风格是很高的,拉格朗曰是稍后于欧拉的大数学家。从19岁起和欧拉通信、讨论等周问题的一般解法,从而引起了变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗曰的解法,博得了欧拉的热烈赞扬,1759年10月2曰欧拉在回信中盛赞拉格朗曰的成就,并谦恭地压下自己在这方面较不成熟的作品暂不发表,使年轻的拉格朗曰的著作得以发表和流传,赢得巨大声誉。变分法一词,1766年为欧拉所创,他对变分法推进的伟大功劳,也是不可埋没的。

1783年9月18曰下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭。那时天王星刚发现不久,欧拉写出计算天王星轨道的要领,还和他的孙子逗笑,喝茶后,突然疾病发作,烟斗从手中落下……欧拉就这样“停止了生命和计算”。

历史学家把欧拉和阿基米德、牛顿、高斯并列为有史以来贡献最大的四位数学家.他们有一个值得注意的共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理、力学等方面的实际问题。他们的工作常常是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而力图探究宇宙的奥秘,揭示其内在的规律。

欧拉留给后人丰富的科学遗产中,分析、代数、数论占4o%,几何占18%,物理和力学占28%,天文占11%,弹道学、航海科学、建筑等其他问题占3%。1748年在瑞士洛桑出版的他的《无穷小分析引论》,是划时代的代表作,也是世界上第一本完整的有系统的分析学。

3.学成绩不佳的数学大师—埃尔米特 (Hermite)

他是十九世纪最伟大的代数几何学家,但是他大学入学考试重考了五次,每次失败的原因都是数学考不好。他的大学读到几乎毕不了业,每次考不好都是为了数学那一科。他大学毕业后考不上任何研究所,因为考不好的科目还是—— 数学。数学是他一生的至爱,但是数学考试是他一生的恶梦。不过这无法改变他的伟大:课本上"共轭矩阵"是他先提出来的,人类一千多年来解不出"五次方程式的通解",是他先解出来的。自然对数的"超越数性质",全世界,他是第一个证明出来的人。他的一生证明"一个不会考试的人,仍然能有胜出的人?quot;,并且更奇妙的是不会考试成为他一生的祝福。怎么会这样呢?嗯……也许能在本文中找到答案喔!翻开欧洲的地图,在法国的东北角嵌着一块小小的版图,名叫洛林Lorraine)。

这个地方自古以来就是兵家必争之地,因为北扼莱茵河口,南由马恩河(Marne River)可以直捣巴黎;濒临的阿登高地(Ardennes)是军事制高点;地层中蕴藏欧洲最大的铁矿。早在神圣罗马帝国时代,洛林草场上就染满骑士的鲜血;1871年德国的铁血雄兵蹂躏法国后,要求法国割让的土地就是洛林。

革命家的血统

经过百年来战争的洗礼,洛林留下来的是一批苦干、达观的法国人,足能面 对环境的苦难。埃尔米特(Charles Hermite)1822年12月24曰出生在洛林的小村 庄Dieuge,他的父祖辈都参与了法国大革命,祖父被大革命后的极端政治团 体巴黎公社(Commune)逮捕,后来死于狱中;有些亲人死在断头台上;他的父亲是杰出的冶矿工程师,因为被公社通缉,逃到法国边界的洛林小村庄,在一家铁矿场中隐姓埋名做矿工。

铁矿场的主人叫雷利曼(Lallemand),一个标准强悍的洛林人,有一个比他更强悍的女儿玛德琳(Madeleine)。在那个保守的时代,玛德琳就以"敢在户外 穿长裤不穿裙子"而著名,凶悍地管理矿工。但是一遇到这位巴黎来的工程师,她就软化了,明知对方是死刑通缉犯还是嫁给他,而且为他生了七个孩子。埃尔米特在七个孩子中排名第五,生下来右脚就残障,需扶拐杖行走。他身上一半流着父亲优秀聪明、理想奋斗的血液,一半流着母亲敢作敢为、敢爱敢恨的洛林强悍血统,谱成不凡生涯的第一个升记号。

从大师认识数学之美

埃尔米特从小就是个问题学生,上课时老爱找老师辩论,尤其是一些基本的问题。他尤其痛恨考试;后来写道:"学问像大海,考试像鱼钩,老师老要把鱼挂 在鱼钩上,教鱼怎么能在大海中学会自由、平衡的游泳?" 老师看他考不好,就用木条打他的脚,他恨死了;后来写道?quot;达到教育的 目的是用头脑,又不是用脚,打脚有什么用?打脚可以使人头脑更聪明吗?" 他的数学考得特别差,主要原因是他的数学特别好;他讲的话更让数学老师 抓狂,他说:"数学课本是一滩臭水,是一堆垃圾。数学成绩好的人,都是 一些二流头脑的人,因为他们只懂搬垃圾。"他自命为一流的科学狂人。不 过他讲的也没错,历史上最伟大的数学家大多是文学、外交、工程、军事等, 与数学不相干科系出身的。 埃尔米特花许多时间去看数学大师,如牛顿、高斯的原著,他认为在那里才 能找到"数学的美,是回到基本点的辩论,那里才能饮到数学兴奋的源头。" 他在年老时,回顾少年时的轻狂,写道:"传统的数学教育,要学生按部就 班地,一步一步地学习,训练学生把数学应用到工程或商业上,因此,不重 启发学生的开创性。但是数学有它本身抽象逻辑的美,例如在解决多次方方 程序里,根的存在本身就是一种美感。数学存在的价值,不只是为了生活上 的应用,也不应沦为供工程、商业应用的工具。数学的突破仍需要不断地去突破现有格局。"

孝顺的天才

埃尔米特的表现让父母忧心,父母但求他能把书念好,再多的钱也愿意付出,就把他送到巴黎的「路易大帝中学」(Louis-le-Grand)。因着超卓的数学天份, 他无法把自己塞入数学教育的窠臼,但是为了顺父母的意,又必须每天面对 那些细微繁琐的计算,以致痛苦得不得了。这位孝顺的天才,似乎注定终生 的自我折磨。 巴黎综合工科技术学院(Polytechnique)入学考每年举行两次,他从十八岁开始 参加,考到第五次才以吊车尾的成绩通过。其间他几乎要放弃时,遇到一位 数学老师李察(Richard)。李察老师对埃尔米特说:"我相信你是自拉格朗曰 (Lagrange)以来的第二位数学天才。"拉格朗曰被称为数学界的贝多芬,他所作的求根近似解被誉为「数学之诗」。 但是埃尔米特光有天份不够,李察老师说:"你需要有上帝的恩典,与完成 学业的坚持,才不会被你认为垃圾的传统教育牺牲掉。"因此他一次又一次 地落榜,却仍继续坚持应试。

骑在蜗牛背上的人

埃尔米特进技术学院念了一年以后,法国教育当局忽然下一道命令:肢障者不得进入工科学系,埃尔米特只好转到文学系。文学系里的数学已经容易很多了,结果他的数学还是不及格。有趣的是,他同时在法国的数学研究期刊《纯数学与应用数学杂志》发表《五次方方程式 解的思索》,震惊了数学界。

在人类历史上,第三世纪的希腊数学家就发现一次方程与二次方程的解法,之后,多少一流数学家埋首苦思四次方程以上到n次方的解法,始终不得其解。没想到三百年后,一个文学系的学生,一个数学常考不及格的学生,竟 然提出正确的解法。埃尔米特知道自己已经「对数学的开创性研究中毒很深,热爱得无法自拔」,幸得好朋友勃特伦(Bertrand)赶忙帮他补习学校要考的数学。对这一个具有开 创性的天才,僵化的数学教育带来无边的苦难;惟有友谊的了解与鼓励能够 支持他走下去,并使他在二十四岁时,能以及格边缘的成绩自大学毕业。 由于不会应付考试,无法继续升学,他只好找所学校做个批改学生作业的助 教。这份助教工作,做了几乎二十五年,仅管他这二十五年中发表了代数连 分数理论、函数论、方程论……已经名满天下,数学程度远超过当时所有大 学的教授,但是不会考试,没有高等学位的埃尔米特,只能继续批改学生作 业。社会现实对他就是这么残忍、愚昧。

不考试的老师

能够使埃尔米特不愤世嫉俗、坦然前行的动力是什么? 有三个重要的因素,一是妻子的了解与同心。埃尔米特的妻子,是他大学好 友勃特伦的妹妹,她无怨无悔地跟随这个不会考试的天才丈夫,一年一年地走下去。二是有人真正地赞赏他,不因他外表的残废与没有耀人的学位而轻视他。欣 赏他的人后来也都在数学界享有盛名——包括研究无穷级数收敛、发散与微 分方程式而著名的柯西(Cauchy),发表椭圆函数、行列式理论而著名的雅科 比(Jacobi),「纯数学与应用数学杂志」的主编刘维尔(Liouville)。这些都是行 家,而来自真正行家的惺惺相惜,比考试高分的一点虚伪荣耀,更能支助一 个失败者走较远的路。三是埃尔米特的信仰。埃尔米特在四十三岁时染患一场大病,柯西来看他, 并且把福音传给他。信仰给他另一种价值与满足。 埃尔米特在四十九岁时,巴黎大学才请他去担任教授。此后的二十五年,几乎整个法国的大数学家都出自他的门下。我们无从得知他 在课堂上的授课方式,但是有一件事情是可以确定的——没有考试。

