汉邦问答 / 问答 / 问答详情

数学手抄报资料,越多越好,最好带上答案,急!!!!

2023-05-20 08:55:44

ok

TAG: 数学
CarieVinne

你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。。。。

故事如,祖 冲 之

祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。

祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是 π的渐近分数。

还有些资料,,

华 罗 庚

华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。

1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。

华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献 赞同2| 评论 2012-1-30 13:02 864614123 | 一级

一元钱哪里去了

三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。那一元钱到哪去了?

分苹果

小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。

小咪的爸爸是怎样做的呢?

小马虎数鸡

春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗? 赞同1| 评论 2012-1-30 21:42 热心网友

资料:

数学趣味小故事:

高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:

1+2+3+ ..... +97+98+99+100 = ?

老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?

高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:

1+2+3+4+ ..... +96+97+98+99+100

100+99+98+97+96+ ..... +4+3+2+1

=101+101+101+ ..... +101+101+101+101

共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>

从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

一元钱哪里去了

三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。那一元钱到哪去了?

分苹果

小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。

小咪的爸爸是怎样做的呢?

小马虎数鸡

春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗?

来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“

家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?

数学名人:

数学家高斯小时候的故事

从一加到一百

高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。

高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。

高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。

七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

数学家高斯的故事

高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

数学家华罗庚小时候的轶事

华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。

华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。

金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少?

陈景润:小时候,教授送我一颗明珠

20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。

不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。

小小陈景润,自己对自己因材施教着。

一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。

沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。

大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。

师手遗“珠“,照亮少年奋斗的前程

“我们都知道,在正整数中,2、4、6、8、10......,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“

像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。

“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。

“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。

该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。

“数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!”

沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:

“你行吗?你能摘下这颗数学皇冠上的明珠吗?”

一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。

1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!

1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。

名人成长路

陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)。

四年级思考题:

1.一个锅里能同时放2张饼,烙一面要1分钟,现在要烙7张饼,至少需要( )分钟.

答案:7乘2=14面 算出烙几面

14/2=7次 除以每次能烙几张算出烙几次

7*1=7分 烙几次乘以每面所需要的时间

答:7分

7*1=7分

公式:张数*以烙一面的时间 注释:只适用于烙两张饼,其它的用上面的算式

2.黑板上写出1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 张华和李玲两个人轮流划掉任意两个相邻的数,张华划掉后李玲就没有数可以划了,张华有必胜的方法吗?

答案:(1)a²-b²

(2)一个数的平方加上另一个数的平方等于这两数的和乘以这两个数的差

(3)(a+b)*(a-b)将其展开得

(a+b)*(a-b)=a²-ab+ab-b²=a²-b²

奥数题及答案

1、大小两桶油,重量比是7:3,如果从大桶取出12千克倒入小桶,则两桶油中的油正好相等。两桶油原来各有多少油?

12/2*10=60(千克)

7+3=10

60/10*7=42(千克)

60/10*3=18(千克)

答:大桶里有42千克油,

小桶里有18千克油。

2、一桶汽油,桶的重量是油的8%,倒出48千克后,油的重量相当于同的二分之一,原有油多少千克?

48/(1-8%*0.5)

=48/96%

=50(千克)

答:原有油50千克。

*=乘号

/=除号 赞同2| 评论 2012-2-4 11:53 热心网友

比如买东西用数学,旅行用数学 参考资料:无

赞同2| 评论 2012-2-5 12:23 热心网友

自己想一想 比如生活中的点点滴滴都可以用到数学 只要你用心观察就会发现 加油 ! 赞同2| 评论 2012-2-6 09:33 929423369 | 一级

你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。。。。

故事如,

祖 冲 之 华罗庚 赞同1| 评论 2012-2-6 17:34 热心网友

数学手抄报的资料 赞同0| 评论

分享到:

此后故乡只

你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。。。。

故事如,祖 冲 之

祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。

祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是 π的渐近分数。

还有些资料,,

华 罗 庚

华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。

1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。

华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献

北境漫步

一元钱哪里去了

三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。那一元钱到哪去了?

分苹果

小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。

小咪的爸爸是怎样做的呢?

