北营
-
数学家高斯的故事
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。
1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。
希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:
一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…
费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:
任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。
这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。
二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。
当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。
高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」 (Method of Least Square)。
1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。
1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。
1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。
1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」。
在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。
1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。
1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。
高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。
1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。
高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:「宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。 其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:
to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。
早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。
美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:
在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。
陈景润成了国际知名的大数学家,深受人们的敬重。但他并没有产生骄傲自满情绪,而是把功劳都归于祖国和人民。为了维护祖国的利益,他不惜牺牲个人的名利。
1977年的一天,陈景润收到一封国外来信,是国际数学家联合会主席写给他的,邀请他出席国际数学家大会。这次大会有3000人参加,参加的都是世界上著名的数学家。大会共指定了10位数学家作学术报告,陈景润就是其中之一。这对一位数学家而言,是极大的荣誉,对提高陈景润在国际上的知名度大有好处。
陈景润没有擅作主张,而是立即向研究所党支部作了汇报,请求党的指示。党支部把这一情况又上报到科学院。科学院的党组织对这个问题比较慎重,因为当时中国在国际数学家联合会的席位,一直被台湾占据着。
院领导回答道:“你是数学家,党组织尊重你个人的意见,你可以自己给他回信。”
陈景润经过慎重考虑,最后决定放弃这次难得的机会。他在答复国际数学家联合会主席的信中写到:“第一,我们国家历来是重视跟世界各国发展学术交流与友好关系的,我个人非常感谢国际数学家联合会主席的邀请。第二,世界上只有一个中国,唯一能代表中国广大人民利益的是中华人民共和国,台湾是中华人民共和国不可分割的一部分。因为目前台湾占据着国际数学家联合会我国的席位,所以我不能出席。第三,如果中国只有一个代表的话,我是可以考虑参加这次会议的。”为了维护祖国母亲的尊严,陈景润牺牲了个人的利益。
1979年,陈景润应美国普林斯顿高级研究所的邀请,去美国作短期的研究访问工作。普林斯顿研究所的条件非常好,陈景润为了充分利用这样好的条件,挤出一切可以节省的时间,拼命工作,连中午饭也不回住处去吃。有时候外出参加会议,旅馆里比较嘈杂,他便躲进卫生间里,继续进行研究工作。正因为他的刻苦努力,在美国短短的五个月里,除了开会、讲学之外,他完成了论文《算术级数中的最小素数》,一下子把最小素数从原来的80推进到16。这一研究成果,也是当时世界上最先进的。
在美国这样物质比较发达的国度,陈景润依旧保持着在国内时的节俭作风。他每个月从研究所可获得2000美金的报酬,可以说是比较丰厚的了。每天中午,他从不去研究所的餐厅就餐,那里比较讲究,他完全可以享受一下的,但他都是吃自己带去的干粮和水果。他是如此的节俭,以至于在美国生活五个月,除去房租、水电花去1800美元外,伙食费等仅花了700美元。等他回时, 共节余了7500美元。
这笔钱在当时不是个小数目,他完全可以像其他人一样,从国外买回些高档家电。但他把这笔钱全部上交给国家。他是怎么想的呢? 用他自己的话说:“我们的国家还不富裕,我不能只想着自己享乐。”
陈景润就是这样一个非常谦虚、正直的人,尽管他已功成名就,然而他没有骄傲自满,他说:“在科学的道路上我只是翻过了一个小山包,真正的高峰还没有有攀上去,还要继续努力。”
FinCloud
-
数 学 之 神 —— 阿 基 米 德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:22/7 <π<223/71 ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
刘 徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.
《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.
刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.
刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.
华 罗 庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。