三角几何里认识另一个世界

不会考试给他带来许多麻烦:工作不顺利、多次重考、他人的轻视、自卑… …。但是给他带来许多祝福:认识妻子、好友、信仰,与整个生命的成熟。 后来美国加州理工学院数学系的教授贝尔(Bell),在他对历史上数学伟人的 回顾上,用一段话描述埃尔米特: 在历史上的数学家愈是天才,愈是好讥诮,讲话愈多嘲讽。只有一个人 例外,就是埃尔米特,他有真正完美的人格。埃尔米特死于1901年1月4曰。晚年写道: "三角几何是永恒、是不朽的。自然界里没有任何一个东西是绝对的三角形, 但是在人的脑中却存在着完美、绝对的三角形,去衡量外面的形形状状。 没有人知道为什么三角的总和就是180°,没有人知道为什么三角的最长斜 边对应最大角。这些三角几何的基本特性,不是人去发明出来或想象出来的, 而是人在懵懂无知的时候,这些三角特性就存在,并且无论时空如何改变, 这些特性也不会改变。我只不过是一个无意中发现这些特性的人。 三角几何的存在,证明有一永久不改变的世界存在。"

4.数学奇才——伽罗华

1832年5月30曰晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。

伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。

1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。

青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。

伽罗华去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。

5.数学之父—塞乐斯 (Thales)

塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。

塞乐斯的方法既巧妙又简单:选一个天气晴朗的曰子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。

在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。塞乐斯最先证明了如下的定理:

1.圆被任一直径二等分。

2.等腰三角形的两底角相等。

3.两条直线相交,对顶角相等。

4.半圆的内接三角形,一定是直角三角形。

5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。

这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。

塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是曰蚀),而在此战之前塞乐斯曾对Delians预言此事。

塞乐斯的墓碑上列有这样一段题辞:"这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。"

6.几何之父——欧几里德

我们现在学习的几何学,是由古希腊数学家欧几里德(公无前330—前275)创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。

欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。

古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。

《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。

欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”

欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”

欧氏还有《已知数》《图形的分割》等著作。

7.希尔伯特

希尔伯特,D.(Hilbert,David,1862~1943)德国数学家,生于东普鲁士哥尼斯堡(前苏联加里宁格勒)附近的韦劳。中学时代,希尔伯特就是一名勤奋好学的学生,对于科学特别是数学表现出浓厚的兴趣,善于灵活和深刻地掌握以至应用老师讲课的内容。1880年,他不顾父亲让他学法律的意愿,进入哥尼斯堡大学攻读数学。1884年获得博士学位,后来又在这所大学里取得讲师资格和升任副教授。1893年被任命为正教授,1895年,转入格廷根大学任教授,此后一直在格廷根生活和工作,于是1930年退休。在此期间,他成为柏林科学院通讯院士,并曾获得施泰讷奖、罗巴切夫斯基奖和波约伊奖。1930年获得瑞典科学院的米塔格-莱福勒奖,1942年成为柏林科学院荣誉院士。希尔伯特是一位正直的科学家,第一次世界大战前夕,他拒绝在德国==为进行欺骗宣传而发表的《告文明世界书》上签字。战争期间,他敢于公开发表文章悼念“敌人的数学家”达布。希特勒上台后,他抵制并上书反对纳粹==排斥和迫害犹太科学家的政策。由于纳粹==的反动政策曰益加剧,许多科学家被迫移居外国,曾经盛极一时的格廷根学派衰落了,希尔伯特也于1943年在孤独中逝世。

希尔伯特是对二十世纪数学有深刻影响的数学家之一。他领导了著名的格廷根学派,使格廷根大学成为当时世界数学研究的重要中心,并培养了一批对现代数学发展做出重大贡献的杰出数学家。希尔伯特的数学工作可以划分为几个不同的时期,每个时期他几乎都集中精力研究一类问题。按时间顺序,他的主要研究内容有:不变式理论、代数数域理论、几何基础、积分方程、物理学、一般数学基础,其间穿插的研究课题有:狄利克雷原理和变分法、华林问题、特征值问题、“希尔伯特空间”等。在这些领域中,他都做出了重大的或开创性的贡献。希尔伯特认为,科学在每个时代都有它自己的问题,而这些问题的解决对于科学发展具有深远意义。他指出:“只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的衰亡和终止。”在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题

bikbok

毕 达 哥 拉 斯

(Pythagoras)

毕达哥拉斯是希腊哲学家、数学家、音乐理论家、天文学家。 约公元前560年生于小亚细亚西岸的萨摩斯岛,约公元前 480年死于梅塔逢图姆。

毕达哥拉斯早年曾在锡罗斯岛跟费雷西底(Pherecydes)学习,后来师从爱欧尼亚学派的安纳西曼德,有的资料说他曾在被誉为“科学之祖”的泰勒斯指导下进行科学研究。以后游历埃及、巴比伦等地,学到了不少数学、天文知识,回到家乡后开始讲学。

毕达哥拉斯是历史上有可靠记载的第二个希腊数学家(第一个是指泰勒斯)。数学作为一门科学实际上始于毕达哥拉斯,正如公元前4世纪的科学史家区德缪斯所说:“毕大哥拉斯创立了数学并把它变成一门高尚的艺术。

基于“万物皆数”的信念,比大哥拉斯及门人首先把抽象的数的观念放到首要地位,并把算术与几何紧密联系起来,例如把算术中的单位看作“没有位置的数”,而把几何的点看作“有位置的单位”。他们提出了区别奇数、偶数、素数的方法;发现了完全数(若一个数等于其全部真因子之河,则称这个数是完全数)、亲和数(两个数是亲和的,即两数之中任何一个数是另一个数的真因子之河。比大哥拉斯还证明了:若2n-1是素数,而2n-1是完全数。 他们还研究了:三角形数、正方形数、五边形数等等。

比大哥拉斯本人尤以发现勾股定理著称世界。更重要的是由于这个学派对勾股定理的研究,导致了不可公度量的发现。它激起了后来区多克索斯(Eudoxus)去寻找同时适合于可公度与不可公度数量的高级比例理论。

比大哥拉斯学派对建立先验的演泽法,在一定范围内获得了显著的成就。他们承认并强调数学的对象是抽象的思维,用实际事物有所区别。他们在数学中引入逻辑因素,对命题加以证明,这可以说做了大量的工作,这些工作为欧几里德公理化体系奠定了基础。他们证明了泰勒斯提出的三角形内角和定理;给出了多边形内角和定理;证明了平面可用等边三角形、正方形、正六边形填满,空间可用立方体填满;发现了正五边性和相似多边形的作法;发现了五种正多面体,并将它们与自然界中各种物质对应起来。

比大哥拉斯学派的一个很重要的贡献是面积帖合理论。它在希腊几何学中是基本理论,以致后来发展而产生了穷竭法。面积贴合的方法使他们能够说明一个由直线围称图形大雨、等于、小于另一个徒刑。在这种观念中,一个面积的单位被认为是为另一面积以一定的倍数所包容。希腊数学家不是说一个图形的面积,而只是说两个面的比。这样一种定义方法,由于不可公度问题的存在,在数的概念还没有发展到完善的程度以前无法使之精确化的。它一直到19世纪下半叶方才形成确切定义,也正是这样的概念才奠定了整个微积分学的基础。

刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。

《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。在这些证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.14的结果。刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。

《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。

刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。

刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。

欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导。

欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文。到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清。他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身"。

欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。

欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗。他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。"

欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学。由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了。

1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡。1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授。1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了。然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。

沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。

欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题。

欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉。他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师。" 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算"。

欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等。

阿贝尔和伽罗华

三、四次方程的一般解法找到之后,对一般的五次方程求解的研究迟迟没有得到解决。

大约三百年之后,在1825年,年仅22岁的挪威大学生阿贝尔(Abel N.H.,1802.8.5~1829.4.6)终于证明了:一般的一个代数方程,如果方程的次数n≥5 ,那么此方程的根不可能由方程的系数组成的根式来表示。这是一个划时代的结论,它宣告了寻找方程求根公式时代的结束。

阿贝尔的证明是:对于一般的高于四次的代数方程来说,如果用由方程的系数通过加、减、乘、除和开方运算构成的表达式代替方程的未知数,使方程成为恒等式是不可能的。

在阿贝尔证明了上述结论四年以后,在1829年,比阿贝尔更为年轻的法国大学生伽罗华(Galois E.,1811.10.26~1832.5.31),在研究了拉格朗日(Lagrange j.L.,1736.1.25~1813.4.10)《关于代数方程解法的思考》及柯西(Cauchy A.L.B,1789.8.21~1857.5.23)、阿贝尔等人成果的基础上,创立了伽罗华理论,彻底解决了代数方程的可解条件问题。

伽罗华使用的方法不同于阿贝尔的方法。伽罗华使用的是一种深刻的现代化的方法--群论方法。尽管在伽罗华之前有人提出过"群",但使"群"成为数学的一种深刻的现代化方法的是伽罗华。伽罗华理论是一种普遍性的理论,用这种理论能够推出阿贝尔曾经得到过的五次及五次以上一般的代数方程不可根式解的结论,而且能指出一些特殊方程可解的条件,这是一种比阿贝尔前进得远得多的代数理论。

由于伽罗华的创造性的成绩,有人说:如果要在数学史上列举20位贡献最大的数学家的话,伽罗华必为其中之一。遗憾的是,创立了如此伟大理论的伽罗华,年仅20岁就死于了涉及恋爱纠纷的一场决斗。

我们现在所用的直角坐标系,通常叫做笛卡儿直角坐标系。是从笛卡儿 (Descartes R.,1596.3.31~1650.2.11)引进了直角坐标系以后,人们才得以用代数的方法研究几何问题,才建立并完善了解析几何学,才建立了微积分。

法国数学家拉格朗日(Lagrange J.L.,1736.1.25~1813.4.10)曾经说过:"只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但是,当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力。从那以后,就以快速的步伐走向完善。"

我国数学家华罗庚(1910.11.12~1985.6.12)说过:"数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难入微。形数结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系,切莫分离!"