小马虎数鸡

春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗?

bikbok

华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。

苏州马小云

你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。。。。

故事如,

祖 冲 之 华罗庚

韦斯特兰

自己想一想 比如生活中的点点滴滴都可以用到数学 只要你用心观察就会发现 加油 !

真颛

你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。。。。

LuckySXyd

比如买东西用数学,旅行用数学

水元素sl

tt白

数学手抄报的资料

gitcloud

资料:

数学趣味小故事:

高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:

1+2+3+ ..... +97+98+99+100 = ?

老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?

高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:

1+2+3+4+ ..... +96+97+98+99+100

100+99+98+97+96+ ..... +4+3+2+1

=101+101+101+ ..... +101+101+101+101

共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>

从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

一元钱哪里去了

三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。那一元钱到哪去了?

分苹果

小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。

小咪的爸爸是怎样做的呢?

小马虎数鸡

春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗?

来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“

家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?

数学名人:

数学家高斯小时候的故事

从一加到一百

高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。

高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。

高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。

七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

数学家高斯的故事

高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

数学家华罗庚小时候的轶事

华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。

华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。

金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少?

陈景润:小时候,教授送我一颗明珠

20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。

不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。

小小陈景润,自己对自己因材施教着。

一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。

沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。

大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。

师手遗“珠“,照亮少年奋斗的前程

“我们都知道,在正整数中,2、4、6、8、10......,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“

像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。

“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。

“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。

该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。

“数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!”

沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:

“你行吗?你能摘下这颗数学皇冠上的明珠吗?”

一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。

1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!

1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。

名人成长路

陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)。

四年级思考题:

1.一个锅里能同时放2张饼,烙一面要1分钟,现在要烙7张饼,至少需要( )分钟.

答案:7乘2=14面 算出烙几面

14/2=7次 除以每次能烙几张算出烙几次

7*1=7分 烙几次乘以每面所需要的时间

答:7分

7*1=7分

公式:张数*以烙一面的时间 注释:只适用于烙两张饼,其它的用上面的算式

2.黑板上写出1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 张华和李玲两个人轮流划掉任意两个相邻的数,张华划掉后李玲就没有数可以划了,张华有必胜的方法吗?

答案:(1)a²-b²

(2)一个数的平方加上另一个数的平方等于这两数的和乘以这两个数的差

(3)(a+b)*(a-b)将其展开得

(a+b)*(a-b)=a²-ab+ab-b²=a²-b²

奥数题及答案

1、大小两桶油,重量比是7:3,如果从大桶取出12千克倒入小桶,则两桶油中的油正好相等。两桶油原来各有多少油?

12/2*10=60(千克)

7+3=10

60/10*7=42(千克)

60/10*3=18(千克)

答:大桶里有42千克油,

小桶里有18千克油。

2、一桶汽油,桶的重量是油的8%,倒出48千克后,油的重量相当于同的二分之一,原有油多少千克?

48/(1-8%*0.5)

=48/96%

=50(千克)

答:原有油50千克。

*=乘号

/=除号

什么是"几何级数"?什么是"算术级数"?两者有何区别?

几何级数与算数级数的概念与区别如下:算术级数:从第二项起,每一项均由前一项加一个常数所构成的序列,如奇数1,3,5,7…几何级数:从第二项起,每一项是前一项的多少次方。举个例子,“按几何级数增长”和“按算术级数增长”的关键区别是:“按几何级数增长”意味着按固定的增长率增长,但每期的增长幅度不一样,如果增长率是正的,那么越往后增长幅度越大;“按算术级数增长”意味着按固定的增长幅度增长,但每期的增长率不一样,如果增长幅度是正的,那么越往后增长率越小。
2023-05-19 21:50:153

什么是"几何级数"?什么是"算术级数"?两者有何区别

“几何级数”就是等比级数,“算术级数”就是等差级数。设级数为 u(1)+ u(2) +u(3) +...+u(n)+...如果,存在一个常数q,对所有的n,都有 u(n+1)/u(n) =q,则称这个级数为等比级数,或几何级数,称q这个等比级数的“公比”,这个级数由首项和公比所决定,事实上 u(1)+ u(2) +u(3) +...+u(n)+...=u(1)+u(1)q+u(1)q^2+...+u(1)q^(n-1)+...如果,存在一个常数d,对所有的n,都有 u(n+1)-u(n) =d,则称这个级数为等差级数,或算术级数,称d这个等差级数的“公差”,这个级数由首项和公差所决定,事实上 u(1)+ u(2) +u(3) +...+u(n)+...=u(1)+(u(1)+d)+(u(1)+2d)+...+(u(1)+(n-1)d)+...
2023-05-19 21:50:291

什么是算术级数?

