- 黑桃花
-
1/2ln[(1+x)/(1-x)]+C
解题过程如下:
=1/2∫[1/(1-x)+1/(1+x)]dx
=1/2[-ln(1-x)+ln(1+x)]+C
=1/2ln[(1+x)/(1-x)]+C
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。
不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
扩展资料
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
不定积分的计算公式有哪些?
常用不定积分公式如下:1、∫0dx=c。2、∫x^udx=(x^(u+1))/(u+1)+c。3、∫1/xdx=ln|x|+c。4、∫a^xdx=(a^x)/lna+c。5、∫e^xdx=e^x+c。6、∫sinxdx=-cosx+c。不定积分其他情况简介。许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。2023-07-17 18:37:401
不定积分基本公式是什么?
1、∫0dx=c 不定积分的定义2、∫x^udx=(x^(u+1))/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c10、∫1/√(1-x^2) dx=arcsinx+c11、∫1/(1+x^2)dx=arctanx+c12、∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c13、∫secxdx=ln|secx+tanx|+c 基本积分公式14、∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c15、∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c16、∫sec^2 x dx=tanx+c;17、∫shx dx=chx+c;18、∫chx dx=shx+c;19、∫thx dx=ln(chx)+c;不定积分解题技巧个人经验首先,要知道一下,不定积分其实就是求导的逆运算,就像下面的公式;只不过在后面加上常数C,因为加上C与不加C的导数结果一样,毕竟,常数的导数为0嘛。下图是书上的公式以验证词步骤。其次,要谈论对第一类换元法的理解,所谓的第一类换元其实就是一种拼凑利用f"(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)分布积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,我认为比较好的记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)2023-07-17 18:37:571
不定积分的计算公式是什么?
不定积分(indefinite integral)也称为原函数,是对于定积分( definite integral)求解的逆运算。 不定积分的计算公式为:∫f(x) dx = F(x) + C其中F(x)是某个函数, C是常数.这个符号 ∫ 表示不定积分,表示将函数f(x)在x的某个范围内的面积分成若干小块,对其中每一小块取一个高度为f(x)的单位长度来求面积,然后把这些面积相加就是原函数f(x)的面积.不定积分,即为导函数的逆运算, 从求值变成求函数. 对于不定积分求解,我们需要使用积分表或积分公式来求解.积分公式是用来解决不定积分问题的常用工具。 常用的积分公式包括:基本积分公式:∫x^n dx = (x^(n+1))/(n+1) + C (其中n≠-1)常数乘法积分公式:∫ kf(x) dx = k∫f(x) dx + C加法积分公式:∫(f(x) + g(x)) dx = ∫f(x) dx + ∫g(x) dx + C但是在实际应用中经常会遇到不能直接使用积分公式解决的问题,需要使用各种积分方法来其中常用的积分方法包括:分部积分法替代法关键字法偏导数法用反函数求导法用数学归纳法通过使用这些积分方法和积分公式,我们可以求出各种不定积分。2023-07-17 18:38:101
不定积分的公式是什么?
分部积分∫lnx dx=xlnx-∫x d lnx=x lnx-∫dx=xlnx-x+C扩展资料不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C2023-07-17 18:38:171
不定积分的公式是什么?
