- ardim
-
古希腊的阿基米德和我国魏晋时期刘徽都采用了化圆为方,也就是割圆术的方法,利用计算圆的内接和外切正多边形边长来计算圆周率。
区别:
一、计算精确度不同
1、阿基米德:阿基米德只算到正96边形,得到了3.14的近似值。
2、刘徽:刘徽计算了正3072边形,得到了3.1416的近似值,精确度大大地高。
二、计算时间不同
1、阿基米德:阿基米德在1604年用科学方法寻求圆周率数值。
2、刘徽:约225年~约295年。
扩展资料:
刘徽在数学上的贡献极多,在开方不尽的问题中提出“求徽数”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件。
而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;并在中国数学史上第一次提出了“不定方程问题”。
刘徽是谁?他有什么成就?
刘徽小时候的故事:刘徽一日避雨,在八方松的黄土崖下避雨,发现了崖壁下有一土裂缝,与书童合力一推,发现里面竟然宽敞,刘灰这人也怪,竟然拾掇了一下,干脆住了进去不回家了。夏日他在两棵树间研究八卦易理,并测量正当午时两棵树叠影的方位,不思饭食。书童只好给他送来,饭后遗一汤勺,置于八卦盘的阴阳鱼心,勺柄正指洞口,是北极星的方向,这正是他研究的两树叠影的方向,他再次拨动照旧如初,于是他轻端卦盘,汤勺竟然自动转向再指洞口叠影,,有人来访他也不理不睬,自顾玩转他的汤勺。他端盘闭目,进洞出洞,左转右舞,念念有词如醉如痴,来访者和路人指点嘲笑,以为他着了魔在跳大神。这就是刘灰玩勺的传说,可就是这么一个跳神玩勺,竟玩出了一个罗盘仪、指南针,使世界的航海事业跳到了科技领先的时代。因为卦盘汤勺始终指着北极星的方向,人们就把他这个避雨洞叫成了北极洞。或许这里的磁场格外强大吧,看来古代的罗盘、指南针都是指北针。也是盘子上的汤勺模样,始终指向北方。扩展资料:刘徽在数学方面的成就:刘徽是魏晋时期最伟大的数学家,对中国的古典数学理论的创立及发展做出了极其重要的贡献,在中国乃至时间的数学史上,都占据着重要的位置。下面,让我们一起去看一下刘辉的简介吧。刘徽的出生日期,大约是在公元225年前后,他卒于295年,是当时世界上最杰出得到数学家。他在这方面的著作,对后世数学的发展有着至关重要的影响,同时也奠定了他在数学界不可动摇的地位,也为数学界留下了最为宝贵的文化遗产。刘徽是实至名归的世界数学界的泰斗,他利用了各种优秀的理念,使传统数学得到了转变,数学研究也步上了一个新的台阶。他留下的数学著作对数学界来说是珍宝一般的存在,《海岛算经》就是其中的一部。263年,刘徽著作了《九章算术注》,而《海岛算经》就是其中的第十卷。直到唐朝时,《海岛算经》才开始单独作为一部著作出现。这部书是中国最早的一部测量学著作,测量的都是与高和距离的问题。参考资料来源:百度百科-刘徽2023-05-18 07:58:421
刘徽是谁?
刘徽沿袭我国古代的几何传统,使之趋于完备,形成具有独特风格的几何体系。《九章算术》本身建立了中国古代数学理论的框架,同时也标志着中国古代理论体系的完成。刘徽(约公元225年—295年),汉族,山东临淄人,魏晋期间伟大的数学家,中国古典数学理论的奠基者之一。他是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思维敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程;分数四则运算;正负数运算;几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,刘徽又对此作了补充证明。在这些证明中,显示了他在多方面的创造性贡献。刘徽是世界上最早提出十进制小数概念的人。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了“割圆术”,又利用割圆术科学地求出了圆周率π=3.14的结果。《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为世界所瞩目。2023-05-18 07:58:581
刘徽是哪个朝代的
刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。下面是我带来的刘徽是哪个朝代的相关内容,希望对你有帮助。 刘徽(约公元225年—295年),汉族,山东滨州邹平县人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。 《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。刘徽在曹魏景初四年注《九章算术注》。 但因解法比较原始,缺乏必要的证明,刘徽则对此均作了补充证明。在这些证明中,显示了他在众多方面的创造性贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则,改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.1416的结果。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值。刘徽提出的计算圆周率的科学方法,奠定了此后千余年来中国圆周率计算在世界上的领先地位。 刘徽在数学上的贡献极多,在开方不尽的问题中提出“求徽数”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件,而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;并在中国数学史上第一次提出了“不定方程问题”;他还建立了等差级数前n项和公式;提出并定义了许多数学概念:如幂(面积);方程(线性方程组);正负数等等。刘徽还提出了许多公认正确的判断作为证明的前提。他的大多数推理、证明都合乎逻辑,十分严谨,从而把《九章算术》及他自己提出的解法、公式建立在必然性的基础之上。虽然刘徽没有写出自成体系的著作,但他注《九章算术》所运用的数学知识,实际上已经形成了一个独具特色、包括概念和判断、并以数学证明为其联系纽带的理论体系。 刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。 个人成就 刘徽的数学成就大致为两方面: 一是整理中国古代数学体系并奠定了它的理论基础,这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系: 数系理论 ①用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。 刘徽评传 刘徽评传 ②在筹式演算理论方面,先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。 ③在勾股理论方面逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。 面积与体积理论 用出入相补、以盈补虚的原理及“割圆术”的`极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。 二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见: ①割圆术与圆周率,他在《九章算术·圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3.14,又算到3072边形的面积,得到π=3927/1250=3.1416,称为“徽率”。 ②刘徽原理在《九章算术·阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。 “牟合方盖”说 在《九章算术·开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。 方程新术 在《九章算术·方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。 重差术 在自撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。2023-05-18 07:59:101
刘徽简介 魏晋武帝期间伟大的数学家刘徽生平
刘徽(约公元225年—295年),汉族,山东邹平县人, 期间 的数学家,中国古典数学理论的奠基者之一。是中国数学史上一个非常 的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是中国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。> 刘徽是公元三世纪世界上最杰出的数学家,他在公元263年撰写的著作《九章算术注》以及后来的《海岛算经》,是我国最宝贵的数学遗产,从而奠定了他在中国数学史上的不朽地位。> 刘徽的数学著作,留传后世的很少,所留均为久经辗转传抄之作。> 他的主要著作有:《九章算术注》10卷;《重差》1卷,至唐代易名为《海岛算经》;《九章重差图》l卷。可惜后两种都在宋代失传。> 《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。> 但因解法比较原始,缺乏必要的证明,刘徽则对此均作了补充证明。在这些证明中,显示了他在众多方面的创造性贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则,改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.1416的结果。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是「割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。」他计算了3072边形面积并验证了这个值。刘徽提出的计算圆周率的科学方法,奠定了此后千余年来中国圆周率计算在世界上的领先地位。>2023-05-18 07:59:171
刘徽是哪个朝代的帝王?
刘徽不是皇帝。历史上有两个叫刘徽的人,一个是古代著名的数学家刘徽,另一个是前赵的楚王刘徽。刘徽,中国五胡十六国前赵时皇族,是汉国(前赵)皇帝刘曜的儿子,后被封为楚王。刘徽,中国古典数学理论的奠基人之一。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。代表著作其代表作《九章算术注》是对《九章算术》一书的注解。《九章算术》是中国流传至今最古老的数学专著之一,它成书于西汉时期。这部书的完成经过了一段历史过程,书中所收集的各种数学问题,有些是秦以前流传的问题,长期以来经过多人删补、修订,最后由西汉时期的数学家整理完成。现今流传的定本的内容在东汉之前已经形成。2023-05-18 07:59:231
刘徽小时候的故事
有一天,刘徽在偶然中看到了石匠在切割石头,看着看着竟觉得十分有趣,就站在一边,细细地观察起来。刘徽看到,一块方形的石头,先由石匠切去了四个角,四角的石头瞬间就有了八个角,然后再把这八个角切去,以此类推,石匠一直在把这些角一个一个地切去,直到无角可切为止。到最后,刘徽就发现,本来呈现方形的石块,早在不知不觉中变成了一个圆滑的柱子。石匠打磨石块的事情,每天都在发生,但就是这样的一件小事,让刘徽瞬间茅塞顿开,看到了别人没有看到的事情。刘徽就像石匠所做的那样,把圆不断分割,终于发明了“割圆术”。刘徽从偶然事件得到了启迪,从中联想到了计算圆周率的方法,进而发明了“割圆术”,为计算圆周率提供了一套严密的理论和完善的算法。扩展资料:刘徽生平:刘徽(约225年—约295年),汉族,山东滨州邹平市 [1] 人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。2023-05-18 07:59:361
少年刘徽当了多长时间皇帝
刘徽,中国五胡十六国前赵时皇族。 他只是前赵楚王,不是皇帝。 刘徽的人物简介: 光初二年(319年),汉国(前赵)皇帝刘曜回到长安,从平阳迁都于长安,立后妃羊献容为皇后,儿子刘熙为太子。封儿子刘袭为长乐王,刘阐为太原王,刘冲为淮南王,刘敞为齐王,刘高为鲁王,刘徽为 楚王,各宗室子弟都进封郡王。刘熙在前赵灭亡后被杀。2023-05-18 07:59:421
刘徽的生平是怎样的?