华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。
笛 卡 儿
笛卡儿,(1596-1650)法国哲学家,数学家,物理学家,解析几何学奠基人之一。他认为数学是其他一切科学的理论和模型,提出了数学为基础,以演绎为核心的方法论,对后世的哲学。数学和自然科学发展起到了巨大的作用。
笛卡儿分析了几何学和代数学的优缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法,这种方法就是用代数方法,来研究几何问题--解析几何,《几何学》确定了笛卡儿在数学史上的地位,《几何学》提出了解析几何学的主要思想和方法,标志着解析几何学的诞生,思格斯把它称为数学的转折点,以后人类进入变量数学阶段。
笛卡儿还改进了韦达的符号记法,他用a、b、c……等表示已知数,用x、y、z……等表示未知数,创造了“=”,“”等符号,延用至今。
笛卡儿在物理学,生理学和天文学方面也有许多独到之处。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。
北有云溪
-
一切为了祖国——数学家陈景润的故事
陈景润成了国际知名的大数学家,深受人们的敬重。但他并没有产生骄傲自满情绪,而是把功劳都归于祖国和人民。为了维护祖国的利益,他不惜牺牲个人的名利。
1977年的一天,陈景润收到一封国外来信,是国际数学家联合会主席写给他的,邀请他出席国际数学家大会。这次大会有3000人参加,参加的都是世界上著名的数学家。大会共指定了10位数学家作学术报告,陈景润就是其中之一。这对一位数学家而言,是极大的荣誉,对提高陈景润在国际上的知名度大有好处。
陈景润没有擅作主张,而是立即向研究所党支部作了汇报,请求党的指示。党支部把这一情况又上报到科学院。科学院的党组织对这个问题比较慎重,因为当时中国在国际数学家联合会的席位,一直被台湾占据着。
院领导回答道:“你是数学家,党组织尊重你个人的意见,你可以自己给他回信。”
陈景润经过慎重考虑,最后决定放弃这次难得的机会。他在答复国际数学家联合会主席的信中写到:“第一,我们国家历来是重视跟世界各国发展学术交流与友好关系的,我个人非常感谢国际数学家联合会主席的邀请。第二,世界上只有一个中国,唯一能代表中国广大人民利益的是中华人民共和国,台湾是中华人民共和国不可分割的一部分。因为目前台湾占据着国际数学家联合会我国的席位,所以我不能出席。第三,如果中国只有一个代表的话,我是可以考虑参加这次会议的。”为了维护祖国母亲的尊严,陈景润牺牲了个人的利益。
1979年,陈景润应美国普林斯顿高级研究所的邀请,去美国作短期的研究访问工作。普林斯顿研究所的条件非常好,陈景润为了充分利用这样好的条件,挤出一切可以节省的时间,拼命工作,连中午饭也不回住处去吃。有时候外出参加会议,旅馆里比较嘈杂,他便躲进卫生间里,继续进行研究工作。正因为他的刻苦努力,在美国短短的五个月里,除了开会、讲学之外,他完成了论文《算术级数中的最小素数》,一下子把最小素数从原来的80推进到16。这一研究成果,也是当时世界上最先进的。
在美国这样物质比较发达的国度,陈景润依旧保持着在国内时的节俭作风。他每个月从研究所可获得2000美金的报酬,可以说是比较丰厚的了。每天中午,他从不去研究所的餐厅就餐,那里比较讲究,他完全可以享受一下的,但他都是吃自己带去的干粮和水果。他是如此的节俭,以至于在美国生活五个月,除去房租、水电花去1800美元外,伙食费等仅花了700美元。等他回时, 共节余了7500美元。
这笔钱在当时不是个小数目,他完全可以像其他人一样,从国外买回些高档家电。但他把这笔钱全部上交给国家。他是怎么想的呢? 用他自己的话说:“我们的国家还不富裕,我不能只想着自己享乐。”
陈景润就是这样一个非常谦虚、正直的人,尽管他已功成名就,然而他没有骄傲自满,他说:“在科学的道路上我只是翻过了一个小山包,真正的高峰还没有有攀上去,还要继续努力。”
祖冲之的故事 您要打印的文件是:祖冲之的故事 打印本文
祖冲之的故事
祖冲之
祖冲之(公元429——500年)是我国南北朝时代一位成绩卓著的科学家。他不仅在天文、数学等方面有
过闻名世界的贡献,而且在机械制造等方面也有许多发明创造。他的发明为促进社会生产的发展,建立了不可磨灭
的功绩,受到了中国人民和世界人民的尊敬。
探索大自然的奥秘
人类生活在地球上,面对着浩瀚的太空,常常引起人们无边无际的遐想,从那遥远的古代,就开始了对大自然
的种种探索,科学终于逐渐地打开了天体奥秘的大门。
我国古代劳动人民,由于畜牧业和农业生产的需要,经过长期的观察、实践,积累了丰富的天文历法知识,发
现了日月运行的基本规律,制成了历法。在祖冲之的时候,已经有了相当进步的历法。那时的历法,为了使地球绕
太阳一周的日子能和月亮绕地球一周的日子配合起来,在闰法上还是采用十九年七闰的老办法,规定十九个年里有
七个闰年,每个闰年要比平时多一个月。事实上这种历法还不够周密、精确,应当改革。一天,年轻的祖冲之,正
在自己书房中翻阅历书:《春秋四分历》、《太初历》、《后汉四分历》、《元始历》、《元嘉历》等——把他最
近一段时间所查阅的这些有关我国古人制定的历法书,加以认真地比较,仔细地探讨。他发现在我国五胡十国时期
的北凉(公元316——420年)的赵榧于公元四一二年作的《元始历》中,第一次不用十九年七闰的旧章法,
而改用六百年二百二十一闰。他不禁连连称赞:“好!大胆的尝试!”于是他又拿出了算筹,细心地计算了起来,
计算结果表明:十九年七闰,闰数过多,在二百年内,就要比实际多出一天来,“看来十九年七闰的旧章法,是非
改不可!”他自言自语地叨咕着。
他沉思了片刻。忽地站了起来,走到窗边,卷起竹帘,推开窗子,斜射的夕照把他的身影拉得长长的,拖在地
上。在房里,他一边来回地走动,一边思索这样的一个问题:要进一步提高历法的精度,光靠桌上的那几本历书行
吗?不行!得靠自己去观测,用实际观测得来的数据,才能进行正确的计算……从哪里入手呢?对!就从测定冬至
的日期着手!
从此,在他的观测站上,立起了一个八尺高的圭表,观测日影的长度。在这些日子里,他“亲量圭尺”,脸晒
黑了,手冻出了裂口,但观测册上却记下了一个又一个数据;记录着一个又一个变化的日影。
从此,在他的观测站上,又多了几个他新设计的计时的漏壶。在记下日影长短的同时,记下了准确的时间。
为了实现改革历法的计划,祖冲之就这样以旺盛的精力,火一般的热情,不辞劳苦地工作着!一年、二年过去
了。用竹简串起来的观测记录把本来十分宽敞的书房,堆得十分拥挤。但是还没有得出理想的结果。这是什么原因
呢?他想通向揭开冬至时刻的奥秘的道路可有许多条,但最好、最短、最准确的只有一条。他要寻找一条最近又是
最好的登山之路,他苦苦思索着,仔细分析着,考虑了又考虑,计算了又计算,核对了又核对,他也记不得究竞花
费了多少心血,终于发现了:由于冬至前后的影长变化不太明显,再加漏壶表示的时间不那么准确,这给冬至时刻
的准确测定带来了困难。他总结失败的教训,困难面前不气馁,他终于想出了一个新的方法:不直接观测冬至那天
日影的长度,而观测冬至前后二十三、四天的日影长度,再取它的平均值,求出冬至发生的日期和时刻。因为离开
冬至日远些,日影的变化就快些,所以这一方法提高了冬至时刻的测定的精度。祖冲之制定的《大明历》岁实取
365.24281481日,与现代天文学所测结果,一年中仅有六十万分之一的误差 ,这是多么精密的结果啊!
