汉邦问答 / 问答 / 问答详情

什么叫做定积分?

2023-05-18 05:43:34
韦斯特兰

定积分基本公式:

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。

扩展资料

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

参考资料来源:百度百科-定积分

西柚不是西游

  • 例如:抛物线y^2=0.2x在点A(0.2,0.2)处法线围成区域面积的计算

  • 主要内容:

  • 本文通过定积分知识,介绍抛物线y^2=0.2x在点A(0.2,0.2)处法线围成区域面积的计算步骤。

    定积分

    请点击输入图片描述

    请点击输入图片描述

  • 主要步骤:

  • ∵y^2=0.2x,求导有

    ∴2ydy/dx=0.2,即dy/dx=0.2/2y,

    在点A(0.2,0.2)处,有该点的切线的斜率k为:

    k=dy/dx=0.2/(2*0.2)=1/2,

    则该点处法线的斜率k1=-2,

    此时法线的方程为:

    y-0.2=-2 (x-0.2),

    化简得y1=-2x+0.6,则x=(0.6-y)/ 2。

    由法线和抛物线构成的方程组,求出二者的交点B,C.

    y^2=0.2 (0.6-y)/ 2,即:

    2y^2+0.2y-0.12=0,因式分解为:

    (y-0.2)(y+0.3)=0.

    所以y1=0.2,y2=-0.3.

    定积分

    请点击输入图片描述

    请点击输入图片描述

    此时抛物线方程变形为x=1y^2/0.2,所围成的区域以dy为计算单位,则所求的面积S为:

    S=∫[y2:y1][( 0.6-y)/ 2-y^2/0.2]dy

    =∫[y2:y1]( 0.6/2-y/2-y^2/0.2)dy,积分有:

    =(0.6y/2-y^2/2*2-y^3/0.6) [y2:y1]

    =0.6/2*(0.2+0.3)- (0.2^2- 0.3^2)/4-1/0.6*(0.2^3+ 0.3^3)

    =0.66+0.012-0.0583

    =0.613.

定积分计算公式是什么?

定积分的计算公式:f= @(x,y)exp(sin(x))*ln(y)。定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。希望能帮助你还请及时采纳谢谢
2023-05-18 01:14:282

定积分定义是什么?

定积分定义是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。一般定理:定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
2023-05-18 01:14:421

定积分的积分法是什么?

定积分的分部积分法公式如下:(uv)"=u"v+uv"。得:u"v=(uv)"-uv"。两边积分得:∫u"v dx=∫(uv)" dx -∫uv" dx。即:∫u"v dx = uv -∫uv" dx,这就是分部积分公式。也可简写为:∫v du = uv -∫u dv。(左下角的下方写下限a和左上角的上方写上限b)。定积分的相关介绍定积分是积分的一种,是函数在区间上积分和的极限。一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
2023-05-18 01:14:541

定积分是什么?

定积分是什么?积分是一种奖励或激励的计量单位,可以用来衡量客户在特定商店、机构或企业中所作出的购买、投入或参与行为。通常,当客户进行相关交易时,他们将得到一定金额的积分,并可以使用这些积分来购买商品、服务或者用于其他方式。
2023-05-18 01:15:062

什么叫做定积分?

微积分包括微分和积分,微分和积分的运算正好相反,二者互为逆运算。 积分又包括定积分和不定积分。 定积分是指有固定的积分区间,它的积分值是确定的。 不定积分没有固定的积分区间,它的积分值是不确定的。微积分的应用:(1)运动中速度与距离的互求问题(2)求曲线的切线问题(3)求长度、面积、体积、与重心问题等(4)求最大值和最小值问题(二次函数,属于微积分的一类)定积分的应用:1,解决求曲边图形的面积问题例:求由抛物线与直线围成的平面图形D的面积S.2,求变速直线运动的路程做变速直线运动的物体经过的路程s,等于其速度函数v=v(t) (v(t)≥0)在时间区间[a,b]上的定积分3,变力做功拓展资料:定积分:数学定义:如果函数f(x)在区间[a,b]上连续,用分点xi将区间[a,b]分为n 个小区间,在每个小区间[xi-1,xi]上任取一点ri(i=1,2,3„,n) ,作和式f(r1)+...+f(rn) ,当n趋于无穷大时,上述和式无限趋近于某个常数A,这个常数叫做y=f(x) 在区间上的定积分.。记作/ab f(x) dx 即 /ab f(x) dx =limn>00 [f(r1)+...+f(rn)], 这里,a 与 b叫做积分下限与积分上限,区间[a,b] 叫做积分区间,函数f(x) 叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式.几何定义:可以理解为在 Oxy坐标平面上,由曲线y=f(x)与直线x=a,x=b以及x轴围成的曲边梯形的面积值(一种确定的实数值)微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
2023-05-18 01:15:191

