汉邦问答 / 问答 / 问答详情

什么是贝叶斯纳什均衡?

2023-07-21 08:57:31
hi投

博弈论(Game Theory),有时也称为对策论,或者赛局理论,应用数学的一个分支, 目前在生物学,经济学,国际关系,计算机科学, 政治学,军事战略和其他很多学科都有广泛的应用。主要研究公式化了的激励结构(游戏或者博弈(Game))间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。 表面上不同的相互作用可能表现出相似的激励结构(incentive structure),所以他们是同一个游戏的特例。其中一个有名有趣的应用例子是囚徒困境悖论(Prisoner"s dilemma)。

具有竞争或对抗性质的行为成为博弈行为。在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。比如日常生活中的下棋,打牌等。博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。

生物学家使用博弈理论来理解和预测进化论的某些结果。例如,John Maynard Smith 和George R. Price 在1973年发表于Nature上的论文中提出的“evolutionarily stable strategy”的这个概念就是使用了博弈理论。还可以参见进化博弈理论(evolutionary game theory)和行为生态学(behavioral ecology)。

博弈论也应用于数学的其他分支,如概率,统计和线性规划等。

[编辑]博弈论简史

对于博弈论的研究,开始于策墨洛(Zermelo,1913),波雷尔(Borel,1921)及冯·诺伊曼(von Neumann, 1928),后来由冯·诺伊曼和奥斯卡·摩根斯坦(von Neumann and Morgenstern,1944,1947)首次对其系统化和形式化(参照Myerson, 1991)。随后约翰·福布斯·纳什(John Forbes Nash Jr., 1950, 1951)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。

当代博弈论的“三大家”和“四君子”

"三大家" 包括约翰·福布斯·纳什、约翰·C·海萨尼,以及莱因哈德·泽尔腾。这三人同时因为他们对博弈论的突出贡献而获得1994年的瑞典银行经济学奖(也称诺贝尔经济学奖)。

"四君子" 包括罗伯特·J·奥曼、肯·宾摩尔、戴维·克瑞普斯,以及阿里尔·鲁宾斯坦。

[编辑]博弈论分类

博弈的分类根据不同的基准也有不同的分类。一般认为,博弈主要可以分为合作博弈和非合作博弈。它们的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。

从行为的时间序列性,博弈论进一步分为两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。通俗的理解:"囚徒困境"就是同时决策的,属于静态博弈;而棋牌类游戏等决策或行动有先后次序的,属于动态博弈

按照参与人对其他参与人的了解程度分为完全信息博弈和不完全信息博弈。完全博弈是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间及收益函数有准确的信息。如果参与人对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的信息,在这种情况下进行的博弈就是不完全信息博弈。

目前经济学家们现在所谈的博弈论一般是指非合作博弈,由于合作博弈论比非合作博弈论复杂,在理论上的成熟度远远不如非合作博弈论。非合作博弈又分为:完全信息静态博弈,完全信息动态博弈,不完全信息静态博弈,不完全信息动态博弈。与上述四种博弈相对应的均衡概念为:纳什均衡(Nash equilibrium),子博弈精炼纳什均衡(subgame perfect Nash equilibrium),贝叶斯纳什均衡(Bayesian Nash equilibrium),精炼贝叶斯纳什均衡(perfect Bayesian Nash equilibrium)。

博弈论还又很多分类,比如:以博弈进行的次数或者持续长短可以分为有限博弈和无限博弈;以表现形式也可以分为一般型(战略型)或者展开型,等等。

[编辑]博弈论的意义

博弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一样,都是从复杂的现象中抽象出基本的元素,对这些元素构成的数学模型进行分析,而后逐步引入对其形势产影响的其他因素,从而分析其结果。

基于不同抽象水平,形成三种博弈表述方式,标准型、扩展型和特征函数型利用这三种表述形式,可以研究形形色色的问题。因此,它被称为“社会科学的数学”从理论上讲,博弈论是研究理性的行动者相互作用的形式理论,而实际上正深入到经济学、政治学、社会学等等,被各门社会科学所应用。

[编辑]博弈论与纳什平衡

博弈论(game theory)对人的基本假定是:人是理性的(rational,或者说自私的),理性的人是指他在具体策略选择时的目的是使自己的利益最大化,博弈论研究的是理性的人之间如何进行策略选择的。

纳什(John Nash)编制的博弈论经典故事"囚徒的困境",说明了非合作博弈及其均衡解的成立,故称"纳什平衡"。

所有的博弈问题都会遇到三个要素。在囚徒的故事中,两个囚徒是当事人(players)又称参与者;当事人所做的选择策略 (strategies)是承认了杀人事实,最后两个人均赢得(payoffs)了中间的宣判结果。如果两个囚徒之中有一个承认杀人,另外一个抵赖,不承认杀人,那么承认者将会得到减刑处理,而抵赖者将会得到最严厉的死刑判决,在纳什故事中两个人都承认了犯罪事实,所以两个囚徒得到的是中间的结果。

类似的: 我们也能从“自私的基因”等理论中看到“纳什平衡”的体现。

在互联网这个原始丛林中:最优策略是如何产生的呢?

[编辑]博弈中最优策略的产生

艾克斯罗德(Robert Axelrod)在开始研究合作之前,设定了两个前提:一、每个人都是自私的;二、没有权威干预个人决策。也就是说,个人可以完全按照自己利益最大化的企图进行决策。在此前提下,合作要研究的问题是:第一、人为什么要合作;第二、人什么时候是合作的,什么时候又是不合作的;第三、如何使别人与你合作。

社会实践中有很多合作的问题。比如国家之间的关税报复,对他国产品提高关税有利于保护本国的经济,但是国家之间互提关税,产品价格就提高了,丧失了竞争力,损害了国际贸易的互补优势。在对策中,由于双方各自追求自己利益的最大化,导致了群体利益的损害。对策论以著名的囚犯困境来描述这个问题。

A和B各表示一个人,他们的选择是完全无差异的。选择C代表合作,选择D代表不合作。如果AB都选择C合作,则两人各得3分;如果一方选C,一方选D,则选C的得零分,选D的得5分;如果AB都选D,双方各得1分。

显然,对群体来说最好的结果是双方都选C,各得3分,共得6分。如果一方选C,一方选D,总体得5分。如果两人都选D,总体得2分。

对策学界用这个矩阵来描述个体理性与群体理性的冲突:每个人在追求个体利益最大化时,就使群体利益受损,这就是囚徒困境。在矩阵中,对于A来说,当对方选 C,他选D得5分,选C只得3分;当对方选D,他选D得1分,选C得零分。因此,无论对方选C或D,对A来说,选D都得分最多。这是A单方面的优超策略。而当两个优超策略相遇,即A,B都选D时,结果是各得1分。这个结果在矩阵中并非最优。困境就在于,每个人采取各自的优超策略时,得出的解是稳定的,但不是帕累托最优的,这个结果体现了个体理性与群体理性的矛盾。在数学上,这个一次性决策的矩阵没有最优解。

如果博弈进行多次,只要对策者知道博弈次数,他们在最后一次肯定采取互相背叛的策略。既然如此,前面的每一次也就没有合作的必要,因此,在次数已知的多次博弈中,对策者没有一次会合作。

如果博弈在多人间进行,而且次数未知,对策者就会意识到,当持续地采取合作并达成默契时,对策者就能持续地各得3分,但如果持续地不合作的话,每个人就永远得1分。这样,合作的动机就显现出来。多次对局下,未来的收益应比现在的收益多一个折现率W,W越大,表示未来的收益越重要。在多人对策持续进行下去,且W比较大,即未来充分重要时,最优的策略是与别人采取的策略有关的。假设某人的策略是,第一次合作,以后只要对方不合作一次,他就永不合作。对这种对策者,当然合作下去是上策。假如有的人不管对方采取什么策略,他总是合作,那么总是对他采取不合作的策略得分最多。对于总是不合作的人,也只能采取不合作的策略。

艾克斯罗德做了一个实验,邀请多人来参加游戏,得分规则与前面的矩阵相同,什么时候结束游戏是未知的。他要求每个参赛者把追求得分最多的策略写成计算机程序,然后用单循环赛的方式将参赛程序两两博弈,以找出什么样的策略得分最高。

第一轮游戏有14个程序参加,再加上艾克斯罗德自己的一个随机程序(即以50%的概率选取合作或不合作),运转了300次。结果得分最高的程序是加拿大学者罗伯布写的"一报还一报"(tit for tat)。这个程序的特点是,第一次对局采用合作的策略,以后每一步都跟随对方上一步的策略,你上一次合作,我这一次就合作,你上一次不合作,我这一次就不合作。艾克斯罗德还发现,得分排在前面的程序有三个特点:第一,从不首先背叛,即"善良的";第二,对于对方的背叛行为一定要报复,不能总是合作,即" 可激怒的";第三,不能人家一次背叛,你就没完没了的报复,以后人家只要改为合作,你也要合作,即"宽容性"。

为了进一步验证上述结论,艾氏决定邀请更多的人再做一次游戏,并把第一次的结果公开发表。第二次征集到了62个程序,加上他自己的随机程序,又进行了一次竞赛。结果,第一名的仍是"一报还一报"。艾氏总结这次游戏的结论是:第一,"一报还一报"仍是最优策略。第二,前面提到的三个特点仍然有效,因为63人中的前15名里,只有第8名的哈灵顿程序是"不善良的",后15名中,只有1个总是合作的是"善良的"。可激怒性和宽容性也得到了证明。此外,好的策略还必须具有的一个特点是"清晰性",能让对方在三、五步对局内辨识出来,太复杂的对策不见得好。"一报还一报"就有很好的清晰性,让对方很快发现规律,从而不得不采取合作的态度。

[编辑]合作的进行过程及规律

"一报还一报"的策略在静态的群体中得到了很好的分数,那么,在一个动态的进化的群体中,这种合作者能否产生、发展、生存下去呢?群体是会向合作的方向进化,还是向不合作的方向进化?如果大家开始都不合作,能否在进化过程中产生合作?为了回答这些疑问,艾氏用生态学的原理来分析合作的进化过程。

假设对策者所组成的策略群体是一代一代进化下去的,进化的规则包括:一,试错。人们在对待周围环境时,起初不知道该怎么做,于是就试试这个,试试那个,哪个结果好就照哪个去做。第二,遗传。一个人如果合作性好,他的后代的合作基因就多。第三,学习。比赛过程就是对策者相互学习的过程,"一报还一报"的策略好,有的人就愿意学。按这样的思路,艾氏设计了一个实验,假设63个对策者中,谁在第一轮中的得分高,他在第二轮的群体中所占比例就越高,而且是他的得分的正函数。这样,群体的结构就会在进化过程中改变,由此可以看出群体是向什么方向进化的。

实验结果很有趣。"一报还一报"原来在群体中占1/63,经过1000代的进化,结构稳定下来时,它占了24%。另外,有一些程序在进化过程中消失了。其中有一个值得研究的程序,即原来前15名中唯一的那个"不善良的"哈灵顿程序,它的对策方案是,首先合作,当发现对方一直在合作,它就突然来个不合作,如果对方立刻报复它,它就恢复合作,如果对方仍然合作,它就继续背叛。这个程序一开始发展很快,但等到除了"一报还一报"之外的其它程序开始消失时,它就开始下降了。因此,以合作系数来测量,群体是越来越合作的。

进化实验揭示了一个哲理:一个策略的成功应该以对方的成功为基础。"一报还一报"在两个人对策时,得分不可能超过对方,最多打个平手,但它的总分最高。它赖以生存的基础是很牢固的,因为它让对方得到了高分。哈灵顿程序就不是这样,它得到高分时,对方必然得到低分。它的成功是建立在别人失败的基础上的,而失败者总是要被淘汰的,当失败者被淘汰之后,这个好占别人便宜的成功者也要被淘汰。

那么,在一个极端自私者所组成的不合作者的群体中,"一报还一报"能否生存呢?艾氏发现,在得分矩阵和未来的折现系数一定的情况下,可以算出,只要群体的 5%或更多成员是"一报还一报"的,这些合作者就能生存,而且,只要他们的得分超过群体的总平均分,这个合作的群体就会越来越大,最后蔓延到整个群体。反之,无论不合作者在一个合作者占多数的群体中有多大比例,不合作者都是不可能自下而上的。这就说明,社会向合作进化的棘轮是不可逆转的,群体的合作性越来越大。艾克斯罗德正是以这样一个鼓舞人心的结论,突破了"囚犯困境"的研究困境。

在研究中发现,合作的必要条件是:第一、关系要持续,一次性的或有限次的博弈中,对策者是没有合作动机的;第二、对对方的行为要做出回报,一个永远合作的对策者是不会有人跟他合作的。

那么,如何提高合作性呢?首先,要建立持久的关系,即使是爱情也需要建立婚姻契约以维持双方的合作。(火车站的小贩为什么要骗人?为什么工作中要形成小组制度?换防的时候一方总是要小小地进攻一下的,在中越前线就是这样)第二、要增强识别对方行动的能力,如果不清楚对方是合作还是不合作,就没法回报他了。第三、要维持声誉,说要报复就一定要做到,人家才知道你是不好欺负的,才不敢不与你合作。第四、能够分步完成的对局不要一次完成,以维持长久关系,比如,贸易、谈判都要分步进行,以促使对方采取合作态度。第五、不要嫉妒人家的成功,"一报还一报"正是这样的典范。第六、不要首先背叛,以免担上罪魁祸首的道德压力。第七、不仅对背叛要回报,对合作也要作出回报。第八、不要耍小聪明,占人家便宜。