这些伟人的话,实际上都是对笛卡儿的贡献的评价。

笛卡儿的坐标系不同于一个一般的定理,也不同于一段一般的数学理论,它是一种思想方法和技艺,它使整个数学发生了崭新的变化,它使笛卡儿成为了当之无愧的现代数学的创始人之一。

笛卡儿是十七世纪法国杰出的哲学家,是近代生物学的奠基人,是当时第一流的物理学家,并不是专业的数学家。

笛卡儿的父亲是一位律师。当他八岁的时候,他父亲把他送入了一所教会学校,他十六岁离开该校,后进入普瓦界大学学习,二十岁毕业后去巴黎当律师。他于1617年进入军队。在军队服役的九年中,他一直利用业余时间研究数学。后来他回到巴黎,为望远镜的威力所激动,闭门钻研光学仪器的理论与构造,同时研究哲学问题。他于1682年移居荷兰,得到较为安静自由的学术环境,在那里住了二十年,完成了他的许多重要著作,如《思想的指导法则》、《世界体系》、《更好地指导推理和寻求科学真理的方法论》(包括三个著名的附录:《几何》、《折光》和《陨星》),还有《哲学原理》和《音乐概要》等。其中《几何》这一附录,是笛卡儿写过的唯一本数学书,其中清楚地反映了他关于坐标几何和代数的思想。笛卡儿于1649年被邀请去瑞典作女皇的教师。斯德哥尔摩的严冬对笛卡儿虚弱的身体产生了极坏的影响,笛卡儿于1650年2月患了肺炎,得病十天便与世长辞了。他逝世于1650年2月11日,差一个月零三周没活到54岁。

笛卡儿虽然从小就喜欢数学,但他真正自信自己有数学才能并开始认真用心研究数学却是因为一次偶然的机缘。

那是1618年11月,笛卡儿在军队服役,驻扎在荷兰的一个小小的城填布莱达。一天,他在街上散步,看见一群人聚集在一张贴布告的招贴牌附近,情绪兴奋地议论纷纷。他好奇地走到跟前。但由于他听不懂荷兰话,也看不懂布告上的荷兰字,他就用法语向旁边的人打听。有一位能听懂法语的过路人不以为然的看了看这个年青的士兵,告诉他,这里贴的是一张解数学题的有奖竞赛。要想让他给翻译一下布告上所有的内容,需要有一个条件,就是士兵要给他送来这张布告上所有问题的答案。这位荷兰人自称,他是物理学、医学和数学教师别克曼。出乎意料的是,第二天,笛卡儿真地带着全部问题的答案见他来了;尤其是使别克曼吃惊地是,这位青年的法国士兵的全部答案竟然一点儿差错都没有。于是,二人成了好朋友,笛卡儿成了别克曼家的常客。

笛卡儿在别克曼指导下开始认真研究数学,别克曼还教笛卡儿学习荷兰语。这种情况一直延续了两年多,为笛卡儿以后创立解析几何打下了良好的基础。而且,据说别克曼教笛卡儿学会的荷兰话还救过笛卡儿一命:

有一次笛卡儿和他的仆人一起乘一艘不大的商船驶往法国,船费不很贵。没想到这是一艘海盗船,船长和他的副手以为笛卡儿主仆二人是法国人,不懂荷兰语,就用荷兰语商量杀害他们俩抢掠他们钱财的事。笛卡儿听懂了船长和他副手的话,悄悄做准备,终于制服了船长,才安全回到了法国。

在法国生活了若干年之后,他为了把自己对事物的见解用书面形式陈述出来,他又离开了带有宗教偏见和世俗的专制政体的法国,回到了可爱而好客的荷兰,甚至于和海盗的冲突也抹然不了他对荷兰的美好回忆。正是在荷兰,笛卡儿完成了他的《几何》。此著作不长,但堪称几何著作中的珍宝。

笛卡儿在斯德哥尔摩逝世十六年后,他的骨灰被转送回巴黎。开始时安放在巴维尔教堂,1667年被移放到法国伟人们的墓地--神圣的巴黎的保卫者们和名人的公墓。法国许多杰出的学者都在那里找到了自己最后的归宿。

铁血嘟嘟

楼上的都是从网上偷来的!!!!!!!!!!!!!!!!!!!我的最佳答案:五大数学家:冯·诺依曼,伽罗华,阿基米德, 祖冲之,塞乐斯。

中国数学家:陈景润,朱世杰,华罗庚,陈省身,苏步青,丘成桐,吴文俊,廖山涛,杨乐,陈建功,李善兰、华衡芳,李新标等。

外国数学家:毕达哥拉斯,摩尔根,费尔马,欧拉 ,希尔伯特,

余辉

江泽涵 刘徽

阿贝尔和伽罗华

笛卡儿

韦达 高斯 希尔伯特

数学之父— 泰勒斯(Thales) 嘉当 毕达哥拉斯

应用数学大师——欧拉 欧氏几何的创始人——欧几里得

划时代的科学巨人—牛顿

业余数学家之王——费尔马 孙子巧解“鸡兔同笼” 吴文俊

钱学森 华罗庚 毕达哥拉斯悼论与 青年数学家伽罗瓦 南北朝时代的伟大数学家祖冲之父子

可桃可挑

外国的有牛顿、高斯、阿基米德、费尔马、狄里克来、欧拉

中国有祖冲之、华罗庚、苏步青、陈景润、杨乐

总之很多。

FinCloud

阿基米德、欧几里得、牛顿、欧拉、高斯、黎曼、庞加莱、希尔伯特……

人类地板流精华

牛顿,欧拉,阿基米德,西而拨特,陈净润,华罗庚

西柚不是西游

华罗庚,陈省身,苏步青,陈景润,丘成桐

哥德巴赫??

真颛

华罗庚,陈景润

wpBeta

阿基米德。。

大鱼炖火锅

陈景润 华罗庚

tt白

韦达,

苏州马小云

李新标

北有云溪

陈景润

数学不及格的天才数学家-埃尔米特(Hermite)