具体回答如下:对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。不定积分的公式:1、∫adx=ax+C,a和C都是常数2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-13、∫1/xdx=ln|x|+C4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠15、∫e^xdx=e^x+C6、∫cosxdx=sinx+C7、∫sinxdx=-cosx+C8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C2023-07-17 18:40:162
不定积分常用公式有哪些
不定积分常用公式是什么,有哪些常用的解题技巧,以下是我整理的不定积分常用公式相关内容,供您参考与阅读。 不定积分的公式 1、∫a dx = ax + C,a和C都是常数 2、∫x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1 3、∫1/x dx = ln|x| + C 4、∫a^x dx = (1/lna)a^x + ,其中a > 0 且 a ≠ 1 5、∫e^x dx = e^x + C 6、∫cosx dx = sinx + C 7、∫sinx dx = - cosx + C 8、∫cotx dx = ln|sinx| + C = - ln|cscx| + C 不定积分解题技巧 积分公式法:直接利用积分公式求出不定积分。 换元积分法:换元积分法可分为第一类换元法与第二类换元法。第一类换元法也叫凑微分法,通过凑微分,最后依托于某个积分公式。进而求得原不定积分。例如 第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:根式代换法,三角代换法。2023-07-17 18:40:351
不定积分的公式
在不定积分的求解过程中,有很多常用的公式,下面是其中的一些:1、幂函数积分公式:∫x^n dx = x^(n+1)/(n+1) + C(其中C为常数)2、三角函数积分公式:(1)∫sin(x) dx = -cos(x) + C(2)∫cos(x) dx = sin(x) + C(3)∫tan(x) dx = -ln|cos(x)|(4)∫cot(x) dx = ln|sin(x)|+ C3、指数函数与对数函数积分公式:(1)∫e^x dx = e^x + C(2)∫a^x dx = a^x/ln(a) + C(其中a为大于0且不等于1的常数)(3)∫1/x dx = ln|x|+ C(4)∫log_a(x) dx = xlog_a(x) - x + C(其中a为大于0且不等于1的常数)请点击输入图片描述以上是不定积分中常用的一些公式,它们可以帮助我们更加快速地求出一个函数的不定积分。需要注意的是,在求解不定积分时,有时需要结合不同的公式进行运用,同时还需要注意各个公式的使用条件和特殊情况,以免出现错误。2023-07-17 18:40:591
不定积分公式
不定积分公式:∫x^udx=(x^(u+1))/(u+1)+c,其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。2023-07-17 18:41:201
不定积分公式大全 基本公式有哪些
不定积分有很多的公式是需要学生学习和掌握的,我整理了相关公式信息,以及不定积分的基本公式,供大家阅读参考! 不定积分的公式 ∫ a dx = ax + C,a和C都是常数 ∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1 ∫ 1/x dx = ln|x| + C ∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1 ∫ e^x dx = e^x + C ∫ cosx dx = sinx + C ∫ sinx dx = - cosx + C ∫ cotx dx = ln|sinx| + C = - ln|cscx| + C ∫ tanx dx = - ln|cosx| + C = ln|secx| + C ∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C ∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C ∫ sec^2(x) dx = tanx + C ∫ csc^2(x) dx = - cotx + C ∫ secxtanx dx = secx + C ∫ cscxcotx dx = - cscx + C ∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C ∫ dx/√(a^2 - x^2) = arcsin(x/a) + C ∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C ∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C ∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C ∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C ∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C 不定积分的基本公式有哪些 什么是不定积分 若f(x)是F(x)的导函数(简称导数),则F(x)+C(C为任意常数)为f(x)的不定积分,f(x)的不定积分用符号表示为∫f(x)dx,即∫f(x)dx=F(x)+ C2023-07-17 18:41:291
不定积分的计算公式是什么?
回答如下:∫1/(1-x^2)dx=1/2∫[1/(1-x)+1/(1+x)]dx=1/2[-ln(1-x)+ln(1+x)]+C=1/2ln[(1+x)/(1-x)]+C不定积分的公式:1、∫adx=ax+C,a和C都是常数2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-13、∫1/xdx=ln|x|+C4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠15、∫e^xdx=e^x+C6、∫cosxdx=sinx+C7、∫sinxdx=-cosx+C8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C2023-07-17 18:41:371
基本不定积分公式表
不定积分的公式如下:∫ a dx = ax + C,a和C都是常数;∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1;∫ 1/x dx = ln|x| + C;∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1;∫ e^x dx = e^x + C;∫ cosx dx = sinx + C;∫ sinx dx = - cosx + C;∫ cotx dx = ln|sinx| + C = - ln|cscx| + C;∫ tanx dx = - ln|cosx| + C = ln|secx| + C;∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C;∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C;∫ sec^2(x) dx = tanx + C;∫ csc^2(x) dx = - cotx + C;∫ secxtanx dx = secx + C;∫ cscxcotx dx = - cscx + C;∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C;∫ dx/√(a^2 - x^2) = arcsin(x/a) + C;∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C;∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C;∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C;∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C;∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C;若f(x)是F(x)的导函数(简称导数),则F(x)+C(C为任意常数)为f(x)的不定积分,f(x)的不定积分用符号表示为∫f(x)dx,即∫f(x)dx=F(x)+ C。2023-07-17 18:42:051
常用不定积分公式?