艾克斯罗德在《合作的进化》一书结尾提出几个结论。第一、友谊不是合作的必要条件,即使是敌人,只要满足了关系持续,互相回报的条件,也有可能合作。比如,第一次世界大战期间,德英两军在战壕战中遇上了三个月的雨季,双方在这三个月中达成了默契,互相不攻击对方的粮车给养,到大反攻时再你死我活地打。这个例子说明,友谊不是合作的前提。第二、预见性也不是合作的前提,艾氏举出生物界低等动物、植物之间合作的例子来说明这一点。但是,当有预见性的人类了解了合作的规律之后,合作进化的过程就会加快。这时,预见性是有用的,学习也是有用的。

当游戏中考虑到随机干扰,即对策者由于误会而开始互相背叛的情形时,吴坚忠博士经研究发现,以修正的"一报还一报",即以一定的概率不报复对方的背叛,和 "悔过的一报还一报",即以一定的概率主动停止背叛。群体所有成员处理随机环境的能力越强,"悔过的一报还一报"效果越好,"宽大的一报还一报"效果越差。

[编辑]艾克斯罗德的贡献与局限性

艾克斯罗德通过数学化和计算机化的方法研究如何突破囚徒困境,达成合作,将这项研究带到了一个全新境界,他在数学上的证明无疑是十分雄辩和令人信服的,而且,他在计算机模拟中得出的一些结论是非常惊人的发现,比如,总分最高的人在每次博弈中都没有拿到最高分。(刘邦和项羽的战争)

艾氏所发现的"一报还一报"策略,从社会学的角度可以看作是一种"互惠式利他",这种行为的动机是个人私利,但它的结果是双方获利,并通过互惠式利他有可能复盖了范围最广的社会生活,人们通过送礼及回报,形成了一种社会生活的秩序,这种秩序即使在多年隔绝,语言不通的人群之间也是最易理解的东西。比如,哥伦布登上美洲大陆时,与印地安人最初的交往就开始于互赠礼物。有些看似纯粹的利他行为,比如无偿损赠,也通过某些间接方式,比如社会声誉的获得,得到了回报。研究这种行为,将对我们理解社会生活有很重要的意义。

囚徒困境扩展为多人博弈时,就体现了一个更广泛的问题——"社会悖论",或"资源悖论"。人类共有的资源是有限的,当每个人都试图从有限的资源中多拿一点儿时,就产生了局部利益与整体利益的冲突。人口问题、资源危机、交通阻塞,都可以在社会悖论中得以解释,在这些问题中,关键是通过研究,制定游戏规则来控制每个人的行为。

艾克斯罗德的一些结论在中国古典文化道德传统中可以很容易地找到对应,"投桃报李"、"人不犯我,我不犯人"都体现了"tit for tat"的思想。但这些东西并不是最优的,因为"一报还一报"在充满了随机性的现实社会生活里是有缺陷的。对此,孔子在几千年前就说出了"以德报德,以直报怨"这样精彩的修正策略,所谓"直",就是公正,以公正来回报对方的背叛,是一种修正了的"一报还一报",修正的是报复的程度,本来会让你损失5分,现在只让你损失3分,从而以一种公正审判来结束代代相续的报复,形成文明。

但是,艾氏对博弈者的一些假设和结论使其研究不可避免地与现实脱节。首先,《合作的进化》一书暗含着一个重要的假定,即,个体之间的博弈是完全无差异的。现实的博弈中,对策者之间绝对的平等是不可能达到的。一方面,对策者在实际的实力上有差异,双方互相背叛时,可能不是各得1分,而是强者得5分,弱者得0分,这样,弱者的报复就毫无意义。另一方面,即使对局双方确实旗鼓相当,但某一方可能怀有赌徒心理,认定自己更强大,采取背叛的策略能占便宜。艾氏的得分矩阵忽视了这种情形,而这种赌徒心理恰恰在社会上大量引发了零和博弈。因此,程序还可以在此基础上进一步改进。

其次,艾氏认为合作不需预期和信任。这是他受到质疑颇多之处。对策者根据对方前面的战术来制定自己下面的战术,合作要求个体能够识别那些曾经相遇过的个体并且记得与其相互作用的历史,以便作出反应,这些都暗含着"预期"行为。在应付复杂的对策环境时,信任可能是对局双方达成合作的必不可少的环节。但是,预期与信任如何在计算机的程序中体现出来,仍是需要研究的。

最后,重复博弈在现实中是很难完全实现的。一次性博弈的大量存在,引发了很多不合作的行为,而且,对策的一方在遭到对方背叛之后,往往没有机会也没有还手之力去进行报复。比如,资本积累阶段的违约行为,国家之间的核威慑。在这些情况下,社会要使交易能够进行,并且防止不合作行为,必须通过法制手段,以法律的惩罚代替个人之间的"一报还一报",规范社会行为。这是艾克斯罗德的研究对制度学派的一个重要启发。

meira

动态博弈战略行动

在动态博弈中,参与人为了使得其他参与人的选择对自己有利,往往采取一些行动来影响其他参与人对于自己行为的预期。这些行为称为战略行动(strategic move)。

1.首先行动优势

首先行动优势(first-mover advantage)是指,在博弈中首先作出战略选择并采取相应行动的参与人可以获得较多的利益。

2.确实可信的威胁

确实可信的威胁(credible threat)是指,博弈的参与人通过某种行动改变自己的支付函数,从而使得自己的威胁显得可信。参与人为改变博弈结果而采取的措施称为承诺(commitment)。

第四节 不完全信息静态博弈

在许多情况下,参与人对对手的了解往往是不够精确的。这种情况下的博弈就是不完全信息博弈。

举例来说,某一市场原来被A企业所垄断。现在B企业考虑是否进入。B企业知道,A企业是否允许它进入,取决于A企业阻挠B企业进入所花费的成本。如果阻挠的成本低,那么,正如表7-10后两列所表示的,A企业的占优战略是阻挠,博弈有重复剔除的占优战略均衡――A阻挠,B不进入。如果阻挠的成本高,那么,正如表7-10前两列所表示的,A企业的占优战略是默许B进入,博弈有重复剔除的占优战略均衡――A默许,B进入。B企业所不知道的,是A企业的阻挠成本是高是低。这里,某一参与人本人知道、其他参与人则不知道的信息称为私人信息。某一参与人所拥有的全部私人信息称为他的类型。在上述例子中,阻挠成本就是 A的私人信息。高阻挠成本和低阻挠成本则是两种不同的类型。

显然,在这里,B所遇到的,是不确定性条件下的选择问题。因为B不仅不知道A的类型(是高还是低),而且不知道不同类型的分布概率。

解决这类问题的方法之一,就是把不确定性条件下的选择转换为风险条件下的选择。在风险条件下,B虽然不知道A的类型,但可以知道不同类型的分布概率。将不确定性条件下的选择转换为风险条件下的选择,称为海萨尼转换(the Harsanyi transformation)。

按照海萨尼的方法,所有参与人的真实类型都是给定的。其他参与人虽然不清楚某一参与人的真实类型,但知道这些可能出现的类型的分布概率,而且这种概率是公共知识。用上例来说,公共知识不仅意味着B企业知道A企业高阻挠成本与低阻挠成本的分布概率,而且意味着A也清楚B知道这一概率。

通过海萨尼转换,不完全信息博弈变成了完全但不完美信息博弈(games of complete but imperfect information)。这里的不完美信息,就是指其他参与人只知道某一参与人某些方面类型的分布概率,而不知道该参与人在这些方面的真实类型。

在上述转换的基础上,海萨尼提出了贝叶斯纳什均衡(Bayesian Nash equilibrium)。对此,可以作如下解释:在不完全信息静态博弈中,参与人同时行动,没有机会观察到别人的选择。给定其他参与人的战略选择,每个参与人的最优战略依赖于自己的类型。由于每个参与人仅知道其他参与人有关类型的分布概率,而不知道其真实类型,因而,他不可能知道其他参与人实际上会选择什么战略。但是,他能够正确地预测到其他参与人的选择与其各自的有关类型之间的关系。

因此,该参与人的决策目标就是:在给定自己的类型,以及给定其他参与人的类型与战略选择之间关系的条件下,使得自己的期望效用最大化。

贝叶斯纳什均衡是一种类型依赖型战略组合。在给定自己的类型和其他参与人类型的分布概率的条件下,这种战略组合使得每个参与人的期望效用达到了最大化。

回到上面提到的市场进入的例子。在这个例子里,对于挑战者B来说,原垄断者A在阻挠成本方面,存在着两种可能性:高成本或低成本。B不知道A的阻挠成本究竟是高是低,但他知道A在这两种不同阻挠成本下会作出的选择,以及不同阻挠成本(类型)的分布概率。假定高成本的概率为x,则低成本的概率为(1-x)。如果A的阻挠成本高,A将默许B进入市场;如果A的阻挠成本低,A将阻挠B进入市场。在这两种情况下,如表7-10所示,B进入的支付函数分别是得到40和失去10。因此,B选择进入所得到的期望利润为40x+(-10)(1- x),选择不进入的期望利润为0。简单的计算表明,当A阻挠成本高的概率大于20%时,挑战者B选择进入得到的期望利润大于选择不进入的期望利润。此时,选择进入是B的最优选择。此时的贝叶斯纳什均衡为,挑战者B选择进入,高成本原垄断者选择默许,低成本原垄断者选择阻挠。

根据参与者类型的公共知识获得参与者行动的概率,依此决定下一步策略。

第五节 不完全信息动态博弈

在动态博弈中,行动有先后次序,后行动者可以通过观察先行动者的行为,来获得有关先行动者的信息,从而证实或修正自己对先行动者的判断。

如上所述,在不完全信息条件下,博弈的参与人知道其他参与人可能有哪几种类型,也知道不同的类型与相应战略选择之间的关系。但他们并不知道其他参与人的真实类型。在不完全信息静态博弈中,我们是通过海萨尼转换,即通过假定其他参与人知道某一参与人的所属类型的分布概率,来得出博弈的贝叶斯纳什均衡结果的。

而在不完全信息动态博弈中,问题变得更加简单。博弈开始时,某一参与人既不知道其他参与人的真实类型,也不知道其他参与人所属类型的分布概率。他只是对这一概率分布有自己的主观判断,即有自己的信念。博弈开始后,该参与人将根据他所观察到的其他参与人的行为,来修正自己的信念。并根据这种不断变化的信念,作出自己的战略选择。

对应于不完全信息动态博弈的均衡概念是精炼贝叶斯均衡(perfect Bayesian equilibrium)。这个概念是完全信息动态博弈的子博弈精炼纳什均衡与不完全信息静态均衡的贝叶斯(纳什)均衡的结合。

具体来说,精炼贝叶斯均衡是所有参与人战略和信念的一种结合。它满足如下条件:第一,在给定每个参与人有关其他参与人类型的信念的条件下,该参与人的战略选择是最优的。第二,每个参与人关于其他参与人所属类型的信念,但是使用贝叶斯法则从所观察到的行为中获得的。

贝叶斯法则是概率统计中的应用所观察到的现象对有关概率分布的主观判断(即先验概率)进行修正的标准方法。采用上一节的例子,可以将贝叶斯规则的分析思路表达如下。

挑战者B不知道原垄断者A是属于高阻挠成本类型还是低阻挠成本类型,但B知道,如果A属于高阻挠成本类型,B进入市场时A进行阻挠的概率是20%(此时A为了保持垄断带来的高利润,不计成本地拼命阻挠);如果A属于低阻挠成本类型,B进入市场时A进行阻挠的概率是100%。

博弈开始时,B认为A属于高阻挠成本企业的概率为70%,因此,B估计自己在进入市场时,受到A阻挠的概率为:

0.7×0.2+0.3×1=0.44

0.44是在B给定A所属类型的先验概率下,A可能采取阻挠行为的概率。

当B进入市场时,A确实进行阻挠。使用贝叶斯法则,根据阻挠这一可以观察到的行为,B认为A属于高阻挠成本企业的概率变成

A属于高成本企业的概率=0.7(A属于高成本企业的先验概率)×0.2(高成本企业对新进入市场的企业进行阻挠的概率)÷0.44=0.32

根据这一新的概率,B估计自己在进入市场时,受到A阻挠的概率为:

0.32×0.2+0.68×1=0.744

如果B再一次进入市场时,A又进行了阻挠。使用贝叶斯法则,根据再次阻挠这一可观察到的行为,B认为A属于高阻挠成本企业的概率变成

A属于高成本企业的概率=0.32(A属于高成本企业的先验概率)×0.2(高成本企业对新进入市场的企业进行阻挠的概率)÷0.744=0.086

这样,根据A一次又一次的阻挠行为,B对A所属类型的判断逐步发生变化,越来越倾向于将A判断为低阻挠成本企业了。

以上例子表明,在不完全信息动态博弈中,参与人所采取的行为具有传递信息的作用。尽管A企业有可能是高成本企业,但A企业连续进行的市场进入阻挠,给B企业以A企业是低阻挠成本企业的印象,从而使得B企业停止了进入地市场的行动。