埃尔米特(Charles Hermite,1822—1901) 法国数学家。巴黎综合工科学校毕业。曾任法兰西学院、巴黎高等师范学校、巴黎大学教授。法兰西科学院院士。在函数论、高等代数、微分方程等方面都有重要发现。1858年利用椭圆函数首先得出五次方程的解。1873年证明了自然对数的底e的超越性。在现代数学各分支中以他姓氏命名的概念(表示某种对称性)很多,如「 ”埃尔米特二次型”、「 ”埃尔米特算子”等。 埃尔米特是十九世纪最伟大的代数几何学家,但是他大学入学考试重考了五次,每次失败的因都是数学考不好。他的大学读到几乎毕不了业,每次考不好都是为了数学那一科。他大学毕业后考不上任何研究所,因为考不好的科目还是数学。数学是他一生的至爱,但是数学考试是他一生的恶梦。不过这无法改变他的伟大:课本上的「 ”共轭矩阵”是他先提出来的;人类一千多年来解不出「 ”五次方程式的通解”,是他先解出来的;自然对数的底的「 ”超越数性质”,在全世界,他是第一个证明出来的人。他的一生证明「 ”一个不会考试的人,仍然能有胜出的人生”,并且更奇妙的是不会考试成为他一生的祝福。怎么会这样呢?嗯……也许能在本文中找到答案喔! 革命家的血统 翻开欧洲的地图,在法国的东北角嵌着一块小小的版图,名叫洛林(Lorraine)。这个地方自古以来就是兵家必争之地,因为北扼莱茵河口,南由马恩河(Marne River)可以直捣巴黎;濒临的阿登高地(Ardennes)是军事制高点;地层中蕴藏欧洲最大的铁矿。早在神圣罗马帝国时代,洛林草场上就染满骑士的鲜血。1871年德国的铁血雄兵蹂躏法国后,要求法国割让的土地就是洛林。经过百年来战争的洗礼,洛林留下来的是一批苦干、达观的法国人,足能面对环境的苦难。埃尔米特1822年12月24日出生在洛林的小村庄Dieuge,他的父祖辈都参与了法国大革命。祖父被大革命后的极端政治团体巴黎公社(Commune)逮捕,后来死于狱中。有些亲人死在断头台上。他的父亲是杰出的冶矿工程师,因为被公社通缉,逃到法国边界的洛林小村庄,在一家铁矿场中隐姓埋名做矿工。铁矿场的主人叫雷利曼(Lallemand),一个标准强悍的洛林人,有一个比他更强悍的女儿玛德琳(Madeleine)。在那个保守的时代,玛德琳就以「 ”敢在户外穿长裤 *** 裙子”而著名,凶悍地管理矿工。但是一遇到这位巴黎来的工程师,她就软化了,明知对方是死刑通缉犯还是嫁给他,而且为他生了七个孩子。埃尔米特在七个孩子中排名第五,生下来右脚就残障,需扶拐杖行走。他身上一半流着父亲优秀聪明、理想奋斗的血液,一半流着母亲敢作敢为、敢爱敢恨的洛林强悍血统,谱成不凡生涯的第一个升记号。 从大师认识数学之美 埃尔米特从小就是个问题学生,上课时老爱找老师辩论,尤其是一些基本的问题。他尤其痛恨考试。他在后来的文章中写道:「 ”学问像大海,考试像鱼钩。老师老要把鱼挂在鱼钩上,教鱼怎么能在大海中学会自由、平衡的游泳?”老师看他考不好,就用木条打他的脚,他恨死了。他后来写道:「 ”达到教育的目的是用头脑,又不是用脚。打脚有什么用?打脚可以使人头脑更聪明吗?”他的数学考得特别差,主要原因是他的数学特别好。他讲的话更让数学老师抓狂。他说:「 ”数学课本是一滩臭水,是一堆垃圾。数学成绩好的人,都是一些二流头脑的人,因为他们只懂搬垃圾。”他自命为一流的科学狂人。不过他讲的也没错,历史上最伟大的数学家大多是文学、外交、工程、军事等与数学不相干的科系出身的。埃尔米特花许多时间去看数学大师,如牛顿、高斯的原著。他认为只有在那里才能找到「 ”数学的美,是回到基本点的辩论,那里才能饮到数学兴奋的源头。”他在年老时,回顾少年时的轻狂,写道:「 ”传统的数学教育,要学生按部就班地、一步一步地学习,训练学生把数学应用到工程或商业上,因此,不重视启发学生的开创性。但是数学有它本身抽象逻辑的美,例如在解决多次方方程式里,根的存在本身就是一种美感。数学存在的价值,不只是为了生活上的应用,也不应沦为供工程、商业应用的工具。数学的突破仍需要不断地去突破现有格局。” 父母的支持 埃尔米特的表现让父母忧心。父母但求他能把书念好,再多的钱也愿意付出,就把他送到巴黎的路易大帝中学(Louis-le-Grand)。因着超卓的数学天份,他无法把自己塞入数学教育的窠臼,但是为了顺父母的意,又必须每天面对那些细微繁琐的计算,以致痛苦得不得了。这位孝顺的天才,似乎注定终生的自我折磨。巴黎综合工科技术学院(Polytechnique)入学考每年举行两次。他从十八岁开始参加,考到第五次才以吊车尾的成绩通过。其间他几乎要放弃时,遇到一位数学老师李察(Richard)。李察老师对埃尔米特说:「 ”我相信你是自拉格朗日(Lagrange)以来的第二位数学天才。”拉格朗日被称为数学界的贝多芬,他所作的求根近似解被誉为「 ”数学之诗”。 但是埃尔米特光有天份不够,李察老师说:「 ”你需要有上帝的恩典,与完成 学业的坚持,才不会被你认为垃圾的传统教育牺牲掉。”因此他一次又一次地落榜,却仍继续坚持应试。 骑在蜗牛背上的人 埃尔米特进技术学院念了一年以后,法国教育当局忽然下一道命令:肢障者不得进入工科学系。埃尔米特只好转到文学系。文学系里的数学已经容易很多了,结果他的数学还是不及格。有趣的是,他同时在法国的数学研究期刊《纯数学与应用数学杂志》发表《五次方方程式解的思索》,震惊了数学界。 在人类历史上,第三世纪的希腊数学家就发现一次方程与二次方程的解法。之后,多少一流数学家埋首苦思四次方程以上到n次方程的解法,始终不得其解。没想到三百年后,一个文学系的学生,一个数学常考不及格的学生,竟然提出正确的解法。埃尔米特知道自己已经「 ”对数学的开创性研究中毒很深,热爱得无法自拔”,幸得好朋友勃特伦(Bertrand)赶忙帮他补习学校要考的数学。对这一个具有开创性的天才,僵化的数学教育带来无边的苦难;惟有友谊的了解与鼓励能够支持他走下去,并使他在二十四岁时,能以及格边缘的成绩自大学毕业。 由于不会应付考试,无法继续升学,他只好找所学校做个批改学生作业的助教。这份助教工作,做了几乎二十五年,尽管他这二十五年中发表了代数连分数理论、函数论、方程论……已经名满天下,数学程度远超过当时所有大学的教授,但是不会考试,没有高等学位的埃尔米特,只能继续批改学生作业。社会现实对他就是这么残忍、愚昧。 不考试的老师 能够使埃尔米特不愤世嫉俗、坦然前行的动力是什么? 有三个重要的因素。一是妻子的了解与同心。埃尔米特的妻子,是他大学好友勃特伦的妹妹,她无怨无悔地跟随这个不会考试的天才丈夫,一年一年地走下去。二是有人真正地赞赏他,不因他外表的残废与没有耀人的学位而轻视他。欣赏他的人后来也都在数学界享有盛名——包括研究无穷级数收敛、发散与微分方程式而著名的柯西(Cauchy),发表椭圆函数、行列式理论而著名的雅科比(Jacobi),《纯数学与应用数学杂志》的主编刘维尔(Liouville)。这些都是行家,而来自真正行家的惺惺相惜,比考试高分的一点虚伪荣耀,更能支助一个失败者走较远的路。三是埃尔米特的信仰。埃尔米特在四十三岁时染患一场大病,柯西来看他,并且把福音传给他。信仰给他另一种价值与满足。 埃尔米特在四十九岁时,巴黎大学才请他去担任教授。此后的二十五年,几乎整个法国的大数学家都出自他的门下。我们无从得知他在课堂上的授课方式,但是有一件事情是可以确定的──没有考试。 三角几何里认识另一个世界 不会考试给他带来许多麻烦:工作不顺利,多次重考,他人的轻视,自卑……。但是给他带来许多祝福:认识妻子、好友、信仰,与整个生命的成熟。 后来美国加州理工学院数学系的教授贝尔(Bell),在他对历史上数学伟人的回顾上,用一段话描述埃尔米特:「 ” 历史上的数学家,愈是天才,愈是好讥诮,讲话愈多嘲讽。只有一个人例外,就是埃尔米特。他有真正完美的人格。”埃尔米特死于1901年1月4日。晚年写道:「 ”三角几何是永恒的、不朽的。自然界里没有任何一个东西是绝对的三角形。但是在人的脑中却存在着完美、绝对的三角形,去衡量外面的形形状状。没有人知道为什么三角的总和就是180度,没有人知道为什么三角形的最长边对应最大角。这些三角几何的基本特性,不是人去发明出来或想象出来的,而是人在懵懂无知的时候,这些三角特性就存在,并且无论时空如何改变,这些特性也不会改变。我只不过是一个无意中发现这些特性的人。 三角几何的存在,证明有一永久不改变的世界存在。” 其他成果 埃尔米特是一位热心的数学传播者,他经常无保留地向数学界提供他的知识、想法以致创造性的思维火花,一般通过书信、便条以及讲演进行这种传播.例如,他与T.J.斯蒂尔切斯(StieltjeS)两人从1882年到1894年间至少写过432封信.只要认真阅读埃尔米特的著作,就会发现,他提供了许多可以作为别人发现的序幕的例子,他的数学传播工作极大地促进了数学的发展. 埃尔米特是一个全面的数学家,除了前述各项工作外,他在数学的各领域中还取得如下成果:他深入研究了矩阵理论,证明了,如果矩阵M=M*(M的伴随矩阵),则其特征值都是实数;提出一个属于代数函数论的埃尔米特原理,是后来著名的黎曼-罗赫定理的特例之一;在不变量方面有较多成果,以致于J.J.西尔威斯特(Sylvester)曾指出,「 ”A.凯莱(Cayley)、埃尔米特和我组成了一个不变量的三位一体”,例如,他提出一个「 ”互反律”,即一个m次二元型的p阶固定次数的共变式和一个p次二元型的m阶固定次数的共变式之间的一种一一对应关系;埃尔米特推广了高斯研究整系数二次型的方法,证明了它们对于任意个变量其类数仍是有限的;还把这一结果应用于代数数,证明了,如果一个数域的判别式已给出,则其范型的数目是有限的;他还把这种「 ”类数有限性”用于不定二次型,取得一些重要的结果;他关于拉梅方程(一种微分方程)的研究在当时也有十分重要的意义
2023-05-19 23:11:321

两点三次埃尔米特插值法

两点三次埃尔米特插值法如下:埃尔米特插值是另一类插值问题,这类插值在给定的节点处,不但要求插值多项式的函数值与原函数值相同。同时还要求在节点处,插值多项式的一阶直至指定阶的导数值,也与被插函数的相应阶导数值相等,这样的插值称为埃尔米特(Hermite)插值。Hermite插值在不同的节点,提出的差值条件个数可以不同,若在某节,要求插值函数多项式的函数值,一阶导数值,直至阶导数值均与被插函数的函数值相同及相应的导数值相等。我们目前已经可以使用牛顿插值法已经拉格朗日插值法求解满足 f(xi)=yi 的多项式了。但是有时候我们还会遇到需要确定某点导数的情况。由于导数条件各不相同,做不到面面俱到,我们这里只给出一个用基函数求解的例子。多项式插值用多项式对一组给定数据进行插值的过程。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。插值:用来填充图像变换时像素之间的空隙。
2023-05-19 23:11:381

