- 可桃可挑
-
1994年10月,美国普林斯顿大学数学教授安德鲁·怀尔斯,终于圆了童年的梦想,证明了费马大定理。他的论文发表在1995年5月的《数学年刊》上。
费马大定理源自法国人皮埃尔·德·费马。费马生于1601年8月20日,卒于1665年1月12日,是法国地方政府系统中的文职官员,又是业余数学爱好者。从职业上说,他是业余数学家;而从数学成就上说,他足以跻身于伟大专业数学家行列。
所谓费马大定理,或费马猜想(在未证明之前,只能称之为猜想),得从直角三角形的勾股定理(或称毕达哥拉斯定理)说起。学过平面三角的人都知道,直角三角形两直角边的平方之和等于其斜边的平方。或者写成代数式子,即为X 2+Y 2=Z 2。勾股定理中的X、Y和Z有整数解。可以证明,这种X、Y和Z的组合有无限多个。但是,如果把上述公式中的指数2改为3,或更一般地,改为大于2的整数N,则发现难于找到X、Y和Z的整数解。大约在1637年前后,费马在他保存的《算术》一书的页边处写道:“不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;总的来说,不可能将一个高于两次的幂写成两个同样次幂的和”。他又写了一个附加评注:“我有一个对这命题的十分美妙的证明,这里空白太小,写不下。”这就是费马大定理。费马逝世后,他的长子克来孟一缪塞尔·费马意识到他父亲的业余爱好所具有的重要意义,花了5年时间,整理了其父在《算术》一书上的页边空白处的评注,于1670年出版了附有费马注评的《算术》的特殊版本。费马大定理才得以公诸于世,并传于后世。
费马大定理看起来很简单,很容易理解,但要证明它却难住了300多年来一代代杰出的数学家。
安德鲁·怀尔斯出生于英国剑桥,1980年移民美国。1963年他10岁。有一天他从学校漫步回家时,走进了弥尔敦路上的图书馆,被埃里克·坦普尔·贝尔写的《大问题》一书吸引住了。这是怀尔斯第一次接触到费马大定理,他心中产生了征服这个数学难题的强烈愿望。
在以后的岁月中他一直在为实现这个目的而做着准备。他修完了数学学士和博士学业,成为数学教授,加入职业数学家的行列。他广泛吸收和潜心研究各种新的数学理论和方法,并综合应用它们,克服一个又一个的挫折和困难,并最终战胜了300多年来的挑战,把费马大定理的证明划上了圆满的句号。
从上面安德鲁·怀尔斯证明费马大定理的故事中我以为至少可以得到以下几点启示:
一、优秀的科普书籍对人民群众、特别是青少年有巨大的影响。如果安德鲁·怀尔斯没有看到有关科学著作,如果这些科学著作没有以生动形象的手法通俗地介绍科学问题,则很难有安德鲁·怀尔斯的成功。目前,我国对科技工作,包括科普事业的重视程度不断提高,两院院士也投身到科普创作中来了,这是很可喜的现象。但是,只靠院士们的力量,还是不够的,要发动社会上其他人士也加入到科普创作的行列中来。还要建立一些鼓励科普创作和出版的机制,资助一些科普书籍的创作和出版。
二、要实现自己的理想,必须要脚踏实地地去学习,去奋斗。解决困扰世人几百年的数学难题,没有扎实的数学基础,不了解所研究问题的来龙去脉,不掌握几百年来人们对它研究取得的成功经验和失败教训,不融汇贯通地应用各种数学理论和方法,是不可能取得成功的。安德鲁·怀尔斯为实现自己10岁时的梦想,学习、奋斗了30多年,才最终得到成功。这说明在科学上来不得半点虚假,没有投入是得不到成功的。
三、研究和解决一些数学难题,会推动某些数学分支、甚至整个数学学科的发展。例如,安德鲁·怀尔斯在证明费马大定理中融合了各种数学理论和方法,开辟了处理其他众多数学问题的新思路,推进了数学的重大发展。而数学又是推动其他科学和技术发展的有力工具,数学的发展必然会推动生产力的发展。因此,所谓“理论脱离实际”是以狭窄的、片面的和局限的思维方式看问题所得出的观点。从历史的、全面的和总体的观点看,即使像证明费马大定理和哥德巴赫猜想这样抽象的数学问题,也是与人类文明和科学技术的发展息息相关的。当然,自然科学中有些与人类的生产活动联系得直接些、密切些,有些则间接些、疏远些。但是,无论与生产活动联系密切的科学,还是较不密切的科学,它们的进步都将推动生产力的发展。只是有的能迅速地、直接地见效,有的则不那么迅速,不那么直接地显示出来
- 肖振
-
厉害:
300多年以前,法国数学家费马在一本书的空白处写下了一个定理:
“设n是大于2的正整数,则不定方程xn+yn=z�没有非零整数解”。
费马宣称他发现了这个定理的一个真正奇妙的证明,但因书上空白太小,他写
不下他的证明。300多年过去了,不知有多少专业数学家和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微。这就是纯数学中最著名的定理—费马大定理。
1993年6月,怀尔斯在英国剑桥大学新成立的牛顿研究所做了一系列学术报告。在最后一次演讲结束时,他完成了谷山-志村猜测的证明。听众报以热烈掌声并以最快速度把这一消息传递给世界各地的同事。《纽约时报》也在头版报道了费马大定理被证明的消息。
随后怀尔斯长达200页的手稿交由六位同行审阅,许多毛病被发现并迅速得以修正,然而其中一个缺陷却不容易修补,通过与泰勒8个多月的合作,1994年9月怀尔斯终于完成了全部证明。
费马大定理最终得以证明,是人类智力活动的一曲凯歌。怀尔斯因此获得菲尔茨奖特别奖和沃尔夫奖。
- ardim
-
你想证明?
费马大定理证明是什么?
证明费马大定理(证明过程详解)已知:a^2+b^2=c^2令c=b+k,k=1.2.3……,则a^2+b^2=(b+k)^2。因为,整数c必然要比a与b都要大,而且至少要大于1,所以k=1.2.3……设:a=d^(n/2),b=h^(n/2),c=p^(n/2);则a^2+b^2=c^2就可以写成d^n+h^n=p^n,n=1.2.3……当n=1时,d+h=p,d、h与p可以是任意整数。当n=2时,a=d,b=h,c=p,则d^2+h^2=p^2 => a^2+b^2=c^2。当n≥3时,a^2=d^n,b^2=h^n,c^2=p^n。因为,a=d^(n/2),b=h^(n/2),c=p^(n/2);要想保证d、h、p为整数,就必须保证a、b、c必须都是完全平方数。∴a、b、c必须是整数的平方,才能使d、h、p在d^n+h^n=p^n公式中为整数。假若d、h、p不能在公式中同时以整数的形式存在的话,则费马大定理成立。设a=mk,则b=k(m^2-1)/2。令m=k,则a=m^2,b=m(m^2-1)/2,令m/2=(m^2-1),则b=(m/2)^2,c=(m/2)^2+m。则a^2+b^2=c^2 => m^4+(m/2)^4=[(m/2)^2+m]^2=>m^2(2m^2-m-2)=0,m1=0(舍去),m2=(1±√17)/4(非整数)。此外,当m/2=(m^2-1)时,(也可以让)b=(m^2-1)^2则a^2+b^2=c^2 => m^4+(m^2-1)^4=[(m^2-1)^2+m]^2=> m(m^2-1)(2m^2-m-2)=0,m1=0,m2=±1,m3=(1±√17)/4。验证:当m=±1时,b=h^(n^2)=(m^2-1)^2=0;即a^2=c^2。与题要求不符。 假若d、h、p可以以整数的形式出现,说明等式d^n+h^n=p^n成立,费马大定理不成立。否则,d^n+h^n≠p^n不等式成立,费马大定理成立。证明完成:1986年,英国数学家安德鲁·怀尔斯听到里贝特证明弗雷命题后,感到攻克费马大定理到了最后攻关阶段,并且这刚好是他的研究领域,他开始放弃所有其它活动,精心梳理有关领域的基本理论,为此准备了一年半时间把椭圆曲线与模形式通过伽罗瓦表示方法“排队”。接下来的要将两种“排队”序列对应配对,这一步他两年无进展。此时他读博时学的岩泽理论一度取得实效,到1991年他之前的导师科茨告诉他有位叫弗莱切的学生用苏联数学家科利瓦金的方法研究椭圆曲线,这一方法使其工作有重大进展。1993年6月在剑桥牛顿学院要举行一个名为“L函数和算术”的学术会议,组织者之一正是怀尔斯的博士导师科茨,于是在1993年6月21日到23日怀尔斯被特许在该学术会上以“模形式、椭圆曲线与伽罗瓦表示”为题,分三次作了演讲,听完演讲人们意识到谷山—志村猜想已经证明。由此把法尔廷斯证明的莫德尔猜想、肯·里贝特证明的弗雷命题和怀尔斯证明的谷山—志村猜想联合起来就可说明费马大定理成立。其实这三个猜想每一个都非常困难,问题是怀尔斯的最后证明,他变为完成费马大定理证明的最后一棒。2023-05-19 15:38:431
费尔马定理是什么?
费尔马定理即费马大定理。费马提出当n>2时,方程x^n+y^n=z^n无整数解。公元17世纪,法国数学家皮耶·德·费马提出费马猜想,但没有给出证明。 1678年G·W莱布尼兹证明了n=4时定理成立。1770年C·欧拉证明了n=3和4的情形,P·G狄利克雷和G·拉梅分别证明了n=5和7的情形。1884年E·E库默尔创立了理想数,从而证明了当n是介于2与100之间的奇数p(除去(p=37,59和67)时,定理成立。 1995年,安德鲁·怀尔斯等人将费马猜想证明过程发表在《数学年刊》,成功证明了这一定理。猜想提出大约在1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”由于费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,涉及许多数学手段,推动了数论的发展。2023-05-19 15:38:561
费马定理是什么?