刘徽,中国古代数学家,大约生活在公元3世纪。据数学史学家考证,他出生于淄乡,即今天的山东省邹平县。刘徽注《九章算术》,在数学上做出了许多杰出的贡献,是与他当时生活的社会环境分不开的。自先秦到魏晋,齐鲁地区作为孔孟之道发祥地,一直在文化发展程度上居于全国前列。战国时期,齐桓公在其都城临淄设立稷下学宫,广招天下博学之士。历时150年间,该地区成为学术气氛最为活跃的研究中心。另外,公元2世纪和公元3世纪的齐鲁地区数学也较为发达,有一批数学家出现,包括郑玄、徐岳等人。在这样一种文化氛围中,使得刘徽有机会学习各种文化典籍,有机会接触到当时先进的数学知识,为他以后的数学研究积累了丰富的资料。2023-05-18 07:59:491
刘徽发明了什么?
刘徽,约公元225年到295年。汉族,山东邹平县人,中国古典数学家理论的奠基者之一。是中国古代数学史上一个非常伟大的数学家。有一天,刘徽在偶然中看到了石匠在切割石头,觉得有趣,就观察起来。他看到一块方形的石头,先由石匠切去了四个角,石头就有了八个角,然后再把八个角切去,就有了16个角,以此类推。直到最后五角可切了,刘徽发现,原本的方形石头,变成了圆滑的柱子石匠打磨的事情,让刘徽瞬间茅塞顿开,看到了,别人没看到的事情,从中联想到了计算,圆周率的方法。发明了割圆术,为计算圆周率提供了一套严密的理论,提供了一套完美的算法2023-05-18 07:59:552
刘徽的著作有哪些?
刘徽是三国后期魏国人,是我国古代杰出的数学家,也是我国古典数学理论的奠基者之一。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。刘徽的一生是为数学刻苦探求的一生。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的精神财富。他在世界数学史上也有着崇高的地位。魏晋时期杰出的数学家刘徽,曾经提出一个测量太阳高度的方案:在洛阳城外的开阔地带,一南一北,各立一根8尺长的竿,在同一天的正午时刻测量太阳给这两根竿的投影,以影子长短的差当作分母,以竿的长乘以两竿之间的距离当作分子,两者相除,所得再加上竿的长,就得到了太阳到地表的垂直高度。再以南边一竿的影长乘上两竿之间的距离作为分子,除以前述影长的差,所得就是南边一竿到太阳正下方的距离。以这两个数字作为直角三角形两条直角边的边长,用勾股定理求直角三角形的弦长,所得就是太阳距观测者的实际距离。刘徽的这个方案,运用了相似三角形相应线段的长对应成比例的原理,巧妙地用一个中介的三角形,将另外两个看似不相干的三角形联系在一起。这一切,和我们今天在中学平面几何课本中学到的一模一样。如果我们把刘徽这道题里的太阳换成别的光源,把它设计成一道几何证明题兼计算题,放到今天的中学课本里,也是完全没有问题的。刘徽的数学著作留传后世的很少,所留之作均为久经辗转传抄。他的主要著作有:《九章算术注》10卷;《重差》1卷,至唐代易名为《海岛算经》。刘徽之所以能够写出《九章算术注》,这与他生活的时代大背景是有关系的。汉代末期的动乱打破了西汉时期“罢黜百家,独尊儒术”这个儒家学说经学独断的局面,思想解放了。后来形成的三国鼎立局面,虽然是没有大统一,但是出现了短暂的相对的统一,促成了思想解放、学术争鸣的局面。此外,东汉末年,佛教进入我国,道教开始兴起,而且儒道开始合流,有些人用道家的思想开始来解释儒家的东西。百家争鸣、辨析明理的局面,促进了当时国人的逻辑思维。已经被废除或者停止好多年的逻辑问题,又提到了学术界。因为数学是个逻辑过程,有逻辑推理、逻辑证明,没有这种东西做基础,那数学是不可想象的。科技的复苏和发展,就需要一些科学技术的东西,来推进生产力的发展。因此,刘徽的数学思想就在这样的背景下产生了。事实上,他正是我国最早明确主张用逻辑推理的方式来论证数学命题的人。从《九章算术》本身来看,它约成书于东汉初期,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。但因原书的解法比较原始,缺乏必要的证明,刘徽则作《九章算术注》,对其均作了补充证明。这些证明,显示了他在众多方面的创造性贡献。《海岛算经》原为《九章算术注》第九卷勾股章内容的延续和发展,名为《九章重差图》,附于《九章算术注》之后作为第十章。唐代将其从中分离出来,单独成书,按第一题“今有望海岛”,取名为《海岛算经》,是《算经十书》之一。《海岛算经》研究的对象全是有关高与距离的测量,所使用的工具也都是利用垂直关系所连接起来的测竿与横棒。所有问题都是利用两次或多次测望所得的数据,来推算可望而不可即的目标的高、深、广、远。是我国最早的一部测量数学著作,也为地图学提供了数学基础。《海岛算经》运用二次、三次、四次测望法,是测量学历史上领先的创造。刘徽的数学成就可以归纳为两个方面:一是清理我国古代数学体系并奠定了它的理论基础;二是在继承的基础上提出了自己的创见。刘徽在古代数学体系方面的成就,集中体现在《九章算术注》中。此作实际上已经形成为一个比较完整的理论体系。在数系理论方面,刘徽用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。在筹式演算理论方面,刘徽先给率以比较明确的定义,又以遍乘、通约、齐同等基本运算为基础,建立了数与式运算的统一的理论基础。他还用“率”来定义我国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。在勾股理论方面,刘徽逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了我国特色的相似理论。在面积与体积理论方面,刘徽用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着光辉。刘徽在继承的基础上提出了自己的见解。这方面主要体现为以下几项有代表性的创见:一是割圆术与圆周率。他在《九章算术•圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接正六边形开始割圆,每次边数倍增,得到比以前更为准确的圆周率数值,被称为“徽率”。二是刘徽原理。在《九章算术•阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。三是“牟合方盖”说。在《九章算术》注中,他指出了球体积公式的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。四是方程新术。在《九章算术•方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。五是重差术。在自撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。刘徽不仅对我国古代数学的发展产生了深远影响,而且在世界数学史上也有着崇高的地位,他被称作“中国数学史上的牛顿”。2023-05-18 08:00:151
刘徽读音
刘徽的读音:liú huī。刘徽,汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。刘徽在数学上的贡献极多,在开方不尽的问题中提出“求徽数”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件,而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致。其代表作《九章算术注》是对《九章算术》一书的注解。《九章算术》是中国流传至今最古老的数学专著之一,它成书于西汉时期。这部书的完成经过了一段历史过程,书中所收集的各种数学问题,有些是秦以前流传的问题,长期以来经过多人删补、修订,最后由西汉时期的数学家整理完成。2023-05-18 08:00:211
刘徽是哪个朝代的?
刘徽是魏晋时期的。刘徽是魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。刘徽的著作影响:刘徽的著作《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法。在书中的方田,粟米,衰分,商功,均输等章已有了相当详备的叙述。而少广,盈不足,方程,勾股等章中的开立方法,盈不足术,正负数概念,线性联立方程组解法,整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。2023-05-18 08:00:391
周生如故刘徽结局
《周生如故》刘徽的结局是历经坎坷终于成长。周生辰帮刘徽解除了赵腾、刘元之患,但是后来却有了刘子行与金荣在一起的勾结,这一次不仅再次圈禁了他这个帝王,还害死了周生辰。 刘子行想要通过权势娶了漼时宜,但是周生辰死后因为漼时宜的自尽殉情,导致刘子行爱而不得,早早病逝。他的一切筹谋皆因为他的短命而终止。 刘徽因为刘子行的死被朝中的人救了出来,再次回归帝位。他的一生也是坎坷,经历了两次朝局动荡。也正因为有了这两次经历,终于让刘徽成长了起来,他开始励精图治,好好地做一个帝王,专心治理北陈。《周生如故》主要剧情年少成名、战功赫赫的小南辰王周生辰(任嘉伦饰),立志一生效忠国家,其严谨作风和谦逊为人为世人所称道。名门漼氏独女漼时宜(白鹿饰)出生便被指腹为婚为未来太子妃,因与王府是世交,便被长辈送到王府学艺。漼时宜善良可爱、活泼聪慧的个性,在王府深得众人喜爱,学艺精进也很快,是王府的开心果。点滴相处中,漼时宜钦佩周生辰远大的志向和儒雅的品格,不知不觉中爱上了这位将军。无论是守在王府等待捷报,还是与周生辰并肩作战,漼时宜都是周生辰最坚强的后盾和最温暖的支撑。两人情感迅速升温,但依然发乎情止乎礼。边关再度告急,周生辰义不容辞领兵出战,而漼时宜却须担负起家族声誉的责任与太子完婚。奋勇抗敌的周生辰被奸臣设计,背上了反叛的污名,受剔骨之刑,整整三个时辰,无一声哀嚎。漼时宜自城楼一跃而下,为他殉情。2023-05-18 08:00:531
刘徽有哪些主要著作?