埃尔米特的数学成就有哪壹些?尔米特二次型

埃尔米特出生在公元一八二二年,逝世于一九零一年,他是法国著名的数学家,同时他不同于其他的数学家的地方在于他从小到大的考试成绩从来都是不合格的,那么这样一个奇怪的数学家埃尔米特究竟有过如何的一生呢?这个问题的答案就在埃尔米特的简介中。埃尔米特简介要从他的父母开始说起,埃尔米特的家族经历过法国大革命,亲朋好友有不少被送上过断头台,他的父亲是一个有名的冶矿工程师但同时也是一个逃亡在外的死刑通缉犯,他的妈妈是当地出了名剽悍的洛林人,而他继承了优秀的血统,却也天生右脚残疾,这一切似乎预示着他不平凡的一生。上学的时候仇视死板教育的埃尔米特的成绩总是不合格,尽管平时数学非常好,但是到了关键时刻却总是不尽如人意,一直到大学也是徘徊于合格线,后来他在数学期刊上发表的五次方程解法使得所有人震惊,一个数学考试不及格的文学院学生解决了无数人束手无策的难题。之后他又进一步研究并证明了自然对数底的超越性。 前半辈子的坎坷经历使得埃尔米特自卑,但是幸运的是有好友和夫人的理解和支撑,学术界不少识才的数学家也与他交友,到年近半百的时候他被邀请到巴黎大学任教,他的课业没有考试,但却培养了之后许多才华斐然的大数学家,埃尔米特的一生无疑是传奇式的,他用坚持和努力为我们证明了教育和考试的死板是不得行的,数学本就是创造性的学科。 埃尔米特是十九世纪法国著名的数学家,他毕业于巴黎综合工科学校后来辗转在法兰西学等大学任教,同时也是法兰西科学院院士。埃尔米特的数学成就许多,他的一生在函式论、微分方程等各个方面都表现出重大成就。那么埃尔米特的数学成就究竟有哪壹些呢?埃尔米特的数学成就体现今许多方面,其中最出名的要数他在公元一八五八年的时候运用椭圆函式的原理首次得出五次方程的解,这也是数学史上非常有意义的第一次,具有里程碑式的远大意义。在之后不久的公元一八七三年他又一次用超人的智慧论证了自然对数底的超越性,埃尔米特在数学上的伟大成就可以在现代数学各分支中的许多专业名词中看出来,比如「埃尔米特二次型」等根据他名字姓氏命名的名词不但体现出他首次发现并解读这一领域的杰出成就,也体现了埃尔米特的数学成就之高远。 埃尔米特的数学成就影响深远,他是数学史上难得的奇葩,他的数学考试多数不及格但是这却无法抹灭他在学术研究史上的巨大成就,他不但研究「共轭矩阵」而且还提出了埃尔米特原理,他在不变数方面取得的成就尤为多,埃尔米特提出 「互反律」,还致力于推广研究整系数二次型的办法,并且活学活用把这一结果用在代数学。埃尔米特的数学成就直至今还深深影响着人们。 埃尔米特是十九世纪非常有名的数学家,他的一生为数学事业贡献许多,在数学学术研究的历史上取得过许多成就,但是他的一生最为人称道的却是他近乎传奇式的人生经历,埃尔米特的故事究竟有哪壹些传奇之处呢?埃尔米特的故事要从他的家族开始讲起,他的父辈们大多参加过法国大革命,有着不屈的精神,他的父亲甚至是一个死囚犯,他的妈妈也是一个奇女子,有着非常强悍的作风。埃尔米特天生有些跛足,右脚的残障让他必须依靠柺杖行走,他小时候就爱和老师争论,考试非常不理想的他让老师和家长伤透了脑筋,同时他自个非常厌恶死板的教育模式,不止一次的抨击过教育和考试的弊处。他上学的时候因为法令转到文学系,但是他的数学考试一直不及格,导致他无法取得更高的学历,也就是这样一个始终无法考好的末等生研究发表的关于五次方程解得学术报告震惊了全世界,尽管数学成就取得非常高的荣耀但是没有高学历的埃尔米特一直只能当一个小小的助教,这样不平等的待遇使得他的际遇更加传奇起来。 埃尔米特的故事流传到今天,不仅因为他为数学研究做出非常大的进步更是因为他的故事为我们证明了考不好试的数学家的存在,也同时是现代教育体系僵化以及社会只认学历不认研究的死板的讽刺。他用自个传奇式的故事告诉人们只要真正的爱一门学科,考试真的不是非常重要,历史终究会记得他的贡献。
2023-05-19 23:12:001

埃尔米特多项式

在数学中,埃尔米特多项式是一种经典的正交多项式族,得名于法国数学家夏尔·埃尔米特。概率论里的埃奇沃斯级数的表达式中就要用到埃尔米特多项式。在组合数学中,埃尔米特多项式是阿佩尔方程的解。物理学中,埃尔米特多项式给出了量子谐振子的本征态。 扩展资料   多项式Hn是一个n次的多项式。概率论的.埃尔米特多项式是首一多项式(最高次项系数等于1),而物理学的埃尔米特多项式的最高次项系数等于2。
2023-05-19 23:12:061

怎么证明埃尔米特矩阵特征值均为实数,属于不同特征值?

这里给出对称矩阵的特征值均为实数且不同特征值的特征向量正交的证明。厄密矩阵证明相同,把转置变成共轭转置即可。厄米特矩阵(Hermitian Matrix,又译作“埃尔米特矩阵”或“厄米矩阵”),指的是自共轭矩阵。矩阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。由定义得知,厄米特矩阵的对角线上各元素必为实数。通常厄米特矩阵并不对称,除非所有元素均为实数。厄米特矩阵的特殊性质是其本征值一定是实数。在物理系统中,其可观察的物理量(例如坐标、动量、能量等等),在量子力学中可视为一算符,此算符有对应的本征向量和本征值,算符所对应的本征向量代表物理系统的状态,物理量发的结果就是本征值。因此,如用矩阵表示算符,则一定是厄米特矩阵,因为厄米特矩阵的本征值为实数,所以也是可观察的量。函数特征:显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称矩阵是埃尔米特矩阵的特例。若A和B是埃尔米特矩阵,那么它们的和A+B也是埃尔米特矩阵;而只有在A和B满足交换性(即AB=BA)时,它们的积才是埃尔米特矩阵。
2023-05-19 23:12:131

埃尔米特插值为啥构件一个不超过2n+1

不少实际的插值问题不但要求在节点上的函数值相等,而且还要求对应的导数值也相等,甚至要求高阶导数也相等,满足这种要求的插值多项式就是埃尔米特插值多项式。
2023-05-19 23:12:252

埃尔米特插值可以不需要导数条件

题主是否想询问“埃尔米特插值可以不需要导数条件吗”?不可以。埃尔米特插值不可以不需要导数条件,埃尔米特插值实际上也是待定系数法,只不过已知条件除了已知点还有导数的信息。导数埃尔米特(Hermite)插值法不但要求在节点的函数值相等,也要求对应的导数值也相等,甚至更高阶导数也相等。
2023-05-19 23:12:321

Hermite矩阵有哪些性质?

Hermite矩阵 埃尔米特矩阵是共轭对称的方阵。埃尔米特矩阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。对于有:,其中为共轭算符。 记做:例如:就是一个埃尔米特矩阵。显然,埃尔米特矩阵主对角线上的元素必须是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称阵是埃尔米特矩阵的特例。性质 若A 和B 是埃尔米特矩阵,那么它们的和A+B 也是埃尔米特矩阵;而只有在A 和B满足交换性(即AB = BA)时,它们的积才是埃尔米特矩阵。 可逆的埃尔米特矩阵A 的逆矩阵A-1仍然是埃尔米特矩阵。 如果A是埃尔米特矩阵,对于正整数n,An是埃尔米特矩阵. 方阵C 与其共轭转置的和C + C * 是埃尔米特矩阵. 方阵C 与其共轭转置的差C �6�1 C * 是斜埃尔米特矩阵。 任意方阵C 都可以用一个埃尔米特矩阵A 与一个斜埃尔米特矩阵B的和表示: </dd>埃尔米特矩阵是正规阵,因此埃尔米特矩阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着埃尔米特矩阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组Cn的正交基。 n阶埃尔米特矩阵的元素构成维数为n2的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之上的元素有两个自由度。 如果埃尔米特矩阵的特征值都是正数,那么这个矩阵是正定阵,若它们是非负的,则这个矩阵是半正定阵。 埃尔米特序列 埃尔米特序列(抑或Hermite向量)指满足下列条件的序列ak(其中k = 0, 1, …, n):若n 是偶数,则an/2是实数。实数序列的离散傅里叶变换是埃尔米特序列。反之,一个埃尔米特序列的逆离散傅里叶变换是实序列。
2023-05-19 23:12:391

埃尔米特矩阵是什么

埃尔米特矩阵就是Hermite阵。Hermite矩阵又称共轭矩阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。
2023-05-19 23:12:471

三次埃尔米特插值的误差

y=f(x)在x的区间。三次埃尔米特插值的误差y=f(x)在x的区间,插值指的是运用一些数学的方法,“模拟产生”一些新的但又比较可靠的数据,补足题目中的空缺数据,插值也可以用来做预测问题。
2023-05-19 23:12:531

什么是hermitian矩阵??多谢各位大侠了

首先说下实对称矩阵:A=A转置例如1 2 32 4 53 5 6转置之后是其本身,叫实对称矩阵。hermitian矩阵是实对称矩阵的推广,共轭转置等于本身的矩阵A=A共轭转置例如 1 2i 3+i-2i 5 6 3-i 6 4
2023-05-19 23:13:112

埃尔米特矩阵的推论

(1)n阶埃尔米特矩阵A为正定(半正定)矩阵的充要条件是A的所有特征值大于等于0。(2)若A是n阶埃尔米特矩阵,其特征值对角阵为V,则存在一个酉矩阵U,使AU=UV。(3)若A是n阶埃尔米特矩阵,其弗罗伯尼范数的平方等于其所有特征值的平方和。(4)斜埃尔米特矩阵为A的共轭转置为-A斜埃尔米特矩阵的特征值全是实数。更进一步,斜埃尔米特矩阵都是正规矩阵。因此它们是可对角化的,它们不同的特征向量一定是正交的。
2023-05-19 23:13:231

正交矩阵的共轭等于什么

正交矩阵的共轭等于Hermite矩阵。Hermite矩阵又称作自共轭矩阵、埃尔米特矩阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。根据上述的定义,知道Hermite矩阵的共轭转置矩阵等于其本身。
2023-05-19 23:13:351