费马大定理(Fermat"s last theorem) 现代表述为:当n>2时,方程 xn+yn=zn 没有正整数解。 费马大定理的提出涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费马。 丢番图活动于公元250年左右,他以著作《算术》闻名于世,不定方程研究是他的主要成就之一。他求解了他这样表述的不定方程(《算术》第2卷第8题): 将一个已知的平方数分为两个平方数。 (1) 现在人们常把这一表述视为求出不定方程 x2+y2=z2 (2) 的正整数解。因而,现在一般地,对于整系数的不定方程,如果只要求整数解,就把这类方程称为丢番图方程。有时把不定方程称为丢番图方程。 关于二次不定方程(1)的求解问题解决后,一个自然的想法是问未知数指数增大时会怎么样。费马提出了这一数学问题。 费马生前很少发表作品,一些数学成果常写在他给朋友的信中,有的见解就写在所读的书页的空白处。他去世后,才由后人收集整理出版。 1637年前后,费马在读巴歇校订注释的丢番图的《算术》第2卷第8题,即前引表述(1)时,在书的空白处写道:“另一方面,将一个立方数分成两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。关于此,我已发现一种美妙的证法,可惜这里空白的地方太小,写不下。” (3) 费马去世后,人们在整理他的遗物时发现了这一段话,却没有找到证明,这更引起了数学界的兴趣。 后来,表述(3)被理解为:当整数n>2时,方程 xn+yn=zn (4) 没有正整数解。 欧拉、勒让德、高斯等大数学家都试证过这一命题,但都没有证明出来,问题表述的简单和证明的困难,吸引了更多的人投入证明工作。 这一命题就被称为费马猜想,又叫做费马问题,但更多地被叫做“费马最后定理”,在我国,则一般称之为费马大定理。 “费马最后定理”的来历可能是:费马一生提出过许多数论命题,后来经过数学界的不懈努力,到1840年前后,除了一个被反驳以外,大多数都被证明,只剩下这个费马猜想没有被证明,因此称之为“最后定理”。 称之为费马大定理是为了和“费马小定理”相区别,后者也是数论中的一个著名定理:设p为素数,而a与p互素,则ap -a必为p的倍数。 从费马的时代起,人们就不断进行费马大定理的试证工作。巴黎科学院曾先后两次提供奖章和奖金,奖励证明费马大定理的人,布鲁塞尔科学院也悬赏重金,但都无结果。1908年,德国数学家佛尔夫斯克尔(F.Wolfskehl)将10万马克赠给格丁根皇家科学会,用以奖励证明费马大定理的人,悬赏期100年。 人们先对费马大定理作了一些探讨,得出只要证明n=4时以及n是任一奇素数p时定理成立,定理就得证。这为后来的证明指出了方向。 最初的证明是一个数一个数地进行的。 n=3的情形在公元972年已为阿拉伯人胡坚迪(al-Khujandi)所知,但他的证明有缺陷。1770年欧拉给出一个证明,但也不完善。后来,高斯给出完善的证明。 n=4的情形,费马本人已接近得出证明(见无穷递降法),后来欧拉等人给出了新证。 n=5的情形,1823年和1826年勒让德和狄利克雷各自独立地给出证明。1832年后者还证明了n=14的情形。 n=7的情形,1839年为拉梅(Lame)所证明。 后来,人们为研究的方便,对费马大定理作了进一步的分析。对于素数p,当p不能整除xyz之积时,不定方程 xp+yp=zp (5) 无正整数解(p>2),称之为费马大定理的第一种情形,这种情形似乎容易证一些。 法国数学家热尔曼证明:如果p是一个奇素数,使得2p+1也是素数,那么对于p,费马大定理的第一种情形成立;勒让德推广了热尔曼的结果,证明:如果p是素数,使4p+1,8p+1,l0p+1,14p+1,16p+1之一也是素数,则对于p,费马大定理的第一种情形成立。这实际上已经证明了对于所有素数p<l00,费马大定理的第一种情形成立。 德国数学家库默尔则从另一个角度分析了费马大定理,他引入理想数和分圆数,开创理想数论,他把素数分为正则素数和非正则素数两部分。他证明,对于正则素数,费马大定理成立。以100之内的奇素数为例,共有24个,除37,59,67外都是正则素数。1844年,库默尔证明了对于它们费马大定理成立。那么素数中到底有多少正则素数呢?这一问题却长期未得到解决。1915年,卡利茨证明非正则素数有无穷多,对于非正则素数怎么处理呢?还得回到一个一个证明的老路上来。1857年库默尔证明对于p=59,67,费马大定理成立;1892年米里曼诺夫(D.Mirimanoff)证明对p=37费马大定理成立。电子计算机出现并广泛应用之后,对非正则素数情形的证明取得了新的进展:1978年证明,对125000以内的非正则素数,费马大定理成立;1987年这一上限推进到150000;1992年更推进到1000000。由于库默尔第一次“成批地”证明了定理的成立。人们视之为费马大定理证明的一次重大突破。1857年,他获得巴黎科学院的金质奖章。 对于第一种情形,进展更快一些。如1948年,日本的森岛太郎等证明对于P<57×109,第一种情形成立。1983年,人们证明了对于当时已知的最大的素数p=286243-1,第一种情形成立。1985年,英国的希斯-布朗(R.Heath-Brown)证明:存在无穷个素数p,使第一种情形成立。 前人直接证明费马大定理的努力取得了许多成果,并促进了一些数学分支的发展,但离定理的证明,无疑还有遥远的距离。怎么办呢?按数学家解决问题的传统,就是要作变换—把问题转化为已知的或易于解决的领域的“新”问题。 一个转化方向是把问题具体化,就是建立一个可由要证的命题推导出来的新命题(从逻辑的角度看,是要证命题的必要条件)。一般地,更具体的命题比原命题容易证明,如果证明了这个新命题,则把对原命题的证明推进了一大步。如果反驳了这个新命题,那就直接反驳了原命题:必要条件不成立的命题不成立。 具体化的方式取得了一批重要的成果。1909年,威费里希(A.Wieferich)证明,如果对指数p,费马大定理的第一种情形不成立,则p2可以整除2p-1-1。经过寻找,在3×109以下只有p=1093和p=3511满足这一条件,但这两个素数均已直接验证满足费马大定理。这实际上就证明了,对30亿以内的所有素数,第一种情形都成立。20世纪80年代人们更证明了费马大定理若有反例,即存在正整数x,y,z,当n>2时,使 xn+yn=zn 成立,则n>101800000。 另一个转化方向是使问题抽象化,就是建立一个可由之推导出要证明的命题的“新”命题(从逻辑的角度看,是要证命题的充分条件)。一般地说,更抽象的命题更难证明,但是一旦证明了,就能立即推出要证的命题,并且还能得出许多别的结果来。 抽象化的一个结果就是求解丢番图方程,方程(5)不过是丢番图方程的一个特例。经过一种代数几何学的转化,人们把丢番图方程的解与代数曲线上的有理点(坐标都是有理数的点)联系起来了。 对于平面中的一条曲线,人们首先注意到的一个数值不变量是它的次数,即定义这条曲线的方程的次数。次数为一次、二次的曲线都是有理曲线(在代数几何中,它们与直线同构),它们主要是解析几何的研究对象。代数几何是从19世纪上半叶关于三次或更高次的平面曲线的研究开始的。 定义代数曲线的方程一般可表示为 F(u,v)=0, (6) 左边为u,v的一个多项式。丢番图方程就是一种代数曲线的方程。人们发现,曲线上的有理点就是使等式成立的点,即定义曲线的方程的解。 对方程 xn+yn=zn 来说,两边除以zn,得 。 令u= ,v= ,则有 un+vn=1 (7) (7)被称为费马方程,由它定义的曲线被称为费马曲线。于是,费马大定理转化为“在平面中,费马曲线在n>2时没有坐标都是非零有理数的点”。 黎曼在1857年引入了代数函数,使代数几何有了较大的发展。他把代数函数定义在一些互相适当联结的覆叠的复平面上,它们后来被称为黎曼曲面,代数函数在其黎曼曲面上得以单值化。若把代数曲线视为由方程(6)确定的一个代数函数的图象,则每个代数曲线都有一个自己的(一一对应的)黎曼曲面。这种黎曼曲面有一大特点:它们恒可以经连续变换成为球面或带有n个洞(贯通的洞)的球面。洞的个数被称为黎曼曲面的从而也是与它对应的代数曲线的亏格—这是一个重要的代数几何不变量,它决定了黎曼曲面从而代数曲线的许多性质,亏格可以作为划分代数曲线的一个标准,例如按亏格g的不同,有: g=0:直线、圆、圆锥曲线; g=1:椭圆曲线; g≥2:其他曲线,如费马曲线等。 1922年,英国数学家莫德尔提出一个猜想——亏格g≥2的代数曲线上的有理点只有有限多个。按前述转化分析,由它立即可得出丢番图方程(由方程定义的代数曲线亏格g≥2的)的解只有有限多个;进而可推出,n>2时,方程(5)的正整数解(原始解)至多只有有限多个。 1983年,德国数学家法尔廷斯利用法国数学家格罗唐迪克所建立的概形理论证明了莫德尔猜想,从而证明了前述关于费马大定理的结论。人们认为这是费马大定理证明中的又一次重大突破,对许多数学分支都产生了重要的影响。为此,法尔廷斯获得1986年度菲尔兹奖。1985年,希斯-布朗利用法尔廷斯的结果,证明了对于几乎所有的素数p,费马大定理成立,即如果对某些素数p,定理不成立,那么这样的p的数目在整个素数中是微不足道的。 种种转化的方法既推进了所转化的领域的发展,也使费马大定理的证明取得进展。可以说,以上结论已十分接近费马大定理了,但它们毕竟不是原定理的证明,离原定理的证明尚有并非容易跨越的“一小步”。 1993年6月23日,星期三。英国剑桥大学新落成的牛顿数学研究所的大厅里正在进行例行的学术报告会。报告从上午8时整开始,报告人怀尔斯用了两个半小时就他关于“模形式、椭圆曲线和伽罗瓦表示”的研究结果作了一个冗长的发言。10时30分,在他的报告结束时,他平静地宣布:“因此,我证明了费马大定理。”很快,这一消息轰动了全世界,许多一流的大众传播媒介迅速地报道了这一消息,并一致称之为“世纪性的科学成就”。 那么,怀尔斯是怎样完成费马大定理的最后一步证明的呢?他继续使用转化的方法,采用的则是椭圆函数参数化。 20世纪50年代,一些数学家发现椭圆函数与模函数有联系。模函数也是一种人们早有研究的复变数函数,它是定义在单位圆(或上半平面)内部且以其周界为自然边界的一种特殊解析函数。人们发现,构成模函数的种种反演变换生成一个变换群G,模函数是关于群G的自守函数。这是它与椭圆函数的联系之一。一些数学家猜测,椭圆曲线可由特殊的模函数单值化,这种曲线被称为模曲线。1967年韦伊发表了这一猜想,称为谷山-志村-韦伊猜想:所有椭圆曲线都是模曲线。 1971年,一位法国数学家指出椭圆函数可与费马大定理联系起来。椭圆曲线可由模函数单值化,这与代数曲线由其黎曼曲面单值化十分相似。是否也可以类比于黎曼曲面方法,从模函数中找出椭圆曲线的分类标准对其分类,使其中与费马大定理对应的一类中无有理点呢? 1986年,德国数学家符莱(G.Frey)真正把费马方程与椭圆曲线联系起来:如果u,v,w满足费马方程 up+vp=wp(p≥5,是素数), 则可构造椭圆函数 y2=x(x一u p)(x+v p) (8) 与之对应,他要求v为偶数,u为4m+3型的奇数。因而(8)只是一种所谓“半稳定性”椭圆曲线。符莱进而猜想,按他所作的对应,从谷山-志村-韦伊猜想可以推出费马大定理。1990年,李贝(K.Ribet)证明了这一个猜想,即证明,如果谷山-志村-韦伊猜想真,那么费马大定理一定真(一个“抽象化”的转化)。 于是证明费马大定理的努力指向了谷山-志村-韦伊猜想。怀尔斯针对符莱引入的“半稳定性”椭圆曲线,他认为,只需对这一类椭圆曲线证明谷山-志村-韦伊猜想就行了(这又是一个“具体化”的转化)。当然这也是极困难的工作。为此,他写了200多页,1993年6月23日他的报告就是关于这一证明的。人们认为,怀尔斯取得费马大定理证明的第三次突破——最终证明了费马大定理。这一成就被列入1993年世界科学十大成就之一。 但怀尔斯的长达200多页的论文送交审查时,却被发现其证明有漏洞。许多传媒又迅速地报道了这一“爆炸性”新闻。 怀尔斯本人在挫折面前没有止步,从1993年7月起他就一直在修改论文,补正漏洞,这是一项十分困难的工作。1994年8月在瑞士苏黎世召开的国际数学家大会(ICM)上特邀怀尔斯作报告,在报告中他只字未提费马大定理。人们认为,他一定是遇到了难以克服的困难。 1994年9月,怀尔斯终于解决了困难,重新写出了一篇108页的论文,于1994年10月14日寄往美国《数学年刊》,论文顺利通过审查,1995年5月,《数学年刊》第41卷第3期登载了他的这一篇论文!这使得怀尔斯获得1995-1996年度沃尔夫奖。这一成果被认为是“20世纪最重大的数学成就”。2023-05-19 15:39:121
高数上费马定理是什么?