闯过了一个险峰,迎来了又一座峻岭。祖冲之象一个登山队员那样不断攀登着。
祖冲之用圭表测定了回归年的长度(岁实)后,又用浑仪等测角器,测定太阳在恒星间的位置,开始了研究太
阳一年中运动的快慢变化和测定冬至点逐年变化的数值(岁差),他根据自己的实际测验和计算结果,首先证实了
岁差现象的存在,同时还求出冬至点每一百年向西移动一度。这是历法史上的一个创举,揭开了我国历法改革的崭
新一页。
在古代仪器和设备十分简陋的情况下,祖冲之经过长期的实际观测,推算出一个交点月的日数为27.21223日,
和现在所测得的一交支点月的日数仅差不二百七十万分之一,在1500多年前,得出这样精确的结果实在惊人。
十年过去了,他“考影弥年”,此刻,祖冲之好比一个历尽千辛万苦的登山队员,终于攀登上了风光无限的险
峰,心里是何等激动啊!他知道:历法的改革,可以促使人们向生产的深度和广度进军。于是他拿出毛笔,铺开了
竹简,唰唰地写下了第一片竹简:《大明历》。
当时最科学的历法《大明历》,终于在他三十三岁那一年完成了。
实践出真知。祖冲之通过不断的实践,终于打开了苍穹奥秘的宇宙大门。
为真理而斗争的无畏战士
英姿勃发的祖冲之,在长期的科学实践活动中。勤奋学习,刻苦钻研,特别是“频年测候”的艰苦劳动,反复
验证、比较,使他获得了大量的有关天文、历法方面的资料。公元四六一年,祖冲之把《大明历》写就以后,又写
了一篇《上“大明历”表》。第二年,即公元四六二年,年轻职卑的祖冲之怀着满腔热情,把他精心编成的《大明
历》连同《上“大明历”表》一起送给封建朝廷,请求宋孝武帝,改用新历。公布施行。他满以为会得到理所当然
的支持,可是宋孝武帝根本不懂历法,朝廷许多人都提不出意见,唯有思想保守的太子旅贲中郎将戴法兴,竭力加
以反对。
一天,孝武帝下了一道议历的诏书。侍立两旁的满朝文武官员,慑于戴法兴的权势,一个个噤若寒蝉。而戴法
兴却摆出了一副历法权威的架势,气势汹汹地指着祖冲之的鼻子说:“古人编制的历法,万代都不能变,你祖冲之
一个区区浅陋的凡夫俗子就能‘妄可穿凿吗"?”
祖冲之面对着戴法兴这个庞然大物的威胁,是屈服于他的压力而放弃真理,还是为捍卫真理而坚决斗争?祖冲
之以大无畏的斗争精神,坚定地说:“就算我是个凡夫俗子,但我决不盲目迷信古人,我‘专功数术,搜练古今"
,对周朝以来的历法,都加以校定验证,改正了很多错误的地方,所依据的道理和事实是昭然若揭的。凡夫就是能
议历。”
戴法兴见以势压人,对祖冲之行不通,于是竟恬不知耻地冒充“善历”的内行,胡诌说:“十九年加七个闰月
这是天经地义的,你要改闰,就是“削闰坏章"。”戴法兴还以假惺惺地关心农事为名攻击祖冲之破坏了“生民之
本”!“再说,‘冬至日有定处",太阳永远走在它的‘故辙"上,你搞什么岁差,是‘违天于改易"!”
祖冲之据理驳斥:“象十九年七闰这种旧历法‘其疏尤甚",误差很大,可你戴法兴却说‘此法自古,数不可
移",‘永当循用",不能破除。天体运行‘非出神怪,有形可栓,有数可椎",旧历不讲岁差,‘乖谬既著",
难道不应改易吗?”
一个小小的“从事史”敢于同戴法兴这个“事无大小专断之”的权贵进行针锋相对地斗争,义正辞严地把他的
谬论驳得体无完肤,目瞪口呆,把他卫道者的嘴脸揭露无遗。使在场的许多大官被祖冲之精辟透彻的说理,确凿无
误的事实所说眼。尽管在这场大辩论中,朝廷里那些主张实行新历的人,对戴法兴的邪说“立异议”,但固“畏其
权”,不敢替祖冲之说话。可是在这黑暗的王国里,仍然透出了一线光明。当时有个叫巢尚之的大臣,公开表示支
持祖冲之。他指出:《大明历》是祖冲之长期研究的成果,是根据祖冲之多年实测日月五星的运行来推算日食和月
食的,因此用《大明历》计算从元嘉13年(公元436年)到大明3年(公元459年)这23年里所发生的四
次月食,月食的时间和在天空的立置都和实际情况相符。可是用旧历法推算的结果误差就很大,《大明历》既然由
事实证明比较好,就应当采用。
这样一来,戴法兴理屈词穷,无言以对。祖冲之终于取得了最后的胜利。新历在公元510年被采用了。
世界上第一个最精密的圆周率
夜很深了,桌上的油灯已经加了两次油。书桌上堆放着已经看完的《周骸算经》竹简,张衡的《灵显》竹简,
祖冲之手中正在翻阅刘徽给《九章算术》作的注解,他被刘徽在深入学习古人成果,广泛实践的基础上,用高度的
抽象概括力建立的“割圆术”与极限观念所折服,不禁拍案而起。连连称赞:“真了不起 !”在一边专心致志看
书的儿子被这突如其来的声音所震动,忙问:“爸,谁了不起了”“我说刘徽了不起。”祖冲之的眼睛仍然停留在
竹简上。“刘徽是谁?”当时只有十一、二岁的孩子还不知道刘徽是个什么样的人。“三国时代的科学家。”“他
有什么地方了不起呢?”“他用极限观念建立了‘割圆术"。”“割圆术?”他茫茫然地望着父亲。对于圆面积、
圆柱的体积和球的体积计算都要用圆周率,原来似乎没有科学的方法。可是这会儿,刘徽提出的割圆术,却找到了
完善的算法。“你看!”祖冲之指着手里拿着的竹简,滔滔不绝的给儿子讲着。“刘徽提出:在圆内作一个正六边
形,每边和半径相等。然后把六边所对的六段弧线一一平分。作出一个正十二边形。这个十二边形的边长总加起来
比六边形的边长的总和要大,比较接近圆周,但仍比圆周短。“刘徽认为,用同样方法,作出二十四边形。那周长
总和又增加了,又接近圆周了。这样一直把圆周分割下去,割得越细,和圆周相差越少,割而又割,直到不可再割
的时候,这个无限边形就和圆周密合为一,完全相等了。“刘徽用割圆术计算了六边、十二边、二十四边、四十八
边,一直计算到九十六边形的边长之和,得出圆周是直径的3.14。”祖冲之把刘徽的计算圆周率的“割圆术”讲给
儿子听,他虽然似懂非懂,但引起了他无限的兴趣。“刘徽真了不起!真行!”祖冲之听着孩子的话,沉思片刻说
:“我告诉你吧,刘徽算出的圆周率,其实他自己也不满意。他声明:实际的圆周率应该比3.14稍大。如果他继
续‘割了又割"地割下去.就会算得更精确。”“那我们来继续‘割而又割",行吗?”儿子问了一句。“行呀,
我们可以算出更精确的圆周率!这就需要我们付出更为艰巨的劳动!”
