FinCloud
-
1(前3500-前500)数学起源与早期发展: 古埃及数学、美索不达米亚(古巴比伦)数学
2(前600-5世纪)古代希腊数学:论证数学的发端、欧式几何
3(3世纪-14世纪)中世纪的中国数学、印度数学、阿拉伯数学:实用数学的辉煌
4(12世纪-17世纪)近代数学的兴起:代数学的发展、解析几何的诞生
5(14世纪-18世纪)微积分的建立:牛顿与莱布尼茨的微积分建立
6(18世纪-19世纪)分析时代:微积分的各领域应用
7(19世纪)代数的新生:抽象代数产生(近世代数)
8(19世纪)几何学的变革:非欧几何
9(19世纪)分析的严密化:微积分的基础的严密化
10二十世纪的纯粹数学的趋势
11二十一世纪应用数学的天下
中国 数学的历史进程
中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。
(一)属于算术方面的材料
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”
和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。
宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。
(二)属于代数方面的材料
从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。
“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。
我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。
在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。
级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。
历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。
内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。
十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。
就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。
(三)属于几何方面的材料
自明朝后期(十六世纪)欧几里得“几何原本”中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。
中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。
汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。
圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:“圆,一中同长也。”—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。
在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。
祖冲之所得的结果π=355/133要比欧洲早一千多年。
在刘徽的“九章算术”注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。
中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果.
正好说明十八、九世纪中国数学家对割圆连比例的研究和项名达(1789—1850)用割圆连比例求出椭圆周长。这都是继承古代方法加以发挥而得到的(当然吸收外来数学的精华也是必要的)。
(四)属于三角方面的材料
三角学的发生由于测量,首先是天文学的发展而产生了球面三角,中国古代天文学很发达,因为要决定恒星的位置很早就有了球面测量的知识;平面测量术在“周牌算经”内已记载若用矩来测量高深远近。
刘徽的割圆术以半径为单位长求圆内正六边形,十二二边形等的每一边长,这答数是和2sinA的值相符(A是圆心角的一半),以后公元十二世纪赵友钦用圆内正四边形起算也同此理,我们可以从刘徽、赵友钦的计算中得出7.5o、15o、22.5o、30o、45o等的正弦函数值。
在古代历法中有计算二十四个节气的日晷影长,地面上直立一个八尺长的“表”,太阳光对这“表”在地面上的射影由于地球公转而每一个节气的影长都不同,这些影长和“八尺之表”的比,构成一个余切函数表(不过当时还没有这个名称)。
十世纪的中国天文学家郭守敬(1231—1316)曾发现了球面三角上的三个公式。 现在我们所用三角函数名词:正弦,余弦,正切,余切,正割,余割,这都是我国十六世纪已有的名称,那时再加正矢和余矢二个函数叫做八线。
在十七世纪后期中国数学家梅文鼎(1633—1721)已编了一本平面三角和一本球面三角的书,平面三角的书名叫“平三角举要”,包含下列内容:(1)三角函数的定义;(2)解直角三角形和斜三角形;(3)三角形求积,三角形内容圆和容方;(4)测量。这已经和现代平面三角的内容相差不远,梅文鼎还著书讲到三角上有名的积化和差公式。十八世纪以后,中国还出版了不少三角学方面的书籍。
据《易·系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。
算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。
用算筹记数,有纵、横两种方式:
表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。
筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。
在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理﹝西方称勾股定理﹞的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。
二、中国数学体系的形成与奠基
这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。
现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年(公元前186年),所以该书的成书年代至晚是公元前186年(应该在此前)。
西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有较复杂的开方问题和分数运算等。
《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年﹝公元前一世纪﹞。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。
魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术。
南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。
公元五世纪,祖冲之、祖暅父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3.1415926 <π< 3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus otto)和荷兰人安托尼兹(a.anthonisz)才得出同样结果;(2)祖暅在刘徽工作的基础上推导出球体体积的正确公式,并提出"幂势既同则积不容异"的体积原理,即二立体等高处截面积均相等则二体体积相等的定理。欧洲十七世纪意大利数学家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)发展了二次与三次方程的解法。
同时代的天文历学家何承天创调日法,以有理分数逼近实数,发展了古代的不定分析与数值逼近算法。
三、中国数学教育制度的建立
隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是通过土木工程中计算土方、工程的分工与验收以及仓库和地窖计算等实际问题,讨论如何以几何方式建立三次多项式方程,发展了《九章算术》中的少广、勾股章中开方理论。
隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》﹝包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》﹞,作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。
由于南北朝时期的一些重大天文发现在隋唐之交开始落实到历法编算中,使唐代历法中出现一些重要的数学成果。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。
唐朝后期,计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。
四、中国数学发展的高峰
唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪﹝宋、元两代﹞,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》﹝11世纪中叶﹞,刘益的《议古根源》﹝12世纪中叶﹞,秦九韶的《数书九章》﹝1247﹞,李冶的《测圆海镜》﹝1248﹞和《益古演段》﹝1259﹞,杨辉的《详解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《杨辉算法》﹝1274-1275﹞,朱世杰的《算学启蒙》﹝1299﹞和《四元玉鉴》﹝1303﹞等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:
公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚)
公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供与运兵进退的关系等问题。
公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。
公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。
公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。
公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。
公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。
五、中国数学的衰落与日用数学的发展
这一时期指十四世纪中叶明王朝建立到明末的1582年。数学除珠算外出现全面衰弱的局面,当中涉及到中算的局限、十三世纪的考试制度中已删减数学内容、明代大兴八段考试制度等复杂的问,不少中外数学史家仍探讨当中涉及的原因。
明代最大的成就是珠算的普及,出现了许多珠算读本,及至程大位的《直指算法统宗》﹝1592﹞问世,珠算理论已成系统,标志着从筹算到珠算转变的完成。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。
六、西方初等数学的传入与中西合璧
十六世纪末开始,西方传教士开始到中国活动,由于明清王朝制定天文历法的需要,传教士开始将与天文历算有关的西方初等数学知识传入中国,中国数学家在“西学中源”思想支配下,数学研究出现了一个中西融合贯通的局面。
十六世纪末,西方传教士和中国学者合译了许多西方数学专着。其中第一部且有重大影响的是意大利传教士利马窦和徐光启合译的《几何原本》前6卷﹝1607﹞,其严谨的逻辑体系和演译方法深受徐光启推崇。徐光启本人撰写的《测量异同》和《勾股义》便应用了《几何原本》的逻辑推理方法论证中国的勾股测望术。此外,《几何原本》课本中绝大部份的名词都是首创,且沿用至今。在输入的西方数学中仅次于几何的是三角学。在此之前,三角学只有零星的知识,而此后获得迅速发展。介绍西方三角学的著作有邓玉函编译的《大测》﹝2卷,1631﹞、《割圆八线表》﹝6卷﹞和罗雅谷的《测量全义》﹝10卷,1631﹞。在徐光启主持编译的《崇祯历书》﹝137卷,1629-1633﹞中,介绍了有关圆椎曲线的数学知识。
入清以后,会通中西数学的杰出代表是梅文鼎,他坚信中国传统数学「必有精理」,对古代名著做了深入的研究,同时又能正确对待西方数学,使之在中国扎根,对清代中期数学研究的高潮是有积极影响的。与他同时代的数学家还有王锡阐和年希尧等人。 清康熙帝爱好科学研究,他「御定」的《数理精蕴》﹝53卷,1723﹞,是一部比较全面的初等数学书,对当时的数学研究有一定影响。
七、传统数学的整理与复兴
乾嘉年间形成一个以考据学为主的干嘉学派,编成《四库全书》,其中数学著作有《算经十书》和宋元时期的著作,为保存濒于湮没的数学典籍做出重要贡献。
在研究传统数学时,许多数学家还有发明创造,例如有「谈天三友」之称的焦循、汪莱及李锐作出不少重要的工作。李善兰在《垛积比类》﹝约1859﹞中得到三角自乘垛求和公式,现在称之为「李善兰恒等式」。这些工作较宋元时期的数学进了一步。阮元、李锐等人编写了一部天文学家和数学家传记《畴人传》46卷﹝1795-1810﹞,开数学史研究之先河。
八、西方数学再次东进
1840年鸦战争后,闭关锁国政策被迫中止。同文馆内添设「算学」,上海江南制造局内添设翻译馆,由此开始第二次翻译引进的高潮。主要译者和著作有:李善兰与英国传教士伟烈亚力合译的《几何原本》后9卷﹝1857﹞,使中国有了完整的《几何原本》中译本;《代数学》13卷﹝1859﹞;《代微积拾级》18卷﹝1859﹞。李善兰与英国传教士艾约瑟合译《圆锥曲线说》3卷,华蘅芳与英国传教士傅兰雅合译《代数术》25卷﹝1872﹞,《微积溯源》8卷﹝1874﹞,《决疑数学》10卷﹝1880﹞等。在这些译着中,创造了许多数学名词和术语,至今仍在应用。 1898年建立京师大学堂,同文馆并入。1905年废除科举,建立西方式学校教育,使用的课本也与西方其它各国相仿。
九、中国现代数学的建立
这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。
中国近现代数学开始于清末民初的留学活动。较早出国学习数学的有1903年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来﹝1915年转留法﹞,1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学﹝今南京大学﹞和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵﹝1927﹞、陈省身﹝1934﹞、华罗庚﹝1936﹞、许宝騤﹝1936﹞等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素﹝1920﹞,美国的伯克霍夫﹝1934﹞、奥斯古德﹝1934﹞、维纳﹝1935﹞,法国的阿达马﹝1936﹞等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年〈中国数学会学报〉和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騤在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。
1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊﹝1952年改为《数学学报》﹞,1951年10月《中国数学杂志》复刊﹝1953年改为《数学通报》﹞。1951年8月中国数学会召开建国后第一次国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。
建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》﹝1953﹞、苏步青的《射影曲线概论》﹝1954﹞、陈建功的《直角函数级数的和》﹝1954﹞和李俨的《中算史论丛》5集﹝1954-1955﹞等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。
什么是"几何级数"?什么是"算术级数"?两者有何区别?