几何级数,就是等比级数。相比之下,等差级数就叫算术级数。等比级数的递减速度与公比有关。公比越小,递减速度越快。例如,公比为0.5时,2亿元人民币经过5次几何级数递减最后是625万元(2亿--1亿--5000万--2500万--1250万--625万)。公比为0.1时,2亿元人民币经过5次几何级数递减最后是2000元(2亿--2000万--200万--20万--2万--2000)。
2023-05-19 21:50:361

什么是"几何级数"?什么是"算术级数"?两者有何区别

几何级数与算数级数的概念与区别如下:算术级数:从第二项起,每一项均由前一项加一个常数所构成的序列,如奇数1,3,5,7…几何级数:从第二项起,每一项是前一项的多少次方。举个例子,“按几何级数增长”和“按算术级数增长”的关键区别是:“按几何级数增长”意味着按固定的增长率增长,但每期的增长幅度不一样,如果增长率是正的,那么越往后增长幅度越大;“按算术级数增长”意味着按固定的增长幅度增长,但每期的增长率不一样,如果增长幅度是正的,那么越往后增长率越小。
2023-05-19 21:50:445

什么叫几何级 、算术级

所谓“几何级数”,又称“等比级数”,指的是这样一个数列,这个数列中的每一个数都是前一个数的固定倍数,这个倍数又称“公比”。因此一个数跟前一个数之间的增长率或者变化率就是恒定的。这个倍数当然在不同的情况下会不一样。“按几何级数增长”,指的就是按照这样一种格式增长。也就是说,按几何级数增长实际上就是按照同样的增长率增长。至于这个增长率是多少,那就是另外一回事情了。对于“等比级数”来说,如果公比大于1,那么这个数列就按照几何级数增长,如果公比小于1,那么这个数列就按照几何级数减少。 所谓“算术级数”,又称“等差级数”,指的是指的是这样一个数列,这个数列中的每一个数跟前一个数的差额是固定的,这个差额又称“公差”。因此一个数跟前一个数之间的增长幅度或者变化幅度就是恒定的。 “按算术级数增长”,指的就是按照这样一种格式增长。这个数列的增长率是逐年下降的,因为增长幅度一样,但越往后,数列中的数值就越大(假定公差是正的)。这个公差当然在不同的情况下会不一样。 因此,“按几何级数增长”和“按算术级数增长”的关键区别是:“按几何级数增长”意味着按固定的增长率增长,但每期的增长幅度不一样,如果增长率是正的,那么越往后增长幅度越大;“按算术级数增长”意味着按固定的增长幅度增长,但每期的增长率不一样,如果增长幅度是正的,那么越往后增长率越小。
2023-05-19 21:50:591

什么是算术级数增长,什么是几何级数增长?

几何级数增长就是说以次方的方式增长有听过国际象棋的传说不 那就是几何级数的增长算术级数增长就是递增等差数列 比如2,4,6,8......
2023-05-19 21:51:074

词语造句:用算术级数造句(约30个)

算术级数拼音: suan shu ji shu 算术级数解释: 见〖等差级数〗。 算术级数造句: 1、生活资料只能按算术级数增长。 2、已有结论表明 素数集中存在任意长的算术级数。 3、本文给出了华罗庚五素数平方定理的算术级数形式,证明了其中一个素数可以取在大模的算术级数中。 4、人口,如果不加抑制,就会以几何级数增长。而生存给养是以算术级数增长的。 5、本文运用解析的方法,研究模为算术级数中素数的正规化三次高斯和在单位圆周上的分布。 6、知识资源的使用价值呈几何级数增长,而知识资源的交换价值则呈现出算术级数与几何级数交互增长。 7、利用解析数论工具证明了算术级数数列中素数幂分布的若干结果,这些结果在提供RBIBD设计与PMD设计的渐近存在性定理的精确定界时具有重要作用。
2023-05-19 21:51:131

什么是算数级数?