这一夜,父子俩久久未能入睡。枯燥无味的数学,却引来了儿子无限的兴趣,丰富的幻想;祖冲之则盘算着如
何去消化前人智慧的尽可能不缺的全部成果,开拓数学研究的新路。
公元461年一个叫刘子鸾的皇族被任命为南除州刺史,祖冲之也被从华林学省这个研究学术的机关调出,派
在刘子鸾手下做一个小官。祖冲之虽然离开了华林学省,又担任了繁杂琐碎的行政事务工作,但他勤奋好学的习惯
并没有随着环境变化而有所改变。他始终没放松对科学技术的钻研。每天早上都得进宫办事,下午一回来,就一头
钻进了他的书房,有时甚至忘了吃晚饭,忘了休息。年幼的儿子,被他父亲的这种孜孜不倦,废寝忘食的刻苦攻关
精神所感动。
一天,祖冲之早上进宫办完杂事,就匆匆赶回了家,在书房的地板上画了一个直径一丈的大圆,运用 “割圆
术”的计算方法,在圆内先作了一个正六边形。他们的工作就这样开始了。日复一日,不论是酷暑,还是严寒,从
不间断地辛勤地计算着……祖冲之为了求出最精密的圆周率,对九位数进行包括加减乘除及开方等运算一百三十次
以上。这样艰巨复杂的计算,在当时,既没有电子计算机,也没有算盘,只靠一些被称作“数筹”的小竹棍,摆成
纵横不同的形状,用来表示各种数目,然后进行计算,这不仅需要掌握纯熟的理论和技巧,而且,更需具备踏踏实
实、一丝不苟的严谨态度,不惜付出艰巨的劳动代价,才能取得杰出的成就。
祖冲之为了求出最精密的圆周率,逐次以圆内接正六边形、十二边形、二十四边形、四十八边形、九十六边形
…的边长当作圆周长,计算与直径的比值, 一直割圆到24576边形,这样边已经和圆周紧贴在一起,而不能再割了
,于是他算出:12288边形各边总长为3.14159251丈,24576边形各边总长为3.14159261丈。
祖冲之经过艰苦的计算,终于得出较精确的圆周如直径为1,圆周大于3.1415926,小于3.1415927。
这个结论,用现代数字符号写出,就是:3.1415926<n<3.1415927。
功夫不负苦心人,祖冲之求出的圆周率,精确到小数点后七位,这在当时,全世界上只有他一人。祖冲之为世
界数学史和文明史,作出的这一伟大贡献,是我们中华民族的骄傲!
祖冲之不仅对数学、天文、历法进行过广泛的研究,取得了卓越的成就,而且对于机械制造也有贡献。他发明
和创造了“千里船”“水推磨”“计时器”等有利于生产发展的科学机械,成为一个成绩卓著的科学家。
小菜G的建站之路
-
数学家的故事——苏步青
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责",在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心
数学家的墓志铭
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
http://content.edu.tw/junior/math/tn_kh/store.htm还有这个网站`````去看看吧
什么是"几何级数"?什么是"算术级数"?两者有何区别?
几何级数与算数级数的概念与区别如下:算术级数:从第二项起,每一项均由前一项加一个常数所构成的序列,如奇数1,3,5,7…几何级数:从第二项起,每一项是前一项的多少次方。举个例子,“按几何级数增长”和“按算术级数增长”的关键区别是:“按几何级数增长”意味着按固定的增长率增长,但每期的增长幅度不一样,如果增长率是正的,那么越往后增长幅度越大;“按算术级数增长”意味着按固定的增长幅度增长,但每期的增长率不一样,如果增长幅度是正的,那么越往后增长率越小。2023-05-19 21:50:153
什么是"几何级数"?什么是"算术级数"?两者有何区别
“几何级数”就是等比级数,“算术级数”就是等差级数。设级数为 u(1)+ u(2) +u(3) +...+u(n)+...如果,存在一个常数q,对所有的n,都有 u(n+1)/u(n) =q,则称这个级数为等比级数,或几何级数,称q这个等比级数的“公比”,这个级数由首项和公比所决定,事实上 u(1)+ u(2) +u(3) +...+u(n)+...=u(1)+u(1)q+u(1)q^2+...+u(1)q^(n-1)+...如果,存在一个常数d,对所有的n,都有 u(n+1)-u(n) =d,则称这个级数为等差级数,或算术级数,称d这个等差级数的“公差”,这个级数由首项和公差所决定,事实上 u(1)+ u(2) +u(3) +...+u(n)+...=u(1)+(u(1)+d)+(u(1)+2d)+...+(u(1)+(n-1)d)+...2023-05-19 21:50:291
什么是算术级数?