刘徽,三国后期魏国人,尽管他是我国古代杰出的数学家,也是中国古典数学理论的创始人之一。但是关于他的生卒年月、生平事迹等,史书上记载不多。刘徽的数学著作能够留传于后世的很少,所留大多都是辗转传抄之作。他的主要著作有:《九章算术注》、《重差术》也叫《海岛算经》、《九章重差图》,但是后两种早在宋代就已经失传于世。2023-05-18 08:01:081
刘徽是哪个朝代的?
魏晋期间伟大的数学家,2023-05-18 08:01:167
古代数学家刘徽哪里人?有哪些数学成就?
刘徽,淄乡(今山东邹平)人。生卒年不详,活动于公元3世纪,数学家。刘徽自述“幼习《九章》,长再详览,观阴阳之割裂,总算术之根源,探赜之暇,遂悟其意,是以敢竭顽鲁,采其所见,为之作注”。《晋书》、《隋书》之“律历志”称“魏陈留王景元四年(263)刘徽注《九章》”。《九章算术注》原10卷,第10卷“重差”为刘徽自撰自注,大约在南北朝后期单行,因其第l问为测望海岛之高、远,遂称为《海岛算经》。唐李淳风编纂《算经十书》,刘、李注《九章算术》与《海岛算经》并列为其中的两部。刘徽又著《九章重差图》l卷,已失传。刘徽在北宋大观三年(1109)被封为淄乡男。同时所封60余人,多依其里贯。据《汉书》“地理志”、“王子侯表”以及北宋王存《元丰九域志》所载资料考证,淄乡在今山东省邹平县境,汉淄乡侯为文帝子梁王刘武之后。2023-05-18 08:01:541
周生如故刘徽是哪个朝代的
周生如故说的是北魏时期。《周生如故》是由郭虎执导,任嘉伦、白鹿领衔主演,王星越、周陆啦、苏梦芸等的的双向暗恋甜虐剧。2023-05-18 08:02:072
刘徽的数学成就
刘徽的数学成就是清理中国古代数学体系,提出牟合方盖、重差术、割圆术等方法。刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。2023-05-18 08:02:211
戚真真和刘徽原型是什么?
戚真真的历史原型是宣武灵太后胡充华,刘徽是《周生如故》的虚拟人物,没有原型。剧中的太后名唤戚真真。她的儿子之所以能登基称帝,是因为有漼氏一族以及当朝宰相的拥护。在刚一开始的时候,她假意许诺,只要太子成了新皇。那么,漼氏一族的漼时宜,便会成为皇后。漼广漼太傅一心想要稳固漼家在朝堂之中的地位。所以就因此答应了扶持太子称帝。令人咋舌的是,戚真真的儿子刘徽顺利登基之后。戚真真竟然临时反悔了。剧情简介年少成名、战功赫赫的小南辰王周生辰(任嘉伦饰)立志一生效忠国家,其严谨作风和谦逊为人为世人所称道。名门漼氏独女漼时宜(白鹿饰)出生便被指腹为婚为未来太子妃,因与王府是世交,便被长辈送到王府学艺。漼时宜善良可爱、活泼聪慧的个性,在王府深得众人喜爱,学艺精进也很快,是王府的开心果。2023-05-18 08:02:391
魏晋期间的数学家刘徽在圆周率方面的贡献有哪些成就?
刘徽创造的割圆术计算方法,只用圆内接多边形面积,而无需外切形面积,从而简化了计算程序,为计算圆周率和圆面积建立起相当严密的理论和完善的算法。同时,为解决圆周率问题,刘徽所运用的初步的极限概念和直曲转化思想,这在古代也是非常难能可贵的。在刘徽之后,我国南北朝时期杰出的数学家祖冲之,把圆周率推算到更加精确的程度,比欧洲人早了800多年,取得了极其光辉的成就。刘徽是魏晋期间伟大的数学家,我国古典数学理论的奠基者之一。他创造了许多数学方面的成就,其中在圆周率方面的贡献,同样源于他的潜心钻研。有一次,刘徽看到石匠在加工石头,觉得很有趣,就仔细观察了起来。石匠一斧一斧地凿下去,一块方形石料就被加工成了一根光滑的圆柱。谁会想到,原本一块方石,经石匠师傅凿去4个角,就变成了八角形的石头。再去8个角,又变成了十六边形。这在一般人看来非常普通的事情,却触发了刘徽智慧的火花。他想:“石匠加工石料的方法,为什么不可以用在圆周率的研究上呢?”于是,刘徽采用这个方法,把圆逐渐分割下去,一试果然有效。刘徽独具慧眼,终于发明了“割圆术”,在世界上把圆周率计算精度提高到了一个新的水平。9999魏晋之际的数学家刘徽在计算圆周率方面做出的贡献有哪些?魏晋之际的杰出数学家刘徽,在计算圆周率方面,作出了非常突出的贡献。他在为古代数学名著《九章算术》作注的时候,指出“周三径一”不是圆周率值,而是圆内接正六边形周长和直径的比值。而用古法计算出的圆面积的结果,不是圆面积,而是圆内接正十二边形面积。经过深入研究,刘徽发现圆内接正多边形边数无限增加的时候,多边形周长无限逼近圆周长,从而创立割圆术,为计算圆周率和圆面积建立起相当严密的理论和完善的算法。刘徽割圆术的基本思想是:割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣。就是说分割越细,误差就越小,无限细分就能逐步接近圆周率的实际值。他很清楚圆内接正多边形的边数越多,所求得的圆周率值越精确这一点。刘徽用割圆的方法,从圆内接正六边形开始算起,将边数一倍一倍地增加,即12、24、48、96,因而逐个算出正六边形、正十二边形、正二十四边形等的边长,使“周径”之比的数值逐步地逼近圆周率。他做圆内接九十六边形时,求出的圆周率是3.14,这个结果已经比古率精确多了。刘徽利用“幂”和“差幂”来代替对圆的外切近似,巧妙地避开了对外切多边形的计算,在计算圆面积的过程中收到了事半功倍的效果。刘徽首创“割圆术”的方法,可以说他是我国古代极限思想的杰出代表,在数学史上占有十分重要的地位。他所得到的结果在当时世界上也是很先进的。刘徽所处的时代是社会上军阀割据,特别是当时魏、蜀、吴三国割据,那么在这个时候中国的社会、政治、经济发生了极大的变化,特别是思想界,文人学士们互相进行辩难。所以当时成为辩难之风,一帮文人学士来到一块,就像我们大专辩论会那样,一个正方一个反方,提出一个命题来大家互相辩论。在辩论的时候人们就要研究讨论关于辩论的技术,思维的规律,所以在这一段人们的思想解放,应该说是在春秋战国之后没有过的,这时人们对思维规律的研究特别发达,有人认为这时人们的抽象思维能力远远超过春秋战国时期。刘徽在《九章算术注》的自序中表明,把探究数学的根源,作为自己从事数学研究的昀高任务。他注《九章算术》的宗旨就是“析理以辞,解体用图”。“析理”就是当时学者们互相辩难的代名词。刘徽通过析数学之理,建立了中国传统数学的理论体系。在刘徽之后,祖冲之所取得的圆周率数值可以说是圆周率计算的一个跃进。据《隋书·律历志》记载,祖冲之确定了圆周率的不足近似值是3.1415926,过剩近似值是3.1415927,真值在这两个近似值之间,成为当时世界上昀先进的成就。天元术和四元术是我国古代求解高次方程的方法。天元术是列方程的方法,四元术是高次方程组的解法。13世纪,高次方程的数值解法是数学难题之一。当时许多数学家都致力于这个问题。在我国古代,解方程叫作“开方术”。宋元时,开方术已经发展到历史的新阶段,已经达到了当时的世界先进水平。我国古代历史悠久,特别是数学成就更是十分辉煌,在民间流传着许多趣味数学题,一般都是以朗朗上口的诗歌形式表达出来。其中就有许多方程题。比如有一首诗问周瑜的年龄:大江东去浪淘尽,千古风流数人物。而立之年督东吴,早逝英年两位数。十比个位正小三,个位六倍与寿符。哪位学子算得快,多少年华属周瑜?依题意得周瑜的年龄是两位数,而且个位数字比十位数字大3,若设十位数字为x,则个位数字为(x+3),由“个位6倍与寿符”可列方程得:6(x+3)=10x+(x+3),解得x=3,所以周瑜的年龄为36岁。这些古代方程题非常有趣,普及了数学知识,激发了人们的数学思维。在古代数学中,列方程和解方程是相互联系的两个重要问题。宋代以前,数学家要列出一个方程,如唐代著名数学家王孝通撰写的《缉古算经》,首次提出三次方程式正根的解法,能解决工程建设中上下宽狭不一的计算问题,是对我国古代数学理论的卓越贡献,比阿拉伯人早300多年,比欧洲早600多年。随着宋代数学研究的发展,解方程有了完善的方法,这就直接促进了对于列方程方法的研究,于是出现了我国数学的又一项杰出创造—天元术。2023-05-18 08:02:551
刘微是哪个朝代
魏晋期间。刘微是魏晋期间的人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。刘微是哪个朝代的皇帝?刘微应为刘徽,他是前赵楚王,为中国五胡十六国前赵时皇族。光初二年,汉国(前赵)皇帝刘曜回到长安,封儿子刘袭为长乐王,刘徽为楚王,各宗室子弟都进封郡王。前赵为十六国时期列国之一,是西晋晚期由匈奴贵族刘渊建立的政权。史家为区分,将关中的刘氏赵连同刘渊所建的汉,即将稍前的(屠各)刘姓政权统称为前赵,而将随后的石姓赵称为后赵。此后刘曜、石勒常相攻伐。由于刘曜在关中地区对各民族采取高压政策,加上治国无方,一味征战,国势日颓,石勒则控制了河北广大地区。329年,后赵军乘胜西进,前赵太子刘熙弃长安而奔于上邽(今甘肃省天水市)。九月,后赵石虎攻克上邽,杀死刘熙及文武百官,汉赵政权灭亡。2023-05-18 08:03:011
刘徽的“割圆术”是什么?