算术级数——等差级数
2023-05-19 21:51:202

什么叫几何级数增长?算术级数呢

几何级数增长就是成倍数增长,用数学术语来说就是A的n次幂的增长,类似与通常说的“翻番”。 例如:2、4、8、16、32、64、128、256……算术级数增长就是增加一个固定的常数,如2,4,6,8,10,12……就是等比数列和等差数列,百度首页搜一下定义就行了。
2023-05-19 21:51:282

什么函数生成一组算术级数

生成函数生成函数(generating function),又称母函数,是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。
2023-05-19 21:51:352

两级数是什么意思?

两级数就是包含两个级数的(个级和万级)的意思。
2023-05-19 21:51:532

如何找到算术级数的对称性

大约在高斯十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」高斯的答案上只有一个数字:5050老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。
2023-05-19 21:51:591

几何级数增长和指数级数增长哪个大

京顶云几何级数增长是指客户按年付费:第一年的新客户量a;第二年新增客户量a加上续签a,客户总量为2a;第三年新客户量a,第一年客户续签a,第二年客户续签a,客户总量为3a。以此类推,以10年期为例,客户总量为10a,假设每个客户的销售额是2W,每年20个客户。10年的总收入是40W+80W+120W+160W+200W+240W+280W+320W+360W+400W=3200W.上述模型是一个典型的几何级增长模型,按倍数增长。如何设计京顶云企业数字化平台的用户指数级增长,是实现业绩增长的关键!指数级增长是指第一年20个用户,以后每年按20的平方,20的3次方,20的4次方增长,到第五年就是20*20*20*20*20=3200000通过以上描述可以看到,指数级增长远远要比几何级数增长大的多。京顶云企业数字化EDP平台,希望我的回答能帮到你!
2023-05-19 21:52:078

数列与级数

等差数列的前n项和称为一个等差级数,也称算术级数。例:1,3,5,7,9为一个等差数列,而1+3+5+7+9则为一个等差级数。推导:等比级数,表示等比数列的前n项和,又称为几何级数。 推导:只有当值是收敛时,无穷级数的结果才是有限的。所以:
2023-05-19 21:52:471

若原代码为2345,各位之权分别5,4,3,2,模为11,用算术级数法求得此代码之校验位是( ).

用代码的各位分别和权值相乘,累加求和,用和对11取余,余数就是校验位,按题目应该是2×5+3×4+4×3+5×2=44,44除以11商4,余0,所以此代码的校验位是0,也就是新代码为23450。数据结构中字符串如果是固定长度的可以不用初始d化如果是可变长度的请使用指针,进行编程,所以没法给程序:要是c的话typedef struct{char** astr;}mystruct;char ad[]="aaaaaaaaaaa";mystruct ms;ms.astr=&ad;扩展资料:源代码作为软件的特殊部分,可能被包含在一个或多个文件中。一个程序不必用同一种格式的源代码书写。例如,一个程序如果有C语言库的支持,那么就可以用C语言;而另一部分为了达到比较高的运行效率,则可以用汇编语言编写。较为复杂的软件,一般需要数十种甚至上百种的源代码的参与。为了降低种复杂度,必须引入一种可以描述各个源代码之间联系,并且如何正确编译的系统。在这样的背景下,修订控制系统(RCS)诞生了,并成为研发者对代码修订的必备工具之一。还有另外一种组合:源代码的编写和编译分别在不同的平台上实现,专业术语叫做软件移植。参考资料来源:百度百科-源代码
2023-05-19 21:52:541

源代码为2345,各位之权分别为5432,模为11,用算术级数法求得此代码的校验位是

用代码的各位分别和权值相乘,然后累加求和,用和对11取余,余数就是校验位,按你的题目应该是2×5+3×4+4×3+5×2=44,44除以11商4,余0,所以此代码的校验位是0,也就是新代码为23450
2023-05-19 21:53:091

高斯是怎样快速计算出“1+2+3+4……+100”的?

还有别的方法吗?
2023-05-19 21:53:162

校验位算术级数法权怎么计算

校验位算术级数法权的计算方法是算术级数法确定校验位值是将原代码各位各乘以由算术级数组成的(),然后以()去除上述乘积之和,最后把得出的余数作为校验码。加权取余方法是一种常用的校验位计算方法,改变其权因子可以得到不同的计算方式,因此,被广泛应用于社会和科学技术等各个领域。
2023-05-19 21:53:231

双色球的AC值是怎么算的?