费马大定理现代表述为:当n>2时,方程xn+yn=zn没有正整数解。大约在1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”费马定理历史研究1816年巴黎科学院把费马猜想转化简化归结为n是奇素数的情况,认为费马猜想应该成立,并称之为费马大定理(以区别费马关于同余的小定理),并为证明者设立大奖和奖章,费马大定理之谜从此进一步风靡全球。费马自己证明了n=4的情形。十九世纪初法国自学成才的女数学家热尔曼证明了当n和2n+1都是素数时费马大定理的反例x,y,z至少有一个是n整倍数。在此基础上,1825年德国数学家狄利克雷和法国数学家勒让德分别独立证明费马大定理在n=5时成立,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。以上内容参考:百度百科-费马定理2023-05-19 15:39:201
什么是费马定律
光学基础知识:光的反射、折射、衍射光的传播可以归结为三个实验定律:直线传播定律、反射定律和折射定律。【光的直线传播定律】:光在均匀介质中沿直线传播。在非均匀介质种光线将因折射而弯曲,这种现象经常发生在大气中,比如海市蜃楼现象,就是由于光线在密度不均匀的大气中折射而引起的。【费马定律】:当一束光线在真空或空气中传播时,由介质1投射到与介质2的分界面上时,在一般情况下将分解成两束光线:反射(reflection)光线和折射(refraction)光线。光线的反射光线的反射取决于物体的表面性质。如果物体表面(反射面)是均匀的,类似镜面一样(称为理想的反射面),那么就是全反射,将遵循下列的反射定律,也称“镜面反射”。入射光线、反射光线和折射光线与界面法线在同一平面里,所形成的夹角分别称为入射角、反射角和折射角。【反射定律】:反射角等于入射角。i = i"对于理想的反射面而言,镜面表面亮度取决于视点,观察角度不同,表面亮度也不同。当反射面不均匀时,将发生漫反射。其特点是入射光线与反射光线不满足反射定律。一个理想的漫射面将入射光线在各个方向做均匀反射,其亮度与视点无关,是个常量。光线的折射一些透明/半透明物体允许光线全部/部分地穿透它们,这种光线称为透射光线。当光线从一种介质(比如空气)以某个角度(垂直情形除外)入射到另外一种具有不同光学性质的介质(比如玻璃镜片)中时,其界面方向会改变,就是会产生光线的折射现象。光的折射是由于光在不同介质的传播速度不同而引起的。光线折射满足下列折射定律:入射角的正弦与折射角的正弦之比与两个角度无关,仅取决于两种不同介质的性质和光的波长,【折射定律】:n1 sin i = n2 sin r任何介质相对于真空的折射率,称为该介质的绝对折射率,简称折射率(Index of refraction)。对于一般光学玻璃,可以近似地认为以空气的折射率来代替绝对折射率。公式中n1和n2分别表示两种介质的折射率。当n1 = -n2时,折射定律就是变成反射定律了,所以反射定律可以看成是折射定律的特例。折射率:光在两种介质种的传播速度之比,即n2/n1 = v1/v2一种介质的绝对折射率为n = c/v式中c是真空中光的速度,v为该介质中光的速度。可以看出:在折射率较大的介质中,光的速度比较低;在折射率较小的介质中,光的速度比较高。作为实验规律,上述几何光学三定律只是在波长λ很小的条件下才近似成立的。在摄影中,用几何光学来描述已经足够精确了。2023-05-19 15:39:361
谁来解释一下费马大定理啊?
1637年,业余数学家费马在阅读刁番都的《算术》时受启发提出一个猜想:“xn+yn=zn当n>2时没有正整数解。”后人称此猜想为费马大定理,亦称为“费马最后定理”。埃皮尔·德·费马(1601-1665)是数学史上最伟大的业余数学家,他的名字频繁地与数论联系在一起,可是他在这一领域的工作超越了他所在的时代,所以他的同代人更多地了解他是从他的有关坐标几何(费马独立于笛卡尔发明了坐标几何),无穷小演算(牛顿和莱布尼茨使之硕果累累)和概率论(本质上是费马和帕斯卡共同创立的)的研究中得出的。费马并不是一位专业数学家,他的职业是律师兼土伦地方法院的法官。费马登上法学职位后开始了业余数学研究。虽然他未受过正规的数学训练,但他很快对数学产生了浓厚的兴趣,可惜他未养成发表成果的习惯,事实上在其整个数学生涯中,他未发表过任何东西。另一方面,费马保持了跟同时代的最活跃和最权威的数学家之间的广泛的通信联系。在那个由数学巨人组成的世界里,有笛沙格、笛卡尔、帕斯卡、沃利斯、雅克和贝努里,而这位仅以数学为业余爱好的法国人能和他们中任何一位相媲美。著名的费马大定理的生长道路即漫长又有趣。1453年,新崛起的奥斯曼土耳其帝国进攻东罗马帝国的都城——君士坦丁堡陷落了。拜占庭的学者纷纷逃向西方,也带去了希腊学者的手稿,其中就有刁番都的《算术》。这本书一直流传到今天,但在1621年前几乎无人去读他。这一年,克罗德·巴舍按照希腊原文重新出版了这本书,并附有拉丁译文、注释和评论。这才使欧洲数学家注意到这本书,似乎费马就是读了这本书才对数论开始感兴趣的。在读《算术》时,费马喜欢在页边空白处写一些简要的注记。在卷II刁番都问题8旁边的空白处,原问题是“给定一个平方数,将其写成其他两个平方数之和”,费马写道:“另一方面,不可能将一个立方数写成两个立方数之和,或者将一个四次幂写成两个四次幂之和。一般地,对于任何一个数,其幂大于2,就不可能写成同次幂的另外两个数之和。对此命题我得到了一个真正奇妙的证明,可惜空白太小无法写下来。”用代数术语表达,刁番都问题是想求出方程:x2+y2=z2 的有理数解,这已经由古希腊数学家欧几里德得到:x=2mn,y=m2-n2,z=m2+n2 而费马在页边的注解断言,若n是大于2的自然数,则方程:xn+yn=zn 不存在有理数解。定理简介[编辑本段]费马大定理,也称费马最后定理,乃下述定理:当整数n > 2时,关于x, y, z的不定方程x^n + y^n = z^n. 的整数解都是平凡解,即 当n是偶数时:(0,±m,±m)或(±m,0,±m) 当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0) 这个定理,本来又称费马猜想,由17世纪法国数学家费马提出。费马宣称他已找到一个绝妙证明。但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了2005年度邵逸夫奖的数学奖2023-05-19 15:39:461
费马大定理是什么?
费马猜想〔Fermat"s conjecture〕又称费马大定理或费马问题,是数论中最著名的世界难题之一。1637年,法国数学家费马在巴歇校订的希腊数学家丢番图的《算术》第II卷第8命题旁边写道:「将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。」费马去世后,人们找不到这个猜想的证明,由此激发起许多数学家的兴趣。欧拉、勒让德、高斯、阿贝尔、狄利克雷、柯西等大数学家都试证过,但谁也没有得到普遍的证法。300多年以来,无数优秀学者为证明这个猜想,付出了巨大精力,同时亦产生出不少重要的数学概念及分支。 若用不定方程来表示,费马大定理即:当n > 2时,不定方程xn + y n = z n 没有xyz≠0的整数解。为了证明这个结果,只需证明方程x4 + y 4 = z 4 ,(x , y) = 1和方程xp + yp = zp ,(x , y) = (x , z) = (y , z) = 1〔p是一个奇素数〕均无xyz≠0的整数解。 n = 4的情形已由莱布尼茨和欧拉解决。费马本人证明了p = 3的情,但证明不完全。勒让德〔1823〕和狄利克雷〔1825〕证明了p = 5的情形。1839年,拉梅证明了p = 7的情形。1847年,德国数学家库默尔对费马猜想作出了突破性的工作。他创立了理想数论,这使得他证明了当p < 100时,除了p = 37,59,67这三个数以外,费马猜想都成立。后来他又进行深入研究,证明了对于上述三个数费马猜想也成立。在近代数学家中,范迪维尔对费马猜想作出重要贡献。他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷。在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件。他和另外两位数学家共同证明了当p < 4002时费马猜想成立。 现代数学家还利用大型电子计算器来探索费马猜想,使p 的数目有很大的推进。到1977年为止,瓦格斯塔夫证明了p < 125000时,费马猜想成立。《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」。即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则 证明中用到了法尔廷斯〔Faltings〕的结果。另外一个重要结果是:费马猜想若有反例,即存在x > 0,y > 0,z > 0,n > 2,使xn + y n = z n ,则x > 101,800,0002023-05-19 15:39:551
费马大定律是怎样的
是费马大定理吧,这个定理也称谓费马最后定理,二十世纪初,德国数学大师希尔伯特在关于本世纪的数学研究的二十一个问题当中并没有这个问题,但是他在关于这些问题事,首先提到了费马大定理,当有人问他为什么不去解决这个题目,他说留给数学史上一个美好的梦吧,这个题目欧拉解决了n=3时的情况,他这种解决方法用到了唯一分解定理,当时他带有一些偶然性,方法也用到了,无限下降法,即若有解肯定存在一组最小的正整数解。费马本人解决了n=4时的情况,被称谓数学王子的高斯试图解决n=7时遭到失败,他的弟子虽然没有解决这个题目但是却推动了数学的发展。 以上那位兄台所写的3应该改为n,且n>=3时,a,b,c没有正整数解。怀尔斯并不是这个题目的唯一证明者,他是解决了其中最难的一半,而最终解决了这个题目,当时他的年纪只有41,他的论文长达200多页。 总之这是数论当中非常难的一个题目,与此可以相提并论的还有孪生素数,歌德巴赫的猜想,欧拉的最非凡的定律,是否有奇完全数,偶完全数是否有无穷多个等等。 费马大定理最后的证明 (转自《科学时报》) 自费马大定理提出后的350年以来,许多优秀的数学家采用种种方法试图补证这个定理,但始终都未获得成功。英国的数学家怀尔斯十年磨一剑,终于于1995年彻底解决了这一问题。 怀尔斯:谨慎的屠龙者 十七世纪法国数学家费尔马(Fermat)在刁番都(Diophantine)著作的一页边上写了一个猜测“Xn+Yn=Zn当n>2时没有正整数解。”后人称此猜想为费尔马大定理。费尔马接着写道:“对此,我已发现了一个巧妙的证明,可惜这里页边的空白太小,写不下。” 费尔马去世之后,他的儿子把费尔马的著述、书信以及费尔马校订刁番都的著作都一起发表了,但没有发现费尔马大定理的证明,费尔马是否真正能够证明这个猜想,至今仍然是个谜。 三百多年以来,许多优秀的数学家采用种种方法试图补证这个定理,但始终都未获得成功,直至最近才有英国的怀尔斯(Andrew Wiles)解决。