几何级数与算数级数的概念与区别如下:算术级数:从第二项起,每一项均由前一项加一个常数所构成的序列,如奇数1,3,5,7…几何级数:从第二项起,每一项是前一项的多少次方。举个例子,“按几何级数增长”和“按算术级数增长”的关键区别是:“按几何级数增长”意味着按固定的增长率增长,但每期的增长幅度不一样,如果增长率是正的,那么越往后增长幅度越大;“按算术级数增长”意味着按固定的增长幅度增长,但每期的增长率不一样,如果增长幅度是正的,那么越往后增长率越小。2023-05-19 21:50:153
什么是"几何级数"?什么是"算术级数"?两者有何区别
“几何级数”就是等比级数,“算术级数”就是等差级数。设级数为 u(1)+ u(2) +u(3) +...+u(n)+...如果,存在一个常数q,对所有的n,都有 u(n+1)/u(n) =q,则称这个级数为等比级数,或几何级数,称q这个等比级数的“公比”,这个级数由首项和公比所决定,事实上 u(1)+ u(2) +u(3) +...+u(n)+...=u(1)+u(1)q+u(1)q^2+...+u(1)q^(n-1)+...如果,存在一个常数d,对所有的n,都有 u(n+1)-u(n) =d,则称这个级数为等差级数,或算术级数,称d这个等差级数的“公差”,这个级数由首项和公差所决定,事实上 u(1)+ u(2) +u(3) +...+u(n)+...=u(1)+(u(1)+d)+(u(1)+2d)+...+(u(1)+(n-1)d)+...2023-05-19 21:50:291
什么是算术级数?
几何级数,就是等比级数。相比之下,等差级数就叫算术级数。等比级数的递减速度与公比有关。公比越小,递减速度越快。例如,公比为0.5时,2亿元人民币经过5次几何级数递减最后是625万元(2亿--1亿--5000万--2500万--1250万--625万)。公比为0.1时,2亿元人民币经过5次几何级数递减最后是2000元(2亿--2000万--200万--20万--2万--2000)。2023-05-19 21:50:361
什么是"几何级数"?什么是"算术级数"?两者有何区别
几何级数与算数级数的概念与区别如下:算术级数:从第二项起,每一项均由前一项加一个常数所构成的序列,如奇数1,3,5,7…几何级数:从第二项起,每一项是前一项的多少次方。举个例子,“按几何级数增长”和“按算术级数增长”的关键区别是:“按几何级数增长”意味着按固定的增长率增长,但每期的增长幅度不一样,如果增长率是正的,那么越往后增长幅度越大;“按算术级数增长”意味着按固定的增长幅度增长,但每期的增长率不一样,如果增长幅度是正的,那么越往后增长率越小。2023-05-19 21:50:445
什么叫几何级 、算术级
所谓“几何级数”,又称“等比级数”,指的是这样一个数列,这个数列中的每一个数都是前一个数的固定倍数,这个倍数又称“公比”。因此一个数跟前一个数之间的增长率或者变化率就是恒定的。这个倍数当然在不同的情况下会不一样。“按几何级数增长”,指的就是按照这样一种格式增长。也就是说,按几何级数增长实际上就是按照同样的增长率增长。至于这个增长率是多少,那就是另外一回事情了。对于“等比级数”来说,如果公比大于1,那么这个数列就按照几何级数增长,如果公比小于1,那么这个数列就按照几何级数减少。 所谓“算术级数”,又称“等差级数”,指的是指的是这样一个数列,这个数列中的每一个数跟前一个数的差额是固定的,这个差额又称“公差”。因此一个数跟前一个数之间的增长幅度或者变化幅度就是恒定的。 “按算术级数增长”,指的就是按照这样一种格式增长。这个数列的增长率是逐年下降的,因为增长幅度一样,但越往后,数列中的数值就越大(假定公差是正的)。这个公差当然在不同的情况下会不一样。 因此,“按几何级数增长”和“按算术级数增长”的关键区别是:“按几何级数增长”意味着按固定的增长率增长,但每期的增长幅度不一样,如果增长率是正的,那么越往后增长幅度越大;“按算术级数增长”意味着按固定的增长幅度增长,但每期的增长率不一样,如果增长幅度是正的,那么越往后增长率越小。2023-05-19 21:50:591
什么是算术级数增长,什么是几何级数增长?