AC值也称作“数字复杂指数”,它是引自国外乐透型彩票分析研究的一个概念,是评估乐透型彩票号码价值的重要参数。一组号码中所有两个号码相减,然后对所得的差求绝对值,如果有相同的数字,则只保留一个,得到不同差值个数就是AC值。例如:开奖号码378,其所有两个号码差值绝对值分别是,4、1、5,它的差值个数是3,所以AC值就等于3。AC值共有三个值,分别是:1、2、3。其中AC值为1的号码为豹子号(如:222、555等),此类号码共10注。AC值为2的号码包括组3号和等差号码(如:332,246等),此类号码共390注。AC值为3的号码是除了AC值等于1和2之外的所有号码,此类号码共600注。
2023-05-19 21:53:304

以11为模,请分别使用算数级数法,几何级数法和质数法计算613758的校验码,生成的新代码又是多少?

算术级数:…7、6、5、4、3、2几何级数:…64、32、16、8、4、2质数:…15、13、11、7、5、3算数级数法:先求乘积之和:6×7+1×6+3×5+7×4+5×3+8×2=122再求余数:122÷11=11余1所以代码为613758几何级数法:求乘积之和:6×64+1×32+3×16+7×8+5×4+8×2=556求余数:556÷11余6所以代码为6137586质数级数也是这么算。
2023-05-19 21:53:501

e∧x级数求和

对无穷幂级数:e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+…… =∑x^k/k!=(k=0,1,2,……),令x=1得: e=∑1/k!(k=0,1,2,……)=1+1+1/2!+1/3!+1/4!+…… 如取前五个得近似值e≈1+1+1/2+1/6+1/24≈2.71 级数就是无穷个数相加,分为数项级数和函数项级数,在高数里应该有,大二可能会学 几何级数是指幂的形式,1的平方 2的平方 3的平方 这样的情况 算术级数是指倍数形式,1 2 4 8 16 这样的 两都的区别在于几何级数的增长率曲线很陡,算术的很平缓 加绝对值,得Σ1/n^pp>1收敛,此时原级数为绝对收敛B,C错0 追 0<p<1时绝对值的式子为什么发散啊?分母也是在增大啊,整个式子趋于零,不是收敛嘛? p=""> </p<1时绝对值的式子为什么发散啊?分母也是在增大啊,整个式子趋于零,不是收敛嘛?>
2023-05-19 21:53:571

如何理解“按几何级数增长”和“按算术级数增长”

简单的讲,“按几何级数增长”就是翻着翻地增长,“按算术级数增长”,就是一点一点平稳地增长。
2023-05-19 21:54:031

高斯的故事

数学书第一章.
2023-05-19 21:54:1310

现在对数视力表的小数记录是不是算术级数

是。视标按几何级数增加,视标每增加一倍,视力的对数就减小0.1,即视力记录按算术级增减。以对数视力表代替小数制视力表无疑是视力检查技术的一大进步。本标准适用于儿童青少年一般体检,招生、招工等体检的远、近视力测定,临床等方面亦应参照使用。
2023-05-19 21:54:531

古代学生什么时间开始学算术?