几何级数,就是等比级数。相比之下,等差级数就叫算术级数。等比级数的递减速度与公比有关。公比越小,递减速度越快。例如,公比为0.5时,2亿元人民币经过5次几何级数递减最后是625万元(2亿--1亿--5000万--2500万--1250万--625万)。公比为0.1时,2亿元人民币经过5次几何级数递减最后是2000元(2亿--2000万--200万--20万--2万--2000)。2023-05-19 21:50:361
什么是"几何级数"?什么是"算术级数"?两者有何区别
几何级数与算数级数的概念与区别如下:算术级数:从第二项起,每一项均由前一项加一个常数所构成的序列,如奇数1,3,5,7…几何级数:从第二项起,每一项是前一项的多少次方。举个例子,“按几何级数增长”和“按算术级数增长”的关键区别是:“按几何级数增长”意味着按固定的增长率增长,但每期的增长幅度不一样,如果增长率是正的,那么越往后增长幅度越大;“按算术级数增长”意味着按固定的增长幅度增长,但每期的增长率不一样,如果增长幅度是正的,那么越往后增长率越小。2023-05-19 21:50:445
什么叫几何级 、算术级
所谓“几何级数”,又称“等比级数”,指的是这样一个数列,这个数列中的每一个数都是前一个数的固定倍数,这个倍数又称“公比”。因此一个数跟前一个数之间的增长率或者变化率就是恒定的。这个倍数当然在不同的情况下会不一样。“按几何级数增长”,指的就是按照这样一种格式增长。也就是说,按几何级数增长实际上就是按照同样的增长率增长。至于这个增长率是多少,那就是另外一回事情了。对于“等比级数”来说,如果公比大于1,那么这个数列就按照几何级数增长,如果公比小于1,那么这个数列就按照几何级数减少。 所谓“算术级数”,又称“等差级数”,指的是指的是这样一个数列,这个数列中的每一个数跟前一个数的差额是固定的,这个差额又称“公差”。因此一个数跟前一个数之间的增长幅度或者变化幅度就是恒定的。 “按算术级数增长”,指的就是按照这样一种格式增长。这个数列的增长率是逐年下降的,因为增长幅度一样,但越往后,数列中的数值就越大(假定公差是正的)。这个公差当然在不同的情况下会不一样。 因此,“按几何级数增长”和“按算术级数增长”的关键区别是:“按几何级数增长”意味着按固定的增长率增长,但每期的增长幅度不一样,如果增长率是正的,那么越往后增长幅度越大;“按算术级数增长”意味着按固定的增长幅度增长,但每期的增长率不一样,如果增长幅度是正的,那么越往后增长率越小。2023-05-19 21:50:591
什么是算术级数增长,什么是几何级数增长?
几何级数增长就是说以次方的方式增长有听过国际象棋的传说不 那就是几何级数的增长算术级数增长就是递增等差数列 比如2,4,6,8......2023-05-19 21:51:074
词语造句:用算术级数造句(约30个)
算术级数拼音: suan shu ji shu 算术级数解释: 见〖等差级数〗。 算术级数造句: 1、生活资料只能按算术级数增长。 2、已有结论表明 素数集中存在任意长的算术级数。 3、本文给出了华罗庚五素数平方定理的算术级数形式,证明了其中一个素数可以取在大模的算术级数中。 4、人口,如果不加抑制,就会以几何级数增长。而生存给养是以算术级数增长的。 5、本文运用解析的方法,研究模为算术级数中素数的正规化三次高斯和在单位圆周上的分布。 6、知识资源的使用价值呈几何级数增长,而知识资源的交换价值则呈现出算术级数与几何级数交互增长。 7、利用解析数论工具证明了算术级数数列中素数幂分布的若干结果,这些结果在提供RBIBD设计与PMD设计的渐近存在性定理的精确定界时具有重要作用。2023-05-19 21:51:131
什么是算数级数?
算术级数——等差级数2023-05-19 21:51:202
什么叫几何级数增长?算术级数呢
几何级数增长就是成倍数增长,用数学术语来说就是A的n次幂的增长,类似与通常说的“翻番”。 例如:2、4、8、16、32、64、128、256……算术级数增长就是增加一个固定的常数,如2,4,6,8,10,12……就是等比数列和等差数列,百度首页搜一下定义就行了。2023-05-19 21:51:282
什么函数生成一组算术级数
生成函数生成函数(generating function),又称母函数,是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。2023-05-19 21:51:352
两级数是什么意思?
两级数就是包含两个级数的(个级和万级)的意思。2023-05-19 21:51:532
如何找到算术级数的对称性
大约在高斯十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」高斯的答案上只有一个数字:5050老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。2023-05-19 21:51:591
几何级数增长和指数级数增长哪个大
京顶云几何级数增长是指客户按年付费:第一年的新客户量a;第二年新增客户量a加上续签a,客户总量为2a;第三年新客户量a,第一年客户续签a,第二年客户续签a,客户总量为3a。以此类推,以10年期为例,客户总量为10a,假设每个客户的销售额是2W,每年20个客户。10年的总收入是40W+80W+120W+160W+200W+240W+280W+320W+360W+400W=3200W.上述模型是一个典型的几何级增长模型,按倍数增长。如何设计京顶云企业数字化平台的用户指数级增长,是实现业绩增长的关键!指数级增长是指第一年20个用户,以后每年按20的平方,20的3次方,20的4次方增长,到第五年就是20*20*20*20*20=3200000通过以上描述可以看到,指数级增长远远要比几何级数增长大的多。京顶云企业数字化EDP平台,希望我的回答能帮到你!2023-05-19 21:52:078
数列与级数
等差数列的前n项和称为一个等差级数,也称算术级数。例:1,3,5,7,9为一个等差数列,而1+3+5+7+9则为一个等差级数。推导:等比级数,表示等比数列的前n项和,又称为几何级数。 推导:只有当值是收敛时,无穷级数的结果才是有限的。所以:2023-05-19 21:52:471
若原代码为2345,各位之权分别5,4,3,2,模为11,用算术级数法求得此代码之校验位是( ).