历史性的转变发生在1993年6月21日至23日这三天,当时在普林斯顿数学系任教的40岁的怀尔斯正在英国剑桥大学举行一次约有40至60人出席的数学会议上,每天做一段演讲,题目是“模形式,椭圆曲线和伽罗华表示”。从题目上看不出他要讲的是费尔马大定理,但是他演讲的最后一句话是:“这表明费尔马大定理成立,证毕。” 怀尔斯的证明引起了数学界的很大关注,他的初稿虽然有少许瑕疵,但是稍后被怀尔斯自己修正过来。纽约时报曾在1993年6月29日以“安德鲁·怀尔斯放出数学卫星,350年的古老问题已被攻克”为题发表有关报道。 费马大定理最后的证明 为了寻求费马大定理的解答,三个多世纪以来,一代又一代的数学家们前赴后继,却壮志未酬。1995年,美国普林斯顿大学的安德鲁·怀尔斯教授经过8年的孤军奋战,用130页长的篇幅证明了费马大定理。怀尔斯成为整个数学界的英雄。 大问题 在物理学、化学或生物学中,还没有任何问题可以叙述得如此简单和清晰,却长久不解。E·T·贝尔(Eric Temple Bell)在他的《大问题》(The Last Problem)一书中写到,文明世界也许在费马大定理得以解决之前就已走到了尽头。证明费马大定理成为数论中最值得为之奋斗的事。 安德鲁·怀尔斯1953年出生在英国剑桥,父亲是一位工程学教授。少年时代的怀尔斯已着迷于数学了。他在后来的回忆中写到:“在学校里我喜欢做题目,我把它们带回家,编写成我自己的新题目。不过我以前找到的最好的题目是在我们社区的图书馆里发现的。”一天,小怀尔斯在弥尔顿街上的图书馆看见了一本书,这本书只有一个问题而没有解答,怀尔斯被吸引住了。 这就是E·T·贝尔写的《大问题》。它叙述了费马大定理的历史,这个定理让一个又一个的数学家望而生畏,在长达300多年的时间里没有人能解决它。怀尔斯30多年后回忆起被引向费马大定理时的感觉:“它看上去如此简单,但历史上所有的大数学家都未能解决它。这里正摆着我——一个10岁的孩子——能理解的问题,从那个时刻起,我知道我永远不会放弃它。我必须解决它。” 怀尔斯1974年从牛津大学的Merton学院获得数学学士学位,之后进入剑桥大学Clare学院做博士。在研究生阶段,怀尔斯并没有从事费马大定理研究。他说:“研究费马可能带来的问题是:你花费了多年的时间而最终一事无成。我的导师约翰·科茨(John Coates)正在研究椭圆曲线的Iwasawa理论,我开始跟随他工作。” 科茨说:“我记得一位同事告诉我,他有一个非常好的、刚完成数学学士荣誉学位第三部考试的学生,他催促我收其为学生。我非常荣幸有安德鲁这样的学生。即使从对研究生的要求来看,他也有很深刻的思想,非常清楚他将是一个做大事情的数学家。当然,任何研究生在那个阶段直接开始研究费马大定理是不可能的,即使对资历很深的数学家来说,它也太困难了。”科茨的责任是为怀尔斯找到某种至少能使他在今后三年里有兴趣去研究的问题。他说:“我认为研究生导师能为学生做的一切就是设法把他推向一个富有成果的方向。当然,不能保证它一定是一个富有成果的研究方向,但是也许年长的数学家在这个过程中能做的一件事是使用他的常识、他对好领域的直觉。然后,学生能在这个方向上有多大成绩就是他自己的事了。” 科茨决定怀尔斯应该研究数学中称为椭圆曲线的领域。这个决定成为怀尔斯职业生涯中的一个转折点,椭圆方程的研究是他实现梦想的工具。 孤独的战士 1980年怀尔斯在剑桥大学取得博士学位后来到了美国普林斯顿大学,并成为这所大学的教授。在科茨的指导下,怀尔斯或许比世界上其他人都更懂得椭圆方程,他已经成为一个著名的数论学家,但他清楚地意识到,即使以他广博的基础知识和数学修养,证明费马大定理的任务也是极为艰巨的。 在怀尔斯的费马大定理的证明中,核心是证明“谷山-志村猜想”,该猜想在两个非常不同的数学领域间建立了一座新的桥梁。“那是1986年夏末的一个傍晚,我正在一个朋友家中啜饮冰茶。谈话间他随意告诉我,肯·里贝特已经证明了谷山-志村猜想与费马大定理间的联系。我感到极大的震动。我记得那个时刻,那个改变我生命历程的时刻,因为这意味着为了证明费马大定理,我必须做的一切就是证明谷山-志村猜想……我十分清楚我应该回家去研究谷山-志村猜想。”怀尔斯望见了一条实现他童年梦想的道路。 20世纪初,有人问伟大的数学家大卫·希尔伯特为什么不去尝试证明费马大定理,他回答说:“在开始着手之前,我必须用3年的时间作深入的研究,而我没有那么多的时间浪费在一件可能会失败的事情上。”怀尔斯知道,为了找到证明,他必须全身心地投入到这个问题中,但是与希尔伯特不一样,他愿意冒这个风险。 怀尔斯作了一个重大的决定:要完全独立和保密地进行研究。他说:“我意识到与费马大定理有关的任何事情都会引起太多人的兴趣。你确实不可能很多年都使自己精力集中,除非你的专心不被他人分散,而这一点会因旁观者太多而做不到。”怀尔斯放弃了所有与证明费马大定理无直接关系的工作,任何时候只要可能他就回到家里工作,在家里的顶楼书房里他开始了通过谷山-志村猜想来证明费马大定理的战斗。 这是一场长达7年的持久战,这期间只有他的妻子知道他在证明费马大定理。 欢呼与等待 经过7年的努力,怀尔斯完成了谷山-志村猜想的证明。作为一个结果,他也证明了费马大定理。现在是向世界公布的时候了。1993年6月底,有一个重要的会议要在剑桥大学的牛顿研究所举行。怀尔斯决定利用这个机会向一群杰出的听众宣布他的工作。他选择在牛顿研究所宣布的另外一个主要原因是剑桥是他的家乡,他曾经是那里的一名研究生。 1993年6月23日,牛顿研究所举行了20世纪最重要的一次数学讲座。两百名数学家聆听了这一演讲,但他们之中只有四分之一的人完全懂得黑板上的希腊字母和代数式所表达的意思。其余的人来这里是为了见证他们所期待的一个真正具有意义的时刻。演讲者是安德鲁·怀尔斯。怀尔斯回忆起演讲最后时刻的情景:“虽然新闻界已经刮起有关演讲的风声,很幸运他们没有来听演讲。但是听众中有人拍摄了演讲结束时的镜头,研究所所长肯定事先就准备了一瓶香槟酒。当我宣读证明时,会场上保持着特别庄重的寂静,当我写完费马大定理的证明时,我说:‘我想我就在这里结束",会场上爆发出一阵持久的鼓掌声。” 《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》为题报道费马大定理被证明的消息。一夜之间,怀尔斯成为世界上最著名的数学家,也是唯一的数学家。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度25位最具魅力者”。最有创意的赞美来自一家国际制衣大公司,他们邀请这位温文尔雅的天才作他们新系列男装的模特。 当怀尔斯成为媒体报道的中心时,认真核对这个证明的工作也在进行。科学的程序要求任何数学家将完整的手稿送交一个有声望的刊物,然后这个刊物的编辑将它送交一组审稿人,审稿人的职责是进行逐行的审查证明。怀尔斯将手稿投到《数学发明》,整整一个夏天他焦急地等待审稿人的意见,并祈求能得到他们的祝福。可是,证明的一个缺陷被发现了。 我的心灵归于平静 由于怀尔斯的论文涉及到大量的数学方法,编辑巴里·梅休尔决定不像通常那样指定2-3个审稿人,而是6个审稿人。200页的证明被分成6章,每位审稿人负责其中一章。 怀尔斯在此期间中断了他的工作,以处理审稿人在电子邮件中提出的问题,他自信这些问题不会给他造成很大的麻烦。尼克·凯兹负责审查第3章,1993年8月23日,他发现了证明中的一个小缺陷。数学的绝对主义要求怀尔斯无可怀疑地证明他的方法中的每一步都行得通。怀尔斯以为这又是一个小问题,补救的办法可能就在近旁,可是6个多月过去了,错误仍未改正,怀尔斯面临绝境,他准备承认失败。他向同事彼得·萨克说明自己的情况,萨克向他暗示困难的一部分在于他缺少一个能够和他讨论问题并且可信赖的人。经过长时间的考虑后,怀尔斯决定邀请剑桥大学的讲师理查德·泰勒到普林斯顿和他一起工作。 泰勒1994年1月份到普林斯顿,可是到了9月,依然没有结果,他们准备放弃了。泰勒鼓励他们再坚持一个月。怀尔斯决定在9月底作最后一次检查。9月19日,一个星期一的早晨,怀尔斯发现了问题的答案,他叙述了这一时刻:“突然间,不可思议地,我有了一个难以置信的发现。这是我的事业中最重要的时刻,我不会再有这样的经历……它的美是如此地难以形容;它又是如此简单和优美。20多分钟的时间我呆望它不敢相信。然后白天我到系里转了一圈,又回到桌子旁看看它是否还在——它还在那里。” 这是少年时代的梦想和8年潜心努力的终极,怀尔斯终于向世界证明了他的才能。世界不再怀疑这一次的证明了。这两篇论文总共有130页,是历史上核查得最彻底的数学稿件,它们发表在1995年5月的《数学年刊》上。怀尔斯再一次出现在《纽约时报》的头版上,标题是《数学家称经典之谜已解决》。约翰·科茨说:“用数学的术语来说,这个最终的证明可与分裂原子或发现DNA的结构相比,对费马大定理的证明是人类智力活动的一曲凯歌,同时,不能忽视的事实是它一下子就使数学发生了革命性的变化。对我说来,安德鲁成果的美和魅力在于它是走向代数数论的巨大的一步。” 声望和荣誉纷至沓来。1995年,怀尔斯获得瑞典皇家学会颁发的Schock数学奖,1996年,他获得沃尔夫奖,并当选为美国科学院外籍院士。 怀尔斯说:“……再没有别的问题能像费马大定理一样对我有同样的意义。我拥有如此少有的特权,在我的成年时期实现我童年的梦想……那段特殊漫长的探索已经结束了,我的心已归于平静。”2023-05-19 15:40:031
费马大定理是什么意思?
费马大定理是:当n>2,且x*y*z≠0时,x^n+y^n=z^n没有整数解。费马大定理的证明方法:x+y=z有无穷多组整数解,称为一个三元组;x^2+y^2=z^2也有无穷多组整数解,这个结论在毕达哥拉斯时代就被他的学生证明,称为毕达哥拉斯三元组,我们中国人称他们为勾股数,但x^3+y^3=z^3却始终没找到整数解。最接近的是:6^3+8^3=9^-1,还是差了1。于是迄今为止最伟大的业余数学家费马提出了猜想:总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。因此,就有了:已知:a^2+b^2=c^2。令c=b+k,k=1.2.3……,则a^2+b^2=(b+k)^2。因为,整数c必然要比a与b都要大,而且至少要大于1,所以k=1.2.3……设:a=d^(n/2),b=h^(n/2),c=p^(n/2)。则a^2+b^2=c^2就可以写成d^n+h^n=p^n,n=1.2.3……当n=1时,d+h=p,d、h与p可以是任意整数。当n=2时,a=d,b=h,c=p,则d^2+h^2=p^2 => a^2+b^2=c^2。当n≥3时,a^2=d^n,b^2=h^n,c^2=p^n。因为,a=d^(n/2),b=h^(n/2),c=p^(n/2);要想保证d、h、p为整数,就必须保证a、b、c必须都是完全平方数。a、b、c必须是整数的平方,才能使d、h、p在d^n+h^n=p^n公式中为整数。假若d、h、p不能在公式中同时以整数的形式存在的话,则费马大定理成立。历史:1995年,安德鲁·怀尔斯等人将费马猜想证明过程发表在《数学年刊》,成功证明了这一定理。费马大定理表述虽简单,但它的证明耗费了数代人的努力,许多数学家在证明过程中发现了许多新的数学理论,拓展了新的数学方法,证明费马大定理的过程可以算得上是一部数学史。2023-05-19 15:40:101
什么是费马大定理?