应该从父母教它学数数时,就算开始学算术了。很早的。
2023-05-19 21:55:002

现在对数视力表的小数记录是不是算术级数

视力表是测验视力的标准图表,种类很多。我国现在最常用的为国际标准视力表。国际通用的为Snellen氏和Landolt氏表。前者为中华眼科学会所推荐,现在我国通用。1、Snellen氏视力表的检测Snellen氏表是由一组一组逐渐缩小的“E”字组成,每个“E”字的两端在眼的结点处形成5分视角,也就是每个“E”字每划的宽度为1分视角,每划间隙亦为1分视角。因距离远近不同,所以字划的宽窄就不同,字的大小也就不同。首行字为在50米处的5分视角字的大小,第二行以下分别为25米、18米、12.5米、,10米、8.3米、7.1米、6米、5.5米和5米。记录视力测验的结果有用分数和用小数二种。分数法的分子为测验视力的被检者与视力表的距离,分母为制表时每行字成5分视角时的距离。如被检者在5米处能看见表上第一行大“E”字,即记作5/50;如能看清5米1行的“E”字时,即写作5/5。以小数记录时,5/50即为0.1;5/5即为1.O等。视力表与被检者的距离,通常为5米。如果为节省检查室的空间,可在距视力表2.5米处放置一平面镜,根据以前所论到的平面镜原理,被检者距视力表仍为5米。2、Landolt氏视力表Landolt氏视力表是使被检者指出视力表上环形“C”字开口的方向。视力表构成的原理与Snellen氏视力表相同,故不再赘述。以上为远(距离)视力表构成和测验记录法。同样原理构成近(距离)视力表,临床上用以测验近距离(阅读等)视力。正视眼应在33厘米(阅读距离)处看清表上最小一行字。常用的有耶格氏(Jaeger氏)和徐广第氏近视力表。3、Snellen氏和Landolt氏视力表国际通用的Snellen氏和Landolt氏视力表,虽已使用一百年左右,但仍存在若干缺陷。如视标增率不均,首行为O.1比次行0.2大一倍;而O.9行比1.0行仅大1/9倍。因此视力由O.1增高到0.2难;由0.9提高到1.O,虽然同样增0.1,但却容易得多。由此显示出在比较或统计有关视力增减时,不能以视力差值来表示的缺点。在低下视力(如手动、光感等)记录方法上也存在只能用文字记录,不能用数字表示。以上缺陷的出现。已有一些学者提出,是因忽视了“刺激强度”即视标的视角,应按几何级数增减。形觉的视力敏度即视力,因已规定为视角的倒数,势必亦成几何级数。除非采用对数原理将视力的表达方法加以改革,始能符合视角为几何级数,视力成算术级数,才符合感觉生理要求。4、对数视力表1958年缪天荣氏发表了符合感觉生理要求的“对数视力表”,视标仍用“E”字形,距离5米。远、近视力表在一定范围内可以彼此通用。视力记录方法为5分法,即将中心视力分为五个等级:无光感为0,光感为1,手动为2,数指为3,视力表上尚有4、5二级。故称为“对数视力表(缪天荣氏表)及5分记录法”
2023-05-19 21:55:091

高斯算出将1到100的所有整数加起来的算术题的故事

伍仟零伍拾个故事!
2023-05-19 21:55:295

世界级的数学巨著——《九章算术》

朋友们,大家好!        和《周髀算经》几乎同时,还有一部数学专著,科学史上称它为《九章算术》,这是我国第一部最重要的数学专著。      《九章算术》大约成书于东汉初年,书中载有246 个应用题目的解法,涉及到算术、初等代数、初等几何等多方面内容。其中所载述的分数四则运算、比例算法、用勾股定理解决一些测量中的问题等,都是当时世界最高科学水平的工作。而关于负数的概念和正负数加减法则的记载,也是世界数学科学史中最早的。        书中还讲述了开平方、开立方、一元二次方程的数值解法、联立一次方程解法等许多问题。《九章算术》在我国古代数学史上有很大影响,在世界数学史上也占有重要地位。 《九章算术》大致可分为9 个方面内容: (1)土地测量。书中列有直角三角形、梯形、三角形、圆、弧与环形等,并给出计算这些形状面积的方法。 (2)百分法和比例,根据比例关系来求问题答案。 (3)算术级数和几何级数。 (4)处理当图形面积及一边长度已知时,求其他边长的问题。还有求平方根、立方根等问题。 (5)立体图形体积的测量和计算,实际计算的有墙、城墙、堤防、水道和河流等。 (6)解决征收税收中的数学问题。像人们从产地运送谷物到京城交税所需的时间等有关问题,还有按人口征税的问题。 (7)过剩与不足的问题。也就是解决ax+b=0 的问题。 (8)解方程和不定方程。 (9)直角三角形的性质。         在“直角三角形的性质”这一章中,有这样一个问题:         一个水池,长宽各一丈,有棵芦苇生在池中央,芦苇出水面一尺高,让芦苇倒向池边,正好芦苇尖与池边平齐。问水有多深?        这个问题后来又见于印度的数学著作中,又传到了中世纪的欧洲。解决此问题只有利用相似直角三角形来完成。     《九章算术》对中国古代数学发生的影响,正像古希腊欧几里得《几何原本》对西方数学所产生的影响一样,是非常深刻的。         在此后的一千多年的时间里,它一直被直接作为教科书使用。日本、朝鲜也都曾用它作教科书。各代学者都十分重视对这部算书的研究,在欧洲和阿拉伯的早期数学著作中,过剩与不足问题的算法,就被称为“中国算法”,可见其独创性。各位朋友需要了解其他方面的知识或者信息,可以留言,我会尽量满足大家的需求。 如果喜欢我的分享,请随意赞赏,您的支持是我继续走下去的动力!
2023-05-19 21:55:431