应该指出的是,传递信息的行为是需要成本的。假如这种行为没有成本,谁都可以效仿,那么,这种行为就达不到传递信息的目的。只有在行为需要相当大的成本,因而别人不敢轻易效仿时,这种行为才能起到传递信息的作用。

传递信息所支付的成本是由信息的不完全性造成的。但不能因此就说不完全信息就一定是坏事。研究表明,在重复次数有限的囚徒困境博弈中,不完全信息可以导致博弈双方的合作。理由是:当信息不完全时,参与人为了获得合作带来的长期利益,不愿过早暴露自己的本性。这就是说,在一种长期的关系中,一个人干好事还是干坏事,常常不取决于他的本性是好是坏,而在很大程度上取决于其他人在多大程度上认为他是好人。如果其他人不知道自己的真实面目,一个坏人也会为了掩盖自己而在相当长的时期内做好事。

根据参与者类型的公共知识以及参与者历史行为来获得参与者行动的概率,依此决定下一步策略。

kikcik

没听说过,不过倒是听说过一个纳什平衡,和博弈论有关的东西。

子博弈完美纳什均衡

“子博弈精炼纳什均衡”的创立者是1994年诺贝尔经济学奖获奖者、莱茵哈德·泽尔腾。泽尔腾则在60年代中期将纳什均衡概念引入动态分析。 在1965年发表《需求减少条件下寡头垄断模型的对策论描述》一文,提出了“子博弈精炼纳什均衡”的概念,又称“子对策完美纳什均衡”。这一研究对纳什均衡进行了第一次改进,选择了更具说服力的均衡点。海萨尼在60年代末把不完全信息引入博弈分析。 子博弈精炼纳什均衡用于区分动态博弈中的"合理纳什均衡"与"不合理纳什均衡",将纳什均衡中包含有不可置信威胁策略的均衡剔除出去,就是说,使最后的均衡中不再包含有不可置信威胁策略的存在。
2023-07-20 17:41:061

纳什均衡解和子博奕精炼均衡解有什么关系

子博弈精炼纳什均衡” (Subgame Perfect Nash Equilibrium)的概念,就是这样一种新的博弈解。子博弈精炼纳什均衡不仅在一定程度上解决了Nash均衡的不足,而且对完全信息的动态博弈问题尤为适用。纳什均衡在博弈时,对阵双方均有自己的策略集合,每个策略集合都对应着自己的利益得失,以博弈论中最常见的一个囚徒困境为例:两名囚徒(共犯)被警察蜀黍捉住,分别被关在两件刑讯室里,如果两名囚徒均认罪,则两人都被关3年有期徒刑;如果两人不认罪,则两人都被关1年;如果一方认罪,一方不认罪,则认罪那方获得释放,而不认罪那方要被关5年。
2023-07-20 17:41:131

子博弈精炼纳什均衡的定义

子博弈:一个扩展式表示博弈的子博弈G是由一个单结信息集x开始的与所有该决策结的后续结(包括终点结)组成的能自成一个博弈的原博弈的一部分。对于扩展式博弈的策略组合S*=(S1*,…,Si*,…,Sn*) ,如果它是原博弈的纳什均衡;它在每一个子博弈上也都构成纳什均衡,则它是一个子博弈精炼纳什均衡。博弈论专家常常使用“序贯理性”(Sequential rationality):指不论过去发生了什么,参与人应该在博弈的每个时点上最优化自己的策略。子博弈精炼纳什均衡所要求的正是参与人应该是序惯理性的。对于有限完全信息博弈,逆向归纳法是求解子博弈精炼纳什均衡的最简便的方法。因为有限完美信息博弈的每一个决策结都开始一个子博弈。求解方法: 最后一个结点上的子博弈(纳什均衡)→倒数第二个(纳什均衡) → ······ → 初始结点上的子博弈(纳什均衡)。
2023-07-20 17:41:301

动态子博弈分析中为什么要引入子博弈精炼纳什均衡

泽尔腾则在60年代中期将纳什均衡概念引入动态分析。在1965年发表《需求减少条件下寡头垄断模型的对策论描述》一文,提出了“子博弈精炼纳什均衡”的概念,又称“子对策完美纳什均衡”。这一研究对纳什均衡进行了第一次改进,选择了更具说服力的均衡点。海萨尼在60年代末把不完全信息引入博弈分析。将纳什均衡中包含的不可置信的威胁策略剔除出去。它要求参与者的决策在任何时点上都是最优的,决策者要“随机应变”,“向前看”,而不是固守旧略。由于剔除了不可置信的威胁,在许多情况下,精炼纳什均衡也就缩小了纳什均衡的个数。这一点对预测分析是非常有意义的。用动态博弈理论来讨论实际究竟发生哪个纳什均衡。给定“历史”,每一个行动选择开始至博弈结束构成了一个博弈,称为“子博弈”。只有当参与人的策略在每一个子博弈中都构成纳什均衡叫做精炼纳什均衡。或者说,组成精炼纳什均衡的策略必须在每一个子博弈中都是最优的。
2023-07-20 17:41:461

子博弈精炼纳什均衡不一定是纳什均衡,纳什均衡也不一定是子博弈精炼纳什均衡。( )

【答案】:错子博弈精炼纳什均衡首先必须是一个纳什均衡,但纳什均衡不一定是子博弈精炼纳什均衡,因为子博弈纳什均衡是指在剔除了不可置信的威胁后,在子博弈中所获得的唯一的纳什均衡。
2023-07-20 17:41:561

子博弈精炼纳什均衡的应用举例

在表1描述的博弈模型中,每一次微观主体间的博弈均可看作一个子博弈。子博弈精炼纳什均衡包含两层含义:(1)它是原博弈的纳什均衡;(2)它在每一个子博弈上给出纳什均衡。子博弈精炼纳什均衡就是要剔除那些只在特定情况下是合理的,而在其他情况下并不合理的行动规则。表1 微观主体间的博弈子博弈精炼纳什均衡在表1中,a代表只有一个微观主体创新时所带来的收益,c代表该微观主体创新所需付出的成本。当只有一个微观主体进行创新时将会获得创新带来的全部收益(a-c),而当两个主体同时创新时,收益将会减半(a-c)/2。一般情况下“a-c>0”,则很明显在这个博弈过程中,(创新,创新)是一个纳什均衡,更严格地说,是一个严格优势策略均衡。依此类推,可以得出,在每一次新的金融规制后,(创新,创新)这个策略都将是至下次新规制出现前的子博弈的纳什均衡。因此,在利润的驱动下,微观主体都会选择创新这样一个策略。举例的进一步分析在市场进入博弈中,在给定企业B已经进入的情况下,在位者的“斗争”,“高价”策略已不再是最优的,这种“斗争”是不可置信的威胁,因为斗争的结果是没有利润;而合作会带来50单位利润。所以,(进入,高价)不是一个精炼纳什均衡。剔除这个均衡,可以证明,(进入,低价)是唯一的子博弈精炼纳什均衡。在动态博弈中,参与人的行动有先后顺序,后行动的参与人在自己行动之前就可以观察到先行动者(参与人)的行为,并在此基础上选择相应的策略。而且,由于先行动者拥有后行动者可能选择策略的完全信息,因而先行动者在选择自己的策略时,就可以预先考虑自己的选择对后行动者选择的影响,并采取相应的对策。利用房地产开发的例子,讨论子博弈精炼纳什均衡。表2给出了静态条件下双方参与人的收益情况。表2 房地产开发博弈(静态)的收收益矩阵子博弈精炼纳什均衡从表2可以知道,该博弈有两个纳什均衡,即(A开发,B不开发)和(A不开发,B开发),我们无法确定是开发商A选择开发,开发商B选择不开发,还是恰恰相反的结果。现在,我们讨论动态博弈。假定房地产开发商A是先行动者。在行动之前,开发商A对对手开发商B的策略进行了预测。在行动开始之前的A看来,如果不计得失,B有四种策略可供选择:策略一:无论A是否选择开发,B选择开发。策略二:若A选择开发,B也选择开发;若A选择不开发,B也选择不开发。策略三:若A选择开发,B就选择不开发;若A选择不开发,B就选择开发。策略四:无论A是否选择开发,B都选择不开发。在表2的基础上,结合A先行动,B可能选择的四种策略,不难得出表3。表3 先行动者A对B预测结果的收益矩阵子博弈精炼纳什均衡由表3可以看出,在开发商A先行动的情况下,开发商B可供选择的策略中,策略一只包括了上述两个纳什均衡中的后一种均衡,即(A不开发,B开发),而没有包括前一种纳什均衡,即(A开发,B不开发);策略二上述两种纳什均衡都没有包括;策略四只包括了上述两种纳什均衡中的前一种均衡,即(A开发,B不开发),而未包括后一种纳什均衡,即(A不开发,B开发);只有策略三既包括了上述两种纳什均衡中的前一种均衡,又包括了后一种均衡。也就是说,如果B选择策略三,那么,无论A作出什么选择,B的回应都能达到纳什均衡。反过来,在给定B会选择策略三来回应A的选择的前提下,开发是A的占优选择。因此,A一定会选择开发
2023-07-20 17:42:151

考虑下列扩展型博弈,找出每一个博弈的子博弈精炼纳什均衡。

【答案】:利用逆向归纳法,该博弈的子博弈精炼纳什均衡是(2,0)。$利用逆向归纳法,该博弈的子博弈精炼纳什均衡是(2,1)。
2023-07-20 17:42:311

为什么说纳什均衡是博弈分析中最重要的概念

泽尔腾则在60年代中期将纳什均衡概念引入动态分析。在1965年发表《需求减少条件下寡头垄断模型的对策论描述》一文,提出了“子博弈精炼纳什均衡”的概念,又称“子对策完美纳什均衡”。这一研究对纳什均衡进行了第一次改进,选择了更具说服力的均衡点。海萨尼在60年代末把不完全信息引入博弈分析。将纳什均衡中包含的不可置信的威胁策略剔除出去。它要求参与者的决策在任何时点上都是最优的,决策者要“随机应变”,“向前看”,而不是固守旧略。由于剔除了不可置信的威胁,在许多情况下,精炼纳什均衡也就缩小了纳什均衡的个数。这一点对预测分析是非常有意义的。用动态博弈理论来讨论实际究竟发生哪个纳什均衡。给定“历史”,每一个行动选择开始至博弈结束构成了一个博弈,称为“子博弈”。只有当参与人的策略在每一个子博弈中都构成纳什均衡叫做精炼纳什均衡。或者说,组成精炼纳什均衡的策略必须在每一个子博弈中都是最优的。
2023-07-20 17:42:442

什么是子博弈精炼纳什均衡?

完全信息动态博弈也就是子博弈精炼纳什均衡子博弈精炼纳什均衡就是有前提假设的,满足某些标准的(例如在序贯博弈的有前提的子博弈)中进行博弈分析得到的纳什均衡。正式定义:子博弈:一个扩展式表示博弈的子博弈G是由一个单结信息集x开始的与所有该决策结的后续结(包括终点结)组成的能自成一个博弈的原博弈的一部分。   对于扩展式博弈的策略组合S*=(S1*,…,Si*,…,Sn*) ,如果它是原博弈的纳什均衡;它在每一个子博弈上也都构成纳什均衡,则它是一个子博弈精炼纳什均衡。 子博弈精炼纳什均衡用于区分动态博弈中的"合理纳什均衡"与"不合理纳什均衡",将纳什均衡中包含有不可置信威胁策略的均衡剔除出去,就是说,使最后的均衡中不再包含有不可置信威胁策略的存在。举例说明:  子博弈精炼纳什均衡   在表1中,a代表只有一个微观主体创新时所带来的收益,c代表该微观主体创新所需付出的成本。当只有一个微观主体进行创新时将会获得创新带来的全部收益(a-c),而当两个主体同时创新时,收益将会减半(a-c)/2。一般情况下“a-c>0”,则很明显在这个博弈过程中,(创新,创新)是一个纳什均衡,更严格地说,是一个严格优势策略均衡。依此类推,可以得出,在每一次新的金融规制后,(创新,创新)这个策略都将是至下次新规制出现前的子博弈的纳什均衡。因此,在利润的驱动下,微观主体都会选择创新这样一个策略。   举例的进一步分析  在市场进入博弈中,在给定企业B已经进入的情况下,在位者的“斗争”,“高价”策略已不再是最优的,这种“斗争”是不可置信的威胁,因为斗争的结果是没有利润;而合作会带来50单位利润。所以,(进入,高价)不是一个精炼纳什均衡。剔除这个均衡,可以证明,(进入,高价)是唯一的子博弈精炼纳什均衡。   在动态博弈中,参与人的行动有先后顺序,后行动的参与人在自己行动之前就可以观察到先行动者(参与人)的行为,并在此基础上选择相应的策略。而且,由于先行动者拥有后行动者可能选择策略的完全信息,因而先行动者在选择自己的策略时,就可以预先考虑自己的选择对后行动者选择的影响,并采取相应的对策。   利用房地产开发的例子,讨论子博弈精炼纳什均衡。表2给出了静态条件下双方参与人的收益情况。   表2 房地产开发博弈(静态)的收收益矩阵  子博弈精炼纳什均衡   从表2可以知道,该博弈有两个纳什均衡,即(A开发,B不开发)和(A不开发,B开发),我们无法确定是开发商A选择开发,开发商B选择不开发,还是恰恰相反的结果。   现在,我们讨论动态博弈。假定房地产开发商A是先行动者。在行动之前,开发商A对对手开发商B的策略进行了预测。在行动开始之前的A看来,如果不计得失,B有四种策略可供选择:   策略一:无论A是否选择开发,B选择开发。   策略二:若A选择开发,B也选择开发;若A选择不开发,B也选择不开发。   策略三:若A选择开发,B就选择不开发;若A选择不开发,B就选择开发。   策略四:无论A是否选择开发,B都选择不开发。   在表2的基础上,结合A先行动,B可能选择的四种策略,不难得出表3。   表3 先行动者A对B预测结果的收益矩阵   子博弈精炼纳什均衡   由表3可以看出,在开发商A先行动的情况下,开发商B可供选择的策略中,策略一只包括了上述两个纳什均衡中的后一种均衡,即(A不开发,B开发),而没有包括前一种纳什均衡,即(A开发,B不开发);策略二上述两种纳什均衡都没有包括;策略四只包括了上述两种纳什均衡中的前一种均衡,即(A开发,B不开发),而未包括后一种纳什均衡,即(A不开发,B开发);只有策略三既包括了上述两种纳什均衡中的前一种均衡,又包括了后一种均衡。也就是说,如果B选择策略三,那么,无论A作出什么选择,B的回应都能达到纳什均衡。反过来,在给定B会选择策略三来回应A的选择的前提下,开发是A的占优选择。因此,A一定会选择开发
2023-07-20 17:43:011

子博弈完美纳什均衡与子博弈精炼纳什均衡什么关系

子博弈完美纳什均衡与子博弈精炼纳什均衡是一个意思,只不过英语中有同一个表述,翻译成汉语就有了两个表述,一个意思。
2023-07-20 17:43:142

看图找出子博弈精炼纳什均衡 有人会做这道博弈论的题目吗?