定积分是什么呀?

定积分是变量限定在一定的范围内的积分,有范围的.微积分包括微分和积分,积分和微分互为逆运算,积分又包括定积分和不定积分,不定积分是没范围的众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导函数,而求积分是求已知导函数的原函数。所以,微分与积分互为逆运算。微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。定积分包含于微积分微积分包括:微分,积分积分又包括:定积分,不定积分不定积分是只有积分号,没有积分上下限的那种积分定积分是不但有积分号,还有积分上下限的那种积分微分:设函数y=f(x)的自变量有一改变量△x,则函数的对应改变量△y的近似值f~(x)*△x叫做函数y的微分.(“~”表示导数) 记为 dy=f~(x)△x 可见,微分的概念是在导数概念的基础上得到的.自变量的微分的等于自变量的改变量,则 将△x用dx代之,则微分写为dy=f~(x)dx 变形为:dy/dx=f~(x) 故导数又叫微商.积分:它是微分学的逆问题.函数f(x)的全体原函数叫做f(x)的或f(x)dx的不定积分.记作 ∫f(x)dx.若F(x)是f(x)的原函数,则有 ∫f(x)dx=F(x)+C C为任意常数,称为不定积分常数.对于定积分,它的概念来源不同于不定积分.定积分檎是从极限方面来.是从以“不变”代“变”,以“直”代“曲”求某个变化过程中无限多个微小量的和,最后取极限得到的.所以不定积分与定积分不是仅差一个常数的问题,即使是在计算上仅差一常数,而且运算法则也基本相同.它们之间建立关系是通过“牛顿-莱布尼兹公式”.公式是 非曲直 ∫f(x)dx=F(b)-F(a) 积分下限a,上限b
2023-05-18 01:15:371

定积分的计算方法

看几道例题就会明白的,简单的说就是反导例如:(X)"=1,那么两边都加不定积分号,那么∫dx=X,对于定积分,就是先求出不定积分,也就是刚刚求的∫dx,然后在积分号上面有两个数字,把两个数都的带进分别带进X,然后带上面的数字就为正,带下面的数字就为负,然后再把这个相加,就求出定积分了
2023-05-18 01:16:242

定积分到底是什么?

定积分确切的说是一个数,或者说是关于积分上下限的二元函数,也可以成为二元运算,可以这样理解∫[a,b]f(x)dx=a*b,其中*即为积分运算(可以类比简单的加减运算,只不过这时定义的法则不一样,加减运算是把二维空间的点映射到一维空间上一个确定的点,定积分也一样,只不过二者的法则不一样);不定积分也可以看成是一种运算,但最后的结果不是一个数,而是一类函数的集合.对于可积函数(原函数是初等函数)存在一个非常美妙的公式∫[a,b]f(x)dx=F(b)-F(a)其中F"(x)=f(x)或∫f(x)dx=F(x)+c最后附上一句,积分这一章难度较大,要学好这一章首先要把微分运算弄得很清楚,同时常用的公式也要记.而且有些定积分是不能通过牛顿-莱布尼茨公式计算的,如∫[0,∞]sinx/xdx=π/2(用留数算的),∫[0,∞]e^(-x^2)dx=√2/2(用二重积分极坐标代换算的),以上两种积分的原函数都不能用初等函数表示,因此也就不能用牛顿-莱布尼茨公式计算,当你不知道这些的时候可能花一年的功夫也没有丝毫进展.我当年就是深有感触的,我是在高一入学前的暑假自学的微积分,高一的时候遇到一个定积分∫[0,π/2]dx/√(sinx),开始不知道这是一个超越积分,所以高一只要有空余时间我就会计算这个定积分,直到高二学完伽马函数后才计算出其值为(Γ(1/4))^2/(2√(2π)),并由此得出不定积分∫dx/√(sinx)也是超越积分.常见的超越积分还有很多,尤其像那种三角函数带根号的,多半都是超越的,自学时要注意
2023-05-18 01:17:031