数学家说的关于数学的话

高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈 他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。 高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有 一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另 外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工 钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。 高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音 后,就自己学着读起书来。 七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题: 「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯: 第一个做完的就把石板[当时通行,写字用]面朝下地放在老师的桌子上,第二个做完 的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数 级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因 为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的 学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑 的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生 就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不 着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101, 2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的 数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像 求得一般算术级数合的过程一样,把数目一对对地凑在一起。
2023-05-19 21:55:521

双色球的ac值是如何计算出来的?为何将开奖号的位置稍微变换一下所得的ac值结果就会不一样?

 AC值即号码的算术复杂性参数,在r/s(乐透型)彩票中,是指任何一组号码中所有两个号码数字的正数差值的总数减去r-1(r 为投注号码数)的值。AC值最小值为0,最大值:当7个基本号数时为15,6个基本号数时为10,5个基本号数时为6。AC值越大,表明号码算术级数越复杂,规律性越差,随机性越强。含算术级数过多的号码,其AC值较低,则随机性越差,中奖机会也更低。全部由算术级数构成的号码,AC值可以为0。AC值是检验所选号码的一个重要标准-根据对国内各地乐透型彩票数据的统计分析,在投注数为7时,彩票中奖号码AC值大于8的占91.9%,小于4的为0%。所以选号时应选择AC值高的号码。
2023-05-19 21:55:591

数学故事

20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁. 伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率". 塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
2023-05-19 21:56:1010

14生产力按几何级数增长,而市场最多也只是按算术级数扩大是谁的观点

恩格斯在《资本论》英文版序言描写的。
2023-05-19 21:56:352

何为几何级数递减?举例?

我无法解释啊。
2023-05-19 21:56:432

己知数列√3,√5,√7,3,√11……,该数列的8项??分析过程

第8项是√17每项平方后是3 5 7 9 11.......依次下去就能知道了
2023-05-19 21:56:515

什么是"几何级数"?什么是"算术级数"?两者有何区别?

算术级数:从第二项起,每一项均由前一项加一个常数所构成的序列,如奇数1,3,5,7…几何级数:从第二项起,每一项是前一项的多少次方
2023-05-19 21:57:172

什么是"几何级数"?什么是"算术级数"?两者有何区别?

几何级数:从第二项起,每一项是前一项的多少次方。算术级数:从第二项起,每一项均由前一项加一个常数所构成的序列。两者的区别:几何级数是一个数学上的概念,可以表示成a*x^y,即x的y次方的形式增长。通常情况下,x=2,也就是常说的翻几(这个值为y)番;与代数级数相比,几何级数的增长更可观。如几何级数的“翻三番”就是a*2^3,就是代数级数的增长8倍。
2023-05-19 21:57:241

算术级数一定收敛吗

不一定。只有无穷级数收敛时1有一个和,发散的无穷级数没有和。算术的加法可以对有限个数求和,但无法对无限个数求和。
2023-05-19 21:57:311

什么是算数级数?RT算术级数有什么性质?公式是什么?

算术级数就是等差数列几何级数就是等比数列算术级数中任意连续两项的差相同,这个差值叫做这个算术级数的公差算术级数前n项的和:(首项+末项)*(项数n)/2第n项:首项+公差*(n-1)
2023-05-19 21:57:391

什么是算术级数增长,什么是几何级数增长?