有子博弈精炼纳什均衡,写出每个博弈参与
2023-07-20 17:43:392

动态博弈分析中为什么要引入博弈精炼纳什均衡

泽尔腾则在60年代中期将纳什均衡概念引入动态分析。在1965年发表《需求减少条件下寡头垄断模型的对策论描述》一文,提出了“子博弈精炼纳什均衡”的概念,又称“子对策完美纳什均衡”。这一研究对纳什均衡进行了第一次改进,选择了更具说服力的均衡点。海萨尼在60年代末把不完全信息引入博弈分析。将纳什均衡中包含的不可置信的威胁策略剔除出去。它要求参与者的决策在任何时点上都是最优的,决策者要“随机应变”,“向前看”,而不是固守旧略。由于剔除了不可置信的威胁,在许多情况下,精炼纳什均衡也就缩小了纳什均衡的个数。这一点对预测分析是非常有意义的。用动态博弈理论来讨论实际究竟发生哪个纳什均衡。给定“历史”,每一个行动选择开始至博弈结束构成了一个博弈,称为“子博弈”。只有当参与人的策略在每一个子博弈中都构成纳什均衡叫做精炼纳什均衡。或者说,组成精炼纳什均衡的策略必须在每一个子博弈中都是最优的。
2023-07-20 17:43:482

子博弈完美纳什均衡

无论Y是多少,1都能在第二次出价时保证X>=Y,即2出价后,结果1是被1的再次出价超过,白白损失Y,收益为-Y;2是以Y=2的价格得到物品和平白失去Y的概率各为50%。收益为-2或1,期望收益为-2*50%+1*50%=-0.5,无论如何,Y的期望收益都是负,因此,2只能接受Y<=0.5的出价,当X>=0.5时,2要么出价Y=2,要么Y=0放弃出价1了解2的处境,因此:第一种情况,1为了自己利益最大化,第一次出价X1=0,这样使2只能出价Y=2,则第二次出价X=2第二种情况,1为了自己利益最大化,第一次出价X1=0.5,这样使2只能出价Y=2或Y=0,则第二次出价X>0或X=2两种情况其实对2的收益没有影响,但由于对1的出价有递增的限制,所以1的期望利益受到一点影响(-0.5)
2023-07-20 17:43:551

博弈论的纳什均衡

纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:偶对(a, b*) ≤ 偶对(a*,b*) ≥偶对(a*,b)。对于非零和博弈也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:对局中人A的偶对(a, b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对(a*,b*)。有了上述定义,就立即得到纳什定理:任何具有有限纯策略的二人博弈至少有一个均衡偶。这一均衡偶就称为纳什均衡点。纳什定理的严格证明要用到不动点理论,不动点理论是经济均衡研究的主要工具。通俗地说,寻找均衡点的存在性等价于找到博弈的不动点。   纳什均衡点概念提供了一种非常重要的分析手段,使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。但纳什均衡点定义只局限于任何局中人不想单方面变换策略,而忽视了其他局中人改变策略的可能性,因此,在很多情况下,纳什均衡点的结论缺乏说服力,研究者们形象地称之为“天真可爱的纳什均衡点”。塞尔顿(R·Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点,从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡。 囚徒困境在博弈论中,含有占优战略均衡的一个著名例子是由塔克给出的“囚徒困境”(prisoner"s dilemma)博弈模型。该模型用一种特别的方式为我们讲述了一个警察与小偷的故事。假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果两个犯罪嫌疑人都坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪,各被判刑8年;如果只有一个犯罪嫌疑人坦白,另一个人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。下表给出了这个博弈的支付矩阵。 囚徒困境博弈 [Prisoner"s dilemma]A╲B 坦白 抵赖 坦白 8,8 0,10 抵赖 10,0 1,1 对A来说,尽管他不知道B作何选择,但他知道无论B选择什么,他选择“坦白”总是最优的。显然,根据对称性,B也会选择“坦白”,结果是两人都被判刑8年。但是,倘若他们都选择“抵赖”,每人只被判刑1年。在表2.2中的四种行动选择组合中,(抵赖、抵赖)是帕累托最优,因为偏离这个行动选择组合的任何其他行动选择组合都至少会使一个人的境况变差。但是,“坦白”是任一犯罪嫌疑人的占优战略,而(坦白,坦白)是一个占优战略均衡,即纳什均衡。不难看出,此处纳什均衡与帕累托存在冲突。单从数学角度讲,这个理论是合理的,也就是选择都坦白。但在这样多维信息共同作用的社会学领域显然是不合适的。正如中国古代将官员之间的行贿受贿称为“陋规”而不是想方设法清查,这是因为社会体系给人行为的束缚作用迫使人的策发生改变。比如,从心理学角度讲,选择坦白的成本会更大,一方坦白害得另一方加罪,那么事后的报复行为以及从而不会轻易在周围知情人当中的“出卖”角色将会使他损失更多。而8年到10年间的增加比例会被淡化,人的尊严会使人产生复仇情绪,略打破“行规”。我们正处于大数据时代,向更接近事实的处理一件事就要尽可能多地掌握相关资料并合理加权分析,人的活动动影像动因复杂,所以囚徒困境只能作为简化模型参考,具体决策还得具体分析。 智猪博弈 一、经济学中的“智猪博弈”(Pigs"payoffs) 这个例子讲的是:假设猪圈里有一头大猪、一头小猪。猪圈的一头有猪食槽(两猪均在食槽端),另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是在去往食槽的路上会有两个单位猪食的体能消耗,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;同时行动(去按按钮),收益比是7∶3;小猪先到槽边,收益比是6∶4。那么,在两头猪都有智慧的前提下,最终结果是小猪选择等待。智猪博弈由纳什于1950年提出。实际上小猪选择等待,让大猪去按控制按钮,而自己选择“坐船”(或称为搭便车)的原因很简单:在大猪选择行动的前提下,小猪选择等待的话,小猪可得到4个单位的纯收益,而小猪行动的话,则仅仅可以获得大猪吃剩的1个单位的纯收益,所以等待优于行动;在大猪选择等待的前提下,小猪如果行动的话,小猪的收入将不抵成本,纯收益为-1单位,如果小猪也选择等待的话,那么小猪的收益为零,成本也为零,总之,等待还是要优于行动。用博弈论中的报酬矩阵可以更清晰的刻画出小猪的选择:   小猪    行动 等待 大猪 行动 5,1 4,4  等待 9,-1 0,0 从矩阵中可以看出,当大猪选择行动的时候,小猪如果行动,其收益是1,而小猪等待的话,收益是4,所以小猪选择等待;当大猪选择等待的时候,小猪如果行动的话,其收益是-1,而小猪等待的话,收益是0,所以小猪也选择等待。综合来看,无论大猪是选择行动还是等待,小猪的选择都将是等待,即等待是小猪的占优策略。在小企业经营中,学会如何“搭便车”是一个精明的职业经理人最为基本的素质。在某些时候,如果能够注意等待,让其他大的企业首先开发市场,是一种明智的选择。这时候有所不为才能有所为!高明的管理者善于利用各种有利的条件来为自己服务。“搭便车”实际上是提供给职业经理人面对每一项花费的另一种选择,对它的留意和研究可以给企业节省很多不必要的费用,从而使企业的管理和发展走上一个新的台阶。这种现象在经济生活中十分常见,却很少为小企业的经理人所熟识。在智猪博弈中,虽然小猪的“捡现成”的行为从道义上来讲令人不齿,但是博弈策略的主要目的不正是使用谋略最大化自己的利益吗? 美女的硬币 一位陌生美女主动过来和你搭讪,并要求和你一起玩个游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”听起来不错的提议。如果我是男性,无论如何我是要玩的,不过经济学考虑就是另外一回事了,这个游戏真的够公平吗? 绅士/美女 女正面 女反面 正面 3,-3 -2,+2 反面 -2,+2 1,-1 假设我们出正面的概率是x,反面的概率是1-x。为了使利益最大化,应该在对手出正面或反面的时候我们的收益都相等,不然对手总是可以改变正反面出现的概率让我们的总收入减少,由此列出方程就是3x+(-2)*(1-x)=(-2)*x+1*(1-x)这个方程通俗的说就是在对手一直出正面你得到的利益,和你对手一直出反面得到利益是一样的且最大。解方程得x=3/8,也就是说平均每八次出示3次正面,5次反面是我们的最优策略。而将x=3/8代入到收益表达式3*x+(-2)*(1-x)中就可得到每次的期望收入,计算结果是-1/8元。同样,设美女出正面的概率是y,反面的概率是1-y,列方程-3y+2(1-y)=2y+(-1)*(1-y)解得y也等于3/8,而美女每次的期望收益则是2(1-y)-3y=1/8元。这告诉我们,在双方都采取最优策略的情况下,平均每次美女赢1/8元。其实只要美女采取了(3/8,5/8)这个方案,不论你再采用什么方案,都是不能改变局面的。如果全部出正面,每次的期望收益是(3+3+3-2-2-2-2-2)/8=-1/8元如果全部出反面,每次的期望收益也是(-2-2-2+1+1+1+1+1)/8=-1/8元。而任何策略无非只是上面两种策略的线性组合,所以期望还是-1/8元。但是当你也采用最佳策略时,至少可以保证自己输得最少。否则,你肯定就会被美女采用的策略针对,从而赔掉更多。看起来这个博弈模型似乎没有什么用处,但是其实这可能牵涉了金融市场定价中最重要的一个模型:定价权重模型了。总的来说“博弈论”其本质是将日常生活中的竞争矛盾以游戏的形式表现出来,并使用数学和逻辑学的方法来分析事物的运作规律。既然有游戏的参与者那么也必然存在游戏规则的制定者。深入的了解竞争行为的本质,有助于我们分析和掌握竞争中事物之间的关系,更方便我们对规则进行制定和调整,使其最终按照我们所预期的目的进行运作。
2023-07-20 17:44:111

有限次囚徒困境的子博弈完美纳什均衡是“抵赖”还是“坦白”,为什么?