厄米多项式表达式前几项

厄米多项式表达式前几项:多项式Hn的次数与序号n相同,所以不同的埃尔米特多项式的次数不一样。对于给定的权函数w,埃尔米特多项式的序列将会是正交序列。在组合数学中,埃尔米特多项式是阿佩尔方程的解。物理学中,埃尔米特多项式给出了量子谐振子的本征态。多项式Hn是一个n次的多项式。概率论的埃尔米特多项式是首一多项式(最高次项系数等于1),而物理学的埃尔米特多项式的最高次项系数等于2的n次。简介在数学中,多项式(polynomial)是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。
2023-05-19 23:13:421

矩阵共轭转置的行列式相同吗

共轭矩阵又称Hermite阵、埃尔米特矩阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。 转置矩阵:把矩阵A的行换成相应的列,得到的新矩阵称为A的转置矩阵,记作AT或A。通常矩阵的第一列作为转置矩阵的第一行,第一行作为转置矩阵的第一列。 所以,共轭矩阵和转置矩阵的区别:共轭矩阵又称Hermite阵、埃尔米特矩阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。 转置矩阵:把矩阵A的行换成相应的列,得到的新矩阵称为A的转置矩阵,记作AT或A。通常矩阵的第一列作为转置矩阵的第一行,第一行作为转置矩阵的第一列
2023-05-19 23:13:571

hermite矩阵是什么 ?

Hermite矩阵的用途主要是在在工程专业方面的应用,可以更加方便地描述工程信息。厄米特矩阵(Hermitian Conjugate Matrix, 又译作“埃尔米特矩阵”或“厄米矩阵”),指的是自共轭矩阵。矩阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。性质:显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称矩阵是埃尔米特矩阵的特例。若A和B是埃尔米特矩阵,那么它们的和A+B也是埃尔米特矩阵;而只有在A和B满足交换性(即AB=BA)时,它们的积才是埃尔米特矩阵。可逆的埃尔米特矩阵A的逆矩阵A仍然是埃尔米特矩阵。如果A是埃尔米特矩阵,对于正整数n,A是埃尔米特矩阵。方阵C与其共轭转置的和是埃尔米特矩阵。任意方阵C都可以用一个埃尔米特矩阵A与一个斜埃尔米特矩阵B的和表示。埃尔米特矩阵是正规矩阵,因此埃尔米特矩阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着埃尔米特矩阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组C的正交基。n-阶埃尔米特矩阵的元素构成维数为n^2-n的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之外的元素有两个自由度。如果埃尔米特矩阵的特征值都是正数,那么这个矩阵是正定矩阵,若它们是非负的,则这个矩阵是半正定矩阵。
2023-05-19 23:14:043

A是m×n矩阵,证明A^HA和AA^H都是半正定埃尔米特矩阵

(1) 因为A是m×n矩阵, 所以A^H 是n×m矩阵,A^HA 是n×n矩阵, 而且(A^HA)^H = A^H(A^H)^H = A^HA. 又因为对于任意的n维非零列向量a,有 a^H(A^HA)a = (Aa)^H(Aa) = ||Aa||^2 大于或等于 0, 因此A^HA是半正定埃尔米特矩阵. (2) 因为A是m×n矩阵, 所以A^H 是n×m矩阵,AA^H 是m×m矩阵, 而且(AA^H)^H = (A^H)^HA^H = AA^H. 又因为对于任意的m维非零列向量b,有 b^H(AA^H)b = (A^Hb)^H(A^Hb) = ||A^Hb||^2 大于或等于 0, 因此AA^H是半正定埃尔米特矩阵.
2023-05-19 23:14:111

设A,B是正定埃尔米特矩阵,若AB是埃尔米特矩阵,证明AB正定。

A = L * L^H,AB = L * L^H * B 相似于 L^H * B * L^{-H},后者正定,因而AB的特征值大于0。
2023-05-19 23:14:171

三点四次埃尔米特插值唯一吗

三点四次次埃米尔特插值多项式存在且唯一。为了避免高次插值可能出现的大幅度波动现象,在实际应用中采用分段低次插值来提高近似程度,可用分段线性插值或分段三次埃尔米特插值来逼近已知函数,但总体光滑性较差。为了克服这一缺点,一种全局化的分段插值方法一一三次样条插值成为比较理想的工具。
2023-05-19 23:14:241

埃尔米特多项式的定义

前六个(概率论中的)埃尔米特多项式的图像。埃尔米特多项式有两种常见定义。第一种是:这是概率论中较为常用的形式。有时也会使用另一种定义:这是物理学中较为常用的形式。这两种定义并不是完全等价的。它们之间的关系是:下文中一般会使用第一种定义,也是概率学家偏好的定义。因为是标准正态分布函数(数学期望等于0,标准差等于1)的概率密度函数。前六个(物理学中的)埃尔米特多项式的图像。前六个概率学的埃尔米特多项式的表达式为:
2023-05-19 23:14:411

为什么埃尔米特对称矩阵的行列式是实数?

比较显然的看法是因为Hermite矩阵所有特征值都是实数...虽然用特征值看行列式好像杀鸡用牛刀了, 不过Hermite矩阵的谱分解确实比较重要
2023-05-19 23:14:561

下列哪位不是法国数学家?A拉格朗日N笛卡尔I埃尔米特O康托尔????????? ????? ??

康托尔不是法国数学家【附】约瑟夫·拉格朗日(Joseph-Louis Lagrange,1736~1813)全名为约瑟夫·路易斯·拉格朗日,法国著名数学家、物理学家。1736年1月25日生于意大利都灵,1813年4月10日卒于巴黎。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。勒内·笛卡尔(又称勒内·笛卡儿,公元1596年3月31日—公元1650年2月11日),出生于法国安德尔-卢瓦尔省的图赖讷拉海(现改名为笛卡尔以纪念),逝世于瑞典斯德哥尔摩,法国著名哲学家、物理学家、数学家、神学家。笛卡尔是法国著名的哲学家、物理学家、数学家、神学家,他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他与英国哲学家弗兰西斯·培根一同开启了近代西方哲学的“认识论”转向。埃尔米特(Charles Hermite,1822—1901)法国数学家。巴黎综合工科学校毕业。曾任法兰西学院、巴黎高等师范学校、巴黎大学教授。法兰西科学院院士。在函数论、高等代数、微分方程等方面都有重要发现。格奥尔格·康托尔(Cantor,Georg Ferdinand Ludwig Philipp,1845.3.3-1918.1.6)德国数学家,集合论的创始人。生于俄国圣彼得堡。父亲是犹太血统的丹麦商人,母亲出身艺术世家。1856年全家迁居德国的法兰克福。先在一所中学,后在威斯巴登的一所大学预科学校学习。
2023-05-19 23:15:041

若A是正定埃尔米特矩阵,证明若A是酉矩阵,则A=I

A是埃尔米特矩阵说明A^H=AA是酉矩阵说明(A^H)A=I结合上两式有A²=I,或(A+I)(A-I)=0A是正定的说明A的特征值全是正实数,即-1不是A的特征值,∴|-I-A|≠0,或|I+A|≠0,即(A+I)可逆于是A-I=(A+I)^(-1)0=0,即A=I
2023-05-19 23:15:111

半正定二次型化为规范型后还是半正定吗

不是。对于给定的二次型,先将化为标准形,然后根据标准形中平方项系数为正的个数是否等于n来判定二次型的正定性。正定埃尔米特二次型是与实数域上正定二次型相对应的概念。正定、半正定、负定、半负定的埃尔米特二次型统称为定型的。不定的埃尔米特二次型称为不定型的。
2023-05-19 23:15:181

高等代数理论基础68:酉空间介绍

定义:设V是复数域上的线性空间,在V上定义一个二元复函数,称为内积,记作 , 具有性质: 1. , 为 的共轭复数 2. 3. 4. 是非负实数,且 这样的线性空间称为酉空间 例:在线性空间 中,对向量 , ,定义内积为显然满足定义条件,故 成为一个酉空间 由内积定义 1. 2. 3. 称为向量 的长度,记作 4. ,有 ,当且仅当 线性相关时等号成立 柯西-布涅柯夫斯基不等式 5. 时称 正交或互相垂直 注:酉空间中内积 一般为复数,故向量之间不易定义夹角 6.任一组线性无关的向量可用施密特过程正交化,并扩充为一组标准正交基 7.对n级复矩阵 ,用 表示以A的元素的共轭复数作元素的矩阵,若A满足 ,则称为酉矩阵 注: 1)酉矩阵行列式的绝对值为1 2)两组标准正交基的过渡矩阵是酉矩阵 8.若酉空间V的线性变换 满足 ,则称为V的一个酉变换 注: 1)酉变换在标准正交基下的矩阵是酉矩阵 2)酉变换类似欧氏空间的正交变换 9.若矩阵A满足 ,则称为Hermite矩阵 在酉空间 中令 ,则 注:埃尔米特矩阵类似欧氏空间的对称矩阵 10.V是酉空间, 是子空间, 是 的正交补,则 设 是对称变换的不变子空间,则 也是不变子空间 11.埃尔米特矩阵的特征值为实数,它的属于不同特征值的特征向量必正交 12.若A是埃尔米特矩阵,则有酉矩阵C,使 是对角矩阵 13.设A为埃尔米特矩阵,二次齐次函数称为埃尔米特二次型,有酉矩阵C,当 时
2023-05-19 23:15:241

hermite插值多项式是什么?