用代码的各位分别和权值相乘,累加求和,用和对11取余,余数就是校验位,按题目应该是2×5+3×4+4×3+5×2=44,44除以11商4,余0,所以此代码的校验位是0,也就是新代码为23450。数据结构中字符串如果是固定长度的可以不用初始d化如果是可变长度的请使用指针,进行编程,所以没法给程序:要是c的话typedef struct{char** astr;}mystruct;char ad[]="aaaaaaaaaaa";mystruct ms;ms.astr=&ad;扩展资料:源代码作为软件的特殊部分,可能被包含在一个或多个文件中。一个程序不必用同一种格式的源代码书写。例如,一个程序如果有C语言库的支持,那么就可以用C语言;而另一部分为了达到比较高的运行效率,则可以用汇编语言编写。较为复杂的软件,一般需要数十种甚至上百种的源代码的参与。为了降低种复杂度,必须引入一种可以描述各个源代码之间联系,并且如何正确编译的系统。在这样的背景下,修订控制系统(RCS)诞生了,并成为研发者对代码修订的必备工具之一。还有另外一种组合:源代码的编写和编译分别在不同的平台上实现,专业术语叫做软件移植。参考资料来源:百度百科-源代码2023-05-19 21:52:541
源代码为2345,各位之权分别为5432,模为11,用算术级数法求得此代码的校验位是
用代码的各位分别和权值相乘,然后累加求和,用和对11取余,余数就是校验位,按你的题目应该是2×5+3×4+4×3+5×2=44,44除以11商4,余0,所以此代码的校验位是0,也就是新代码为234502023-05-19 21:53:091
高斯是怎样快速计算出“1+2+3+4……+100”的?
还有别的方法吗?2023-05-19 21:53:162
校验位算术级数法权怎么计算
校验位算术级数法权的计算方法是算术级数法确定校验位值是将原代码各位各乘以由算术级数组成的(),然后以()去除上述乘积之和,最后把得出的余数作为校验码。加权取余方法是一种常用的校验位计算方法,改变其权因子可以得到不同的计算方式,因此,被广泛应用于社会和科学技术等各个领域。2023-05-19 21:53:231
双色球的AC值是怎么算的?
AC值也称作“数字复杂指数”,它是引自国外乐透型彩票分析研究的一个概念,是评估乐透型彩票号码价值的重要参数。一组号码中所有两个号码相减,然后对所得的差求绝对值,如果有相同的数字,则只保留一个,得到不同差值个数就是AC值。例如:开奖号码378,其所有两个号码差值绝对值分别是,4、1、5,它的差值个数是3,所以AC值就等于3。AC值共有三个值,分别是:1、2、3。其中AC值为1的号码为豹子号(如:222、555等),此类号码共10注。AC值为2的号码包括组3号和等差号码(如:332,246等),此类号码共390注。AC值为3的号码是除了AC值等于1和2之外的所有号码,此类号码共600注。2023-05-19 21:53:304
以11为模,请分别使用算数级数法,几何级数法和质数法计算613758的校验码,生成的新代码又是多少?
算术级数:…7、6、5、4、3、2几何级数:…64、32、16、8、4、2质数:…15、13、11、7、5、3算数级数法:先求乘积之和:6×7+1×6+3×5+7×4+5×3+8×2=122再求余数:122÷11=11余1所以代码为613758几何级数法:求乘积之和:6×64+1×32+3×16+7×8+5×4+8×2=556求余数:556÷11余6所以代码为6137586质数级数也是这么算。2023-05-19 21:53:501
e∧x级数求和
对无穷幂级数:e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+…… =∑x^k/k!=(k=0,1,2,……),令x=1得: e=∑1/k!(k=0,1,2,……)=1+1+1/2!+1/3!+1/4!+…… 如取前五个得近似值e≈1+1+1/2+1/6+1/24≈2.71 级数就是无穷个数相加,分为数项级数和函数项级数,在高数里应该有,大二可能会学 几何级数是指幂的形式,1的平方 2的平方 3的平方 这样的情况 算术级数是指倍数形式,1 2 4 8 16 这样的 两都的区别在于几何级数的增长率曲线很陡,算术的很平缓 加绝对值,得Σ1/n^pp>1收敛,此时原级数为绝对收敛B,C错0 追 0<p<1时绝对值的式子为什么发散啊?分母也是在增大啊,整个式子趋于零,不是收敛嘛? p=""> </p<1时绝对值的式子为什么发散啊?分母也是在增大啊,整个式子趋于零,不是收敛嘛?>2023-05-19 21:53:571
如何理解“按几何级数增长”和“按算术级数增长”
简单的讲,“按几何级数增长”就是翻着翻地增长,“按算术级数增长”,就是一点一点平稳地增长。2023-05-19 21:54:031
高斯的故事
数学书第一章.2023-05-19 21:54:1310
现在对数视力表的小数记录是不是算术级数
是。视标按几何级数增加,视标每增加一倍,视力的对数就减小0.1,即视力记录按算术级增减。以对数视力表代替小数制视力表无疑是视力检查技术的一大进步。本标准适用于儿童青少年一般体检,招生、招工等体检的远、近视力测定,临床等方面亦应参照使用。2023-05-19 21:54:531
古代学生什么时间开始学算术?