什么是定积分?

微分:设函数y=f(x)的自变量有一改变量△x,则函数的对应改变量△y的近似值f~(x)*△x叫做函数y的微分。(“~”表示导数记为 dy=f~(x)△x 可见,微分的概念是在导数概念的基础上得到的。 自变量的微分的等于自变量的改变量,则将△x用dx代之,则微分写为dy=f~(x)dx 变形为: dy/dx=f~(x) 故导数又叫微商。积分:它是微分学的逆问题。函数f(x)的全体原函数叫做f(x)的或f(x)dx的不定积分。记作 ∫f(x)dx. 若F(x)是f(x)的原函数,则有 ∫f(x)dx=F(x)+C C为任意常数,称为不定积分常数。 对于定积分,它的概念来源不同于不定积分。定积分檎是从极限方面来。是从以“不变”代“变”,以“直”代“曲”求某个变化过程中无限多个微小量的和,最后取极限得到的。所以不定积分与定积分不是仅差一个常数的问题,即使是在计算上仅差一常数,而且运算法则也基本相同。它们之间建立关系是通过“牛顿-莱布尼兹公式”。公式是 非曲直 ∫f(x)dx=F(b)-F(a)积分下限a,上限b
2023-05-18 01:17:103

定积分定义

定积分的定义:设一元函数y=f(x) ,在区间(a,b)内有定义。将区间(a,b)分成n个小区间 (a,x0) (x0,x1)(x1,x2) .....(xi,b) 。设 △xi=xi-x(i-1),取区间△xi中曲线上任意一点记做f(ξi),做和式:和式若记λ为这些小区间中的最长者。当λ → 0时,若此和式的极限存在,则称这个和式是函数f(x) 在区间(a,b)上的定积分。记做:∫ _a^b (f(x)dx)其中称a、b为积分上、下限, f(x) 为被积函数,f(x)dx 为被积式,∫ 为积分号。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数, 而不是一个函数。
2023-05-18 01:17:341

定积分怎么计算

定积分可以使用“分项积分法”进行计算,比如一个函数在不同的定义域有不同的表达式,那么表达式一样的函数,也可以分成一段段的来表示积分,当然前提要满足函数的可积法。 定积分的几何定义:可以理解为在Oxy坐标平面上,由曲线y=f(x)与直线x=a,x=b以及x轴围成的曲边梯形的面积值(一种确定的实数值)。
2023-05-18 01:17:401

定积分的基本计算方法

求定积分主要的方法有分部积分法和换元积分法。分部积分法是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。分部积分法设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。
2023-05-18 01:17:471

怎么求定积分的值,要详细步骤谢谢

牛莱公式来计算就可以了
2023-05-18 01:18:104

定积分的计算公式

定积分的计算公式:f= @(x,y)exp(sin(x))*ln(y)。定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。 函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。 希望能帮助你还请及时采纳谢谢
2023-05-18 01:18:332

定积分怎么求

求定积分主要的方法有分部积分法和换元积分法。分部积分法是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。 分部积分法 设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式: 换元积分法 如果 (1) (2)x=ψ(t)在[α,β]上单值、可导; (3)当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b,则
2023-05-18 01:19:011

什么叫微积分定积分?

什么叫微积分定积分?微积分定积分是一种数学中的概念,强调求解无穷多个函数积分的总和。它可以用来计算各种物理、化学和工程系统中曲线或面积的总和,从而给出问题机制的全貌。
2023-05-18 01:19:412

定积分的计算公式是?