几何级数增长就是说以次方的方式增长有听过国际象棋的传说不 那就是几何级数的增长算术级数增长就是递增等差数列 比如2,4,6,8......2023-05-19 21:51:074
词语造句:用算术级数造句(约30个)
算术级数拼音: suan shu ji shu 算术级数解释: 见〖等差级数〗。 算术级数造句: 1、生活资料只能按算术级数增长。 2、已有结论表明 素数集中存在任意长的算术级数。 3、本文给出了华罗庚五素数平方定理的算术级数形式,证明了其中一个素数可以取在大模的算术级数中。 4、人口,如果不加抑制,就会以几何级数增长。而生存给养是以算术级数增长的。 5、本文运用解析的方法,研究模为算术级数中素数的正规化三次高斯和在单位圆周上的分布。 6、知识资源的使用价值呈几何级数增长,而知识资源的交换价值则呈现出算术级数与几何级数交互增长。 7、利用解析数论工具证明了算术级数数列中素数幂分布的若干结果,这些结果在提供RBIBD设计与PMD设计的渐近存在性定理的精确定界时具有重要作用。2023-05-19 21:51:131
什么是算数级数?
算术级数——等差级数2023-05-19 21:51:202
什么叫几何级数增长?算术级数呢
几何级数增长就是成倍数增长,用数学术语来说就是A的n次幂的增长,类似与通常说的“翻番”。 例如:2、4、8、16、32、64、128、256……算术级数增长就是增加一个固定的常数,如2,4,6,8,10,12……就是等比数列和等差数列,百度首页搜一下定义就行了。2023-05-19 21:51:282
什么函数生成一组算术级数
生成函数生成函数(generating function),又称母函数,是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。2023-05-19 21:51:352
两级数是什么意思?
两级数就是包含两个级数的(个级和万级)的意思。2023-05-19 21:51:532
如何找到算术级数的对称性
大约在高斯十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」高斯的答案上只有一个数字:5050老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。2023-05-19 21:51:591
几何级数增长和指数级数增长哪个大
京顶云几何级数增长是指客户按年付费:第一年的新客户量a;第二年新增客户量a加上续签a,客户总量为2a;第三年新客户量a,第一年客户续签a,第二年客户续签a,客户总量为3a。以此类推,以10年期为例,客户总量为10a,假设每个客户的销售额是2W,每年20个客户。10年的总收入是40W+80W+120W+160W+200W+240W+280W+320W+360W+400W=3200W.上述模型是一个典型的几何级增长模型,按倍数增长。如何设计京顶云企业数字化平台的用户指数级增长,是实现业绩增长的关键!指数级增长是指第一年20个用户,以后每年按20的平方,20的3次方,20的4次方增长,到第五年就是20*20*20*20*20=3200000通过以上描述可以看到,指数级增长远远要比几何级数增长大的多。京顶云企业数字化EDP平台,希望我的回答能帮到你!2023-05-19 21:52:078
数列与级数
等差数列的前n项和称为一个等差级数,也称算术级数。例:1,3,5,7,9为一个等差数列,而1+3+5+7+9则为一个等差级数。推导:等比级数,表示等比数列的前n项和,又称为几何级数。 推导:只有当值是收敛时,无穷级数的结果才是有限的。所以:2023-05-19 21:52:471
若原代码为2345,各位之权分别5,4,3,2,模为11,用算术级数法求得此代码之校验位是( ).