费马中值定理公式:利用连续函数在闭区间的介值定理可解决的一类中值问题,即证明存在ξ∈[a,b],使得某个命题成立。利用罗尔定理、费马定理可解决的一类中值定理,即证明存在ξ∈[a,b],使得H(ξ,f(ξ),f"(ξ))=0。费马定理通俗解释费马大定理,也即费马方程,其中的N如果等于或大于3,就将不可能有完全的整数解,也即就将进入某种创造性“三”的混沌域。只有进入了混沌域才可能产生和创造新的事物。费马大定理,简单理解就是费马提出的一个定理,具体定理的内容就是x的N次方+y的N次方=z的N次方,当n大于2时,这个方程没有任何整数解。这个等式看起来和我们初中学过的勾股定理很像,而费马大定理就是费马在勾股定理的基础上进行的一个研究。2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,斜边的平方等于两直角边的平方之和。即勾股定理。大约在公元1637年前后 ,当费马在研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:费马在《算术》这本书的靠近问题8的页边处记下这个结论的同时又写下一个附加的评注:“对此,我确信已发现一个美妙的证法,这里的空白太小,写不下。”这就是数学史上著名的费马大定理或称费马最后的定理。2023-05-19 15:40:251
费马大定理
《费马大定理》 业余数学之王大笔一挥,让人类最有智慧的头脑忙碌了358年。适听人群 喜欢数学的人专业解读人 韩正之。上海交通大学教授、博士生导师、研究生院原常务副院长。你将获得 费马大定理说的是什么? 数学家们为了解开这个谜题,都经历了什么? 为什么一个困惑智者358年的谜题,到20世纪末才解开?书中金句 数学是由未知海洋中的一个个知识孤岛组成的。寻求费马大定理的证明牵动了这个星球上最有才智的人们,巨额的赏格,自杀性的绝望,黎明时的决斗。到20世纪初,这个问题依然在数论家的心目中占有特殊的地位,不过他们对待费马大定理就像化学家对待炼金术一样,两者都是来自过去年代的荒谬和富有浪漫色彩的梦。精华笔记 一、费马与数学费马的本职工作是大法官,不过把业余时间都用在钻研数学上了,所以被称为“业余数学之王”。费马在数论领域成就颇丰,他的主要课本是古希腊数学家丢番图写的《算术》。费马将自己推出的新结论写在这本书的空白处。不过,费马留在这本书旁边的常常只是结论,即使有证明也是含糊不清的。费马去世后,他的儿子将父亲遗作出版,尤其是对那本记载着费马众多发现的《算术》整理出版。这本书共包括费马评注48个,其中第二个评注,就是我们所说的“费马大定理”。费马的第二个评注,是写在毕达哥拉斯定理旁边的。毕达哥拉斯定理也就是勾股定理,直角三角形的两条直角边的平方的和等于斜边的平方。可以表达成 费马将毕达哥拉斯方程中的指数2改成3,试图找它的解,没有成功,改成4也无解。于是在原书的问题旁边,费马写下了下面结论: 不可能将一个立方数写成两个立方数之和;或者将一个4次幂写成两个4次幂之和;或者,总的说来,不可能将一个高于2次的幂写成两个同样次幂的和。 最后一句话就是费马大定理。在这个注释的旁边,费马还加有一句充满挑逗性的话: 我有一个对这个命题十分美妙的证明,这里空白太小,写不下。费马提出的其他结论都陆续被后人证明,只有这个定理一拖到了1994年,因此也被称做“费马的最后定理”,英文就是这样写的:Fermat"s Last Theorem。二、费马大定理证明进展第一个在费马大定理中取得进展的科学家是欧拉。他从费马的遗作中发现,费马在那本带评注的《算术》的另一个地方,隐约地证明了指数等于4的时候费马大定理是成立的。他用费马的无穷递减法得到了指数等于3时的费马大定理的证明。然而欧拉没有能够将对于4和3的证明推广到一般情况。法国的索菲•热尔曼是一个对费马大定理做出重要贡献的女性。热尔曼定义了一类质数,后人称为热尔曼质数。具体是:如果p和2p+1都是质数,那么这个p就是热尔曼质数。热尔曼证明了一个结论,如果费马大定理中的n是一个热尔曼质数,那么方程的解(x,y,z)中至少有一个数是n的倍数。她说,这个结论使得费马方程“大概”没有解。热尔曼对费马大定理的证明没有进一步的贡献,但是狄利克雷和拉梅用热尔曼的方法分别证明了,指数是5和7时费马大定理成立。在阶段性胜利之后,法国科学院为推进费马大定理的证明设置了3000法郎的丰厚奖金。拉梅和另一位杰出的数学家柯西,俩人竞争开了。然而,德国数学家库默尔给科学院寄了一封信,库默尔指出拉梅和柯西的证明基础都是错误的。库默尔的信件对当时所有在研究费马大定理的人来说都是巨大的打击,这些人都与拉梅和柯西一样像是蒸发了。1908年6月,德国实业家保罗•沃尔夫斯凯尔,也是一位数学爱好者。他因为被心爱的姑娘拒绝而想到自杀。距离设定的自杀时间还有几小时,于是他找出库默尔的文章读起来。读着读着,沃尔夫斯凯尔突然发现库默尔实际上做了一个假设,但是却没有说明假设的合理性。沃尔夫斯凯尔一步一步地沿着库默尔的思路重新证明,希望找出库默尔的错误,并建立正确的结论。不知不觉地天亮了,他错过了自己设定的自杀时间,但是证明了库默尔的这点小漏洞是可以弥补的。沃尔夫斯凯尔为自己的这一结论感到十分得意,生命的美好又呈现在面前,他撕碎了给朋友们的诀别信,并决定要设置奖金推进费马大定理的证明。所以,后人又称费马大定理为救命大定理。奖金并没有助力费马大定理的进展,数学家们提供的往往都是负面的消息。三、安德鲁·怀尔斯我们的主角,揭开费马大定理谜底的人终于要登场了。安德鲁·怀尔斯,1973年,他毕业于牛津大学默顿学院,获数学学士学位。随后开始了他在剑桥大学克莱尔学院的研究生学习生涯,导师是澳大利亚人约翰•科茨教授。科茨教授为怀尔斯制定了“椭圆曲线”的研究方向。怀尔斯研究的问题是,椭圆方程有没有整数解,和有多少组整数解。乍一看,除了整数这一点外,椭圆曲线问题与费马大定理没有什么关系。战后的日本经济慢慢复苏,1950年代中期,日本出了两个杰出的年轻数学家:谷山和志村。他们在大学里相遇,两人研究了一种古怪的数学对象,称为模形式,这是19世纪提出的一个新概念。它是与加减乘除并存的一种运算形式,具有平移、旋转、中心对称和轴对称的性质。一个椭圆方程,一个模形式,看上去似乎是两个相隔遥远的孤岛。1955年,在东京举行的一次国际性数学界的会议上,谷山提出:椭圆方程和模形式之间可能存在一一对应关系。这个问题后来就称为谷山-志村猜想。谷山-志村猜想成为很多研究成果的基础,那些论文说,如果谷山-志村猜想成立,那么我们就可以证明这样那样的结论。其中有一个推断是弗赖提出的,他将费马方程和椭圆方程联系在一起了。弗赖说,如果谷山-志村猜想是对的,那么费马大定理就是对的。在椭圆方程领域小有名气的怀尔斯跃跃欲试了,那是1986年夏,他已经有资格在美国普林斯顿做研究了。怀尔斯决定做独行大侠,他将自己封闭起来,不与别人讨论,也不想让别人知道他在挑战费马大定理。一来他是害怕不能最终解决费马大定理的证明而被贻笑大方,二来怕别人利用他的成果捷足先登。怀尔斯花了18个月熟悉了这些年在椭圆方程和模形式的全部进展,他决定采用数学归纳法来证明。一开始,他的证明还是很顺利的。直到1991年,最后一步证明受阻。他碰到了导师科茨教授,无意中听到一种科利瓦金方法。怀尔斯花了几个月熟悉这种方法,可惜他不熟悉其中的代数知识,万不得已,他只得向他的同事凯兹寻求帮助。1993年5月,在凯兹的帮助下,怀尔斯终于完成了最后证明,他挑选6月在剑桥举行的学术会议上宣布他的证明。怀尔斯宣布了自己已经成功证明了费马大定理,剑桥大学数学研究所的所长甚至事先准备好了香槟。当怀尔斯说到“我想我就在这里结束”时,会场爆发经久不息的掌声。好事注定是多磨的。按照沃尔夫凯斯尔遗嘱的规定,怀尔斯的论文必须在杂志上发表,并经过两个月无人质疑才算正式证明了费马大定理,然后发奖。会议之后怀尔斯将论文递交给《数学发明》,编辑梅休尔选了六位审稿人。审稿人不断地将发现的疑问与怀尔斯讨论,这样延续了3个月。8月间,审稿人发现了一个“稍微复杂一点”的错误,而对这个错误怀尔斯没有立即做出回应。到12月,论文还没有发表,数学家们已经没有了信心,报刊的记者更是大做文章,认为这又是一次乌龙。1994年9月19日,怀尔斯决定对自己的证明做最后一次审查。他突然发现,一个长期被自己遗弃的工具,就是他的导师提及的科利瓦金方法可以用来解决这个错误。惊喜若狂,怀尔斯立即写下了证明。他回忆说,第二天早晨我又仔细检查一遍,到11点我完全放下心来了。论文发表在1995年5月的《数学发现》上,长达130页。这次真的没有问题了。策划编辑 | 陈艳 音频编辑 | 陈子夫 播音 | 张煜2023-05-19 15:40:511
高数上费马定理是什么?
高数上费马定理是当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。在1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。”扩展资料:费马大定理被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年,英国数学家安德鲁·怀尔斯宣布自己证明了费马大定理。费马大定理与黎曼猜想已经成为广义相对论和量子力学融合的m理论几何拓扑载体。十九世纪初法国自学成才的女数学家热尔曼证明了当n和2n+1都是素数时费马大定理的反例x,y,z至少有一个是n整倍数。在此基础上,1825年德国数学家狄利克雷和法国数学家勒让德分别独立证明费马大定理在n=5时成立,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。2023-05-19 15:40:591
费马大定理的内容是什么?
费马大定理,又被称为“费马最后的定理”,由法国数学家费马提出。它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯证明。2023-05-19 15:41:162
什么是费马定理
百度一下2023-05-19 15:41:263
大费马定理
费马大定理又被称为“费马最后的定理”,由法国数学家费马提出。它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1993年被英国数学家安德鲁·怀尔斯证明。德国佛尔夫斯克曾宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯彻底证明。费尔马定理悬赏求证1908年,哥廷根皇家科学协会公布沃尔夫斯凯尔奖:凡在2007年9月13日前解决费马大定理者将获得100000马克奖励。提供该奖者沃尔夫斯凯尔是德国实业家,年轻时曾为情所困决意在午夜自杀,但在临自杀前读到库默尔论述柯西和拉梅证明费马定理的错误让他情不自禁地计算到天明。设定自杀时间过了,他也放不下问题的证明,数学让他重生并后来成为大富豪,1908年这位富豪去世前,遗嘱将其一半遗产捐赠设奖,以谢其救命之恩。2023-05-19 15:41:331
费尔马定理?
近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。费尔马大定理的由来故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程x2+y2=z2的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。”费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。他酷爱数学,把自己所有的业余时间都用于研究数学和物理。由于他思维敏捷,记忆力强,又具备研究数学所必须的顽强精神,所以,获得了丰硕的成果,使他跻身于17世纪大数学家之列2023-05-19 15:41:574
费马大定理是什么?解法是什么?
300多年以前,法国数学家费马在一本书的空白处写下了一个定理: “设n是大于2的正整数,则不定方程x�+y�=z�没有非零整数解”。 费马宣称他发现了这个定理的一个真正奇妙的证明,但因书上空白太小,他写不下他的证明。300多年过去了,不知有多少专业数学家和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微。这就是纯数学中最著名的定理—费马大定理。 费马(1601年~1665年)是一位具有传奇色彩的数学家,他最初学习法律并以当律师谋生,后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究。虽然年近30才认真注意数学,但费马对数论和微积分做出了第一流的贡献。他与笛卡儿几乎同时创立了解析几何,同时又是17世纪兴起的概率论的探索者之一。费马特别爱好数论,提出了许多定理,但费马只对其中一个定理给出了证明要点,其他定理除一个被证明是错的,一个未被证明外,其余的陆续被后来的数学家所证实。这唯一未被证明的定理就是上面所说的费马大定理,因为是最后一个未被证明对或错的定理,所以又称为费马最后定理。 费马大定理虽然至今仍没有完全被证明,但已经有了很大进展,特别是最近几十年,进展更快。1976年瓦格斯塔夫证明了对小于105的素数费马大定理都成立。1983年一位年轻的德国数学家法尔廷斯证明了不定方程x�+y�=z�只能有有限多组解,他的突出贡献使他在1986年获得了数学界的最高奖之一费尔兹奖。1993年英国数学家威尔斯宣布证明了费马大定理,但随后发现了证明中的一个漏洞并作了修正。虽然威尔斯证明费马大定理还没有得到数学界的一致公认,但大多数数学家认为他证明的思路是正确的。毫无疑问,这使人们看到了希望。2023-05-19 15:42:112
费马大定理证明过程是什么样的?