割圆术我国古代证明圆面积公式和计算圆周率的方法。由刘徽首先提出。当圆内接正多边形边数逐步增加时,其周长和面积分别逼近圆周长和圆面积。刘徽曾用此法算出圆内接正3072边形的面积,以验证圆周率的正确性。 利用圆内接或外切正多边形,求圆周率近似值的方法,其原理是当正多边形的边数增加时,它的边长和逐渐逼近圆周。早在公元前5世纪,古希腊学者安蒂丰为了研究化圆为方问题就设计一种方法:先作一个圆内接正四边形,以此为基础作一个圆内接正八边形,再逐次加倍其边数,得到正16边形、正32边形等等,直至正多边形的边长小到恰与它们各自所在的圆周部分重合,他认为就可以完成化圆为方问题。到公元前3世纪,古希腊科学家阿基米德在《论球和阅柱》一书中利用穷竭法建立起这样的命题:只要边数足够多,圆外切正多边形的面积与内接正多边形的面积之差可以任意小。阿基米德又在《圆的度量》一书中利用正多边形割圆的方法得到圆周率的值小于三又七分之一而大于三又七十分之十 ,还说圆面积与夕卜切正方形面积之比为11:14,即取圆周率等于22/7。公元263年,中国数学家刘徽在《九章算术注》中提出“割圆”之说,他从圆内接正六边形开始,每次把边数加倍,直至圆内接正96边形,算得圆周率为3.14或157/50,后人称之为徽率。书中还记载了圆周率更精确的值3927/1250(等于3.1416)。刘徽断言“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”。其思想与古希腊穷竭法不谋而合。割圆术在圆周率计算史上曾长期使用。1610年德国数学家柯伦用2^62边形将圆周率计算到小数点后35位。1630年格林贝尔格利用改进的方法计算到小数点后39位,成为割圆术计算圆周率的最好结果。分析方法发明后逐渐取代了割圆术,但割圆术作为计算圆周率最早的科学方法一直为人们所称道。2023-05-18 08:03:191
刘徽是否提倡逻辑证明
答,刘徽(约公元225年—295年),汉族,山东邹平人,魏晋期间伟大的数学家,中国古典数学 理论的奠基者之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是中国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。2023-05-18 08:03:251
周生如故刘徽和刘子行什么关系
周生如故刘徽和刘子行什么关系?我们一起来看看吧! 周生如故刘徽和刘子行是堂兄弟关系。《周生如故》是剧根据墨宝非宝原著小说《一生一世美人骨》古代篇改编,讲述了坐拥数十万大军的异姓王爷小南辰王与清河_氏正支唯一独女,未来的太子妃_时宜之间的虐恋故事。 以上就是收集整理出来的,望能够帮助到大家。2023-05-18 08:03:321
数学名人
朱世杰……2023-05-18 08:03:409
刘徽与祖冲之谁发现的
刘徽,书上都写着呢2023-05-18 08:04:117
在数学方面,刘徽有什么贡献?
刘徽最大的成就是他注释了《九章算术》,在这一过程中,刘徽取得了许多创造性的成就。经他作注的《九章算术》对我国数学的发展产生了深远的影响,成为东方数学的代表作之一。2023-05-18 08:04:261
周生如故的刘徽是哪个朝代的皇帝
周生如故的刘徽是哪个朝代的皇帝 答案是:应该是北魏时期。《周生如故》中的刘徽是周生辰皇兄的孩子,刘徽在先皇去世之后,年幼时就登基成为了皇上。小时候的他由于年纪小政权一直掌握在他母后的手中,他母后成为皇太后之后野心变得越来越大,一直想要把皇上的权利掌握在手中。 在这部剧中皇帝刘徽并没有真实的原型,而是根据小说改编的。周生辰对于刘徽这个小皇帝特别的照顾,在刘徽年幼登基朝政不稳的时候,周生辰从西周特意回到了中州,在朝廷当中拥护刘徽。2023-05-18 08:04:441
周生如故皇上的结局
《周生如故》皇帝刘徽的结局是历经坎坷终于成长。刘徽因为刘子行的死被朝中的人救了出来,再次回归帝位。他的一生也是坎坷,经历了两次朝局动荡。也正因为有了这两次经历,终于让刘徽成长了起来,他开始励精图治,好好地做一个帝王,专心治理北陈。《周生如故》剧情概述《周生如故》是由郭虎执导,任嘉伦、白鹿领衔主演的家国大义历史剧。该剧根据墨宝非宝原著小说《一生一世美人骨》古代篇改编,讲述了北魏时期,当朝异姓王爷,坐拥数十万大军的小南辰王与清河漼氏正支唯一独女,未来的太子妃漼时宜之间的前世今生的故事。《周生如故》皇帝刘徽的扮演者刘徽的扮演者是新晋演员罗殿夏,2001年10月30日出生于中国广西,中国内地新生代男艺人,喜遇尚作练习生。2019年4月6日,罗殿夏作为选手参与录制的青年团训选秀节目《创造营2019》在腾讯视频上线,节目播出之后,凭借着优秀的表现,他受到了很多粉丝的喜爱和关注。在《周生如故》中饰演刘徽,该剧于2021年8月18日首播。2023-05-18 08:04:511
中国数学家刘薇用什么得出了精确到两位小数的π值?
刘徽与祖冲之所用之法相同,都是“割圆法”,也就是用多边形的面积去逼近圆的面积2023-05-18 08:04:593
中国古代著名的数学家有谁?
转载过来的,你看看。网页链接2023-05-18 08:05:1013
刘徽是刘子行吗
刘子行和刘徽是堂兄弟。 《周生如故》电视剧中说,刘子行是北陈皇室宗族炎武王的三儿子。由此可知,刘子行和刘徽不是亲兄弟。 其实,当时戚太后选择刘子行还是花了心思的。 一、合理性。在南北朝时,太子只是一个储君之位,他不再是特指准备继位的儿子,而只是一个岗位。所以立兄弟为太子,是有合理性的。 二、符合戚太后的心意。戚太后让刘子行做太子,根本没有让他继位的想法。戚太后认为,刘子行应该知道自己的处境,也不会有这个非分之想。2023-05-18 08:06:031
刘徽是哪个朝代的皇帝
刘徽不是皇帝,中国五胡十六国前赵时皇族,新兴(今山西省忻州)匈奴人。刘曜子。光初二年(319年),汉国(前赵)皇帝刘曜回到长安,从平阳迁都于长安,立后妃羊献容为皇后,儿子刘熙为太子。封儿子刘袭为长乐王,刘阐为太原王,刘冲为淮南王,刘敞为齐王,刘高为鲁王,刘徽为楚王,各宗室子弟都进封郡王。五胡十六国(304年~439年)是中国历史上的一段大分裂时期。该时期自304年李雄和刘渊分别在汉地巴蜀建立成国(成汉)、在中原建立汉赵(前赵)时起,至439年北魏太武帝拓跋焘灭北凉为止。东晋十六国时期,汉地江南、荆湘地区由东晋控制,而汉地北部和西南部则先后建立了二十多个国家。其中的前凉、成汉、前赵、后赵、北凉、西凉、后凉、南凉、前燕、后燕、南燕、北燕、夏、前秦、西秦、后秦十六个国家实力强劲,“十六国”之称源出于北魏史学家崔鸿所撰的《十六国春秋》:“五凉、四燕、三秦、二赵,并成、夏为十六。”范围大致上涵盖汉地中部、东部、西南部、西部,最远可达漠北及西域。2023-05-18 08:06:091
刘徽的生平介绍有哪些?