应该从父母教它学数数时,就算开始学算术了。很早的。2023-05-19 21:55:002
现在对数视力表的小数记录是不是算术级数
视力表是测验视力的标准图表,种类很多。我国现在最常用的为国际标准视力表。国际通用的为Snellen氏和Landolt氏表。前者为中华眼科学会所推荐,现在我国通用。1、Snellen氏视力表的检测Snellen氏表是由一组一组逐渐缩小的“E”字组成,每个“E”字的两端在眼的结点处形成5分视角,也就是每个“E”字每划的宽度为1分视角,每划间隙亦为1分视角。因距离远近不同,所以字划的宽窄就不同,字的大小也就不同。首行字为在50米处的5分视角字的大小,第二行以下分别为25米、18米、12.5米、,10米、8.3米、7.1米、6米、5.5米和5米。记录视力测验的结果有用分数和用小数二种。分数法的分子为测验视力的被检者与视力表的距离,分母为制表时每行字成5分视角时的距离。如被检者在5米处能看见表上第一行大“E”字,即记作5/50;如能看清5米1行的“E”字时,即写作5/5。以小数记录时,5/50即为0.1;5/5即为1.O等。视力表与被检者的距离,通常为5米。如果为节省检查室的空间,可在距视力表2.5米处放置一平面镜,根据以前所论到的平面镜原理,被检者距视力表仍为5米。2、Landolt氏视力表Landolt氏视力表是使被检者指出视力表上环形“C”字开口的方向。视力表构成的原理与Snellen氏视力表相同,故不再赘述。以上为远(距离)视力表构成和测验记录法。同样原理构成近(距离)视力表,临床上用以测验近距离(阅读等)视力。正视眼应在33厘米(阅读距离)处看清表上最小一行字。常用的有耶格氏(Jaeger氏)和徐广第氏近视力表。3、Snellen氏和Landolt氏视力表国际通用的Snellen氏和Landolt氏视力表,虽已使用一百年左右,但仍存在若干缺陷。如视标增率不均,首行为O.1比次行0.2大一倍;而O.9行比1.0行仅大1/9倍。因此视力由O.1增高到0.2难;由0.9提高到1.O,虽然同样增0.1,但却容易得多。由此显示出在比较或统计有关视力增减时,不能以视力差值来表示的缺点。在低下视力(如手动、光感等)记录方法上也存在只能用文字记录,不能用数字表示。以上缺陷的出现。已有一些学者提出,是因忽视了“刺激强度”即视标的视角,应按几何级数增减。形觉的视力敏度即视力,因已规定为视角的倒数,势必亦成几何级数。除非采用对数原理将视力的表达方法加以改革,始能符合视角为几何级数,视力成算术级数,才符合感觉生理要求。4、对数视力表1958年缪天荣氏发表了符合感觉生理要求的“对数视力表”,视标仍用“E”字形,距离5米。远、近视力表在一定范围内可以彼此通用。视力记录方法为5分法,即将中心视力分为五个等级:无光感为0,光感为1,手动为2,数指为3,视力表上尚有4、5二级。故称为“对数视力表(缪天荣氏表)及5分记录法”2023-05-19 21:55:091
高斯算出将1到100的所有整数加起来的算术题的故事
伍仟零伍拾个故事!2023-05-19 21:55:295
世界级的数学巨著——《九章算术》
朋友们,大家好! 和《周髀算经》几乎同时,还有一部数学专著,科学史上称它为《九章算术》,这是我国第一部最重要的数学专著。 《九章算术》大约成书于东汉初年,书中载有246 个应用题目的解法,涉及到算术、初等代数、初等几何等多方面内容。其中所载述的分数四则运算、比例算法、用勾股定理解决一些测量中的问题等,都是当时世界最高科学水平的工作。而关于负数的概念和正负数加减法则的记载,也是世界数学科学史中最早的。 书中还讲述了开平方、开立方、一元二次方程的数值解法、联立一次方程解法等许多问题。《九章算术》在我国古代数学史上有很大影响,在世界数学史上也占有重要地位。 《九章算术》大致可分为9 个方面内容: (1)土地测量。书中列有直角三角形、梯形、三角形、圆、弧与环形等,并给出计算这些形状面积的方法。 (2)百分法和比例,根据比例关系来求问题答案。 (3)算术级数和几何级数。 (4)处理当图形面积及一边长度已知时,求其他边长的问题。还有求平方根、立方根等问题。 (5)立体图形体积的测量和计算,实际计算的有墙、城墙、堤防、水道和河流等。 (6)解决征收税收中的数学问题。像人们从产地运送谷物到京城交税所需的时间等有关问题,还有按人口征税的问题。 (7)过剩与不足的问题。也就是解决ax+b=0 的问题。 (8)解方程和不定方程。 (9)直角三角形的性质。 在“直角三角形的性质”这一章中,有这样一个问题: 一个水池,长宽各一丈,有棵芦苇生在池中央,芦苇出水面一尺高,让芦苇倒向池边,正好芦苇尖与池边平齐。问水有多深? 这个问题后来又见于印度的数学著作中,又传到了中世纪的欧洲。解决此问题只有利用相似直角三角形来完成。 《九章算术》对中国古代数学发生的影响,正像古希腊欧几里得《几何原本》对西方数学所产生的影响一样,是非常深刻的。 在此后的一千多年的时间里,它一直被直接作为教科书使用。日本、朝鲜也都曾用它作教科书。各代学者都十分重视对这部算书的研究,在欧洲和阿拉伯的早期数学著作中,过剩与不足问题的算法,就被称为“中国算法”,可见其独创性。各位朋友需要了解其他方面的知识或者信息,可以留言,我会尽量满足大家的需求。 如果喜欢我的分享,请随意赞赏,您的支持是我继续走下去的动力!2023-05-19 21:55:431
数学家说的关于数学的话
高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈 他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。 高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有 一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另 外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工 钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。 高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音 后,就自己学着读起书来。 七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题: 「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯: 第一个做完的就把石板[当时通行,写字用]面朝下地放在老师的桌子上,第二个做完 的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数 级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因 为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的 学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑 的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生 就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不 着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101, 2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的 数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像 求得一般算术级数合的过程一样,把数目一对对地凑在一起。2023-05-19 21:55:521
双色球的ac值是如何计算出来的?为何将开奖号的位置稍微变换一下所得的ac值结果就会不一样?
AC值即号码的算术复杂性参数,在r/s(乐透型)彩票中,是指任何一组号码中所有两个号码数字的正数差值的总数减去r-1(r 为投注号码数)的值。AC值最小值为0,最大值:当7个基本号数时为15,6个基本号数时为10,5个基本号数时为6。AC值越大,表明号码算术级数越复杂,规律性越差,随机性越强。含算术级数过多的号码,其AC值较低,则随机性越差,中奖机会也更低。全部由算术级数构成的号码,AC值可以为0。AC值是检验所选号码的一个重要标准-根据对国内各地乐透型彩票数据的统计分析,在投注数为7时,彩票中奖号码AC值大于8的占91.9%,小于4的为0%。所以选号时应选择AC值高的号码。2023-05-19 21:55:591
数学故事
20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁. 伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率". 塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。2023-05-19 21:56:1010
14生产力按几何级数增长,而市场最多也只是按算术级数扩大是谁的观点
恩格斯在《资本论》英文版序言描写的。2023-05-19 21:56:352
何为几何级数递减?举例?