已知:a^2+b^2=c^2令c=b+k,k=1.2.3……,则a^2+b^2=(b+k)^2。因为,整数c必然要比a与b都要大,而且至少要大于1,所以k=1.2.3……设:a=d^(n/2),b=h^(n/2),c=p^(n/2);则a^2+b^2=c^2就可以写成d^n+h^n=p^n,n=1.2.3……当n=1时,d+h=p,d、h与p可以是任意整数。当n=2时,a=d,b=h,c=p,则d^2+h^2=p^2 => a^2+b^2=c^2。当n≥3时,a^2=d^n,b^2=h^n,c^2=p^n。因为,a=d^(n/2),b=h^(n/2),c=p^(n/2);要想保证d、h、p为整数,就必须保证a、b、c必须都是完全平方数。a、b、c必须是整数的平方,才能使d、h、p在d^n+h^n=p^n公式中为整数。假若d、h、p不能在公式中同时以整数的形式存在的话,则费马大定理成立。扩展资料:对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议。本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值。本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”;“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题。参考资料来源:百度百科-费马大定理2023-05-19 15:42:182
费尔马大定理是什么内容???
费尔马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。 1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:a+b=c是不可能的(这里n大于2;a,b,c,n都是非零整数)。此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。 历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。2023-05-19 15:42:321
费马大定理如何证明
http://www.mat.puc-rio.br/~nicolau/olimp/Wiles.pdf 上面是安德鲁怀尔斯关于费马大定理的证明全文,不过是英文的,估计中文的也没有人翻译,因为能看懂证明的基本不会在乎那点英文2023-05-19 15:42:547
费马大定理是什么,有什么用..费马的历史地位怎样
费马大定理,又名费马猜想,是17世纪法国数学家费马留给后世的一个不解之谜。这个比哥德巴赫猜想更悠久、更有名的难题曾经吸引、困惑了无数智者,难倒过许多杰出的大数学家。直到358年之后的1995年,这个难题才被美国数学家安德鲁·怀尔斯所攻克。 费马(Pierre de Fermat,1601年8月17日生於法国博蒙—德洛马涅(Beaumont-de-Lomagne)–1665年1月12日逝於法国卡斯特),法国律师和业余数学家。他在数学上的成就不比任何一位职业数学家差,他似乎对数论最有兴趣,亦对现代微积分的建立有所贡献。费马的父亲是颇富有的皮革商人。费马出生的房子,现在成了费马博物馆。1620年代中期,他进入图卢兹大学之后,搬到波尔多生活,在那裏开始第一个正式的数学研究,并认识数学家Jean Beaugrand。他们之间有不少数学交流,这在费马搬到图卢兹后仍未改变。此后他又陆续认识了Pierre de Carcavi、马兰·梅森和勒奈·笛卡尔等数学家,并有不少书信交流,费马的不少数学成果都在这些书信中诞生。费马不常正式发表他的研究,他死后其子才将之整理成书,叫做Varia Opera。2023-05-19 15:43:103
费马大定理有什么用
费马大定理指出自然数总是受制于无理数。提供了数总是被限制的概念,其哲学意义开启了一道新的数学之门。许多伟大的科学家在几种特例中成功地证明了费马大定理。 费马通过将毕达哥拉斯方程演化到更高的乘方(>2)和限制丢番图方程为正整数解提出了他的大定理。因此,费马大定理真正讨论的是素数。2023-05-19 15:43:171
请问费马大定律怎样准确表述?我一个同事说他曾经独立的证明出了这个定理,是真的吗?
你同事真……费马猜想〔Fermat"s conjecture〕又称费马大定理或费马问题,是数论中最著名的世界难题之一。1637年,法国数学家费马在巴歇校订的希腊数学家丢番图的《算术》第II卷第8命题旁边写道:「将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。」费马去世后,人们找不到这个猜想的证明,由此激发起许多数学家的兴趣。欧拉、勒让德、高斯、阿贝尔、狄利克雷、柯西等大数学家都试证过,但谁也没有得到普遍的证法。300多年以来,无数优秀学者为证明这个猜想,付出了巨大精力,同时亦产生出不少重要的数学概念及分支。http://www.shuxue.net/Article_Show2.asp?ArticleID=63费马大定理,又名费马猜想,是17世纪法国数学家费马留给后世的一个不解之谜。这个比哥德巴赫猜想更悠久、更有名的难题曾经吸引、困惑了无数智者,难倒过许多杰出的大数学家。直到358年之后的1995年,这个难题才被美国数学家安德鲁·怀尔斯所攻克。费马详细介绍:费马是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅。他的父亲多米尼克·费马在当地开了一家大皮革商店,拥有相当丰厚的产业,使得费马从小生活在富裕舒适的环境中。http://www.ikepu.com/datebase/details/scientist/17st/P_d_fermat.htm费马猜想* 大约在1637年,费马在阅读丢番图著《算术》一书的拉丁文译本时,读到第Ⅱ卷第八命题"将一个平方和分为两个平方数",在书的页边空白处写了一段话,意思是说"将一个立方数分成两个立方数,一个四次幂分成两个四次幂,或者一般地将一个高于2次幂分成两个同次的幂,这是不可能的,关于此,我确信已发现了一种奇妙的证法,可惜这里的空白太小,写不下"。用现代数学语言叙述,费马猜想是说,n>2时,方程 xn+yn=zn 没有正整数解。 费马猜想又常称费马大定理,要证费马猜想是对的,只需证明 x4+y4=z4 及p是奇素数时xp+yp=zp均无正整数解。费马说,他用无穷递降法证明了前者。1676年,贝西也对n=4给出了证明,欧拉对n=3,4都给出了证明,此外勒让得与狄利克雷对n=5给出了证明,19世纪中期,库默对n<100(除37,59,67外)的奇素数给出了证明。1908年,德国数学家佛尔夫斯克尔遗言,将10万马克奖给第一个证明费马大定理的人。从费马提出这一猜想至今,已过去三个半世纪,问题仍未解决。近年来主要结果有: (1)1977年瓦格斯塔夫证明了,对于每一个素数p<125000,费马定理都是对的。 (2)1983年,伐尔廷斯证明了1922年英国数学家莫德尔提出的猜想:如果�E(x,y)为有理多项式,代数曲线�E(x,y)=0的亏格≥2,则�E(x,y)=0至多只有有限多个有理解。这保证,n≥4时至多只有有限个n使xn+yn=zn有整数解。 (3)1985年,爱德列曼和海斯·布朗用解析数论的方法,证明了存在无穷多个素数p,使不存在整数x,y,z,满足xp+yp=zp成立,{p不整除xyz}。 (4)1993年6月23日英国数学家K.WILER在剑桥大学牛顿数学研究所做题为"模形式,椭圆曲线和伽罗瓦表示"的学术报告。最后宣布"我证明了费马猜想"。有关专家和权威人士的初步反映大都持肯定态度。*形如22n+1的正整数称费马数,记为En,其中E0=3,�E1=5,�E2=17,�E3=257,E4=65537都是素数,1640年费马曾猜想,一切费马数都是素数,但1732年欧拉指出 641l E5: E5=641×6700417,从而否定了费马的这个猜想。但究竟有多少费马数是素数,是有限个还是无限个?是否有无限多个费马数是合数?这些问题都是没有解决的难题。已经知道了48个费马数不是素数,�E17究竟是素数还是合数尚不得而知。费马数与尺规定作图问题有关,高斯证明了,若En是素数,则正En边形能用尺规作出。2023-05-19 15:43:331
费马大定理证明过程是怎么样的?
∵P1+P2=X∴设P1=1,P2=1∴1+1=2∴P1+P2=2n∵设费马大定理x=1,y=1,z=1∴x^n+y^n=z^n∴当n≥2时,费马大定理存在正整数解!2023-05-19 15:43:402
数二考费马定理吗
数二不考费马定理。费马大定理现代表述为:当n>2时,方程xn+yn=zn没有正整数解。数学中的费马小定理:在一个有限群G中,a^{Card(G)}=a。例子:a^n=a模nfjn三角形里的费马点:一个三角形里使得到三个顶点距离之和最短的点P在三角形的角都小于120度时517这个点唯一并且满足角APB=角BPC=角CPA=120度5费马大定理fjn又名费马最后定理。含义费马大定理与黎曼猜想已经成为广义相对论和量子力学融合的m理论几何拓扑载体。1816年巴黎科学院把费马猜想转化简化归结为n是奇素数的情况,认为费马猜想应该成立,并称之为费马大定理(以区别费马关于同余的小定理),并为证明者设立大奖和奖章,费马大定理之谜从此进一步风靡全球。2023-05-19 15:43:571
什么是费马定理证明?
费马定理证明就是运用费马定理去证明等式,费马大定理,别称费马猜想、费马最后的定理,是指当整数n>2时,关于x,y,z的方程x^n+y^n=z^n没有正整数解。费马大定理被提出后,经历多人猜想辩证。最终英国数学家安德鲁怀尔斯于1995年宣布自己证明了费马大定理,该定理与黎曼猜想已成为广义相对论和量子力学融合的m理论几何拓扑载体。毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学怎么学好学好数学兴趣是前提和基础,学数学提前做预习是个好习惯,在预习过程中尽量把问题解决掉,再做一些相关练习巩固。遇到不理解的地方标注出来等老师上课讲解,反思自己看书为什么没看懂。做课后练习题时,围绕公式去举一反三,读每一个已知条件都要给出数学思维反馈,用画图、试值等多种方法去求解,不要拘泥于唯一解法。数学成绩好的学生都不是光听课就能学会的,只有自己多琢磨、多反思,才能学好数学。学好数学还要善于总结错题,因为我们做错的很多题目都属于同一类型,把这些题目归纳一下,其实只要掌握几个数学知识点就够了,就能解决掉大部分错题。因此做数学题目要学会融会贯通、突破难点、各个击破。2023-05-19 15:44:151
费马大定理证明三次根号2是无理数
如果2^1/3是有理数,则设2^1/3=p/q,其中p与q为正整数且互质。那么两边同时取立方得2=p^3/q^3,移项得2q^3=p^3,即q^3+q^3=p^3根据费马大定理,x^n+y^n=z^n在n≥3的时候无正整数解,所以q^3+q^3=p^3无解2^1/3是无理数2023-05-19 15:44:293
费尔玛大定理具体是什么?至今被人证明出来了没有?
a^n+b^n=c^n在有理数范围内没有n>2的解被证明了,但是用到的数学知识很抽象,本人无能无法解释~据说几十页呢2023-05-19 15:45:055
费马大定理提出以后出现的七门数学学科是什么
分别为四色定理、构造无穷多个两两相连区域、图论与数论联系、筛子与哥德巴赫猜想等内容。当我们用霍奇猜想的方法制造几何拓扑超级结构时会发生一种歧管,这个歧管的整体就是费马大定理,计算这个结构局部就要用黎曼猜想。法兰西斯·古德里于1852年提出的猜想,只需要四种颜色为地图着色,构造方法就是霍奇猜想。把歧管两两相连之间给定距离可以等价转换成为货郎担问题。在数论中,最重要的元素就是素数,欧几里得证明了有无穷多个素数,并且它们有一个特点就是两两互素。岐管筛子把偶数往里面扔,哥德巴赫猜想说大于4的偶数一个也不会漏出筛子,除了6=3+3以外,其他偶数都是可以在不同的素数区域被拦截。随意在岐管上画出一条线,都需要黎曼猜想计算。计算虚部需要欧拉公式。 物理学里,真空是能量的“零点”。黎曼猜想与物理学和费马大定理联系起来了。几何拓扑进展是创造代数或者数论的源泉,创造一个新代数结构必须为它找到几何新结构。扩展资料:费马大定理的相关内容:1、十九世纪初法国自学成才的女数学家热尔曼证明了当n和2n+1都是素数时费马大定理的反例x,y,z至少有一个是n整倍数。在此基础上,1825年德国数学家狄利克雷和法国数学家勒让德分别独立证明费马大定理在n=5时成立,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。2、1847年,巴黎科学院上演戏剧性一幕, 当时著名数学家拉梅和柯西先后宣布自己基本证明费马大定理,拉梅还声称证明引用了刘维尔复数系中的唯一因子分解定理,刘维尔则说这一定理源自欧拉和高斯的思想。参考资料来源:百度百科-费马大定理2023-05-19 15:45:211
菲尔马大定律是什么时候证明的?