用代码的各位分别和权值相乘,累加求和,用和对11取余,余数就是校验位,按题目应该是2×5+3×4+4×3+5×2=44,44除以11商4,余0,所以此代码的校验位是0,也就是新代码为23450。数据结构中字符串如果是固定长度的可以不用初始d化如果是可变长度的请使用指针,进行编程,所以没法给程序:要是c的话typedef struct{char** astr;}mystruct;char ad[]="aaaaaaaaaaa";mystruct ms;ms.astr=&ad;扩展资料:源代码作为软件的特殊部分,可能被包含在一个或多个文件中。一个程序不必用同一种格式的源代码书写。例如,一个程序如果有C语言库的支持,那么就可以用C语言;而另一部分为了达到比较高的运行效率,则可以用汇编语言编写。较为复杂的软件,一般需要数十种甚至上百种的源代码的参与。为了降低种复杂度,必须引入一种可以描述各个源代码之间联系,并且如何正确编译的系统。在这样的背景下,修订控制系统(RCS)诞生了,并成为研发者对代码修订的必备工具之一。还有另外一种组合:源代码的编写和编译分别在不同的平台上实现,专业术语叫做软件移植。参考资料来源:百度百科-源代码2023-05-19 21:52:541
源代码为2345,各位之权分别为5432,模为11,用算术级数法求得此代码的校验位是
用代码的各位分别和权值相乘,然后累加求和,用和对11取余,余数就是校验位,按你的题目应该是2×5+3×4+4×3+5×2=44,44除以11商4,余0,所以此代码的校验位是0,也就是新代码为234502023-05-19 21:53:091
高斯是怎样快速计算出“1+2+3+4……+100”的?
还有别的方法吗?2023-05-19 21:53:162
校验位算术级数法权怎么计算
校验位算术级数法权的计算方法是算术级数法确定校验位值是将原代码各位各乘以由算术级数组成的(),然后以()去除上述乘积之和,最后把得出的余数作为校验码。加权取余方法是一种常用的校验位计算方法,改变其权因子可以得到不同的计算方式,因此,被广泛应用于社会和科学技术等各个领域。2023-05-19 21:53:231
双色球的AC值是怎么算的?
AC值也称作“数字复杂指数”,它是引自国外乐透型彩票分析研究的一个概念,是评估乐透型彩票号码价值的重要参数。一组号码中所有两个号码相减,然后对所得的差求绝对值,如果有相同的数字,则只保留一个,得到不同差值个数就是AC值。例如:开奖号码378,其所有两个号码差值绝对值分别是,4、1、5,它的差值个数是3,所以AC值就等于3。AC值共有三个值,分别是:1、2、3。其中AC值为1的号码为豹子号(如:222、555等),此类号码共10注。AC值为2的号码包括组3号和等差号码(如:332,246等),此类号码共390注。AC值为3的号码是除了AC值等于1和2之外的所有号码,此类号码共600注。2023-05-19 21:53:304
以11为模,请分别使用算数级数法,几何级数法和质数法计算613758的校验码,生成的新代码又是多少?
算术级数:…7、6、5、4、3、2几何级数:…64、32、16、8、4、2质数:…15、13、11、7、5、3算数级数法:先求乘积之和:6×7+1×6+3×5+7×4+5×3+8×2=122再求余数:122÷11=11余1所以代码为613758几何级数法:求乘积之和:6×64+1×32+3×16+7×8+5×4+8×2=556求余数:556÷11余6所以代码为6137586质数级数也是这么算。2023-05-19 21:53:501
e∧x级数求和
对无穷幂级数:e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+…… =∑x^k/k!=(k=0,1,2,……),令x=1得: e=∑1/k!(k=0,1,2,……)=1+1+1/2!+1/3!+1/4!+…… 如取前五个得近似值e≈1+1+1/2+1/6+1/24≈2.71 级数就是无穷个数相加,分为数项级数和函数项级数,在高数里应该有,大二可能会学 几何级数是指幂的形式,1的平方 2的平方 3的平方 这样的情况 算术级数是指倍数形式,1 2 4 8 16 这样的 两都的区别在于几何级数的增长率曲线很陡,算术的很平缓 加绝对值,得Σ1/n^pp>1收敛,此时原级数为绝对收敛B,C错0 追 0<p<1时绝对值的式子为什么发散啊?分母也是在增大啊,整个式子趋于零,不是收敛嘛? p=""> </p<1时绝对值的式子为什么发散啊?分母也是在增大啊,整个式子趋于零,不是收敛嘛?>2023-05-19 21:53:571
如何理解“按几何级数增长”和“按算术级数增长”
简单的讲,“按几何级数增长”就是翻着翻地增长,“按算术级数增长”,就是一点一点平稳地增长。2023-05-19 21:54:031
高斯的故事
数学书第一章.2023-05-19 21:54:1310
现在对数视力表的小数记录是不是算术级数
是。视标按几何级数增加,视标每增加一倍,视力的对数就减小0.1,即视力记录按算术级增减。以对数视力表代替小数制视力表无疑是视力检查技术的一大进步。本标准适用于儿童青少年一般体检,招生、招工等体检的远、近视力测定,临床等方面亦应参照使用。2023-05-19 21:54:531
古代学生什么时间开始学算术?