刘徽生卒年与出生地不详,大约生活在3世纪的魏晋时期,我国古代杰出的数学家。他在数学发展史上首次创立了“割圆术”,完善了圆周率的算法,为计算圆周率建立了严密的理论,从而开创了圆周率研究的新阶段。他根据相似三角形对应边成比例的原理,提出了计算测量高、深、广、远的方法,也被称为“重差法术”。他的著作有《重差》,《九章算术注》、《九章重差图》等。《九章重差图》现已失传,《重差》流传到现在,就是著名的《海岛算经》。这些著作以其精深的见解和严密的论证,对我国古代数学体系的形成和发展产生了重大影响。2023-05-18 08:06:161
数学家刘徽与刘备的关系
您好,根据现有史料,数学家刘徽与刘备的关系没法判断。根据现有史料,刘徽 籍贯 和 生卒年月不详,有记载的是在魏景元四年(263年)前后,注《九章算术》,并撰巜重差图》一卷作为《九章算术》注第十卷,是我国古代数学理论的奠基人之一。刘备的史料较为详尽,家喻户晓。以上供参考2023-05-18 08:06:231
刘徽读音
刘徽拼音:[liú huī]刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。2021年5月,国际天文学联合会(IAU)批准中国在嫦娥五号降落地点附近月球地貌的命名,刘徽(liuhui)为八个地貌地名之一。《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。刘徽在曹魏景元四年注《九章算术注》。但因解法比较原始,缺乏必要的证明,刘徽则对此均作了补充证明。在这些证明中,显示了他在众多方面的创造性贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则,改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π≈3.1416的结果。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值。刘徽提出的计算圆周率的科学方法,奠定了此后千余年来中国圆周率计算在世界上的领先地位。2023-05-18 08:06:401
刘徽是什么朝代的人
刘徽是魏晋时期的人。刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。2023-05-18 08:06:571
刘徽的数学家名人故事
故事:在现实认知观的基础上,对其描写成非常态性现象。是文学体裁的一种,侧重于事件发展过程的描述。以下是我为大家整理的刘徽的数学家名人故事,仅供参考,希望能够帮助大家。 刘徽的数学家名人故事 篇1 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。 《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。在这些证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.14的结果。刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。 《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。 刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。 刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的"财富。 刘徽的数学家名人故事 篇2 有一天,刘徽在偶然中看到了石匠在切割石头,看着看着竟觉得十分有趣,就站在一边,细细地观察起来。 刘徽看到,一块方形的石头,先由石匠切去了四个角,四角的石头瞬间就有了八个角,然后再把这八个角切去,以此类推,石匠一直在把这些角一个一个地切去,直到无角可切为止。到最后,刘徽就发现,本来呈现方形的石块,早在不知不觉中变成了一个圆滑的柱子。 石匠打磨石块的事情,每天都在发生,但就是这样的一件小事,让刘徽瞬间茅塞顿开,看到了别人没有看到的事情。刘徽就像石匠所做的那样,把圆不断分割,终于发明了“割圆术”。 刘徽从偶然事件得到了启迪,从中联想到了计算圆周率的方法,进而发明了“割圆术”,为计算圆周率提供了一套严密的理论和完善的算法。 扩展资料: 刘徽生平: 刘徽(约225年—约295年),汉族,山东滨州邹平市[1]人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。 刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。2023-05-18 08:07:031
刘徽是我国的哪个朝代的人
刘徽(生于公元250年左右),东汉三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一。其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。刘徽的主要著作有:《九章算术注》10卷;《重差术》1卷,至唐代易名为《海岛算经》;《九章重差图》1卷,可惜后两种都在宋代失传。刘徽的数学成就大致为两方面:一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:在数系理论方面:用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。在筹式演算理论方面:先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。在勾股理论方面:逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。在面积与体积理论方面:用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:割圆术与圆周率:刘徽在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3?14,又算到3072边形的面积,得到π=3927/1250=3?1416,称为“徽率”。刘徽原理:在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。“牟合方盖”说:在《九章算术?开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。方程新术:在《九章算术?方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。重差术:在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。刘徽的《九章算术》是我国流传至今最古老的数学专著之一,它成书于西汉时期。这部书的完成经过了一段历史过程,书中所收集的各种数学问题,有些是秦以前流传的问题,长期以来经过多人删补、修订,最后由西汉时期的数学家整理完成。现今流传的定本的内容在东汉之前已经形成。《九章算术》是中国最重要的一部经典数学著作,它的完成奠定了中国古代数学发展的基础,在中国数学史上占有极为重要的地位。现传本《九章算术》共收集了246个应用问题和各种问题的解法,分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。《九章算术》的产生是社会发展和数学知识长期积累的结果,它汇集了不同时期数学家的劳动成果。刘徽认为:“周公制礼有九数,九数之流,则《九章》是矣。……汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补。故校其目则与古或异,而所论多近语也。”根据刘徽的考证结果,《九章算术》源于周公时代的“九数”,而他所见到的《九章算术》是西汉时的张苍、耿寿昌在先秦遗文的基础上删补而成的,其中包括了大量西汉时补充的内容。根据历史文献和出土文物资料来分析,刘徽所言是可信的。《九章算术》所包含的各种算法是汉朝数学家们在秦以前流传下来的数学基础上,适应当时的需要补充修订而成的。按照刘徽的考证,张苍和耿寿昌都是参加过修订工作的主要数学家。《史记?张丞相列传》记载,张苍(约前250~前152)经历了秦、汉两个朝代,他在高帝六年(前201)以攻藏茶有功封为北平侯。“自秦时为柱下史,明天下图书计籍。又善用算律历。”他还“著书18篇,言阴阳律历事。”耿寿昌的生年年代不详,汉宣帝时官至大司农中丞,“以善为算,能商功利”得宠于皇帝。他于天文学主张浑天说,甘露二年(前52)奏“以圆仪度日月行,考验天运状”。张苍和耿寿昌都是数学名家,又身居高位,由他们主持修订先秦流传下来的《算术》是很自然的事情。根据刘徽的记载,他所注释的《九章算术》最后是由耿寿昌删定的。我们认为耿寿昌删补《九章算术》的年代可以定为这部书完成的年代。《九章算术》是由国家组织力量编纂的一部官方性数学教科书,对两汉时期数学的发展产生了很大的影响。《广韵》卷四有“九章术,汉许商、杜志、吴陈炽、王粲并善之”,《后汉书?马援传》有马续(约70~141)“博观群籍,善九章算术”的记载。此外,史书中还有郑玄(127~200)、刘洪等人“通九章算术”的记述。可知该书是当时学习数学的重要教材,在东汉光和二年(179)一块铜版上的铭文规定:“大司农以戊寅(138?)诏书,……特更为诸州作铜斗、斜、称。依黄钟律历,《九章算术》以均长短、轻重、大小,以齐七政,令海内都同。”这说明该书在东汉时期不仅广为流传,而且度量衡研制涉及的数学问题也要以书中的算法为依据。许商、杜志可能是《九章算书》成书后最早研究过该书的数学家。许商、杜志都是西汉后期的数学家。《汉书?艺文志》著录有《许商算术》26卷、《杜志算术》16卷。这两部书都是汉成帝三年(前26)尹咸校对数术著作之前撰写的。许商、杜志的著作完成年代与耿寿昌删补《九章算术》的年代相去不远,他们的数学著作应当是在研究了《九章算术》的基础上完成的。《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、正负数概念、线性联立方程组解法、整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。刘徽的《九章》注不仅在整理古代数学体系和完善古算理论方面取得了重要成就,而且提出了丰富多彩的创见和发明。他用比率理论建立了数与式的统一的理论基础,他应用了出入相补原理和极限方法解决了许多面积和体积问题,建立了独具风格的面积和体积理论。他对《九章》中的许多结论给出了严格的证明,他的一些方法对后世有很大启发,即使对现今数学也有可借鉴之处。刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。2023-05-18 08:07:101
魏晋时期著名数学家刘徽简介,刘徽在数学方面有哪些成就