定积分的计算公式是?定积分的计算公式是:∫f(x)dx=F(b)-F(a),其中F(x)为函数f(x)的积分。
2023-05-18 01:19:482

定积分的计算步骤

∫(a,b)[f(x)±g(x)]dx=∫(a,b)f(x)±∫(a,b)g(x)dx∫(a,b)kf(x)dx=k∫(a,b)f(x)dx换元积分法如果(1)  (2)x=ψ(t)在[α,β]上单值、可导;(3)当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b,则分部积分法设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式: [3] 拓展资料一般定理定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。牛顿-莱布尼茨公式定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么用文字表述为:一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。定义设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式。该和式叫做积分和,设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x) 在区间[a,b]的定积分,记为,并称函数f(x)在区间[a,b]上可积。其中:a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个常数, 而不是一个函数。根据上述定义,若函数f(x)在区间[a,b]上可积分,则有n等分的特殊分法:特别注意,根据上述表达式有,当[a,b]区间恰好为[0,1]区间时,则[0,1]区间积分表达式为:参考资料来源:百度百科-定积分
2023-05-18 01:19:541

求定积分有几种方法

看几道例题就会明白的,简单的说就是反导例如:(x)"=1,那么两边都加不定积分号,那么∫dx=x,对于定积分,就是先求出不定积分,也就是刚刚求的∫dx,然后在积分号上面有两个数字,把两个数都的带进分别带进x,然后带上面的数字就为正,带下面的数字就为负,然后再把这个相加,就求出定积分了
2023-05-18 01:20:242

定积分的运算公式

定积分(definiteintegral)  定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。  一般定理  定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。  定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。  定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
2023-05-18 01:20:322

定积分的定义(Definition)

设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式 。设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为 :其中:a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数, 而不是一个函数。根据上述定义,若函数f(x)在区间[a,b]上可积分,则有n等分的特殊分法:特别注意,根据上述表达式有,当[a,b]区间恰好为[0,1]区间时,则[0,1]区间积分表达式为:
2023-05-18 01:20:391

不定积分怎么求定积分

limy=lime^lny=e^limlny=e^(-3/2)解题过程如下:设y=[(3+X)/(6+X)]^[(X-1)/2]则limlny=[(x-1)/2]ln[(x+3)/(x+6)]=limln[(x+3)/(x+6)]/[2/(x-1)]上式为不定式0/0型,使用洛必达法则=lim[3/(x+3)(x+6)]/[(-2)/(x+1)^2]=-3/2所以limy=lime^lny=e^limlny=e^(-3/2)在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。扩展资料根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在。常用积分公式:1)∫0dx=c2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c4)∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c
2023-05-18 01:20:532

定积分计算详细步骤

定积分计算详细步骤:分析积分区间是否原点对称,考虑被积函数是否具有周期性,同时观察被积函数是否否包含有正整数n参数。 扩展资料 定积分计算详细步骤:要分析积分区间是否关于原点对称,考虑被积函数是否具有周期性,同时观察被积函数是否可以转换为“反对幂指三”五类基本函数中两个类型函数的乘积,或者是否包含有正整数n参数,或者包含有抽象函数的导数乘项等。
2023-05-18 01:21:271

这题怎么用定积分定义计算积分

利用定积分定义,把(a,b)等分成n个区间,在第k个区间上,函数值为xk=k(b-a)/n所有这些函数值构成等差数列,积分等于数列和S=sum(xk*(b-a)/n)的极限而根据等差数列梯形求和公式S=(b-a)/n*(a+b)*n/2=b^2/2-a^2/2
2023-05-18 01:21:332

定积分运算,函数自变量变换,积分上下限为什么会调换?

积分变量改变了,积分限相应也要改变,本题具有过程如下:上限:t=x,使用u=x-t换元后对应: u=x-t=x-x=0下限:t=0,使用u=x-t换元后对应: u=x-t=x-0=x
2023-05-18 01:21:542

定积分的计算方法与技巧

太复杂了,一言难尽。。。你是指求原函数嘛?
2023-05-18 01:23:253

定积分和不定积分是什么?