应该从父母教它学数数时,就算开始学算术了。很早的。2023-05-19 21:55:002
现在对数视力表的小数记录是不是算术级数
视力表是测验视力的标准图表,种类很多。我国现在最常用的为国际标准视力表。国际通用的为Snellen氏和Landolt氏表。前者为中华眼科学会所推荐,现在我国通用。1、Snellen氏视力表的检测Snellen氏表是由一组一组逐渐缩小的“E”字组成,每个“E”字的两端在眼的结点处形成5分视角,也就是每个“E”字每划的宽度为1分视角,每划间隙亦为1分视角。因距离远近不同,所以字划的宽窄就不同,字的大小也就不同。首行字为在50米处的5分视角字的大小,第二行以下分别为25米、18米、12.5米、,10米、8.3米、7.1米、6米、5.5米和5米。记录视力测验的结果有用分数和用小数二种。分数法的分子为测验视力的被检者与视力表的距离,分母为制表时每行字成5分视角时的距离。如被检者在5米处能看见表上第一行大“E”字,即记作5/50;如能看清5米1行的“E”字时,即写作5/5。以小数记录时,5/50即为0.1;5/5即为1.O等。视力表与被检者的距离,通常为5米。如果为节省检查室的空间,可在距视力表2.5米处放置一平面镜,根据以前所论到的平面镜原理,被检者距视力表仍为5米。2、Landolt氏视力表Landolt氏视力表是使被检者指出视力表上环形“C”字开口的方向。视力表构成的原理与Snellen氏视力表相同,故不再赘述。以上为远(距离)视力表构成和测验记录法。同样原理构成近(距离)视力表,临床上用以测验近距离(阅读等)视力。正视眼应在33厘米(阅读距离)处看清表上最小一行字。常用的有耶格氏(Jaeger氏)和徐广第氏近视力表。3、Snellen氏和Landolt氏视力表国际通用的Snellen氏和Landolt氏视力表,虽已使用一百年左右,但仍存在若干缺陷。如视标增率不均,首行为O.1比次行0.2大一倍;而O.9行比1.0行仅大1/9倍。因此视力由O.1增高到0.2难;由0.9提高到1.O,虽然同样增0.1,但却容易得多。由此显示出在比较或统计有关视力增减时,不能以视力差值来表示的缺点。在低下视力(如手动、光感等)记录方法上也存在只能用文字记录,不能用数字表示。以上缺陷的出现。已有一些学者提出,是因忽视了“刺激强度”即视标的视角,应按几何级数增减。形觉的视力敏度即视力,因已规定为视角的倒数,势必亦成几何级数。除非采用对数原理将视力的表达方法加以改革,始能符合视角为几何级数,视力成算术级数,才符合感觉生理要求。4、对数视力表1958年缪天荣氏发表了符合感觉生理要求的“对数视力表”,视标仍用“E”字形,距离5米。远、近视力表在一定范围内可以彼此通用。视力记录方法为5分法,即将中心视力分为五个等级:无光感为0,光感为1,手动为2,数指为3,视力表上尚有4、5二级。故称为“对数视力表(缪天荣氏表)及5分记录法”2023-05-19 21:55:091
高斯算出将1到100的所有整数加起来的算术题的故事
伍仟零伍拾个故事!2023-05-19 21:55:295
世界级的数学巨著——《九章算术》
朋友们,大家好! 和《周髀算经》几乎同时,还有一部数学专著,科学史上称它为《九章算术》,这是我国第一部最重要的数学专著。 《九章算术》大约成书于东汉初年,书中载有246 个应用题目的解法,涉及到算术、初等代数、初等几何等多方面内容。其中所载述的分数四则运算、比例算法、用勾股定理解决一些测量中的问题等,都是当时世界最高科学水平的工作。而关于负数的概念和正负数加减法则的记载,也是世界数学科学史中最早的。 书中还讲述了开平方、开立方、一元二次方程的数值解法、联立一次方程解法等许多问题。《九章算术》在我国古代数学史上有很大影响,在世界数学史上也占有重要地位。 《九章算术》大致可分为9 个方面内容: (1)土地测量。书中列有直角三角形、梯形、三角形、圆、弧与环形等,并给出计算这些形状面积的方法。 (2)百分法和比例,根据比例关系来求问题答案。 (3)算术级数和几何级数。 (4)处理当图形面积及一边长度已知时,求其他边长的问题。还有求平方根、立方根等问题。 (5)立体图形体积的测量和计算,实际计算的有墙、城墙、堤防、水道和河流等。 (6)解决征收税收中的数学问题。像人们从产地运送谷物到京城交税所需的时间等有关问题,还有按人口征税的问题。 (7)过剩与不足的问题。也就是解决ax+b=0 的问题。 (8)解方程和不定方程。 (9)直角三角形的性质。 在“直角三角形的性质”这一章中,有这样一个问题: 一个水池,长宽各一丈,有棵芦苇生在池中央,芦苇出水面一尺高,让芦苇倒向池边,正好芦苇尖与池边平齐。问水有多深? 这个问题后来又见于印度的数学著作中,又传到了中世纪的欧洲。解决此问题只有利用相似直角三角形来完成。 《九章算术》对中国古代数学发生的影响,正像古希腊欧几里得《几何原本》对西方数学所产生的影响一样,是非常深刻的。 在此后的一千多年的时间里,它一直被直接作为教科书使用。日本、朝鲜也都曾用它作教科书。各代学者都十分重视对这部算书的研究,在欧洲和阿拉伯的早期数学著作中,过剩与不足问题的算法,就被称为“中国算法”,可见其独创性。各位朋友需要了解其他方面的知识或者信息,可以留言,我会尽量满足大家的需求。 如果喜欢我的分享,请随意赞赏,您的支持是我继续走下去的动力!2023-05-19 21:55:431
数学家说的关于数学的话