你说的是费马大定律吧1994年10月,美国普林斯顿大学数学教授安德鲁·怀尔斯,终于圆了童年的梦想,证明了费马大定理。他的论文发表在1995年5月的《数学年刊》上。 费马大定理源自法国人皮埃尔·德·费马。费马生于1601年8月20日,卒于1665年1月12日,是法国地方政府系统中的文职官员,又是业余数学爱好者。从职业上说,他是业余数学家;而从数学成就上说,他足以跻身于伟大专业数学家行列。 所谓费马大定理,或费马猜想(在未证明之前,只能称之为猜想),得从直角三角形的勾股定理(或称毕达哥拉斯定理)说起。学过平面三角的人都知道,直角三角形两直角边的平方之和等于其斜边的平方。或者写成代数式子,即为X 2+Y 2=Z 2。勾股定理中的X、Y和Z有整数解。可以证明,这种X、Y和Z的组合有无限多个。但是,如果把上述公式中的指数2改为3,或更一般地,改为大于2的整数N,则发现难于找到X、Y和Z的整数解。大约在1637年前后,费马在他保存的《算术》一书的页边处写道:“不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;总的来说,不可能将一个高于两次的幂写成两个同样次幂的和”。他又写了一个附加评注:“我有一个对这命题的十分美妙的证明,这里空白太小,写不下。”这就是费马大定理。费马逝世后,他的长子克来孟一缪塞尔·费马意识到他父亲的业余爱好所具有的重要意义,花了5年时间,整理了其父在《算术》一书上的页边空白处的评注,于1670年出版了附有费马注评的《算术》的特殊版本。费马大定理才得以公诸于世,并传于后世。 费马大定理看起来很简单,很容易理解,但要证明它却难住了300多年来一代代杰出的数学家。 安德鲁·怀尔斯出生于英国剑桥,1980年移民美国。1963年他10岁。有一天他从学校漫步回家时,走进了弥尔敦路上的图书馆,被埃里克·坦普尔·贝尔写的《大问题》一书吸引住了。这是怀尔斯第一次接触到费马大定理,他心中产生了征服这个数学难题的强烈愿望。 在以后的岁月中他一直在为实现这个目的而做着准备。他修完了数学学士和博士学业,成为数学教授,加入职业数学家的行列。他广泛吸收和潜心研究各种新的数学理论和方法,并综合应用它们,克服一个又一个的挫折和困难,并最终战胜了300多年来的挑战,把费马大定理的证明划上了圆满的句号。 从上面安德鲁·怀尔斯证明费马大定理的故事中我以为至少可以得到以下几点启示: 一、优秀的科普书籍对人民群众、特别是青少年有巨大的影响。如果安德鲁·怀尔斯没有看到有关科学著作,如果这些科学著作没有以生动形象的手法通俗地介绍科学问题,则很难有安德鲁·怀尔斯的成功。目前,我国对科技工作,包括科普事业的重视程度不断提高,两院院士也投身到科普创作中来了,这是很可喜的现象。但是,只靠院士们的力量,还是不够的,要发动社会上其他人士也加入到科普创作的行列中来。还要建立一些鼓励科普创作和出版的机制,资助一些科普书籍的创作和出版。 二、要实现自己的理想,必须要脚踏实地地去学习,去奋斗。解决困扰世人几百年的数学难题,没有扎实的数学基础,不了解所研究问题的来龙去脉,不掌握几百年来人们对它研究取得的成功经验和失败教训,不融汇贯通地应用各种数学理论和方法,是不可能取得成功的。安德鲁·怀尔斯为实现自己10岁时的梦想,学习、奋斗了30多年,才最终得到成功。这说明在科学上来不得半点虚假,没有投入是得不到成功的。 三、研究和解决一些数学难题,会推动某些数学分支、甚至整个数学学科的发展。例如,安德鲁·怀尔斯在证明费马大定理中融合了各种数学理论和方法,开辟了处理其他众多数学问题的新思路,推进了数学的重大发展。而数学又是推动其他科学和技术发展的有力工具,数学的发展必然会推动生产力的发展。因此,所谓“理论脱离实际”是以狭窄的、片面的和局限的思维方式看问题所得出的观点。从历史的、全面的和总体的观点看,即使像证明费马大定理和哥德巴赫猜想这样抽象的数学问题,也是与人类文明和科学技术的发展息息相关的。当然,自然科学中有些与人类的生产活动联系得直接些、密切些,有些则间接些、疏远些。但是,无论与生产活动联系密切的科学,还是较不密切的科学,它们的进步都将推动生产力的发展。只是有的能迅速地、直接地见效,有的则不那么迅速,不那么直接地显示出来2023-05-19 15:45:331
费马大定理 安德鲁 怀尔斯 论文
百多页的书,你自己找吧。。。我反正看不懂2023-05-19 15:45:433
费马定理为什么dl/dx=0
1994年10月,美国普林斯顿大学数学教授安德鲁·怀尔斯,终于圆了童年的梦想,证明了费马大定理。他的论文发表在1995年5月的《数学年刊》上。费马大定理源自法国人皮埃尔·德·费马。费马生于1601年8月20日,卒于1665年1月12日,是法国地方政府系统中的文职官员,又是业余数学爱好者。从职业上说,他是业余数学家;而从数学成就上说,他足以跻身于伟大专业数学家行列。所谓费马大定理,或费马猜想(在未证明之前,只能称之为猜想),得从直角三角形的勾股定理(或称毕达哥拉斯定理)说起。学过平面三角的人都知道,直角三角形两直角边的平方之和等于其斜边的平方。或者写成代数式子,即为x^2+y^2=Z^2。勾股定理中的X、Y和Z有整数解。可以证明,这种X、Y和Z的组合有无限多个。但是,如果把上述公式中的指数2改为3,或更一般地,改为大于2的整数N,则发现难于找到X、Y和Z的整数解。大约在1637年前后,费马在他保存的《算术》一书的页边处写道:“不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;总的来说,不可能将一个高于两次的幂写成两个同样次幂的和”。他又写了一个附加评注:“我有一个对这命题的十分美妙的证明,这里空白太小,写不下。”这就是费马大定理。费马逝世后,他的长子克来孟一缪塞尔·费马意识到他父亲的业余爱好所具有的重要意义,花了5年时间,整理了其父在《算术》一书上的页边空白处的评注,于1670年出版了附有费马注评的《算术》的特殊版本。费马大定理才得以公诸于世,并传于后世。费马大定理看起来很简单,很容易理解,但要证明它却难住了300多年来一代代杰出的数学家。更重要的是,在证明“费马大定理”的过程中,形成了许多新的数学分支,促进了数学的进一步发展。希尔伯特称之为“会生金蛋的母鸡”。2023-05-19 15:45:501
“费马大定理”是被谁在什么时候如何证明的
1995年被英国数学家安德鲁·怀尔斯证明。2023-05-19 15:45:571
费马的生平
费马大定理: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 的整数解都是平凡解,即 当n是偶数时:(0,±m,±m)或(±m,0,±m) 当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0) 这个定理,本来又称费马猜想,由17世纪法国数学家费马提出。费马宣称他已找到一个绝妙证明。但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了2005年度邵逸夫奖的数学奖。 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得an + bn = cn。 1986年,Gerhard Frey 提出了“ ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧秒工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。 5:库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。 6:勒贝格提交了一个证明,但因有漏洞,被否决。 7:希尔伯特也研究过,但没进展。 8:1983年,德国数学家法尔廷斯证明了一条重要的猜想——莫代尔猜想x的平方+y的平方=1这样的方程至多有有限个有理数解,他由于这一贡献,获得了菲尔兹奖。 9:1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。 10:1985年,德国数学家弗雷指出了“谷山——志村猜想”和“费马大定理”之间的关系;他提出了一个命题 :假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。 11:1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。 12:1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理”2023-05-19 15:46:054
什么是费马定理
百度一下2023-05-19 15:46:134
求费马大定理的全部证明过程!!!
当n≥3时,任何两个相邻的正整数的n次幂之差,都大于前一个正整数的n次幂。这个应该是最优解吧,,,,2023-05-19 15:46:212
费马猜想是什么?
17世纪的一位法国数学家,提出了一个数学难题,使得后来的数学家一筹莫展,这个人就是费马(1601——1665)。这道题是这样的:当n>2时,不定方程 x^n+y^n=z^n 没有正整数解。在数学上这称为“费马大定理”又称为“书边定理”,“费尔马大定理”。为了获得它的一个肯定的或者否定的证明,历史上几次悬赏征求答案,一代又一代最优秀的数学家都曾研究过,即使用现代的电子计算机也只能证明:当n小于等于4100万时,费马大定理是正确的。由于当时费马声称他已解决了这个问题,但是他没有公布结果,于是留下了这个数学难题中少有的千古之谜。 被公认执世界报纸牛耳地位的纽约时报于1993年6月24日在其一版头题刊登了一则有关数学难题得以解决的消息,那则消息的标题是『在陈年数学困局中,终于有人呼叫『我找到了」』。五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过怀尔斯的证明马上被检验出有少许的瑕疵,於是怀尔斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。说明:要证明费马最后定理是正确的(即x^ n+ y^n = z^n 对n>=3 均无正整数解)只需证 x^4+ y^4 = z^4 和x^p+ y^p = z^p (P为奇质数),都没有整数解。2023-05-19 15:46:281
费尔马定理是什么?
费马大定理又被称为“费马最后的定理”,由法国数学家费马提出。它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1993年被英国数学家安德鲁·怀尔斯证明。德国佛尔夫斯克曾宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯彻底证明。费尔马定理悬赏求证1908年,哥廷根皇家科学协会公布沃尔夫斯凯尔奖:凡在2007年9月13日前解决费马大定理者将获得100000马克奖励。提供该奖者沃尔夫斯凯尔是德国实业家,年轻时曾为情所困决意在午夜自杀,但在临自杀前读到库默尔论述柯西和拉梅证明费马定理的错误让他情不自禁地计算到天明。设定自杀时间过了,他也放不下问题的证明,数学让他重生并后来成为大富豪,1908年这位富豪去世前,遗嘱将其一半遗产捐赠设奖,以谢其救命之恩。2023-05-19 15:46:461
费尔马定理?
近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。费尔马大定理的由来故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程x2+y2=z2的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。”费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。他酷爱数学,把自己所有的业余时间都用于研究数学和物理。由于他思维敏捷,记忆力强,又具备研究数学所必须的顽强精神,所以,获得了丰硕的成果,使他跻身于17世纪大数学家之列2023-05-19 15:47:024
如何证明费马大定理?