坦白
2023-07-20 17:44:277

怎么看这个情侣博弈的纳什均衡和逆向归纳策略?求详细过程。

(1)先考虑女的的选择如果男的选足球,此时女的选足球的利得是1,而选择芭蕾的利得为0,所以女的肯定选择足球。如果男的选芭蕾,此时女的选芭蕾的利得是2,而选择足球的利得为-1,所以女的肯定选择芭蕾。(2)在考虑男的选择根据(1)的分析,男的如果选择足球,那么女的也会选择足球,此时男的的利得为2;男的如果选择芭蕾,那么女的也会选择芭蕾,此时男的的利得为1;显然男的会选择足球(3)子博弈精炼纳什均衡根据(1),(2)可知子博弈精炼纳什均衡为(足球,(足球,芭蕾))或者写成男:足球女:若男选足球,则足球;若男选芭蕾,则芭蕾此时的均衡路径为(足球,足球),均衡利得为(2,1)
2023-07-20 17:44:431

博弈论概念问题

推荐一本书,概率论与数理统计。。
2023-07-20 17:44:513

博弈论沉思07完全信息动态搏弈

36 博弈的基本概念 如房地产开发博弈中,如果A不知道市场需求,而B知道,则A的信息集为{大,小},B的信息集为{大}或{小}完美信息:指一个参与人对其他参与人(包括“自然”)的行动选择有准确了解的情况,即每一个信息集只包含一个值。 再如求爱博弈中,如果被求爱者不知道求爱者到底是品德优良还是品德败坏,而求爱者知道,刚被求爱者的信息集为{优良,恶劣},求爱者的信息集为{优良}或{恶劣}。 支付函数 :参与人从博弈中获得的效用水平,或者指参与人得到的期望效用水平。 ui表示第i个参与人的支付(效用水平)。 u=(u1,u2,…,ui,…,un)为n个人的支付组合。 ui是所有参与人战略选择的函数: ui=ui{s1,s2,…,si,…,sn} 博弈的基本特征是一个参与人的支付不仅取决于自己的战略选择,而且取决于所有其他参与人的战略选择。 37 博弈的战略式表述与扩展式表达 战略式表述:适用于静态博弈。扩展式表述:适用于动态博弈。 博弈的基本构造: 枝: 枝是从一个决策结到它的直接后续结的连线,每一个枝代表参与人的一个行动选择。 不同的博弈树可以代表相同的博弈,但是有一个基本规则: 一个参与人在决策之前知道的事情,必须出现在该参与人决策结之前。 38 完全信息动态搏弈——子博弈精炼纳什均衡 考虑下列问题: 子博弈精练纳什均衡: 子博弈精炼纳什均衡——不可置信威胁。 美国普林斯顿大学古尔教授在1997年的《经济学透视》里发表文章,提出一个例子说明威胁的可置性问题: 策略即:如果他选择什么,我就怎样行动的相机行动方案。在扩展式博弈里,参与人是相机行事,即“等待”博弈到达一个自己的信息集(包含一个或多个决策结后,再采取行动方案)。 39扩展式博弈的战略组合 纳什均衡 只 要求均衡战略在均衡路径的决策结上是最优的 ; 而构成子 博弈精练纳什均衡 不仅要求 在均衡路径上策略是最优的 ,而且在 非均衡路径上的决策结上也是最优的 。这是纳什均衡与子博弈精练纳什均衡的实质区别。 战略是参与人行动规则的完备描述 ,它要告诉参与人在每一种可预见的情况下(即每一个决策结)上选择什么行动,即使这种情况实际上没有发生(甚至参与人并不预期它会发生)。 因此, 只有当一个战略规定的行动规则在所有可能的情况下都是最优的,它才是一个合理的可置信的战略 ,子博弈精练纳什均衡就是要 剔除那些只在特定情况下是合理的而在其他情况下不合理的行动规则。 24强盗分赃(向前展望,倒后推理) 参与人1(丈夫)和参与人2(妻子)必须独立决定出门时是否带伞。他们知道下雨和不下雨的可能性均为50%,支付函数为:如果只有一人带伞,下雨时带伞者的效用为-2.5,不带伞者的效用为-3不下雨时带伞的效用为-1,不带的效用为0;如两人都不带伞,下雨时每人的效用为-5,不下雨时每人的效用为1;给出下列四种情况下的扩展式及战略式表述: (1)两人出门前都不知道是否会下雨;并且两人同时决定是否带伞(即每一方在决策时都不知道对方的决策); (2)两人在出门前都不知道是否会下雨,但丈夫先决策,妻子观察到丈夫是否带伞后才决定自己是否带伞; (3)丈夫出门前知道是否会下雨,但妻子不知道,但丈夫先决策,妻子后决策; (4),同(3),但妻子先决策,丈夫后决策。
2023-07-20 17:45:061

用逆向归纳法求纳什均衡捷都是有解的吗

不是的。无限博弈用逆向归纳法就不适合。逆向归纳法是寻找子博弈精炼纳什均衡的最简便的方法,逆向归纳解一定是子博弈精炼解.对于无限博弈来说,逆向归纳法不适用,此时的子博弈纳什均衡要用别的方法来求解。
2023-07-20 17:45:182

子博弈完美均衡和子博弈完美纳什均衡有什么区别吗?

子博弈完美均衡一定是纳什均衡,所以你都说的子博弈完美纳什均衡就是子博弈完美均衡。怎么证明呢?首先分类讨论:1)同时博弈:他的子博弈就是他本身,也只有这一个子博弈,所以子博弈完美均衡一定是完整博弈的纳什均衡。2)序贯博弈:因为序贯博弈的子博弈,我们拿经典的sex battle举例子,他的子博弈有三个,由于两个子博弈都是简单得决策问题,我们可以得出他们的纳什均衡,最后得出子博弈完美均衡就是 (芭蕾/芭蕾,拳击/拳击)。
2023-07-20 17:45:321

理论概述

博弈理论是研究博弈中参与者各自所选策略的科学,关注的是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。其实质是研究组织或人的行为,并假定组织或人是理性的,在一定约束条件下,追求其自身利益的最大化。博弈论的基本概念包括参与人、行动、信息、战略、支付(效用)函数、结果和均衡等7个基本要素(方德英,2007)。博弈可以分为很多类别,其信息结构每个方面的特征都可以作为博弈分类的依据。根据参与者能否达成一个具有约束力的有效协议(Binding Agreement),博弈可分为合作博弈(Cooperative Game)与非合作博弈(Non-cooperative Game)。合作博弈与非合作博弈之间的区别主要在于人们的行为相互作用时,当事人能否达成一个具有约束力的协议。合作博弈强调的是团体理性、效率、公正、公平。非合作博弈主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调的是个人理性、个人最优决策,其结果可能是有效率的,也可能是无效率的(焦爱英,2008)。根据全体参与者的支付总和是否为零,博弈还可以分为零和博弈(Zero-sum Game)和非零和博弈(Non-zero-sum Game)。零和博弈强调团体理性、效率、公正、公平,它实际上就是一种“双赢”或“多赢”策略,通常能获得较高的效率或效益;非零和博弈是一种合作效益大于零的合作(张小军,2007)。博弈的划分还可以从另外两个角度进行。第一个角度是参与人行动的先后顺序。从这个角度,博弈可以划分为静态博弈和动态博弈。静态博弈指的是博弈中,参与人同时选择行动或虽非同时但后行动者并不知道前面行动者采取了什么具体行动;动态博弈指的是参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。第二个角度是参与人对有关其他参与人(对手)的特征、战略空间及支付函数的知识,从这个角度,博弈可以划分为完全信息博弈和不完全信息博弈。完全信息指的是每一个参与人对所有其他参与人(对手)的特征、战略空间及支付函数有准确的知识;否则,就是不完全信息。将上述两个角度的划分结合起来,我们就得到4 种不同类型的博弈,即完全信息静态博弈、完全信息动态博弈、不完全信息静态博弈、不完全信息动态博弈。与上述4类博弈相对应的是4个均衡概念,即纳什均衡(纳什,1950 ,1951)、子博弈精炼纳什均衡(泽尔腾,1965)、贝叶斯纳什均衡(海萨尼,1967 ,1968)及精炼贝叶斯纳什均衡(泽尔腾,1975;Kreps,Wilson,1982;Fudenberg,Tirole,1991)(表3-1)。表3-1 博弈的分类及对应的均衡概念续表(据谢识予,2002)
2023-07-20 17:45:551

博弈论的博弈类型

博弈的分类根据不同的基准也有不同的分类。一般认为,博弈主要可以分为合作博弈和非合作博弈。合作博弈和非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。从行为的时间序列性,博弈论进一步分为静态博弈、动态博弈两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。通俗的理解:囚徒困境就是同时决策的,属于静态博弈;而棋牌类游戏等决策或行动有先后次序的,属于动态博弈按照参与人对其他参与人的了解程度分为完全信息博弈和不完全信息博弈。完全博弈是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间及收益函数有准确的信息。不完全信息博弈是指如果参与人对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的信息,在这种情况下进行的博弈就是不完全信息博弈。经济学家们所谈的博弈论一般是指非合作博弈,由于合作博弈论比非合作博弈论复杂,在理论上的成熟度远远不如非合作博弈论。非合作博弈又分为:完全信息静态博弈,完全信息动态博弈,不完全信息静态博弈,不完全信息动态博弈。与上述四种博弈相对应的均衡概念为:纳什均衡(Nash equilibrium),子博弈精炼纳什均衡(subgame perfect Nash equilibrium),贝叶斯纳什均衡(Bayesian Nash equilibrium),精炼贝叶斯纳什均衡(perfect Bayesian Nash equilibrium)。博弈论还有很多分类,比如:以博弈进行的次数或者持续长短可以分为有限博弈和无限博弈;以表现形式也可以分为一般型(战略型)或者展开型;以博弈的逻辑基础不同又可以分为传统博弈和演化博弈。
2023-07-20 17:46:071

微观经济学问题:在完全动态博弈中,信息集有什么意义?

在完全信息动态博弈中,每一个信息机都是一个子博弈。完全信息动态博弈中的子博弈精炼纳什均衡,也就是所有子博弈都为纳什均衡的均衡。因此,信息集的数量对于最后均衡的构成,以及extanded form都非常重要
2023-07-20 17:46:221

商业博弈论是什么理论

  博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。  博弈主要可以分为合作博弈和非合作博弈。合作博弈和非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。  从行为的时间序列性,博弈论进一步分为静态博弈、动态博弈两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。通俗的理解:"囚徒困境"就是同时决策的,属于静态博弈;而棋牌类游戏等决策或行动有先后次序的,属于动态博弈  按照参与人对其他参与人的了解程度分为完全信息博弈和不完全信息博弈。完全博弈是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间及收益函数有准确的信息。不完全信息博弈是指如果参与人对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的信息,在这种情况下进行的博弈就是不完全信息博弈。  经济学家们所谈的博弈论一般是指非合作博弈,由于合作博弈论比非合作博弈论复杂,在理论上的成熟度远远不如非合作博弈论。非合作博弈又分为:完全信息静态博弈,完全信息动态博弈,不完全信息静态博弈,不完全信息动态博弈。与上述四种博弈相对应的均衡概念为:纳什均衡(Nash equilibrium),子博弈精炼纳什均衡(subgame perfect Nash equilibrium),贝叶斯纳什均衡(Bayesian Nash equilibrium),精炼贝叶斯纳什均衡(perfect Bayesian Nash equilibrium)。  博弈论还有很多分类,比如:以博弈进行的次数或者持续长短可以分为有限博弈和无限博弈;以表现形式也可以分为一般型(战略型)或者展开型;以博弈的逻辑基础不同又可以分为传统博弈和演化博弈。
2023-07-20 17:46:332

在什么情况下保证触发战略为纳什均衡?在无限重复博弈中,与贴现因子有关!

你是那里来的人哦 看不懂
2023-07-20 17:46:412

如何阅读科普类书籍?

阅读科普过“三关”,抓大放小难变简让我们先看一段文字,读完后说一下自己的感受,看自己有没有想“敬而远之”的念头?例句:经济学家们所谈的博弈论一般是指非合作博弈,由于合作博弈论比非合作博弈论复杂,在理论上的成熟度远远不如非合作博弈论。非合作博弈又分为:完全信息静态博弈,完全信息动态博弈,不完全信息静态博弈,不完全信息动态博弈。与上述四种博弈相对应的均衡概念为:纳什均衡,子博弈精炼纳什均衡,贝叶斯纳什均衡,精炼贝叶斯均衡。读完这段文字你收获了些什么呢?我们能看出来,这是一段关于简单介绍博弈论类型的文字。这种介绍相关领域的科技成果,研究最新动态或是与大众生活息息相关的科学常识,就是科普类书籍的主要特征。很多人觉得读科普类书籍时,每个字都认识,可是组合在一起就像裹了层皮一样,完全不明白说得是什么了。也因此留给人一种恐惧心理,看到科普类书籍就避之不及。我们要读好这类书籍,首先要明白科普的意思是“科学普及”,是一种简单易懂的书。它不是逻辑严密的科学著作。其次,就是克服难点,“过三关”。语言关。科普类书籍虽然没有科学著作逻辑严密,但是本身的内容是有严谨性的,会使用一些行业术语。理解起来会令人觉得非常困难。基础知识关。一些科普类书籍是要有一定的数学、物理或者其他自然科学的知识作为基础的。逻辑推理关。科普类书籍的逻辑是建立在层层推理之上的,前后衔接密切,要充分理解每一部分的内容,不能囫囵吞枣。那如何才能读好科普类书籍呢?一个小窍门,那就是“抓大放小”。就是抓住核心概念和推理,把关键点弄明白。对一些过程中不相关的复杂细节进行忽略。科普类书籍是为了建立对某个科学领域知识的兴趣,并不是探究复杂的科学原理。它可以因为产生兴趣进行更深入地研究,也可以浅尝辄止的了解一点科学常识。明确读科普书的意义,可以减少人们阅读这类书籍的恐惧心理,提升阅读兴趣。
2023-07-20 17:46:501

博弈论相关作业,帮帮忙 ,谢谢

好专业 啊 先MARK 纳什均衡的定义假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。纳什均衡,从实质上说,是一种非合作博弈状态。 我的最优策略就是我不缺财富值,问题又太专业,我努力20个小时答案被采纳的概率都不大,所以就碰运气。
2023-07-20 17:46:591

微观经济学必读的书籍!!!