Hermite插值多项式是2n+1次。hermite插值多项式要求在节点上与被插值函数的函数值相等,且在节点上它们的若干阶导数也相等。多项式插值用多项式对一组给定数据进行插值的过程。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。插值:用来填充图像变换时像素之间的空隙。当节点较多时,为避免多项式次数过高而引起非节点处的偏离过大,仍采用分段插值的方法。若把节点两两分段,在每一小段上作三次Hermite插值,就得到一个分段三次Hermite插值函数。由前面的推导可直接写出分段三次Hermite插值函数的分段表达式。多项式插值目的埃尔米特插值是另一类插值问题,这类插值在给定的节点处,不但要求插值多项式的函数值与原函数值相同。同时还要求在节点处,插值多项式的一阶直至指定阶的导数值,也与被插函数的相应阶导数值相等。多项式插值目的就是寻找一个恰好通过这些数据点的多项式。当我们输入数据点而得到一个插值函数的时候,我们由有限的插值点得到了一个由无限被插值点组成的插值函数,换言之,是由有限的信息估计出了无穷的信息。
2023-05-19 23:15:311

一个矩阵乘以它的共轭转置,得到的是埃尔米特矩阵吗?

是的,一个矩阵乘以它的共轭转置,结果一定是厄米特矩阵。可以用矩阵运算的性质如下图证明。
2023-05-19 23:15:481

埃尔米特插值的三次Hermite插值多项式

当n=1时,H3(x)=f(x0)(1+2(x0-x) / (x0-x1))((x-x1)/(x0-x1))^2+f(x1)(1+2(x1-x) / (x1-x0))((x-x0)/(x1-x0))^2+f"(x0)(x-x0)((x-x1)/(x0-x1))^2+f"(x1)(x-x1)((x-x0)/(x1-x0))^2
2023-05-19 23:16:011

请写出矩阵A是正定矩阵三个充要条件

这道题实在看不懂,没办法回答。
2023-05-19 23:16:154

hilbert遇到的第一位老师是克莱因吗

不是1862年,希尔伯特出生于东普鲁士的柯尼斯堡,祖父和父亲都是法官,母亲是一位富商的女儿,在哲学、数学、天文学方面都略有研究。而母亲就负责了希尔伯特的启蒙教育。后来,希尔伯特不顾父亲的劝阻(父亲想要儿子学习法律),毅然决然跟随闵可夫斯基,去到哥尼斯堡大学攻读数学。到了第二学期,按照学校规定,学生可以选择交换到另一所大学学习一段时间,希尔伯特就选择了海德堡大学。后来,希尔伯特回到哥尼斯堡大学,主要跟从韦伯(Weber)教授学习数论、函数论和不变量理论。而博士论文导师就是赫赫有名的林德曼(Lindemann)教授,希尔伯特出色地完成了关于代数形式的不变性质的论文,于1885年获得哲学博士学位。毕业后,希尔伯特进行了一次短期游学。他去了莱比锡、巴黎等地,参与了德国数学家克莱因(Klein)的讨论班,后来又结识了庞加莱(Poincaré)、若尔当(Jordan)、皮卡(Picard)、埃尔米特(Hermite)等著名数学家。
2023-05-19 23:16:501

有没有大器晚成的数学家?

有的数学家是少年天才型的,因为他的年少的时候有条件,并且对数学感兴趣,那有的科学家是在他人生成长的一段时间后,才深度接触学数学,进而喜欢上数学,想要研究数学。他们各自有不同的爱好特长,经历和思想转变过程,但殊途同归,最后都成为享誉世界的大科学家。法国数学家埃尔米特埃尔米特到成年,还没有显露出他的数学天赋,并且带他上学的过程中,他的数学还总是考不及格,甚至数学成绩之差已经影响到了他毕业的程度,但是数学成绩差,并不代表他在数学方面没有天赋,到了后来他对数学做出很多贡献,包括一千多年,完成了人们都解不出的五次方程式的通解的解答,并且并且对,底e的超越性进行了考证。费马法国的数学家费马,甚至是从文科变成理科,然后去研究数学的。他的本专业是律师,从来没有受过数学方面的专业性教育,但是就是因为兴趣,他自己学习最后成为世纪法国最厉害的数学家,也是几何方面解析的发明者之一,对微积分方面也很有贡献。当然,理科方面除了数学,他的物理学也是非常棒的,可见,只要你想转换方向,不管什么时候都算晚,费马就是从30岁才开始认真学习数学的。德国数学家莱布尼茨德国数学家德国数学家莱布尼茨是微积分的创始人之一,最开始他进入大学学的是也是法律,但后期他开始对数学和科学感兴趣,并且发表了科学方面的论文论,作为毕业论文。
2023-05-19 23:16:581

数学家的小故事

华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。
2023-05-19 23:17:265

关于矩阵正定性的判定

定义如下设M是n阶实系数对称矩阵, 如果对任何非零向量 X=(x_1,...x_n) 都有 X′MX>0,就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型, 即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵.
2023-05-19 23:17:425

共轭矩阵和相似矩阵是不是一个概念

不是的,埃尔米特矩阵(共轭矩阵)要求对角线元素为实数,aij与aji共轭
2023-05-19 23:18:176

hermit、Hermite、hermitian矩阵是一样的吗

都是埃尔米特矩阵~
2023-05-19 23:18:312

什么是共轭序列?

如果是数字信号处理中的名词,我只听过共轭(反)对称序列。
2023-05-19 23:18:393

什么是共轭矩阵?

共轭矩阵又称Hermite阵。Hermite阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是 ai,j=a*j,i。 对于 A = { a_{i,j} } in C^{n imes n} 有: a_{i,j} = overline{a_{j,i}},其中overline{(cdot)}为共轭算符。 记做: A = A^H quad 例如: egin 3&2+i\ 2-i&1 end 就是一个Hermite阵。 显然,Hermite阵主对角线上的元素必须是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是Hermite阵。也就是说,实对称阵是Hermite阵的特例。 性质 若A 和B 是Hermite阵,那么它们的和A+B 也是Hermite阵;而只有在A 和B满足交换性(即AB = BA)时,它们的积才是Hermite阵。 可逆的Hermite阵A 的逆矩阵A-1仍然是Hermite阵。 如果A是Hermite阵,对于正整数n,An是Hermite阵. 方阵C 与其共轭转置的和C + C^*是Hermite阵. 方阵C 与其共轭转置的差C - C^*是skew-Hermite阵。 任意方阵C 都可以用一个Hermite阵A 与一个skew-Hermite阵B的和表示: C = A+B quadmboxquad A = frac(C + C^*) quadmboxquad B = frac(C - C^*). Hermite阵是正规阵,因此Hermite阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着Hermite阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组Cn的正交基。 n阶Hermite方阵的元素构成维数为n2的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之上的元素有两个自由度。 如果Hermite阵的特征值都是正数,那么这个矩阵是正定阵,若它们是非负的,则这个矩阵是半正定阵。 Hermite序列 Hermite序列(抑或Hermite向量)指满足下列条件的序列ak(其中k = 0, 1, …, n): Im(a_0) = 0 quad mbox quad a_k = overline{a_} quad mbox k=1,2,dots,n. 若n 是偶数,则an/2是实数。 实数序列的离散傅里叶变换是Hermite序列。反之,一个Hermite序列的逆离散傅里叶变换是实序列。
2023-05-19 23:18:582

求埃尔米特(Hermitian)矩阵的特征值和特征向量的C语言程序

搜一下:求埃尔米特(Hermitian)矩阵的特征值和特征向量的C语言程序
2023-05-19 23:19:052

埃尔米特是谁?

埃尔米特,法国数学家。曾任法兰西学院、巴黎高等师范学校、巴黎大学教授、法兰西科学院院士。在函数论、高等代数、微分方程等方面都有重要发现。在现代数学各分支中以他姓氏命名的概念(如表示某种对称性的)很多,如“埃尔米特二次型”、“埃尔米特算子”等。虽然埃尔米特是19世纪最伟大的代数几何学家,但是他大学入学考试重考了五次,每次失败的原因都是数学考不好。他大学几乎没能毕业,每次考不好都是为了数学那一科。他大学毕业后考不上任何研究所,因为考不好的科目还是——数学。数学是他一生的至爱,但是数学考试是他一生的噩梦。不过这无法改变他的伟大。课本上“共轭矩阵”是他先提出来的;人类1000多年来解不出“五次方程式的通解”,是他先解出来的;自然对数的“超越数性质”,他是全世界第一个证明出来的人。他的一生证明了“一个不会考试的人,仍然能有胜出的人生”,并且更奇妙的是不会考试成为他一生的祝福。埃尔米特数学并不是真的那么差劲。只是他认为,当时的数学教学氛围死气沉沉,而数学课本就像一堆废纸,所谓的数学成绩好的人,都是一些二流头脑的人,因为他们只懂得生搬硬套!所以他从小就是个问题学生,上课时老爱找老师辩论,尤其是一些基本的问题。他痛恨考试,因为他一旦考糟了,老师就用木条打他的脚。他在后来的文章中写道:“达到教育的目的是用头脑,又不是用脚,打脚有什么用?打脚可以使人头脑更聪明吗?”在抵制考试的同时,埃尔米特又花了大量时间去看数学大师牛顿、高斯的原著,因为在他看来,只有在那里才能找到“数学的美,是回到基本点的辩论,那里才能饮到数学兴奋的源头”。他在年老时,回顾少年时的轻狂,写道:“传统的数学教育,要学生按部就班地、一步一步地学习,训练学生把数学应用到工程或商业上,因此,不重启发学生的开创性。”但是数学有它本身抽象逻辑的美,例如在解决多次方程式里,根的存在本身就是一种美感。数学存在的价值,不只是为了生活上的应用,也不应沦为供工程、商业应用的工具。数学的突破仍需要不断地去突破现有格局。能够使埃尔米特不愤世嫉俗、坦然前行的动力是什么?有三个重要的因素:一是妻子的了解与同心。埃尔米特的妻子,无怨无悔地跟随这个不会考试的天才丈夫一年一年地走下去。二是有人真正地赞赏他,不因他平凡的外表与没有耀人的学位而轻视他。欣赏他的人后来也都在数学界享有盛名——柯西、雅科比等。三是埃尔米特的信仰。埃尔米特在43岁时染患一场大病,柯西来看他并把福音传给他。信仰给他另一种精神层面的价值与满足。埃尔米特在49岁时,巴黎大学才请他去担任教授。此后的25年,几乎整个法国的大数学家都出自他的门下。我们无从得知他在课堂上的授课方式,但是有一件事情是可以确定的——没有考试。
2023-05-19 23:19:231