原命题:等式x∧n+ y∧n= z∧n ( n≥3)没有非零整数解。证明:首先把问题简化和细化一下 ,只须证明以下两类情况——(1) x, y, z互质,n为不小于3的奇数。(2) x, y, z互质,n等于4。﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉若(1),x, y, z 必为两奇一偶的关系。设其中的偶数为2∧k b,并设n=2∧t b+1,( b仅表示奇数)那么可以证明x∧n+ y^ n-z∧n最多只能被2^( kn+k+t+2)整除,故原命题(1)得证。﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉若(2),同样的,x, y, z必为两奇一偶的关系,设x, y为奇数,z为偶数,并设z=2^ k b,那么可分两种情况进行讨论——( a) x^4+y^4=z^4( b) x^4-y^4=z^4( a)式显然是不成立的,所以重点是讨论( b)式。若k=1,则y^4=x^4-z^4=( x+z)( x-z)( x^2+z^2),那么这时x^2+z^2= x^2+4b,它不可能是一个4次方数,所以原等式不成立。若k>1,那么可以证明 x^4-y^4-z^4最多只能被2^(4k+2)整除,故原命题(2)得证。﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉﹉综上所述,原等式确实没有非零整数解。证毕。我已证明2023-05-19 15:47:167
费马大定理的证明方法
知道费马是怎么证明的吗?我告诉你吧。费马的证明方法我已经找到了,确实很简单。能够满足条件的:1.必然是连续自然数 2.最小自然数是2n—1。2023-05-19 15:47:4012
费马大定理的证明是什么?
证明费马大定理是如下:已知:a^2+b^2=c^2。令c=b+k,k=1.2.3,则a^2+b^2=(b+k)^2。因为,整数c必然要比a与b都要大,而且至少要大于1,所以k=1.2.3。设:a=d^(n/2),b=h^(n/2),c=p^(n/2)。则a^2+b^2=c^2就可以写成d^n+h^n=p^n,n=1.2.3。当n=1时,d+h=p,d、h与p可以是任意整数。当n=2时,a=d,b=h,c=p,则d^2+h^2=p^2 => a^2+b^2=c^2。当n≥3时,a^2=d^n,b^2=h^n,c^2=p^n。因为,a=d^(n/2),b=h^(n/2),c=p^(n/2);要想保证d、h、p为整数,就必须保证a、b、c必须都是完全平方数。∴a、b、c必须是整数的平方,才能使d、h、p在d^n+h^n=p^n公式中为整数。假若d、h、p不能在公式中同时以整数的形式存在的话,则费马大定理成立。设a=mk,则b=k(m^2-1)/2。令m=k,则a=m^2,b=m(m^2-1)/2,令m/2=(m^2-1),则b=(m/2)^2,c=(m/2)^2+m。则a^2+b^2=c^2 => m^4+(m/2)^4=[(m/2)^2+m]^2=>m^2(2m^2-m-2)=0,m1=0(舍去),m2=(1±√17)/4(非整数)。此外,当m/2=(m^2-1)时,(也可以让)b=(m^2-1)^2则a^2+b^2=c^2 => m^4+(m^2-1)^4=[(m^2-1)^2+m]^2=> m(m^2-1)(2m^2-m-2)=0,m1=0,m2=±1,m3=(1±√17)/4。验证:当m=±1时,b=h^(n^2)=(m^2-1)^2=0;即a^2=c^2。与题要求不符。 假若d、h、p可以以整数的形式出现,说明等式d^n+h^n=p^n成立,费马大定理不成立。否则,d^n+h^n≠p^n不等式成立,费马大定理成立。费马大定理:对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议。本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值。本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”。“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题。2023-05-19 15:48:471
费马定理是什么
费马(Pierre de Fermat,公元1601年—公元1665年)是十七世纪最伟大的数学家之一。 他对数学的贡献是多方面的,包括了微分学的概念,解析几何(他和笛卡儿可说是独立地发明解析几何,不过他是第一位把它应用到三维空间的人)和数论。尤其在数论方面,最为世人熟识的当然是费马最后定理(Fermat"s Last Theorem),但其实还有很重要的费马小定理(Fermat"s Little Theorem,加上“小”是用来分别费马大定理的),以及费马二平方数定理(Fermat"s Two Squares Theorem),无限下降法和费马数等等,实在是多不胜数。 费马大定理 ,即:不可能有满足 xn+yn=zn ,n >2的正整数x、y、z、n存在。这命题他写在丢番图《算术》( 拉丁文译本,1621)第 2卷的空白处:“……将一个高于二次的幂分成两个同次幂之和,这是不可能的。 费马小定理是数论中的一个定理。定理:(费马小定理) 当p是素数时,对於任意一个整数a不是p的倍数时,有以下的等式 ap-1≡1 (mod p)。 费马最后定理 当整数 n > 2 时, 方程 x n + y n = z n 无正整数解. 勾股定理及勾股数组 勾股定理 在 ABC 中,若 C 为直角,则 a2 + b2 = c2. 留意:32 + 42 = 52; 52 + 122 = 132; 82 + 152 = 172; 72 + 242 = 252; ……等等 即 (3 , 4 , 5),(5 , 12 , 13) … 等等为方程 x 2 + y 2 = z 2 的正整数解. 我们称以上的整数解为「勾股数组」.2023-05-19 15:49:012
费马大定理的证明公式是什么?
费马中值定理公式:利用连续函数在闭区间的介值定理可解决的一类中值问题,即证明存在ξ∈[a,b],使得某个命题成立。利用罗尔定理、费马定理可解决的一类中值定理,即证明存在ξ∈[a,b],使得H(ξ,f(ξ),f"(ξ))=0。费马定理通俗解释费马大定理,也即费马方程,其中的N如果等于或大于3,就将不可能有完全的整数解,也即就将进入某种创造性“三”的混沌域。只有进入了混沌域才可能产生和创造新的事物。费马大定理,简单理解就是费马提出的一个定理,具体定理的内容就是x的N次方+y的N次方=z的N次方,当n大于2时,这个方程没有任何整数解。这个等式看起来和我们初中学过的勾股定理很像,而费马大定理就是费马在勾股定理的基础上进行的一个研究。2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,斜边的平方等于两直角边的平方之和。即勾股定理。大约在公元1637年前后 ,当费马在研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:费马在《算术》这本书的靠近问题8的页边处记下这个结论的同时又写下一个附加的评注:“对此,我确信已发现一个美妙的证法,这里的空白太小,写不下。”这就是数学史上著名的费马大定理或称费马最后的定理。2023-05-19 15:49:081
费马大定理是什么意思?
费马大定理是:当n>2,且x*y*z≠0时,x^n+y^n=z^n没有整数解。费马大定理的证明方法:x+y=z有无穷多组整数解,称为一个三元组;x^2+y^2=z^2也有无穷多组整数解,这个结论在毕达哥拉斯时代就被他的学生证明,称为毕达哥拉斯三元组,我们中国人称他们为勾股数,但x^3+y^3=z^3却始终没找到整数解。最接近的是:6^3+8^3=9^-1,还是差了1。于是迄今为止最伟大的业余数学家费马提出了猜想:总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。因此,就有了:已知:a^2+b^2=c^2。令c=b+k,k=1.2.3……,则a^2+b^2=(b+k)^2。因为,整数c必然要比a与b都要大,而且至少要大于1,所以k=1.2.3……设:a=d^(n/2),b=h^(n/2),c=p^(n/2)。则a^2+b^2=c^2就可以写成d^n+h^n=p^n,n=1.2.3……当n=1时,d+h=p,d、h与p可以是任意整数。当n=2时,a=d,b=h,c=p,则d^2+h^2=p^2 => a^2+b^2=c^2。当n≥3时,a^2=d^n,b^2=h^n,c^2=p^n。因为,a=d^(n/2),b=h^(n/2),c=p^(n/2);要想保证d、h、p为整数,就必须保证a、b、c必须都是完全平方数。a、b、c必须是整数的平方,才能使d、h、p在d^n+h^n=p^n公式中为整数。假若d、h、p不能在公式中同时以整数的形式存在的话,则费马大定理成立。历史:1995年,安德鲁·怀尔斯等人将费马猜想证明过程发表在《数学年刊》,成功证明了这一定理。费马大定理表述虽简单,但它的证明耗费了数代人的努力,许多数学家在证明过程中发现了许多新的数学理论,拓展了新的数学方法,证明费马大定理的过程可以算得上是一部数学史。2023-05-19 15:49:201
费马定理
m>n,2mn,m平方-n平方,m平方+n平方,2023-05-19 15:49:362
费马大定理?????
分类: 理工学科 问题描述: 具体是什么意思???读了好几遍也不是特清楚??? 解析: 17世纪的一位法国数学家,提出了一个数学难题,使得后来的数学家一筹莫展,这个人就是费马(1601——1665)。 这道题是这样的:当n>2时,x^n+y^n=z^n没有正整数解。在数学上这称为“费马大定理”。为了获得它的一个肯定的或者否定的证明,历史上几次悬赏征求答案,一代又一代最优秀的数学家都曾研究过,即使用现代的电子计算机也只能证明:当n小于等于4100万时,费马大定理是正确的。由于当时费马声称他已解决了这个问题,但是他没有公布结果,于是留下了这个数学难题中少有的千古之谜。 费马小传:费马生于法国南部,在大学里学的是法律,以后以律师为职业,并被推举为议员。费马的业余时间全用来读书,哲学、文学、历史、法律样样都读。30岁时迷恋上数学,直到他64岁病逝,一生中有许多伟大的发现。不过,他极少公开发表论文、著作,主要通过与友人通信透露他的思想。他的很多成果都是在他死后,由他儿子通过整理他的笔记和批注整理出来的。好在费马有个“不动笔墨不读书”的习惯,凡是他读过的书,都有他的圈圈点点,勾勾画画,页边还有他的评论。他利用公务之余钻研数学,并且成果累累。后世数学家从他的诸多猜想和大胆创造中受益非浅,赞誉他为“业余数学家之王”。 费马对数学的贡献包括:与笛卡尔共同创立了解析几何;创造了作曲线切线的方法,被微积分发明人之一牛顿奉为微积分的思想先驱;通过提出有价值的猜想,指明了关于整数的理论——数论的发展方向。他还研究了掷骰子赌博的输赢规律,从而成为古典概率论的奠基人之一。 附录: 被公认执世界报纸牛耳地位的 *** 于1993年6月24日在其一版头题刊登了一则有关数学难题得以解决的消息,那则消息的标题是『在陈年数学困局中,终于有人呼叫『我找到了」』。 五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八十年代德国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。 这个结论由威利斯在1993年的6月21日于美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的证明马上被检验出有少许的瑕疵,于是威利斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终于交出完整无瑕的解答,数学界的梦魇终于结束。1997年6月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。 要证明费马最后定理是正确的 (即x^ n+ y^n = z^n 对n>=3 均无正整数解) 只需证 x^4+ y^4 = z^4 和x^p+ y^p = z^p (P为奇质数),都没有整数解。2023-05-19 15:49:421
什么是费马定理
费马大定理,又被称为“费马最后的定理”,由法国数学家费马提出。 它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。 被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯证明。 德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。2023-05-19 15:50:032
什么是费马定理
费马定理有无数个,我举几个例子: 物理中的费马定理:光总是走时间最短的路径. 数学中的费马小定理:在一个有限群G中,a^{Card(G)}=a.例子:a^n=a模n. 三角形里的费马点:一个三角形里使得到三个顶点距离之和最短的点P.在三角形的角都小于120度时,这个点唯一并且满足角APB=角BPC=角CPA=120度. 费马大定理,又名费马最后定理,又名Fermat-Wiles定理(由Wiles证处故得名):对于任何的大于等于3的正整数n,任何的正整数a,b,c都有a^n+b^n不等于c^n.2023-05-19 15:50:111
费马大定理是在哪一年证明的
1995年。费马大定理由17世纪法国数学家皮耶·德·费马提出,1995年被英国数学家安德鲁·怀尔斯证明了这一定理。费马大定理又被称为“费马最后的定理”。费马有了定理的猜想,但由于费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。 大约在1637年左右,法国学者费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 定理简介: 他断言当整数n>2时,关于x,y,z的方程x^n+y^n=z^n没有正整数解。 德国人沃尔夫斯凯尔曾宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。 费马大定理被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年,英国数学家安德鲁·怀尔斯宣布自己证明了费马大定理。 费马大定理与黎曼猜想已经成为广义相对论和量子力学融合的m理论几何拓扑载体。2023-05-19 15:50:181