就是有一本书叫做《微观经济学》的你可以去尝试一下目 录第一篇 导论第一章 绪论 1第一节 稀缺性和经济学 1一、经济学的概念 1二、经济物品 2三、稀缺性 3四、经济资源 3第二节 微观经济学的研究对象 4一、两个基本概念 4二、三个基本经济问题 5三、基本经济问题的根本解决 6第三节 微观经济学的研究方法 7一、微观经济学的发展 7二、微观经济学和宏观经济学 8三、微观经济学的研究方法 8本章小结 10复习思考题 10第二章 供给和需求的基本理论 11第一节 市场 11一、市场的含义 12二、价格机制 12三、价格和市场的图示 13第二节 供给 14一、供给函数 14二、供给表和供给曲线与供给定理 16三、供给曲线的移动 18第三节 需求 19一、需求函数 19二、需求表和需求曲线与需求规律 20三、需求曲线的移动 22第四节 需求、供给和市场 23一、市场供给和市场需求 23二、市场均衡价格的决定 26三、市场均衡价格的变动 28四、市场均衡价格对资源配置的调节作用 31五、政府干预与市场均衡 32六、蛛网模型 33第五节 供给弹性和需求弹性 35一、弹性的含义 36二、供给价格弹性 36三、需求价格弹性 40四、需求的其他弹性 47本章小结 48复习思考题 49第二篇 消费者行为理论第三章 效用理论 52第一节 效用的概念 53一、效用的定义 53二、效用的特征 53三、效用的衡量 54四、边际效用分析 55第二节 消费者偏好 62一、定义 62二、性质 62三、描述 64第三节 预算约束 69一、预算约束与预算线 69二、预算线方程 69三、预算线的移动 70四、预算线的特殊形状 71第四节 消费者选择 72一、分析前提 73二、分析过程 73三、消费者均衡条件 74四、消费者均衡条件的应用 75第五节 不确定条件下的选择 78一、不确定性的含义及其度量 78二、不确定条件下的效用函数 79三、不确定条件下的选择行为 81本章小结 83复习思考题 84第四章 个人需求与市场需求 88第一节 个人需求 89一、个人需求的含义 89二、总需求与净需求 90三、案例:单个劳动者的选择 91第二节 收入效应与替代效应 92一、替代效应 92二、收入效应 94三、价格变化的总效应 94第三节 市场需求 97一、市场需求函数 98二、市场需求曲线与弹性 99三、市场需求的反函数 101第四节 消费者剩余 101一、消费者剩余的概念 101二、消费者剩余的变化 103三、税收的介入与消费者剩余 104第五节 网络外部性 106一、网络外部性的含义 106二、网络外部性的分类 107三、网络外部性下的效用函数和市场均衡 111四、网络外部性的调整 113五、网络外部性的作用 114本章小结 115复习思考题 116第三篇 厂商理论第五章 生产理论 118第一节 企业的特点 118一、企业的组织形式 119二、企业的本质 120三、企业的目标 120第二节 生产函数 122一、生产要素 122二、生产函数 122三、柯布-道格拉斯生产函数 123第三节 一种可变投入的生产函数 124一、一种可变生产要素的生产函数 125二、总产量、平均产量和边际产量 125三、边际报酬递减规律 128四、短期生产三个阶段的划分 129第四节 两种可变投入的生产函数 130一、两种可变投入的生产函数的一般表达式 130二、等产量曲线 130三、边际技术替代率 133四、等成本线 134第五节 最优生产决策和规模报酬 136一、既定成本条件下的产量最大化 136二、既定产量条件下的成本最小化 137三、生产要素的最优组合 138四、生产扩展线 139本章小结 141复习思考题 142第六章 成本理论 145第一节 成本的概念 145一、机会成本与经济成本 146二、显明成本和隐含成本 147三、利润与经济利润 148第二节 厂商的短期成本 149一、短期成本种类 149二、短期成本的变动 152第三节 厂商的长期成本 154一、长期总成本 155二、长期平均成本 156三、长期边际成本 159第四节 成本曲线 161一、短期成本曲线 161二、长期成本曲线 162第五节 范围经济和学习效应 164一、范围经济 164二、学习效应 169本章小结 171复习思考题 171第四篇 产品市场理论第七章 完全竞争市场 174第一节 完全竞争的市场和厂商 174一、完全竞争的市场和厂商的类型 174二、完全竞争厂商的需求曲线和收益曲线 177三、厂商实现利润最大化的均衡条件 179第二节 完全竞争厂商和行业 的短期均衡 179一、完全竞争厂商的短期均衡 179二、完全竞争厂商的短期供给 182三、生产者剩余 184四、完全竞争行业的短期供给 185第三节 完全竞争厂商和行业的 长期均衡 185一、厂商对最优生产规模的选择 185二、厂商进出一个行业的选择 186三、完全竞争行业的长期供给 187四、完全竞争市场的长期均衡 190第四节 完全竞争市场的效率 191一、经济效率 191二、完全竞争市场的效率 191三、实现经济效率 193第五节 消费者主权与生产者主权 195一、消费者主权 195二、生产者主权 198本章小结 198复习思考题 199第八章 垄断市场 202第一节 垄断概述 202一、垄断的含义 202二、垄断市场的特征 203三、垄断产生的原因 204四、垄断力 207第二节 垄断市场均衡 209一、垄断企业的需求曲线 209二、垄断企业的收益曲线 209三、垄断企业的短期均衡 211四、垄断企业的长期均衡 213五、垄断厂商的供给曲线 214第三节 买方垄断 215一、卖方垄断与买方垄断的关系 215二、买方垄断的成因 219三、买方垄断造成的净损失 220四、双边垄断 220第四节 价格歧视和两部收费制 221一、价格歧视的目的和条件 221二、价格歧视的三种类型 222三、价格歧视的影响和效率得失 225四、二重价 227五、捆绑销售 227六、时间价格歧视和高峰价格歧视 229第五节 对垄断市场的评价与 政府规制 229一、对垄断市场的评价 229二、对垄断市场的政策 232本章小结 235复习思考题 235第九章 垄断竞争与寡头垄断 239第一节 垄断竞争 240一、垄断竞争的含义及市场特点 240二、垄断竞争市场的需求曲线 241三、垄断竞争的市场均衡 243四、非价格竞争 246五、垄断竞争厂商的供给曲线 248六、垄断竞争的效率分析 249第二节 寡头垄断 250一、寡头垄断的含义与市场特征 250二、寡头垄断的理论模型 252三、寡头厂商的供给曲线 253第三节 寡头垄断的产量竞争模型 253一、古诺模型 253二、斯塔克伯格模型 256第四节 寡头垄断的价格竞争模型 258一、“折弯的需求曲线”模型 258二、价格领导模型 259三、伯特兰模型 261第五节 串谋和卡特尔 263一、串谋的好处 263二、卡特尔的价格制定 263三、卡特尔的产量分配 264四、卡特尔的不稳定性 267本章小结 268复习思考题 269第十章 博弈论 272第一节 基本概念 273一、博弈的含义 273二、博弈的正规表述 275三、博弈论的定义 277四、博弈论的基本要素 277第二节 纳什均衡 278一、占优策略均衡 278二、纳什均衡的定义 279三、混合策略纳什均衡 280第三节 重复博弈 281一、无名氏定理 282二、精炼子博弈纳什均衡 284三、有限重复博弈 285四、无限重复博弈 288第四节 序列博弈 289一、序列博弈 290二、博弈树 290三、先行者优势 291四、策略性行动 292第五节 讨价还价策略 293一、讨价还价问题描述 293二、纳什讨价还价解 294三、讨价还价策略的应用 295本章小结 297复习思考题 298第五篇 要素市场理论第十一章 要素市场的需求理论 299第一节 竞争性的要素市场 299一、生产要素需求的一般理论 299二、完全竞争厂商使用生产要素的原则 308三、完全竞争厂商对生产要素的需求曲线 310四、从厂商需求曲线到行业需求曲线 312五、完全竞争要素市场的均衡 315第二节 买方垄断的生产要素市场 315一、买方垄断厂商使用生产要素的原则 315二、买方垄断市场生产要素价格和数量的决定 316三、买方垄断厂商的要素需求曲线 317第三节 卖方垄断的要素市场* 318一、卖方垄断厂商使用生产要素的原则 318二、卖方垄断厂商的要素需求曲线 319三、双边垄断 320本章小结 321复习思考题 322第十二章 要素市场的供给理论 324第一节 劳动市场及工资率的决定 324一、劳动供给曲线 324二、劳动的市场供给曲线 328三、劳动市场均衡与工资的决定 329四、工会与劳动供给 331第二节 土地市场及地租的决定 336一、土地的供给曲线 336二、土地的供求与地租的决定 336三、租金、准租金和经济租金 339第三节 资本市场及利息率的决定 341一、资本与利息 342二、资本的供给 347三、资本市场的均衡 351第四节 欧拉定理 352第五节 洛伦兹曲线和基尼系数 354一、洛伦兹曲线 354二、基尼系数 355本章小结 357复习思考题 358第六篇 效率、市场失灵和 政府的作用第十三章 一般均衡和福利经济学 360第一节 一般均衡 361一、局部均衡与一般均衡 361二、各市场之间的联系 362三、一般均衡理论的基本思想 364四、一般均衡的存在性问题 367第二节 交换的效率 368一、经济效率 368二、交换的一般均衡 370三、生产的一般均衡 373四、生产与交换的一般均衡 376五、帕累托最优状态的实现 378第三节 社会福利函数 379一、福利经济学概述 379二、社会福利函数 381三、社会福利与个人偏好 385四、效率与公平 387第四节 市场失灵 389一、看不见手的原理 390二、市场失灵的含义及其表现 391三、市场失灵的原因 392四、纠正市场失灵的办法 393本章小结 394复习思考题 396第十四章 信息经济学 397第一节 信息不对称 397一、信息经济学的产生与发展 397二、经济信息与经济机制 400三、信息不对称的含义及其表现 403第二节 逆向选择 405一、逆向选择的概念 405二、旧车市场中的逆向选择 406三、保险市场中的逆向选择 406四、资本市场中的逆向选择 408第三节 信号传递 409一、信号传递的概念 409二、教育市场中的信号传递 410三、物种繁衍中的信号传递 411四、声誉机制与标准化 412第四节 道德风险 413一、道德风险的概念 413二、保险市场中的道德风险 414三、高等学校助学贷款市场中的道德风险 416四、装潢市场中的道德风险 417本章小结 418复习思考题 418第十五章 外部性和公共物品 419第一节 外部性 420一、外部性的定义与分类 420二、生产和消费领域中的外部性 421三、外部性对市场均衡的影响 421第二节 科斯定理 427一、科斯定理的产生 427二、科斯定理的内容 428三、科斯定理的应用 429第三节 公共物品 430一、公共物品的概念与分类 430二、公共物品的需求与偏好显示机制 432三、公共物品的社会最优供给 435四、公共物品生产与政府作用 436五、公共选择理论 437本章小结 440复习思考题 440参考文献 441还有的就是你可以去下相关的电子书籍 不过权威性 我想不上这个吧
2023-07-20 17:47:071

若三次重复古诺模型子博弈完美纳什均衡是什么

两个博弈的当事人的策略组合分别构成各自的支配性策略。那么这个组合就被定义为纳什平衡。一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值。
2023-07-20 17:47:151

博弈论的题目 求子博弈完美的纳什均衡 急……谢谢

这个问题我之前已经回答过了。这是一个完全信息动态博弈,从企业2开始思考。假定,企业1选择的价格为p,则企业2的利润函数为:S2=pq2-cq2^2此式关于q2求导,得到企业2利润最大化一阶条件为q2=p/(2c) (1)接着考虑企业1,企业知道企业2选择产量的函数为(1)式,它会选择一个价格使得自己的利润最大。企业1的利润为S1=pq1-cq1^2其中q1=Q-q2=Q-p/(2c) =a-p-p/(2c) 带入上式S1=p(a-p-p/(2c) )-c(a-p-p/(2c) )^2关于p求导,得到企业利润最大化一阶条件,然后联合(1)式即可得到均衡解。
2023-07-20 17:48:071

纳什均衡与非合作博弈论是同个概念吗?若不是,那两者是什么关系。

纳什平衡又称为非合作博弈论。
2023-07-20 17:48:184

博弈论是什么理论?