人物事迹 《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。刘徽在曹魏景初四年注《九章算术注》。 但因解法比较原始,缺乏必要的证明,刘徽则对此均作了补充证明。在这些证明中,显示了他在众多方面的创造性贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则,改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.1416的结果。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值。刘徽提出的计算圆周率的科学方法,奠定了此后千余年来中国圆周率计算在世界上的领先地位。 刘徽在数学上的贡献极多,在开方不尽的问题中提出“求徽数”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件,而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;并在中国数学史上第一次提出了“不定方程问题”;他还建立了等差级数前n项和公式;提出并定义了许多数学概念:如幂(面积);方程(线性方程组);正负数等等.刘徽还提出了许多公认正确的判断作为证明的前提.他的大多数推理、证明都合乎逻辑,十分严谨,从而把《九章算术》及他自己提出的解法、公式建立在必然性的基础之上。虽然刘徽没有写出自成体系的著作,但他注《九章算术》所运用的数学知识,实际上已经形成了一个独具特色、包括概念和判断、并以数学证明为其联系纽带的理论体系。 刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。 个人成就 刘徽的数学成就大致为两方面: 一是整理中国古代数学体系并奠定了它的理论基础,这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系: 数系理论 ①用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术 的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。 ②在筹式演算理论方面, 先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。 ③在勾股理论方面 逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。 面积与体积理论 用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。 二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见: ①割圆术与圆周率, 他在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3.14,又算到3072边形的面积,得到π=3927/1250=3.1416,称为“徽率”。 ②刘徽原理 在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。 “牟合方盖”说 在《九章算术 开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。 方程新术 在《九章算术 方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。 重差术 在自撰《海岛算经》中,他提出了重差术,采用了重表、连索和 累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。 代表著作 著作简介 其代表作《九章算术注》是对《九章算术》一书的注解。《九章算术》是中国流传至今最古老的数学专著之一,它成书于西汉时期。这部书的完成经过了一段历史过程,书中所收集的各种数学问题,有些是秦以前流传的问题,长期以来经过多人删补、修订,最后由西汉时期的数学家整理完成。现今流传的定本的内容在东汉之前已经形成。《九章算术》是中国最重要的一部经典数学著作,它的完成奠定了中国古代数学发展的基础,在中国数学史上占有极为重要的地位。现传本《九章算术》共收集了246个应用问题和各种问题的解法,分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。 《九章算术》的产生是社会发展和数学知识长期积累的结果,它汇集了不同时期数学家的劳动成果。三国时的数学家刘徽认为:“周公制礼有九数,九数之流,则《九章》是矣。……汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补。故校其目则与古或异,而所论多近语也。”根据刘徽的考证结果,《九章算术》源于周公时代的“九数”,而他所见到的《九章算术》是西汉时的张苍、耿寿昌在先秦遗文的基础上删补而成的,其中包括了大量西汉时补充的内容。根据历史文献和出土文物资料来分析,刘徽所言是可信的。《九章算术》所包含的各种算法是汉朝数学家们在秦以前流传下来的数学基础上,适应当时的需要补充修订而成的。按照刘徽的考证,张苍和耿寿昌都是参加过修订工作的主要数学家。《史记·张丞相列传》记载,张苍(约前250~前152)经历了秦、汉两个朝代,他在高帝六年(前201)以攻藏茶有功封为北平侯。“自秦时为柱下史,明天下图书计籍。又善用算律历。”他还“著书18篇,言阴阳律历事。”耿寿昌的生年年代不详,汉宣帝时官至大司农中丞,“以善为算,能商功利”得宠于皇帝(见《汉书·食货志》)。他于天文学主张浑天说,甘露二年(前52)奏“以圆仪度日月行,考验天运状”(见《后汉书·律历志》)。张苍和耿寿昌都是数学名家,又身居高位,由他们主持修订先秦流传下来的《算术》是很自然的事情。根据刘徽的记载,他所注释的《九章算术》最后是由耿寿昌删定的。我们认为耿寿昌删补《九章算术》的年代可以定为这部书完成的年代。 著作影响 《九章算术》是由国家组织力量编纂的一部官方性数学教科书,对两汉时期数学的发展产生了很大的影响。《广韵》卷四有“九章术,汉许商、杜志、吴陈炽、王粲并善之”,《后汉书·马援传》有马续(约70~141)“博观群籍,善九章算术”负记载。此外,史书中还有郑玄(127~200)、刘洪等人“通九章算术”的记述。可知该书是当时学习数学的重要教材,在东汉光和二年(179)一块铜版上的铭文规定:“大司农以戊寅(138?)诏书,……特更为诸州作铜斗、斜、称。依黄钟律历,《九章算术》以均长短、轻重、大小,以齐七政,令海内都同。”这说明该书在东汉时期不仅广为流传,而且度量衡研制涉及的数学问题也要以书中的算法为依据。许商、杜志可能是《九章算书》成书后最早研究过该书的数学家。许商、杜志都是西汉后期的数学家。《汉书·艺文志》著录有《许商算术》26卷、《杜志算术》16卷。这两部书都是汉成帝三年(前26)尹咸校对数术著作之前撰写的。许商、杜志的著作完成年代与耿寿昌删补《九章算术》的年代相去不远,他们的数学著作应当是在研究了《九章算术》的基础上完成的。 《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、正负数概念、线性联立方程组解法、整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。 传本《九章算术》有刘徽注和唐李淳风等的注释。刘徽是中国古代杰出的数学家,他生活在三国时代的魏国。《隋书·律历志》论历代量制引商功章注,说“魏陈留王景元四年(263)刘徽注《九章》。”他的生平不可详考。刘徽的《九章》注不仅在整理古代数学体系和完善古算 理论方面取得了重要成就,而且提出了丰富多彩的创见和发明。刘徽在算术、代数、几何等方面都有杰出的贡献。例如,他用比率理论建立了数与式的统一的理论基础,他应用了出入相补原理和极限方法解决了许多面积和体积问题,建立了独具风格的面积和体积理论。他对《九章》中的许多结论给出了严格的证明,他的一些方法对后世有很大启发,即使对现今数学也有可借鉴之处。 史书记载 《晋书卷一十六志第六》: 魏景元四年,刘徽注《九章》云 :王莽时刘歆斛尺弱于今尺四分五厘,比魏尺其斛深九寸五分厘;即荀勖所谓今尺长四分半是也。 魏陈留王景元四年,刘徽注《九章商功》 曰:「当今大司农斛,圆径一尺三寸五分五厘,深一尺,积一千四百四十一寸十分寸之三。王莽铜斛,于今尺为深九寸五分五厘,径一尺三寸六分八厘七毫。以徽术计之,于今斛为容九斗七升四合有奇。」 《宋书卷十三志第三》:汉时斛铭,刘歆诡谬其数,此则算氏之剧疵也。《乾象》之弦望定数,《景初》之交度周日,匪谓测候不精,遂乃乘除翻谬,斯又历家之甚失也。 及郑玄、阚泽、王蕃、刘徽,并综数艺,而每多疏舛 。2023-05-18 08:07:161
刘徽是哪个朝代的皇帝在位多少年
历史上并没有叫刘徽的皇帝,刘徽是古代著名的数学家,还有一个刘徽是前赵的楚王,而不是皇帝。1、刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。2、刘徽,中国五胡十六国前赵时皇族,新兴(今山西省忻州)匈奴人。刘曜子。光初二年(319年),汉国(前赵)皇帝刘曜回到长安,从平阳迁都于长安,立后妃羊献容为皇后,儿子刘熙为太子。封儿子刘袭为长乐王,刘阐为太原王,刘冲为淮南王,刘敞为齐王,刘高为鲁王,刘徽为楚王,各宗室子弟都进封郡王。2023-05-18 08:07:231
刘徽的故事
刘徽(约225年—约295年),汉族,山东滨州邹平市[1]人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。2023-05-18 08:07:312
刘徽的人物介绍
刘徽是公元三世纪世界上最杰出的数学家,他在公元263年撰写的著作《九章算术注》以及后来的《海岛算经》,是我国最宝贵的数学遗产,从而奠定了他在中国数学史上的不朽地位。刘徽的数学著作,留传后世的很少,所留均为久经辗转传抄之作。他的主要著作有:《九章算术注》10卷; 《重差》1卷,至唐代易名为《海岛算经》;《九章重差图》l卷。可惜后两种都在宋代失传。《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。但因解法比较原始,缺乏必要的证明,刘徽则对此均作了补充证明。在这些证明中,显示了他在众多方面的创造性贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则,改进了线性方程组的解法。在几何方面,提出了割圆术,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.1416的结果。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值。刘徽提出的计算圆周率的科学方法,奠定了此后千余年来中国圆周率计算在世界上的领先地位。刘徽在数学上的贡献极多,在开方不尽的问题中提出“求徽数”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件,而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;并在中国数学史上第一次提出了“不定方程问题”;他还建立了等差级数前n项和公式;提出并定义了许多数学概念:如幂(面积);方程(线性方程组);正负数等等.刘徽还提出了许多公认正确的判断作为证明的前提.他的大多数推理、证明都合乎逻辑,十分严谨,从而把《九章算术》及他自己提出的解法、公式建立在必然性的基础之上。虽然刘徽没有写出自成体系的著作,但他注《九章算术》所运用的数学知识,实际上已经形成了一个独具特色、包括概念和判断、并以数学证明为其联系纽带的理论体系。刘徽在割圆术中提出的割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣,这可视为中国古代极限观念的佳作。《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。2023-05-18 08:07:381
刘徽取得的重大成就及历史地位
刘徽,九章数学作者,是我国数学第一人2023-05-18 08:07:523
刘徽为什么被称为古典数学理论奠基者?