高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈 他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。 高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有 一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另 外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工 钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。 高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音 后,就自己学着读起书来。 七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题: 「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯: 第一个做完的就把石板[当时通行,写字用]面朝下地放在老师的桌子上,第二个做完 的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数 级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因 为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的 学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑 的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生 就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不 着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101, 2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的 数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像 求得一般算术级数合的过程一样,把数目一对对地凑在一起。2023-05-19 21:55:521
双色球的ac值是如何计算出来的?为何将开奖号的位置稍微变换一下所得的ac值结果就会不一样?
AC值即号码的算术复杂性参数,在r/s(乐透型)彩票中,是指任何一组号码中所有两个号码数字的正数差值的总数减去r-1(r 为投注号码数)的值。AC值最小值为0,最大值:当7个基本号数时为15,6个基本号数时为10,5个基本号数时为6。AC值越大,表明号码算术级数越复杂,规律性越差,随机性越强。含算术级数过多的号码,其AC值较低,则随机性越差,中奖机会也更低。全部由算术级数构成的号码,AC值可以为0。AC值是检验所选号码的一个重要标准-根据对国内各地乐透型彩票数据的统计分析,在投注数为7时,彩票中奖号码AC值大于8的占91.9%,小于4的为0%。所以选号时应选择AC值高的号码。2023-05-19 21:55:591
数学故事
20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁. 伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率". 塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。2023-05-19 21:56:1010
14生产力按几何级数增长,而市场最多也只是按算术级数扩大是谁的观点
恩格斯在《资本论》英文版序言描写的。2023-05-19 21:56:352
何为几何级数递减?举例?
我无法解释啊。2023-05-19 21:56:432
己知数列√3,√5,√7,3,√11……,该数列的8项??分析过程
第8项是√17每项平方后是3 5 7 9 11.......依次下去就能知道了2023-05-19 21:56:515
什么是"几何级数"?什么是"算术级数"?两者有何区别?
算术级数:从第二项起,每一项均由前一项加一个常数所构成的序列,如奇数1,3,5,7…几何级数:从第二项起,每一项是前一项的多少次方2023-05-19 21:57:172
什么是"几何级数"?什么是"算术级数"?两者有何区别?
几何级数:从第二项起,每一项是前一项的多少次方。算术级数:从第二项起,每一项均由前一项加一个常数所构成的序列。两者的区别:几何级数是一个数学上的概念,可以表示成a*x^y,即x的y次方的形式增长。通常情况下,x=2,也就是常说的翻几(这个值为y)番;与代数级数相比,几何级数的增长更可观。如几何级数的“翻三番”就是a*2^3,就是代数级数的增长8倍。2023-05-19 21:57:241
算术级数一定收敛吗
不一定。只有无穷级数收敛时1有一个和,发散的无穷级数没有和。算术的加法可以对有限个数求和,但无法对无限个数求和。2023-05-19 21:57:311
什么是算数级数?RT算术级数有什么性质?公式是什么?
算术级数就是等差数列几何级数就是等比数列算术级数中任意连续两项的差相同,这个差值叫做这个算术级数的公差算术级数前n项的和:(首项+末项)*(项数n)/2第n项:首项+公差*(n-1)2023-05-19 21:57:391
什么是算术级数增长,什么是几何级数增长?