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′ =f。不定积分运算没有乘法运算法则,只有基本公式法,第一类换元积分,第二类换元积分,分部积分等。1、积分公式法:直接利用积分公式求出不定积分。2、第一类换元法(即凑微分法):通过凑微分,最后依托于某个积分公式。进而求得原不定积分。相关信息:定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
2023-05-18 01:23:311

24个基本积分公式

24个基本积分公式:1、∫kdx=kx+C(k是常数)。2、∫x^udx=(x^u+1)/(u+1)+c。3、∫1/xdx=ln|x|+c。4、∫dx=arctanx+C21+x1。5、∫dx=arcsinx+C21x。(配图1)24个基本积分公式还有如下:6、∫cosxdx=sinx+C。7、∫sinxdx=cosx+C。8、∫sec∫csc2xdx=tanx+Cxdx=cotx+C2。9、∫secxtanxdx=secx+C。10、∫cscxcotxdx=cscx+C。11、∫axdx=+Clna。12、[∫f(x)dx]"=f(x)。13、∫f"(x)dx=f(x)+c。14、∫d(f(x))=f(x)+c。15、∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c。16、∫secxdx=ln|secx+tanx|+c。17、∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c。18、∫1/√(a^2-x^2)dx=arcsin(x/a)+c。19、∫sec^2xdx=tanx+c。20、∫shxdx=chx+c。21、∫chxdx=shx+c。22、∫thxdx=ln(chx)+c。23、令u=1x2,即∫u=23u+C3312122=3u+C=3(1x)+C12d(1x)2。24、令u=cosx=2,即∫u=22+C=u+C=cosx+C。不定积分:不定积分的积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。
2023-05-18 01:23:551

定积分定义是什么?

定积分正式名称是黎曼积分,是一个数学定义。分划的参数趋于零时的极限,叫做这个函数在这个闭区间上的定积分。不定积分是一组导数相同的原函数,定积分则是一个数值。求一个函数的原函数,叫做求它的不定积分;求一个函数相应于闭区间的一个带标志点分划的黎曼和关于这个分划的参数趋于零时的极限,叫做这个函数在这个闭区间上的定积分。不定积分(Indefinite integral)即已知导数求原函数。若 F′(x)=f(x),那么[ F(x)+C]′=f(x).(C∈ R).也就是说,把f(x)积分,不一定能得到 F(x),因为 F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用 F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无限多个原函数。定积分 (definite integral)定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
2023-05-18 01:24:161

定积分定义

我估计是3π/2
2023-05-18 01:24:232

求不定积分:∫xexdx

新年好!可以用分部积分法如图计算。经济数学团队帮你解答,请及时采纳。谢谢!
2023-05-18 01:24:334

定积分怎么得出

如图
2023-05-18 01:25:202

定积分的计算公式是什么?

定积分的计算公式:f= @(x,y)exp(sin(x))*ln(y)。定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。 函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。 希望能帮助你还请及时采纳谢谢
2023-05-18 01:25:442

定积分计算方法

定积分的算法有两种:换元积分法如果  ;x=ψ(t)在[α,β]上单值、可导;当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b,则分部积分法设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式:扩展资料定积分的性质:1、当a=b时,2、当a>b时, 3、常数可以提到积分号前。4、代数和的积分等于积分的代数和。5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件。6、如果在区间[a,b]上,f(x)≥0,则7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在(a,b)内使
2023-05-18 01:26:141

定积分的计算公式是什么?

定积分的计算公式是积分求出原函数,代入积分上下限,求差值
2023-05-18 01:27:222

定积分和不定积分的定义是什么?