算术级数增长与几何级数增长,举个例来形容: 当原来人数是1人,则领导者需要协调的关系数目是1; 当原来人数是2人,则领导者需要协调的关系数目是3; 当原来人数是3人,则领导者需要协调的关系数目是6; 当原来人数是4人,则领导者需要协调的关系数目是10; …… 设协调关系需精力为q,则随着人数n的增长,Q(q的增加值)是N(n的增加值)的指数函数,即q会随着n的增长呈指数增长,也即几何级数增长!有关几何级数发散和收敛的知识见附件!
2023-05-19 21:57:461

高斯是如何发现算术级数的对称性的呢?

大约在高斯十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」高斯的答案上只有一个数字:5050老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。
2023-05-19 21:57:521

什么是级数增长 有多少种级数呢 谢谢

几何级数增长就是成倍数增长。类似与通常说的“翻番”——2、4、8、16、32、64、128等等。或者3、9、27、81等等。 在几何上,面积与边长的关系是乘积的函数关系。因此也将成倍增长称为“几何级数增长”
2023-05-19 21:58:012

用算术级数法计算原代码为23145的校验码,算术级数为2 3 4 5 6,模数为10,并写出最终代码。要求写出计算

首先:2*2+3*3+1*4+4*5+5*6=67取余数:67MOD10=7最终代码:231457
2023-05-19 21:58:083

数学家高斯的故事(是他计算1+2+3+4.+99+100的故事)!

高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”. 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050.
2023-05-19 21:58:141

等比级数是怎样的级数?

几何级数,就是等比级数。相比之下,等差级数就叫算术级数。等比级数的递减速度与公比有关。公比越小,递减速度越快。例如,公比为0.5时,2亿元人民币经过5次几何级数递减最后是625万元(2亿--1亿--5000万--2500万--1250万--625万)。公比为0.1时,2亿元人民币经过5次几何级数递减最后是2000元(2亿--2000万--200万--20万--2万--2000)。
2023-05-19 21:58:321

数学家高斯小时候发现1加到100的故事 100字以内

大约在高斯十岁时,老师在算数课上出了一道难题:「把1到100的整数写下来,然后把它们加起来!」高斯的答案上只有一个数字:5050老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为101的数目,所以答案是50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。
2023-05-19 21:58:403

什么是双色球的AC值?求高手指教。

AC值实际上也称作“数字复杂值”,它是引自国外乐透型彩票分析研究的一个概念,是评估乐透型彩票号码价值的一个重要的参数。在乐透型彩票中,是指任何一组号码中所有两个号码数字的正数差值的总数减去(R-1)的值,其中R为投注号码数。AC值最小值为0,最大值:当7个基本号数时为15,6个基本号数时为10,5个基本号数时为6。复杂值越大,表明号码算术级数越复杂,规律性越差,随机性越强。含算术级数过多的号码,其复杂值较低,则随机性越差,中奖机会也更低。全部由算术级数构成的号码,复杂值可以为0。例如:对双色球来说,上期号码为:04 09 10 21 22 24 ,则这6个号码数字之间的正差值分别是: 5 6 17 18 20 ; 1 12 13 15 ; 11 12 14 ; 1 3 ; 2 , 以上共有 13 个不同的差值,即1、2、3、5、6、11、12、13、14、15、17、18、20,由于 R=6,则AC值=13-(6-1)=8
2023-05-19 21:58:541

几何级数是什么?

几何级数,就是等比级数。相比之下,等差级数就叫算术级数。等比级数的递减速度与公比有关。公比越小,递减速度越快。例如,公比为0.5时,2亿元人民币经过5次几何级数递减最后是625万元(2亿--1亿--5000万--2500万--1250万--625万)。公比为0.1时,2亿元人民币经过5次几何级数递减最后是2000元(2亿--2000万--200万--20万--2万--2000)。
2023-05-19 21:59:001

数学家高斯的故事(是他计算1+2+3+4.+99+100的故事)!

高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”. 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和...
2023-05-19 21:59:061

源代码为2345,各位之权分别为5432,模为11,用算术级数法求得此代码的校验位是什么啊?

用代码的各位分别和权值相乘,然后累加求和,用和对11取余,余数就是校验位,按你的题目应该是2×5+3×4+4×3+5×2=44,44除以11商4,余0,所以此代码的校验位是0,也就是新代码为23450
2023-05-19 21:59:141

双色球中的a c值是怎么算出来的

这个不能算出来的,都是随机的
2023-05-19 21:59:212