算术级数增长与几何级数增长,举个例来形容: 当原来人数是1人,则领导者需要协调的关系数目是1; 当原来人数是2人,则领导者需要协调的关系数目是3; 当原来人数是3人,则领导者需要协调的关系数目是6; 当原来人数是4人,则领导者需要协调的关系数目是10; …… 设协调关系需精力为q,则随着人数n的增长,Q(q的增加值)是N(n的增加值)的指数函数,即q会随着n的增长呈指数增长,也即几何级数增长!有关几何级数发散和收敛的知识见附件!2023-05-19 21:57:461
高斯是如何发现算术级数的对称性的呢?
大约在高斯十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」高斯的答案上只有一个数字:5050老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。2023-05-19 21:57:521
什么是级数增长 有多少种级数呢 谢谢
几何级数增长就是成倍数增长。类似与通常说的“翻番”——2、4、8、16、32、64、128等等。或者3、9、27、81等等。 在几何上,面积与边长的关系是乘积的函数关系。因此也将成倍增长称为“几何级数增长”2023-05-19 21:58:012
用算术级数法计算原代码为23145的校验码,算术级数为2 3 4 5 6,模数为10,并写出最终代码。要求写出计算
首先:2*2+3*3+1*4+4*5+5*6=67取余数:67MOD10=7最终代码:2314572023-05-19 21:58:083
数学家高斯的故事(是他计算1+2+3+4.+99+100的故事)!
高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”. 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050.2023-05-19 21:58:141
等比级数是怎样的级数?
几何级数,就是等比级数。相比之下,等差级数就叫算术级数。等比级数的递减速度与公比有关。公比越小,递减速度越快。例如,公比为0.5时,2亿元人民币经过5次几何级数递减最后是625万元(2亿--1亿--5000万--2500万--1250万--625万)。公比为0.1时,2亿元人民币经过5次几何级数递减最后是2000元(2亿--2000万--200万--20万--2万--2000)。2023-05-19 21:58:321
数学家高斯小时候发现1加到100的故事 100字以内
大约在高斯十岁时,老师在算数课上出了一道难题:「把1到100的整数写下来,然后把它们加起来!」高斯的答案上只有一个数字:5050老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为101的数目,所以答案是50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。2023-05-19 21:58:403
什么是双色球的AC值?求高手指教。
AC值实际上也称作“数字复杂值”,它是引自国外乐透型彩票分析研究的一个概念,是评估乐透型彩票号码价值的一个重要的参数。在乐透型彩票中,是指任何一组号码中所有两个号码数字的正数差值的总数减去(R-1)的值,其中R为投注号码数。AC值最小值为0,最大值:当7个基本号数时为15,6个基本号数时为10,5个基本号数时为6。复杂值越大,表明号码算术级数越复杂,规律性越差,随机性越强。含算术级数过多的号码,其复杂值较低,则随机性越差,中奖机会也更低。全部由算术级数构成的号码,复杂值可以为0。例如:对双色球来说,上期号码为:04 09 10 21 22 24 ,则这6个号码数字之间的正差值分别是: 5 6 17 18 20 ; 1 12 13 15 ; 11 12 14 ; 1 3 ; 2 , 以上共有 13 个不同的差值,即1、2、3、5、6、11、12、13、14、15、17、18、20,由于 R=6,则AC值=13-(6-1)=82023-05-19 21:58:541
几何级数是什么?
几何级数,就是等比级数。相比之下,等差级数就叫算术级数。等比级数的递减速度与公比有关。公比越小,递减速度越快。例如,公比为0.5时,2亿元人民币经过5次几何级数递减最后是625万元(2亿--1亿--5000万--2500万--1250万--625万)。公比为0.1时,2亿元人民币经过5次几何级数递减最后是2000元(2亿--2000万--200万--20万--2万--2000)。2023-05-19 21:59:001
数学家高斯的故事(是他计算1+2+3+4.+99+100的故事)!
高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”. 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和...2023-05-19 21:59:061
源代码为2345,各位之权分别为5432,模为11,用算术级数法求得此代码的校验位是什么啊?
用代码的各位分别和权值相乘,然后累加求和,用和对11取余,余数就是校验位,按你的题目应该是2×5+3×4+4×3+5×2=44,44除以11商4,余0,所以此代码的校验位是0,也就是新代码为234502023-05-19 21:59:141
双色球中的a c值是怎么算出来的
这个不能算出来的,都是随机的2023-05-19 21:59:212