刘徽是三国后期魏国人,是我国古代杰出的数学家,也是我国古典数学理论的奠基者之一。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。刘徽的一生是为数学刻苦探求的一生。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。魏晋时期杰出的数学家刘徽,曾经提出一个测量太阳高度的方案:在洛阳城外的开阔地带,一南一北,各立一根8尺长的竿,在同一天的正午时刻测量太阳给这两根竿的投影,以影子长短的差当做分母,以竿的长乘以两竿之间的距离当做分子,两者相除,所得再加上竿的长,就得到了太阳到地表的垂直高度。再以南边一竿的影长乘上两竿之间的距离作为分子,除以前述影长的差,所得就是南边一竿到太阳正下方的距离。以这两个数字作为直角三角形两条直角边的边长,用勾股定理求直角三角形的弦长,所得就是太阳距观测者的实际距离。刘徽的这个方案,运用了相似三角形相应线段的长成比例的原理,巧妙地用一个中介的三角形,将另外两个看似不相干的三角形联系在了一起。这一切,和我们今天在中学平面几何课本中学到的一模一样。如果我们把刘徽这道题里的太阳换成别的光源,把它设计成一道几何证明题兼计算题,放到今天的中学课本里,也是完全没有问题的。刘徽的数学著作留传后世的很少,所留之作均为久经辗转传抄。他的主要著作有:《九章算术注》10卷;《重差》1卷,至唐代易名为《海岛算经》。刘徽之所以能够写出《九章算术注》,这与他生活的时代大背景是有关系的。汉代末期的动乱打破了西汉时期“罢黜百家,独尊儒术”这个儒家学说经学独断的局面,思想解放了。后来形成的三国鼎立局面,虽然是没有大统一,但是出现了短暂的相对的统一,促成了思想解放?学术争鸣的局面。此外,东汉末年,佛教进入我国,道教开始兴起,而且儒道开始合流,有些人用道家的思想开始来解释儒家的东西。百家争鸣?辨析明理的局面,促进了当时国人的逻辑思维。已经被废除或者停止好多年的逻辑问题,又提到了学术界。因为数学是个逻辑过程,有逻辑推理?逻辑证明,没有这种东西做基础,那数学是不可想象的。科技的复苏和发展,就需要一些科学技术的东西,来推进生产力的发展。因此,刘徽的数学思想就在这样的背景下产生了。事实上,他正是我国最早明确主张用逻辑推理的方式来论证数学命题的人。从《九章算术》本身来看,它约成书于东汉初期,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。但因原书的解法比较原始,缺乏必要的证明,刘徽则作《九章算术注》,对此均作了补充证明。这些证明,显示了他在众多方面的创造性贡献。《海岛算经》原为《九章算术注》第九卷勾股章内容的延续和发展,名为《九章重差图》,附于《九章算术注》之后作为第十章。唐代将其从中分离出来,单独成书,按第一题“今有望海岛”,取名为《海岛算经》,是《算经十书》之一。《海岛算经》研究的对象全是有关高与距离的测量,所使用的工具也都是利用垂直关系所连接起来的测竿与横棒。所有问题都是利用两次或多次测望所得的数据,来推算可望而不可及的目标,是我国最早的一部测量数学著作,也为地图学提供了数学基础。《海岛算经》运用二次?三次?四次测望法,是测量学历史上领先的创造。中外学者对《海岛算经》的成就,给予很高的评价。美国数学家弗兰克·斯委特兹说:《海岛算经》使中国测量学达到登峰造极的地步,使中国在数学测量学的成就,超越西方约1000年。刘徽的数学成就大致可以归纳为两个方面:一是清理我国古代数学体系并奠定了它的理论基础;二是在继承的基础上提出了自己的创见。刘徽在古代数学体系方面的成就,集中体现在《九章算术注》中。此作实际上已经形成了一个比较完整的理论体系。在数系理论方面,刘徽用数的同类与异类阐述了通分?约分?四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。在筹式演算理论方面,刘徽先给率以比较明确的定义,又以遍乘?通约?齐同等基本运算为基础,建立了数与式运算的统一的理论基础。他还用“率”来定义我国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。在勾股理论方面,刘徽逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了我国特色的相似理论。在面积与体积理论方面,刘徽用出入相补?以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形?几何体的面积?体积计算问题。这些方面的理论价值至今仍闪烁着余辉。刘徽的工作,不仅对我国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,很多书上把他称作“中国数学史上的牛顿”。算经十书2023-05-18 08:08:001
历史上数学家刘徽有多少杰作
刘徽(约公元225年—295年),汉族,山东邹平县人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。2023-05-18 08:08:203
谁知道刘徽是那个朝代的人。
刘徽(生于公元250年左右),东汉三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一。其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。刘徽的主要著作有:《九章算术注》10卷;《重差术》1卷,至唐代易名为《海岛算经》;《九章重差图》1卷,可惜后两种都在宋代失传。刘徽的数学成就大致为两方面:一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:在数系理论方面:用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。在筹式演算理论方面:先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。在勾股理论方面:逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。在面积与体积理论方面:用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:割圆术与圆周率:刘徽在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3?14,又算到3072边形的面积,得到π=3927/1250=3?1416,称为“徽率”。刘徽原理:在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。“牟合方盖”说:在《九章算术?开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。方程新术:在《九章算术?方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。重差术:在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。刘徽的《九章算术》是我国流传至今最古老的数学专著之一,它成书于西汉时期。这部书的完成经过了一段历史过程,书中所收集的各种数学问题,有些是秦以前流传的问题,长期以来经过多人删补、修订,最后由西汉时期的数学家整理完成。现今流传的定本的内容在东汉之前已经形成。《九章算术》是中国最重要的一部经典数学著作,它的完成奠定了中国古代数学发展的基础,在中国数学史上占有极为重要的地位。现传本《九章算术》共收集了246个应用问题和各种问题的解法,分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。《九章算术》的产生是社会发展和数学知识长期积累的结果,它汇集了不同时期数学家的劳动成果。刘徽认为:“周公制礼有九数,九数之流,则《九章》是矣。……汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补。故校其目则与古或异,而所论多近语也。”根据刘徽的考证结果,《九章算术》源于周公时代的“九数”,而他所见到的《九章算术》是西汉时的张苍、耿寿昌在先秦遗文的基础上删补而成的,其中包括了大量西汉时补充的内容。根据历史文献和出土文物资料来分析,刘徽所言是可信的。《九章算术》所包含的各种算法是汉朝数学家们在秦以前流传下来的数学基础上,适应当时的需要补充修订而成的。按照刘徽的考证,张苍和耿寿昌都是参加过修订工作的主要数学家。《史记?张丞相列传》记载,张苍(约前250~前152)经历了秦、汉两个朝代,他在高帝六年(前201)以攻藏茶有功封为北平侯。“自秦时为柱下史,明天下图书计籍。又善用算律历。”他还“著书18篇,言阴阳律历事。”耿寿昌的生年年代不详,汉宣帝时官至大司农中丞,“以善为算,能商功利”得宠于皇帝。他于天文学主张浑天说,甘露二年(前52)奏“以圆仪度日月行,考验天运状”。张苍和耿寿昌都是数学名家,又身居高位,由他们主持修订先秦流传下来的《算术》是很自然的事情。根据刘徽的记载,他所注释的《九章算术》最后是由耿寿昌删定的。我们认为耿寿昌删补《九章算术》的年代可以定为这部书完成的年代。《九章算术》是由国家组织力量编纂的一部官方性数学教科书,对两汉时期数学的发展产生了很大的影响。《广韵》卷四有“九章术,汉许商、杜志、吴陈炽、王粲并善之”,《后汉书?马援传》有马续(约70~141)“博观群籍,善九章算术”的记载。此外,史书中还有郑玄(127~200)、刘洪等人“通九章算术”的记述。可知该书是当时学习数学的重要教材,在东汉光和二年(179)一块铜版上的铭文规定:“大司农以戊寅(138?)诏书,……特更为诸州作铜斗、斜、称。依黄钟律历,《九章算术》以均长短、轻重、大小,以齐七政,令海内都同。”这说明该书在东汉时期不仅广为流传,而且度量衡研制涉及的数学问题也要以书中的算法为依据。许商、杜志可能是《九章算书》成书后最早研究过该书的数学家。许商、杜志都是西汉后期的数学家。《汉书?艺文志》著录有《许商算术》26卷、《杜志算术》16卷。这两部书都是汉成帝三年(前26)尹咸校对数术著作之前撰写的。许商、杜志的著作完成年代与耿寿昌删补《九章算术》的年代相去不远,他们的数学著作应当是在研究了《九章算术》的基础上完成的。《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、正负数概念、线性联立方程组解法、整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。刘徽的《九章》注不仅在整理古代数学体系和完善古算理论方面取得了重要成就,而且提出了丰富多彩的创见和发明。他用比率理论建立了数与式的统一的理论基础,他应用了出入相补原理和极限方法解决了许多面积和体积问题,建立了独具风格的面积和体积理论。他对《九章》中的许多结论给出了严格的证明,他的一些方法对后世有很大启发,即使对现今数学也有可借鉴之处。刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。2023-05-18 08:08:261