不会考试的数学家埃尔米特名人故事

不会考试的数学家埃尔米特名人故事   他是十九世纪最伟大的代数几何学家,但是他大学入学考试重考了五次,每次失败的原因都是数学考不好。他大学几乎没能毕业,每次考不好都是为了数学那一科。他大学毕业后考不上任何研究所,因为考不好的科目还是——数学。数学是他一生的至爱,但是数学考试是他一生的恶梦。不过这无法改变他的伟大:课本上“共轭矩阵”是他先提出来的,人类一千多年来解不出“五次方程式的通解”,是他先解出来的。自然对数的“超越数性质”,全世界,他是第一个证明出来的人。他的一生证明“一个不会考试的人,仍然能有胜出的人生”,并且更奇妙的是不会考试成为他一生的祝福。   埃尔米特数学并不是真的那么差劲,只是他认为,当时,他们当地的数学教学氛围死气沉沉,而数学课本就象一堆废纸,所谓的数学成绩好的"人,都是一些二流头脑的人,因为他们只懂得生搬硬套!所以他从小就是个问题学生,上课时老爱找老师辩论,尤其是一些基本的问题。他尤其痛恨考试;因为他一旦考糟了,老师就用木条打他的脚,这也是他痛悔数学考试的原因之一;他在后来的文章中写道:“达到教育的目的是用头脑,又不是用脚,打脚有什么用?打脚可以使人头脑更聪明吗?”   在抵制考试的同时,埃尔米特又花了大量时间去看数学大师,如牛顿、高斯的原著,因为在他看来,只有在那里才能找到“数学的美,是回到基本点的辩论,那里才能饮到数学兴奋的源头。”他在年老时,回顾少年时的轻狂,写道:“传统的数学教育,要学生按部就班地,一步一步地学习,训练学生把数学应用到工程或商业上,因此,不重启发学生的开创性。但是数学有它本身抽象逻辑的美,例如在解决多次方方程式里,根的存在本身就是一种美感。数学存在的价值,不只是为了生活上的应用,也不应沦为供工程、商业应用的工具。数学的突破仍需要不断地去突破现有格局。 ;
2023-05-19 23:19:301

埃尔米特的原理

埃尔米特是一个全面的数学家,除了前述各项工作外,他在数学的各领域中还取得如下成果:他深入研究了矩阵理论,证明了,如果矩阵M=M*(M的共轭转置矩阵),则其特征值都是实数;提出一个属于代数函数论的埃尔米特原理,是后来著名的黎曼-罗赫定理的特例之一;在不变量方面有较多成果,以致于J.J.西尔威斯特(Sylvester)曾指出,“A.凯莱(Cayley)、埃尔米特和我组成了一个不变量的三位一体”,例如,他提出一个“互反律”,即一个m次二元型的p阶固定次数的共变式和一个p次二元型的m阶固定次数的共变式之间的一种一一对应关系;埃尔米特推广了高斯研究整系数二次型的方法,证明了它们对于任意个变量其类数仍是有限的;还把这一结果应用于代数数,证明了,如果一个数域的判别式已给出,则其范型的数目是有限的;他还把这种“类数有限性”用于不定二次型,取得一些重要的结果;他关于拉梅方程(一种微分方程)的研究在当时也有十分重要的意义.
2023-05-19 23:19:421

世界上伟大的几何数学大师

祖冲之. <<九章算术>>
2023-05-19 23:19:574

埃尔米特矩阵的性质

1.若A和B是埃尔米特矩阵,那么它们的和A+B也是埃尔米特矩阵;而只有在A和B满足交换性(即AB=BA)时,它们的积才是埃尔米特矩阵。2.可逆的埃尔米特矩阵A的逆矩阵仍然是埃尔米特矩阵。3.如果A是埃尔米特矩阵,对于正整数n,是埃尔米特矩阵。4.方阵C与其共轭转置的和是埃尔米特矩阵。5.方阵C与其共轭转置的差是斜埃尔米特矩阵。6.任意方阵C都可以用一个埃尔米特矩阵A与一个斜埃尔米特矩阵B的和表示。7.埃尔米特矩阵是正规矩阵,因此埃尔米特矩阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着埃尔米特矩阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组的正交基。8.n-阶埃尔米特矩阵的元素构成维数为的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之上的元素有两个自由度。9.如果埃尔米特矩阵的特征值都是正数,那么这个矩阵是正定矩阵,若它们是非负的,则这个矩阵是半正定矩阵。斜埃尔米特矩阵的主对角线上的所有元素都一定是纯虚数。如果A是斜埃尔米特矩阵,那么iA是埃尔米特矩阵。如果A, B是斜埃尔米特矩阵,那么对于所有的实数a, b,aA + bB也一定是斜埃尔米特矩阵。如果A是斜埃尔米特矩阵,那么对于所有的正整数k,A2k都是埃尔米特矩阵。如果A是斜埃尔米特矩阵,那么A的奇数次方也是斜埃尔米特矩阵。如果A是斜埃尔米特矩阵,那么e^A是酉矩阵。一个矩阵和它的共轭转置的差()是斜埃尔米特矩阵。任意一个方块矩阵C都可以写成一个埃尔米特矩阵A和一个斜埃尔米特矩阵B的和:
2023-05-19 23:20:041

埃尔米特矩阵是什么

n阶复方阵a的对称单元互为共轭,即a的共轭转置矩阵等于它本身,则a是埃尔米特矩阵(hermitianmatrix)。显然埃尔米特矩阵是实对称阵的推广。a=a^h
2023-05-19 23:20:162

Hermite矩阵的用途

数学上讲的话,我觉的就是实对称阵的推广,变成共轭对称而已。用途的话,个人认为就是Hermite二次型、矩阵的奇值分解、还有求矩阵的Rayleigh商,进而对其特征值进行估计什么的。Hermite矩阵在工程专业方面的应用就是为了描述方便吧。比如通信里面,一个n维信号的互相关特性,正好是共轭对称的,那么用Hermite矩阵来描述就再好不过了。其它工程应用应该还有很多,可以查一下相关资料。
2023-05-19 23:20:253

埃尔米特矩阵是什么

埃尔米特矩阵就是Hermite阵。Hermite矩阵又称共轭矩阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。
2023-05-19 23:20:311

A是m×n矩阵,证明A^HA和AA^H都是半正定埃尔米特矩阵

(1) 因为A是m×n矩阵, 所以A^H 是n×m矩阵,A^HA 是n×n矩阵, 而且(A^HA)^H = A^H(A^H)^H = A^HA. 又因为对于任意的n维非零列向量a,有 a^H(A^HA)a = (Aa)^H(Aa) = ||Aa||^2 大于或等于 0, 因此A^HA是半正定埃尔米特矩阵. (2) 因为A是m×n矩阵, 所以A^H 是n×m矩阵,AA^H 是m×m矩阵, 而且(AA^H)^H = (A^H)^HA^H = AA^H. 又因为对于任意的m维非零列向量b,有 b^H(AA^H)b = (A^Hb)^H(A^Hb) = ||A^Hb||^2 大于或等于 0, 因此AA^H是半正定埃尔米特矩阵.
2023-05-19 23:20:381

什么是共轭?

当一个矩阵里的元素是复数时,如果存在一个矩阵中的每个元素都是原矩阵对应元素的共轭,这两个矩阵互为共轭矩阵 所谓共轭是指,任何复数都可以表示成a+bi的形式,其中a、b为实数,i是-1的平方根对于复数c1=a+bi,它的共轭就是c2=a-bi,你可以看到任何一对共轭复数相乘,结果都是实数(c1*c2=a^2+b^2)
2023-05-19 23:20:472

如何证明埃尔米特矩阵A,B:tr(AB)

这显然是错的!!!!反例很好找A = (-1, 1 1, -1)B = (1, 1 1, 1)AB = (0, 0 0, 0)tr(AB) = 0tr(A)*tr(B) = -4
2023-05-19 23:21:051

埃尔米特多项式的性质

多项式Hn是一个n次的多项式。概率论的埃尔米特多项式是首一多项式(最高次项系数等于1),而物理学的埃尔米特多项式的最高次项系数等于2的n次。 多项式Hn的次数与序号n相同,所以不同的埃尔米特多项式的次数不一样。对于给定的权函数w,埃尔米特多项式的序列将会是正交序列。(对于概率论的埃尔米特多项式) (对于物理学的埃尔米特多项式)也就是说,当m≠ n时:除此之外,还有:(对于概率论的埃尔米特多项式) (对于物理学的埃尔米特多项式) 在所有满足的函数所构成的完备空间中,埃尔米特多项式序列构成一组基。其中的内积定义如下:
2023-05-19 23:21:111