不定积分计算的是原函数(得出的结果是一个式子) 定积分计算的是具体的数值(得出的借给是一个具体的数字) 不定积分是微分的逆运算 而定积分是建立在不定积分的基础上把值代进去相减 积分 积分,时一个积累起来的分数,现在网上,有很多的积分活动。象各种电子邮箱,qq等。 在微积分中 积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。 一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。 其中:[F(x) + C]" = f(x) 一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。 http://baike.baidu.com/view/61339.htm 定积分 我们知道,用一般方法,y=x^2不能求面积(以x轴,y=x^2,x=0,x=1为界) 定积分就是解决这一问题的. 那摸,怎摸解呢? 用定义法和 微积分基本定理(牛顿-莱布尼兹公式) 具体的,导数的几条求法都知道吧. 微积分基本定理求定积分 [img]http://www.pep.com.cn/images/200503/pic_231569.jpg[/img]导数的几条求法在这里 进行逆运算 例:求f(x)=x^2在0~1上的定积分 ∫(上面1,下面0)f(x)dx=F(x)|(上面1,下面0)=(三分之一倍的x的三次方)|(上面1,下面0)≈0.3333×1-0.3333×0=0.3333(三分之一) 完了 应该比较简单 http://baike.baidu.com/view/392188.htm 不定积分 设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C. 其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分. 由定义可知: 求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分. http://baike.baidu.com/view/335446.htm 总体来说定积分和不定积分的计算对象是不同的 所以他们才有那么大的区别
2023-05-18 01:27:421

定积分是什么意思?

定积分的计算公式:f= @(x,y)exp(sin(x))*ln(y)。定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。 函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。 希望能帮助你还请及时采纳谢谢
2023-05-18 01:27:481

定积分和微积分有什么区别?

微积分是比较忙宽泛的表述,定积分只是其中的一部分。
2023-05-18 01:27:569

定积分的计算方法?

定积分没有乘除法则,多数用换元积分法和分部积分法。 换元积分法就是对复合函数使用的:设y = f(u),u = g(x)∫ f[g(x)]g"(x) dx = ∫ f(u) du换元积分法有分第一换元积分法:设u = h(x),du = h"(x) dx和第二换元积分法:即用三角函数化简,设x = sinθ、x = tanθ及x = secθ还有将三角函数的积分化为有理函数的积分的换元法:设u = tan(x/2),dx = 2/(1 + u²) du,sinx = 2u/(1 + u²),cosx = (1 - u²)/(1 + u²)分部积分法多数对有乘积关系的函数使用的:∫ uv" dx= ∫ udv= uv - ∫ vdu= uv - ∫ vu" du其中函数v比函数u简单,籍此简化u。是由导数的乘法则(uv)" = uv" + vu"推导过来的。有时候v" = 1的,例如求∫ lnx dx、∫ ln(1 + x) dx等等。还有个有理积分法:将一个大分数分裂为几个小分数。例如1/(x² + 3x + 2) = 1/((x + 1)(x + 2)) = 1/(x + 1) - 1/(x + 2)
2023-05-18 01:28:221

定积分的定义

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。一般定理定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
2023-05-18 01:28:291

定积分怎么算 计算方法是什么

在高考中一般以选择题、填空题的形式考查利用定积分的几何意义和微积分基本原理求面积,下面是定积分的计算方法及相关知识点,一起来看! 定积分怎么算 首先分析积分区间是否关于原点对称,其次考虑被积函数是否具有周期性,再次考察被积函数是否可以转换为“反对幂指三”五类基本函数中两个类型函数的乘积,或者是否包含有正整数n参数,或者包含有抽象函数的导数乘项等。 Step1: 分析积分区间是否关于原点对称,即为[-a,a],如果是,则考虑被积函数的整体或者经过加减拆项后的部分是否具有奇偶性,如果有,则考虑使用“偶倍奇零”性质简化定积分计算。 Step2: 考虑被积函数是否具有周期性,如果是周期函数,考虑积分区间的长度是否为周期的整数倍,如果是,则利用周期函数的定积分在任一周期长度的区间上的定积分相等的结论简化积分计算。 Step3: 考察被积函数是否可以转换为“反对幂指三”五类基本函数中两个类型函数的乘积,或者是否包含有正整数n参数,或者包含有抽象函数的导数乘项,如果是,可考虑使用定积分的分部积分法计算定积分。 Step4: 考察被积函数是否包含有特定结构的函数,比如根号下有平方和、或者平方差(或者可以转换为两项的平和或差的结构),是否有一次根式,对于有理式是否分母次数比分子次数高2次以上;是否包含有指数函数或对数函数,对于具有这样结构的积分,考虑使用三角代换、根式代换、倒代换或指数、对数代换等;换元的函数一般选取严格单调函数;与不定积分不同的是,在变量换元后,定积分的上下限必须转换为新的积分变量的范围,依据为:上限对上限、下限对下限;并且换元后直接计算出关于新变量的定积分即为最终结果,不再需要逆变换换元! 定积分的性质
2023-05-18 01:28:421

定积分存在条件!