刘徽是哪个朝代的人
刘徽(生于公元250年左右),东汉三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一。其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。刘徽的主要著作有:《九章算术注》10卷;《重差术》1卷,至唐代易名为《海岛算经》;《九章重差图》1卷,可惜后两种都在宋代失传。刘徽的数学成就大致为两方面:一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:在数系理论方面:用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。在筹式演算理论方面:先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。在勾股理论方面:逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。在面积与体积理论方面:用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:割圆术与圆周率:刘徽在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3?14,又算到3072边形的面积,得到π=3927/1250=3?1416,称为“徽率”。刘徽原理:在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。“牟合方盖”说:在《九章算术?开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。方程新术:在《九章算术?方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。重差术:在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。刘徽的《九章算术》是我国流传至今最古老的数学专著之一,它成书于西汉时期。这部书的完成经过了一段历史过程,书中所收集的各种数学问题,有些是秦以前流传的问题,长期以来经过多人删补、修订,最后由西汉时期的数学家整理完成。现今流传的定本的内容在东汉之前已经形成。《九章算术》是中国最重要的一部经典数学著作,它的完成奠定了中国古代数学发展的基础,在中国数学史上占有极为重要的地位。现传本《九章算术》共收集了246个应用问题和各种问题的解法,分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。《九章算术》的产生是社会发展和数学知识长期积累的结果,它汇集了不同时期数学家的劳动成果。刘徽认为:“周公制礼有九数,九数之流,则《九章》是矣。……汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补。故校其目则与古或异,而所论多近语也。”根据刘徽的考证结果,《九章算术》源于周公时代的“九数”,而他所见到的《九章算术》是西汉时的张苍、耿寿昌在先秦遗文的基础上删补而成的,其中包括了大量西汉时补充的内容。根据历史文献和出土文物资料来分析,刘徽所言是可信的。《九章算术》所包含的各种算法是汉朝数学家们在秦以前流传下来的数学基础上,适应当时的需要补充修订而成的。按照刘徽的考证,张苍和耿寿昌都是参加过修订工作的主要数学家。《史记?张丞相列传》记载,张苍(约前250~前152)经历了秦、汉两个朝代,他在高帝六年(前201)以攻藏茶有功封为北平侯。“自秦时为柱下史,明天下图书计籍。又善用算律历。”他还“著书18篇,言阴阳律历事。”耿寿昌的生年年代不详,汉宣帝时官至大司农中丞,“以善为算,能商功利”得宠于皇帝。他于天文学主张浑天说,甘露二年(前52)奏“以圆仪度日月行,考验天运状”。张苍和耿寿昌都是数学名家,又身居高位,由他们主持修订先秦流传下来的《算术》是很自然的事情。根据刘徽的记载,他所注释的《九章算术》最后是由耿寿昌删定的。我们认为耿寿昌删补《九章算术》的年代可以定为这部书完成的年代。《九章算术》是由国家组织力量编纂的一部官方性数学教科书,对两汉时期数学的发展产生了很大的影响。《广韵》卷四有“九章术,汉许商、杜志、吴陈炽、王粲并善之”,《后汉书?马援传》有马续(约70~141)“博观群籍,善九章算术”的记载。此外,史书中还有郑玄(127~200)、刘洪等人“通九章算术”的记述。可知该书是当时学习数学的重要教材,在东汉光和二年(179)一块铜版上的铭文规定:“大司农以戊寅(138?)诏书,……特更为诸州作铜斗、斜、称。依黄钟律历,《九章算术》以均长短、轻重、大小,以齐七政,令海内都同。”这说明该书在东汉时期不仅广为流传,而且度量衡研制涉及的数学问题也要以书中的算法为依据。许商、杜志可能是《九章算书》成书后最早研究过该书的数学家。许商、杜志都是西汉后期的数学家。《汉书?艺文志》著录有《许商算术》26卷、《杜志算术》16卷。这两部书都是汉成帝三年(前26)尹咸校对数术著作之前撰写的。许商、杜志的著作完成年代与耿寿昌删补《九章算术》的年代相去不远,他们的数学著作应当是在研究了《九章算术》的基础上完成的。《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、正负数概念、线性联立方程组解法、整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。刘徽的《九章》注不仅在整理古代数学体系和完善古算理论方面取得了重要成就,而且提出了丰富多彩的创见和发明。他用比率理论建立了数与式的统一的理论基础,他应用了出入相补原理和极限方法解决了许多面积和体积问题,建立了独具风格的面积和体积理论。他对《九章》中的许多结论给出了严格的证明,他的一些方法对后世有很大启发,即使对现今数学也有可借鉴之处。刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。2023-05-18 08:08:322
刘徽的割圆术具体内容是什么?
割圆术(cyclotomic method) 所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。 中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。 在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。 按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率 为3.14和 3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于使圆周率精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的,比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率” ,另一个是“密率”.,其中 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。 利用圆内接或外切正多边形,求圆周率近似值的方法,其原理是当正多边形的边数增加时,它的边长和逐渐逼近圆周。早在公元前5世纪,古希腊学者安蒂丰为了研究化圆为方问题就设计一种方法:先作一个圆内接正四边形,以此为基础作一个圆内接正八边形,再逐次加倍其边数,得到正16边形、正32边形等等,直至正多边形的边长小到恰与它们各自所在的圆周部分重合,他认为就可以完成化圆为方问题。到公元前3世纪,古希腊科学家阿基米德在《论球和阅柱》一书中利用穷竭法建立起这样的命题:只要边数足够多,圆外切正多边形的面积与内接正多边形的面积之差可以任意小。阿基米德又在《圆的度量》一书中利用正多边形割圆的方法得到圆周率的值小于三又七分之一而大于三又七十分之十 ,还说圆面积与夕卜切正方形面积之比为11:14,即取圆周率等于22/7。公元263年,中国数学家刘徽在《九章算术注》中提出“割圆”之说,他从圆内接正六边形开始,每次把边数加倍,直至圆内接正96边形,算得圆周率为3.14或157/50,后人称之为徽率。书中还记载了圆周率更精确的值3927/1250(等于3.1416)。刘徽断言“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”。其思想与古希腊穷竭法不谋而合。割圆术在圆周率计算史上曾长期使用。1610年德国数学家柯伦用2^62边形将圆周率计算到小数点后35位。1630年格林贝尔格利用改进的方法计算到小数点后39位,成为割圆术计算圆周率的最好结果。分析方法发明后逐渐取代了割圆术,但割圆术作为计算圆周率最早的科学方法一直为人们所称道。2023-05-18 08:08:412
刘徽取得的重大成就及历史地位
主要成就:清理中国古代数学体系,提出牟合方盖、重差术等方法。代表作品:《九章算术注》,《海岛算经》。《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、正负数概念、线性联立方程组解法、整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。传本《九章算术》有刘徽注和唐李淳风等的注释。刘徽是中国古代杰出的数学家,他生活在三国时代的魏国。《隋书·律历志》论历代量制引商功章注,说“魏陈留王景元四年(263)刘徽注《九章》。”他的生平不可详考。刘徽的《九章》注不仅在整理古代数学体系和完善古算理论方面取得了重要成就,而且提出了丰富多彩的创见和发明。刘徽在算术、代数、几何等方面都有杰出的贡献。例如,他用比率理论建立了数与式的统一的理论基础,他应用了出入相补原理和极限方法解决了许多面积和体积问题,建立了独具风格的面积和体积理论。他对《九章》中的许多结论给出了严格的证明,他的一些方法对后世有很大启发,即使对现今数学也有可借鉴之处。2023-05-18 08:08:471