我无法解释啊。2023-05-19 21:56:432
己知数列√3,√5,√7,3,√11……,该数列的8项??分析过程
第8项是√17每项平方后是3 5 7 9 11.......依次下去就能知道了2023-05-19 21:56:515
什么是"几何级数"?什么是"算术级数"?两者有何区别?
算术级数:从第二项起,每一项均由前一项加一个常数所构成的序列,如奇数1,3,5,7…几何级数:从第二项起,每一项是前一项的多少次方2023-05-19 21:57:172
什么是"几何级数"?什么是"算术级数"?两者有何区别?
几何级数:从第二项起,每一项是前一项的多少次方。算术级数:从第二项起,每一项均由前一项加一个常数所构成的序列。两者的区别:几何级数是一个数学上的概念,可以表示成a*x^y,即x的y次方的形式增长。通常情况下,x=2,也就是常说的翻几(这个值为y)番;与代数级数相比,几何级数的增长更可观。如几何级数的“翻三番”就是a*2^3,就是代数级数的增长8倍。2023-05-19 21:57:241
算术级数一定收敛吗
不一定。只有无穷级数收敛时1有一个和,发散的无穷级数没有和。算术的加法可以对有限个数求和,但无法对无限个数求和。2023-05-19 21:57:311
什么是算数级数?RT算术级数有什么性质?公式是什么?
算术级数就是等差数列几何级数就是等比数列算术级数中任意连续两项的差相同,这个差值叫做这个算术级数的公差算术级数前n项的和:(首项+末项)*(项数n)/2第n项:首项+公差*(n-1)2023-05-19 21:57:391
什么是算术级数增长,什么是几何级数增长?
算术级数增长与几何级数增长,举个例来形容: 当原来人数是1人,则领导者需要协调的关系数目是1; 当原来人数是2人,则领导者需要协调的关系数目是3; 当原来人数是3人,则领导者需要协调的关系数目是6; 当原来人数是4人,则领导者需要协调的关系数目是10; …… 设协调关系需精力为q,则随着人数n的增长,Q(q的增加值)是N(n的增加值)的指数函数,即q会随着n的增长呈指数增长,也即几何级数增长!有关几何级数发散和收敛的知识见附件!2023-05-19 21:57:461
高斯是如何发现算术级数的对称性的呢?
大约在高斯十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」高斯的答案上只有一个数字:5050老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。2023-05-19 21:57:521
什么是级数增长 有多少种级数呢 谢谢
几何级数增长就是成倍数增长。类似与通常说的“翻番”——2、4、8、16、32、64、128等等。或者3、9、27、81等等。 在几何上,面积与边长的关系是乘积的函数关系。因此也将成倍增长称为“几何级数增长”2023-05-19 21:58:012
用算术级数法计算原代码为23145的校验码,算术级数为2 3 4 5 6,模数为10,并写出最终代码。要求写出计算
首先:2*2+3*3+1*4+4*5+5*6=67取余数:67MOD10=7最终代码:2314572023-05-19 21:58:083
数学家高斯的故事(是他计算1+2+3+4.+99+100的故事)!
高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”. 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050.2023-05-19 21:58:141
等比级数是怎样的级数?
几何级数,就是等比级数。相比之下,等差级数就叫算术级数。等比级数的递减速度与公比有关。公比越小,递减速度越快。例如,公比为0.5时,2亿元人民币经过5次几何级数递减最后是625万元(2亿--1亿--5000万--2500万--1250万--625万)。公比为0.1时,2亿元人民币经过5次几何级数递减最后是2000元(2亿--2000万--200万--20万--2万--2000)。2023-05-19 21:58:321
数学家高斯小时候发现1加到100的故事 100字以内
大约在高斯十岁时,老师在算数课上出了一道难题:「把1到100的整数写下来,然后把它们加起来!」高斯的答案上只有一个数字:5050老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为101的数目,所以答案是50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。2023-05-19 21:58:403
什么是双色球的AC值?求高手指教。
AC值实际上也称作“数字复杂值”,它是引自国外乐透型彩票分析研究的一个概念,是评估乐透型彩票号码价值的一个重要的参数。在乐透型彩票中,是指任何一组号码中所有两个号码数字的正数差值的总数减去(R-1)的值,其中R为投注号码数。AC值最小值为0,最大值:当7个基本号数时为15,6个基本号数时为10,5个基本号数时为6。复杂值越大,表明号码算术级数越复杂,规律性越差,随机性越强。含算术级数过多的号码,其复杂值较低,则随机性越差,中奖机会也更低。全部由算术级数构成的号码,复杂值可以为0。例如:对双色球来说,上期号码为:04 09 10 21 22 24 ,则这6个号码数字之间的正差值分别是: 5 6 17 18 20 ; 1 12 13 15 ; 11 12 14 ; 1 3 ; 2 , 以上共有 13 个不同的差值,即1、2、3、5、6、11、12、13、14、15、17、18、20,由于 R=6,则AC值=13-(6-1)=82023-05-19 21:58:541
几何级数是什么?
几何级数,就是等比级数。相比之下,等差级数就叫算术级数。等比级数的递减速度与公比有关。公比越小,递减速度越快。例如,公比为0.5时,2亿元人民币经过5次几何级数递减最后是625万元(2亿--1亿--5000万--2500万--1250万--625万)。公比为0.1时,2亿元人民币经过5次几何级数递减最后是2000元(2亿--2000万--200万--20万--2万--2000)。2023-05-19 21:59:001
数学家高斯的故事(是他计算1+2+3+4.+99+100的故事)!
高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”. 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和...2023-05-19 21:59:061
源代码为2345,各位之权分别为5432,模为11,用算术级数法求得此代码的校验位是什么啊?
用代码的各位分别和权值相乘,然后累加求和,用和对11取余,余数就是校验位,按你的题目应该是2×5+3×4+4×3+5×2=44,44除以11商4,余0,所以此代码的校验位是0,也就是新代码为234502023-05-19 21:59:141
双色球中的a c值是怎么算出来的
这个不能算出来的,都是随机的2023-05-19 21:59:212