定积分存在的充要条件
2023-05-18 01:28:524

定积分的基本公式是什么?

定积分基本公式是如下:1、∫0dx=c2、∫x^udx=(x^u+1)/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c
2023-05-18 01:29:441

什么是定积分?

定积分的几何意义如下:几何意义:被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0,2π]区间的图像可知,正负面积相等,因此其代数和等于0。定积分的意义有很多,它可以表示一个图形的面积,也可以和物理联系在一起,定积分可以为负值,但如果你要求图形的面积,就要用到它的绝对值。定积分理解注意事项:理解这个含义,需要注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有。
2023-05-18 01:29:571

简单的定积分计算

先求出原函数,再按牛顿-莱布尼茨公式代入上下限求值即得
2023-05-18 01:30:199

什么叫定积分?

定积分和不定积分的区别:1、定积分和不定积分计算的内容不同:不定积分计算的是原函数(得出的结果是一个式子),定积分计算的是具体的数值(得出的借给是一个具体的数字)。2、定积分和不定积分计算的运算内容不同:不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减积分。积分,时一个积累起来的分数,现在网上,有很多的积分活动。象各种电子邮箱,qq等。在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。3、定积分和不定积分计算的应用不同:在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。定积分和不定积分的联系:定积分与不定积分的运算法则相同,并且积分公式,计算方法也相同。从牛顿-莱布尼茨公式看出,定积分与不定积分联系紧密,相互转换共用。扩展资料:在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间(a,b)上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
2023-05-18 01:32:141

定积分的计算方法

答案给你:∫1/sinx dx+cosx=∫1/[2sin(x/2)cos(x/2)] dx+sinx=∫1/[sin(x/2)cos(x/2)] d(x/2)+sinx=∫1/tan(x/2)*sec²(x/2) d(x/2)+sinx=∫1/tan(x/2) d[tan(x/2)]+sinx=ln|tan(x/2)|+sinx+C积分发展的动力来自于实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量对另一个物理量的累积效果,这时也需要用到积分。设为函数的一个原函数,我们把函数的所有原函数叫做函数的不定积分。由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数。积分的基本原理:微积分基本定理,由艾萨克·牛顿和戈特弗里德·威廉·莱布尼茨在十七世纪分别独自确立。微积分基本定理将微分和积分联系在一起,这样,通过找出一个函数的原函数,就可以方便地计算它在一个区间上的积分。积分和导数已成为高等数学中最基本的工具,并在自然科学和工程学中得到广泛运用。积分的一个严格的数学定义由波恩哈德·黎曼给出。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种上的各种类型的函数的积分。比如说,路径积分是多元函数的积分,积分的区间不再是一条线段,而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。对积分概念的推广来自于物理学的需要,并体现在许多重要的物理定律中,尤其是电动力学。现代的积分概念基于测度论,主要是由昂利·勒贝格建立的勒贝格积分。
2023-05-18 01:32:292

定积分基本公式是什么?

定积分基本公式是如下:1、∫0dx=c2、∫x^udx=(x^u+1)/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c
2023-05-18 01:34:041

定积分基本公式是什么?

常用定积分公式表为:∫kdx=kx+c(K是常数),∫xndx=xn+1/u+1+C,(u≠-1),∫1/xdx=ln│x│+c,∫dx/1+x²=arltanx+c。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。黎曼积分:定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b。
2023-05-18 01:34:171

什么是定积分

有确定值的积分,另外还有不定积分
2023-05-18 01:34:323