博弈论的概念 博弈论又被称为对策论(Games Theory),是研究具有斗争或竞争性 质现象的理论和方法,它既是现代数学的一个新分支, 也是运筹学的一个重要学科。 博弈论的发展 博弈论思想古已有之,我国古代的《孙子兵法》 就不仅是一部军事著作,而且算是最早的一部博弈论专著。 博弈论最初主要研究象棋、桥牌、赌博中的胜负问题, 人们对博弈局势的把握只停留在经验上,没有向理论化发展, 正式发展成一门学科则是在20世纪初。1928年冯· 诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。 1944年,冯·诺意曼和摩根斯坦共著的划时代巨著《 博弈论与经济行为》 将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域, 从而奠定了这一学科的基础和理论体系。 谈到博弈论就不能忽略博弈论天才纳什,纳什的开创性论文《 n人博弈的均衡点》(1950),《非合作博弈》(1951) 等等,给出了纳什均衡的概念和均衡存在定理。 此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。 今天博弈论已发展成一门较完善的的学科。 博弈论的基本概念 博弈要素 (1)局中人:在一场竞赛或博弈中, 每一个有决策权的参与者成为一个局中人。 只有两个局中人的博弈现象称为“两人博弈”, 而多于两个局中人的博弈称为 “多人博弈”。 (2)策略:一局博弈中, 每个局中人都有选择实际可行的完整的行动方案, 即方案不是某阶段的行动方案,而是指导整个行动的一个方案, 一个局中人的一个可行的自始至终全局筹划的一个行动方案, 称为这个局中人的一个策略。 如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈” ,否则称为“无限博弈”。 (3)得失:一局博弈结局时的结果称为得失。 每个局中人在一局博弈结束时的得失, 不仅与该局中人自身所选择的策略有关, 而且与全局中人所取定的一组策略有关。所以, 一局博弈结束时每个局中人的“得失” 是全体局中人所取定的一组策略的函数,通常称为支付( payoff)函数。 (4)对于博弈参与者来说,存在着一博弈结果 (5)博弈涉及到均衡:均衡是平衡的意思,在经济学中, 均衡意即相关量处于稳定值。在供求关系中, 某一商品市场如果在某一价格下, 想以此价格买此商品的人均能买到,而想卖的人均能卖出, 此时我们就说,该商品的供求达到了均衡。所谓纳什均衡, 它是一稳定的博弈结果。 纳什均衡(Nash Equilibrium):在一策略组合中, 所有的参与者面临这样一种情况,当其他人不改变策略时, 他此时的策略是最好的。也就是说, 此时如果他改变策略他的支付将会降低。在纳什均衡点上, 每一个理性的参与者都不会有单独改变策略的冲动。 纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“ 均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*, 局中人B也采取其最优策略b*,如果局中人仍采取b*, 而局中人A却采取另一种策略a, 那么局中人A的支付不会超过他采取原来的策略a*的支付。 这一结果对局中人B亦是如此。 这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A) 和策略b*(属于策略集B)称之为均衡偶,对任一策略a( 属于策略集A)和策略b(属于策略集B),总有:偶对(a, b*)≤偶对(a*,b*)≤偶对(a*,b)。 对于非零和博弈也有如下定义:一对策略a*(属于策略集A) 和策略b*(属于策略集B)称为非零和博弈的均衡偶, 对任一策略a(属于策略集A)和策略b(属于策略集B),总有: 对局中人A的偶对(a, b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对( a*,b*)。 有了上述定义,就立即得到纳什定理: 任何具有有限纯策略的二人博弈至少有一个均衡偶。 这一均衡偶就称为纳什均衡点。 纳什定理的严格证明要用到不动点理论, 不动点理论是经济均衡研究的主要工具。通俗地说, 寻找均衡点的存在性等价于找到博弈的不动点。 纳什均衡点概念提供了一种非常重要的分析手段, 使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。 但纳什均衡点定义只局限于任何局中人不想单方面变换策略, 而忽视了其他局中人改变策略的可能性,因此,在很多情况下, 纳什均衡点的结论缺乏说服力,研究者们形象地称之为“ 天真可爱的纳什均衡点”。 塞尔顿(R·Selten) 在多个均衡中剔除一些按照一定规则不合理的均衡点, 从而形成了两个均衡的精炼概念: 子博弈完全均衡和颤抖的手完美均衡。 博弈的类型 (1)合作博弈——研究人们达成合作时如何分配合作得到的收益, 即收益分配问题。 (2)非合作博弈—— 研究人们在利益相互影响的局势中如何选决策使自己的收益最大, 即策略选择问题。 (3)完全信息不完全信息博弈: 参与者对所有参与者的策略空间及策略组合下的支付有充了解称为完 全信息;反之,则称为不完全信息。 (4)静态博弈和动态博弈 静态博弈:指参与者同时采取行动,或者尽管有先后顺序, 但后行动者不知道先行动者的策略。 动态博弈: 指双方的的行动有先后顺序并且后行动者可以知道先行动者的策略。 财产分配问题和夏普里值(Shapley value) 考虑这样一个合作博弈:a、b、c、投票决定如何分配100万, 他们分别拥有50%、40%、10%的权力,规则规定, 当超过50%的票认可了某种方案时才能通过。 那么如何分配才是合理的呢?按票力分配,a50万、b40万、 c10万c向a提出:a70万、b0、c30万b向a提出: a80万、b20万、c0…… 权力指数: 每个决策者在决策时的权力体现在他在形成的获胜联盟中的“ 关键加入者”的个数,这个“关键加入者” 的个数就被称为权利指数。 夏普里值:在各种可能的联盟次序下, 参与者对联盟的边际贡献之和除以各种可能的联盟组合。 次序abc acb bac bca cab cba 关键加入者 a c a c a b 由此计算出a,b,c的夏普里值分别为4/6,1/6,1/6 所以a,b,c应分别获得100万的2/3,1/6,1/6。 博弈论的意义 弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一 样,都是从复杂的现象中抽象出基本的元素, 对这些元素构成的数学模型进行分析, 而后逐步引入对其形势产影响的其他因素,从而分析其结果。 基于不同抽象水平,形成三种博弈表述方式,标准型、 扩展型和特征函数型利用这三种表述形式, 可以研究形形色色的问题。因此,它被称为“社会科学的数学” 从理论上讲,博弈论是研究理性的行动者相互作用的形式理论, 而实际上正深入到经济学、政治学、社会学等等, 被各门社会科学所应用。 博弈论是指某个个人或是组织,面对一定的环境条件, 在一定的规则约束下,依靠所掌握的信息, 从各自选择的行为或是策略进行选择并加以实施, 并从各自取得相应结果或收益的过程, 在经济学上博弈论是个非常重要的理论概念。 什么是博弈论?古语有云,世事如棋。生活中每个人如同棋手, 其每一个行为如同在一张看不见的棋盘上布一个子, 精明慎重的棋手们相互揣摩、相互牵制,人人争赢, 下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分,并将其系统化为一门科学。 换句话说, 就是研究个体如何在错综复杂的相互影响中得出最合理的策略。 事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。 数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、 体系研究其规律及变化。这可不是件容易的事情, 以最简单的二人对弈为例,稍想一下便知此中大有玄妙: 若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法, 而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法, 乙当然也知道甲想到了他在想甲的想法… 面对如许重重迷雾,博弈论怎样着手分析解决问题, 怎样对作为现实归纳的抽象数学问题求出最优解、 从而为在理论上指导实践提供可能性呢? 现代博弈理论由匈牙利大数学家冯· 诺伊曼于20世纪20年代开始创立, 1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《 博弈论与经济行为》,标志着现代系统博弈理论的初步形成。 对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈-- 好比两个人下棋、或是打乒乓球, 一个人赢一着则另一个人必输一着,净获利为零。 在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解” 或“平衡” ,也就是对参与双方来说都最“合理” 、最优的具体策略?怎样才是“合理” ?应用传统决定论中的“最小最大” 准则, 即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度 地失利,并据此最优化自己的对策,诺伊曼从数学上证明, 通过一定的线性运算,对于每一个二人零和博弈,都能够找到一个“ 最小最大解” 。通过一定的线性运算, 竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤, 就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在于, 这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说, 这个著名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望,做最坏的打算” 。
2023-07-20 17:48:341

什么是纳什均衡?什么是占优策略?以及这两者的区别?

一样的
2023-07-20 17:48:443

完全信息博弈的分析

一、完全信息动态博弈完全信息动态博弈,是指博弈中信息是完全的,即双方都掌握参与者对他参与人的战略空间和战略组合下的支付函数有完全的了解,但行动是有先后顺序的,后动者可以观察到前者的行动,了解前者行动的所有信息,而且一般都会持续一个较长时期。(一).子博弈精炼纳什均衡  1.子博弈精炼纳什均衡不允许不可置信的威胁的存在。2.一个子博弈精炼纳什均衡必须是一个纳什均衡,但纳什均衡不一定是子博弈精炼纳什均衡。(二).重复博弈  1.重复博弈是指同一种结构的博弈反复进行所构成的博弈过程,它属于动态博弈的范畴。2.如果博弈的次数是无限的,厂商就可以相互合作,摆脱困境。如果博弈的次数是有限的,厂商之间的合作就不可能。3.“以牙还牙”策略在定价博弈中,“以牙还牙”策略是指:一家厂商定高价,只要对方继续合作也定高价,那么这家厂商就会一直保持高价;一旦对方定低价,那么该厂商也会定低价,如果对方以后决定合作并再提高价格,该厂商也会提高价格。(三).序列博弈  序列博弈,是指参与者选择策略有时间先后的博弈形式。它是一种较为典型的动态博弈,而重复博弈则可视为一种特殊的动态博弈形式。1.序列博弈的一般性特征一方在决策时,会考虑到另一方的反应行为,并在这种考虑基础上进行自己的当前决策。通过对下图博弈的分析,可以得知厂商1的最佳策略是选择生产少糖型可乐,厂商2则生产多糖型可乐。2.首先行动优势1).在序列博弈中,首先作出策略选择和采取行动的博弈方可以占据有利地位,获得较多利益。2).首先行动优势的原因在于它造成了一种既成事实,为使利润最大化,另一方必须根据首先行动一方的策略来选择自己的策略.而且该模型表明信息较多的博弈方不一定能获得较多的得益。二、完全信息静态博弈完全信息静态博弈中各博弈方同时决策,且所有博弈方对博弈中的各种情况下的策略及其得益都完全了解的。1.上策:是指对某博弈方来说,不管其他博弈方采取什么策略,他所采取的能给他带来最大得益的策略。 下图博弈中,厂商A和B的上策都是做广告。上策均衡也是两家厂商都选择做广告的策略。2.纳什均衡指的是在给定竞争对手的选择行为后,博弈方选择了它所能选择的最好的策略(或采取了它所能采取的最好的行动)。
2023-07-20 17:49:021

博弈论与信息经济学的作品目录

出版前言前言0.导论:博弈论与经济学0.1 博弈论与主流经济学的新发展0.2 非合作博弈论的一个非技术性概述0.3 关于本书的说明第1篇 非合作博弈理论1.完全住处静态博弈1.1 博弈论的基本概念及战略式表述1.2 纳什均衡1.3 纳什均衡应用举例1.4 混合战略纳什均衡1.5 纳什均衡的存在性和多重性的讨论2.完全信息动态博弈2.1 博弈的扩展式表述2.2 扩展式表述博弈的纳什均衡2.3 子博弈精炼纳什均衡2.4 子博弈精炼纳什均衡应用举例2.5 重复博弈和无名氏定理3.不完全信息静态博弈3.1 不完全信息博弈和贝叶斯纳什均衡3.2 贝叶斯均衡的应用举例3.3 贝叶斯博弈与混合战略均衡3.4 机制设计理论与显示原理4.不完全信息动态博弈4.1 精炼贝叶斯纳什均衡4.2 信号传递博弈及其应用举例4.3 精炼贝叶斯均衡的再精炼及其他均衡概念4.4 不完全信息重复博弈与声誉4.5 博弈论均衡概念简要总结第2篇 信息经济学5.委讬--代理理论(I)5.1 信息经济学引论5.2 委讬--代理理论的基本分析框架5.3 对称信息情况下最优合同5.4 信息不对称情况下的最优激励合同5.5 委讬--代理模型的一个例子6.委讬-- 代理理论(II)6.1 多阶段博弈动态模型6.2 委托人的道德风险与锦标制度6.3 多项任务委托——代理模型与资产所有权6.4 效率工资与监督力度6.5 团队工作与委托人的作用6.6 最优的委托权安排7 逆千周选择与信号传递7.1 逆向选择:旧车市场7.2 保险市场上的逆向选择问题7.3 逆千周选择与信贷市场上的配给制7.4 信号传递:斯宾塞劳动力市场模型重要词汇索引重要人名英汉对照
2023-07-20 17:49:231

不完全信息动态博弈和不完美信息动态博弈的异同

完全信息博弈 :是指每一参与者都拥有所有其他参与者的特征、策略集及得益函数等方面的准确信息的博弈。 关于完全信息博弈的最早结果出现在1950年代,但确切出自何人之手却无从得知,这就是所谓的“佚名定理”(the Folk Theorem)。该定理认为,重复博弈的策略均衡结局与一次性博弈中的可行的个体理性结局恰好相一致,这个结局可被视为把多阶段非合作行为与一次性博弈的合作行为联系在一起。或者可以说,只要行为人有足够的耐心,任何满足个体理性的可行支付都可以通过一个特定的子博弈精炼均衡达到。然而,虽然所有可行的个体理性结局确实代表了合作博弈的解观点,但是它不能够提供相关信息,并且是相当模糊的。奥曼认为该理论本身没有多少新东西,他指出,完全信息的重复博弈论与人们之间相互作用的基本形式的演化是相关的。 编辑本段完全信息博弈动态、静态分析 一、完全信息动态博弈 完全信息动态博弈,是指博弈中信息是完全的,即双方都掌握参与者对他参与人的战略空间和战略组合下的支付函数有完全的了解,但行动是有先后顺序的,后动者可以观察到前者的行动,了解前者行动的所有信息,而且一般都会持续一个较长时期。 (一).子博弈精炼纳什均衡 1.子博弈精炼纳什均衡不允许不可置信的威胁的存在。 2.一个子博弈精炼纳什均衡必须是一个纳什均衡,但纳什均衡不一定是子博弈精炼纳什均衡。 (二).重复博弈 1.重复博弈是指同一种结构的博弈反复进行所构成的博弈过程,它属于动态博弈的范畴。 2.如果博弈的次数是无限的,厂商就可以相互合作,摆脱困境。 如果博弈的次数是有限的,厂商之间的合作就不可能。 3.“以牙还牙”策略 在定价博弈中,“以牙还牙”策略是指:一家厂商定高价,只要对方继续合作也定高价,那么这家厂商就会一直保持高价;一旦对方定低价,那么该厂商也会定低价,如果对方以后决定合作并再提高价格,该厂商也会提高价格。 (三).序列博弈 序列博弈,是指参与者选择策略有时间先后的博弈形式。它是一种较为典型的动态博弈,而重复博弈则可视为一种特殊的动态博弈形式。 1.序列博弈的一般性特征 一方在决策时,会考虑到另一方的反应行为,并在这种考虑基础上进行自己的当前决策。 通过对下图博弈的分析,可以得知厂商1的最佳策略是选择生产少糖型可乐,厂商2则生产多糖型可乐。 2.首先行动优势 1).在序列博弈中,首先作出策略选择和采取行动的博弈方可以占据有利地位,获得较多利益。 2).首先行动优势的原因在于它造成了一种既成事实,为使利润最大化,另一方必须根据首先行动一方的策略来选择自己的策略.而且该模型表明信息较多的博弈方不一定能获得较多的得益。 二、完全信息静态博弈 完全信息静态博弈中各博弈方同时决策,且所有博弈方对博弈中的各种情况下的策略及其得益都完全了解的。 1.上策:是指对某博弈方来说,不管其他博弈方采取什么策略,他所采取的能给他带来最大得益的策略。 下图博弈中,厂商A和B的上策都是做广告。上策均衡也是两家厂商都选择做广告的策略。 2.纳什均衡指的是在给定竞争对手的选择行为后,博弈方选择了它所能选择的最好的策略(或采取了它所能采取的最好的行动)。
2023-07-20 17:49:531

一报还一报为什么是子博弈纳什均衡

首先要知道什么是子博弈。子博弈是原博弈的一部分,它本身可以作为独立的博弈分析,由动态博弈第一阶段以外的某个阶段开始的后续博弈阶段构成的,有确切的初始信息集和进行博弈所需要的全部信息能够自成一个博弈的原博弈的一部分。那么很明显,一报还一报就是在一方先做出一个行动,获得结果,另一方也因此作出相应的行动,获得结果。每一方的行动虽然是根据前次对方行动作出的,但都是单独一个结果,所以是子博弈,一报还一报来回多次可以看作一个总博弈。至于是不是纳什均衡要看每次行动是不是选的纳什均衡的行动了。
2023-07-20 17:50:081

动态博弈分析中为什么要引入子博弈精炼纳什均衡

泽尔腾则在60年代中期将纳什均衡概念引入动态分析。在1965年发表《需求减少条件下寡头垄断模型的对策论描述》一文,提出了“子博弈精炼纳什均衡”的概念,又称“子对策完美纳什均衡”。这一研究对纳什均衡进行了第一次改进,选择了更具说服力的均衡点。海萨尼在60年代末把不完全信息引入博弈分析。将纳什均衡中包含的不可置信的威胁策略剔除出去。它要求参与者的决策在任何时点上都是最优的,决策者要“随机应变”,“向前看”,而不是固守旧略。由于剔除了不可置信的威胁,在许多情况下,精炼纳什均衡也就缩小了纳什均衡的个数。这一点对预测分析是非常有意义的。用动态博弈理论来讨论实际究竟发生哪个纳什均衡。给定“历史”,每一个行动选择开始至博弈结束构成了一个博弈,称为“子博弈”。只有当参与人的策略在每一个子博弈中都构成纳什均衡叫做精炼纳什均衡。或者说,组成精炼纳什均衡的策略必须在每一个子博弈中都是最优的。
2023-07-20 17:50:391

子博弈精炼纳什均衡的概述

泽尔腾则在60年代中期将纳什均衡概念引入动态分析。在1965年发表《需求减少条件下寡头垄断模型的对策论描述》一文,提出了“子博弈精炼纳什均衡”的概念,又称“子对策完美纳什均衡”。这一研究对纳什均衡进行了第一次改进,选择了更具说服力的均衡点。海萨尼在60年代末把不完全信息引入博弈分析。将纳什均衡中包含的不可置信的威胁策略剔除出去。它要求参与者的决策在任何时点上都是最优的,决策者要“随机应变”,“向前看”,而不是固守旧略。由于剔除了不可置信的威胁,在许多情况下,精炼纳什均衡也就缩小了纳什均衡的个数。这一点对预测分析是非常有意义的。用动态博弈理论来讨论实际究竟发生哪个纳什均衡。给定“历史”,每一个行动选择开始至博弈结束构成了一个博弈,称为“子博弈”。只有当参与人的策略在每一个子博弈中都构成纳什均衡叫做精炼纳什均衡。或者说,组成精炼纳什均衡的策略必须在每一个子博弈中都是最优的。
2023-07-20 17:50:501

触发策略所构成的均衡都是子博弈精炼纳什均衡吗

泽尔腾则在60年代中期将纳什均衡概念引入动态分析。在1965年发表《需求减少条件下寡头垄断模型的对策论描述》一文,提出了“子博弈精炼纳什均衡”的概念,又称“子对策完 美纳什均衡”。这一研究对纳什均衡进行了第一次改进,选择了更具说服力的均衡点。海萨尼在60年代末把不完全信息引入博弈分析。 将纳什均衡中包含的不可置信的威胁策略剔除出去。它要求参与者的决策在任何时点上都是最优的,决策者要“随机应变”,“向前看”,而不是固守旧略。 由于剔除了不可置信的威胁,在许多情况下,精炼纳什均衡也就缩小了纳什均衡的个数。这一点对预测分析是非常有意义的。 用动态博弈理论来讨论实际究竟发生哪个纳什均衡。 给定“历史”,每一个行动选择开始至博弈结束构成了一个博弈,称为“子博弈”。 只有当参与人的策略在每一个子博弈中都构成纳什均衡叫做精炼纳什均衡。或者说,组成精炼纳什均衡的策略必须在每一个子博弈中都是最优的。
2023-07-20 17:51:091

囚徒困境在贴现因子满足什么的条件下可构成子博弈精炼纳什均衡?

囚徒困境在贴现因子满足(触发策略)的条件下可构成子博弈精炼纳什均衡。扩展:泽尔腾则在60年代中期将纳什均衡概念引入动态分析。在1965年发表《需求减少条件下寡头垄断模型的对策论描述》一文,提出了“子博弈精炼纳什均衡”的概念,又称“子对策完 美纳什均衡”。这一研究对纳什均衡进行了第一次改进,选择了更具说服力的均衡点。海萨尼在60年代末把不完全信息引入博弈分析。 将纳什均衡中包含的不可置信的威胁策略剔除出去。它要求参与者的决策在任何时点上都是最优的,决策者要“随机应变”,“向前看”,而不是固守旧略。 由于剔除了不可置信的威胁,在许多情况下,精炼纳什均衡也就缩小了纳什均衡的个数。这一点对预测分析是非常有意义的。 用动态博弈理论来讨论实际究竟发生哪个纳什均衡。 给定“历史”,每一个行动选择开始至博弈结束构成了一个博弈,称为“子博弈”。 只有当参与人的策略在每一个子博弈中都构成纳什均衡叫做精炼纳什均衡。或者说,组成精炼纳什均衡的策略必须在每一个子博弈中都是最优的。供参考。
2023-07-20 17:51:261

子博弈精炼纳什均衡的答案怎么表示

泽尔腾则在60年代中期将纳什均衡概念引入动态分析。在1965年发表《需求减少条件下寡头垄断模型的对策论描述》一文,提出了“子博弈精炼纳什均衡”的概念,又称“子对策完美纳什均衡”。这一研究对纳什均衡进行了第一次改进,选择了更具说服力的均衡点。海萨尼在60年代末把不完全信息引入博弈分析。将纳什均衡中包含的不可置信的威胁策略剔除出去。它要求参与者的决策在任何时点上都是最优的,决策者要“随机应变”,“向前看”,而不是固守旧略。由于剔除了不可置信的威胁,在许多情况下,精炼纳什均衡也就缩小了纳什均衡的个数。这一点对预测分析是非常有意义的。
2023-07-20 17:51:441

每个博弈都至少有一个纳什均衡吗

而不是固守旧略,称为“子博弈”。在1965年发表《需求减少条件下寡头垄断模型的对策论描述》一文,决策者要“随机应变”。给定“历史”。或者说。这一点对预测分析是非常有意义的。用动态博弈理论来讨论实际究竟发生哪个纳什均衡。只有当参与人的策略在每一个子博弈中都构成纳什均衡叫做精炼纳什均衡,“向前看”,组成精炼纳什均衡的策略必须在每一个子博弈中都是最优的,选择了更具说服力的均衡点。由于剔除了不可置信的威胁,精炼纳什均衡也就缩小了纳什均衡的个数,在许多情况下。海萨尼在60年代末把不完全信息引入博弈分析,提出了“子博弈精炼纳什均衡”的概念。它要求参与者的决策在任何时点上都是最优的。将纳什均衡中包含的不可置信的威胁策略剔除出去泽尔腾则在60年代中期将纳什均衡概念引入动态分析,每一个行动选择开始至博弈结束构成了一个博弈。这一研究对纳什均衡进行了第一次改进,又称“子对策完美纳什均衡”
2023-07-20 17:51:581

子博弈精炼纳什均衡的逆向求解

逆向归纳法(Backward Induction)是求解子博弈精炼纳什均衡的最简便方法。在求解子博弈精炼纳什均衡时,从最后一个子博弈开始逆推上去,这就是逆向归纳法。所以逆向归纳法就是从动态博弈的最后一个阶段或最后一个子博弈开始,逐步向前倒推以求解动态博弈均衡的方法。用逆向归纳法求解子博弈精炼纳什均衡;承诺行动与子博弈精炼纳什均衡;逆向归纳法与子博弈精炼均衡存在的问题。
2023-07-20 17:52:161

几个博弈论的问题

不懂 虽然很有兴趣知道
2023-07-20 17:52:352

用逆向归纳法求子博弈精炼纳什均衡步骤

太深奥了我不懂
2023-07-20 17:52:482

驴虎博弈是子博弈精炼纳什均衡吗

答:“子博弈精炼纳什均衡”的创立者是1994年诺贝尔经济学奖获奖者、莱茵哈德·泽尔腾(Reinhard Selten)。泽尔腾则在60年代中期将纳什均衡概念引入动态分析。在1965年发表《需求减少条件下寡头垄断模型的对策论描述》一文,提出了“子博弈精炼纳什均衡”的概念,又称“子对策完美纳什均衡”。这一研究对纳什均衡进行了第一次改进,选择了更具说服力的均衡点。海萨尼在60年代末把不完全信息引入博弈分析。
2023-07-20 17:53:043

什么是子博弈和基本子博弈

 子博弈:一个扩展式表示博弈的子博弈G是由一个单结信息集x开始的与所有该决策结的后续结(包括终点结)组成的能自成一个博弈的原博弈的一部分。  对于扩展式博弈的策略组合S*=(S1*,…,Si*,…,Sn*),如果它是原博弈的纳什均衡;它在每一个子博弈上也都构成纳什均衡,则它是一个子博弈精炼纳什均衡。  博弈论专家常常使用“序惯理性”(Sequentialrationality):指不论过去发生了什么,参与人应该在博弈的每个时点上最优化自己的策略。子博弈精练纳什均衡所要求的正是参与人应该是序惯理性的。对于有限完美信息博弈,逆向归纳法是求解子博弈精炼纳什均衡的最简便的方法。因为有限完美信息博弈的每一个决策结都开始一个子博弈。求解方法: 最后一个结点上的子博弈(纳什均衡)→倒数第二个(纳什均衡)→···→初始结点上的子博弈(纳什均衡)。
2023-07-20 17:54:241

博弈论中 逆向归纳解 与 子博弈精炼解 的区别?

有限完美信息博弈有一个纯战略纳什均衡。对于有限完美信息博弈来说,逆向归纳法是寻找子博弈精炼纳什均衡的最简便的方法,逆向归纳解一定是子博弈精炼解。对于无限博弈来说,逆向归纳法不适用,此时的子博弈纳什均衡要用别的方法来求解。
2023-07-20 17:54:341

什么是子博弈和基本子博弈

 子博弈:一个扩展式表示博弈的子博弈G是由一个单结信息集x开始的与所有该决策结的后续结(包括终点结)组成的能自成一个博弈的原博弈的一部分。   对于扩展式博弈的策略组合S*=(S1*,…,Si*,…,Sn*) ,如果它是原博弈的纳什均衡;它在每一个子博弈上也都构成纳什均衡,则它是一个子博弈精炼纳什均衡。   博弈论专家常常使用“序惯理性”(Sequential rationality):指不论过去发生了什么,参与人应该在博弈的每个时点上最优化自己的策略。子博弈精练纳什均衡所要求的正是参与人应该是序惯理性的。对于有限完美信息博弈,逆向归纳法是求解子博弈精炼纳什均衡的最简便的方法。因为有限完美信息博弈的每一个决策结都开始一个子博弈。求解方法: 最后一个结点上的子博弈(纳什均衡)→倒数第二个(纳什均衡) → ··· → 初始结点上的子博弈(纳什均衡)。
2023-07-20 17:54:492