1)∫0dx=c 不定积分的定义2)∫x^udx=(x^(u+1))/(u+1)+c 3)∫1/xdx=ln|x|+c 4)∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 基本积分公式14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx dx=shx+c; 19) ∫thx dx=ln(chx)+c;2023-07-17 18:42:201
求不定积分万能公式
不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C扩展资料根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。2023-07-17 18:42:431
不定积分基本公式
不定积分基本公式:∫ a dx = ax + C,a和C都是常数∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1∫ 1/x dx = ln|x| + C∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1∫ e^x dx = e^x + C∫ cosx dx = sinx + C∫ sinx dx = - cosx + C∫ cotx dx = ln|sinx| + C = - ln|cscx| + C∫ tanx dx = - ln|cosx| + C = ln|secx| + C∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C∫ sec^2(x) dx = tanx + C∫ csc^2(x) dx = - cotx + C∫ secxtanx dx = secx + C∫ cscxcotx dx = - cscx + C∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C∫ dx/√(a^2 - x^2) = arcsin(x/a) + C∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C2023-07-17 18:43:171
不定积分的基本积分公式是什么?
∫cscxdx=∫1/sinx dx=∫1/[2sin(x/2)cos(x/2)] dx=∫1/[sin(x/2)cos(x/2)] d(x/2)=∫1/ [cos^2(x/2) * tan(x/2) ]d(x/2)=∫sec^2(x/2)/tan(x/2) d(x/2)=∫1/tan(x/2) d(tan(x/2))=ln|tan(x/2)|+C不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C2023-07-17 18:43:332
不定积分的积分公式
注:以下的C都是指任意积分常数。1、 ,a是常数2、 ,其中a为常数,且a ≠ -13、4、5、 ,其中a > 0 ,且a ≠ 16、7、8、9、10、11、12、13、14、15、全体原函数之间只差任意常数C证明:如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F"(x)=f(x),那么,对任何常数显然也有[F(x)+C]"=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。设G(x)是f(x)的另一个原函数,即u2200x∈I,G"(x)=f(x)。于是[G(x)-F(x)]"=G"(x)-F"(x)=f(x)-f(x)=0。由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C"(C‘为某个常数)。这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。2023-07-17 18:44:371
不定积分怎样计算
不定积分的主要计算方法有:凑分法、公式法、第一类换元法、第二类换元法、分部积分法和泰勒公式展开近似法等。需要注意的是不是所有函数都能积分出来,同时各种方法可以用其一也可以多种方法综合应用。以上例子是凑分法和分部积分法的综合应用。2023-07-17 18:47:131
如何求不定积分
1、直接利用积分公式求出不定积分。2、通过凑微分,最后依托于某个积分公式。进而求得原不定积分。例如3、运用链式法则:4、运用分部积分法:∫udv=uv-∫vdu;将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。积分容易者选为v,求导简单者选为u。例子:∫Inx dx中应设U=Inx,V=x。扩展资料:一、常用的积分公式有:二、求不定积分的注意事项:1、如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F"(x)=f(x),那么对任何常数显然也有[F(x)+C]"=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。2、虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合,原函数不可以表示成初等函数的有限次复合的函数称为不可积函数。aqui te amo。2023-07-17 18:47:441
不定积分里有个关于三角函数的万能代换公式公式是什么
= 2/根号5 arctan1/根号52023-07-17 18:47:544
不定积分的方法都有哪些?
首先要熟记那些基本的不定积分(跟导数的公式对应着记)以及不定积分的性质(满足加法与数乘)方法的话用的最多的是换元法,有第一换元法(适用于可整体代换的)与第二换元法(一般在含根式的不定积分中用的较多),还有分部积分法(带n的需要递推的一般都用这个方法)基本的方法就是这三个。对于特殊的函数:(1)有理函数均可化成最简真分式之和的形式,(2)三角函数有理式均可用万能变换化成有理函数,(3)无理函数一般采用尤拉变换或三角换元,主要目的是把分母上的根号转化到分子上(一般用1/t代换x),把无理化有理。在变换中,可通过化简、拆项,使被积函数更接近于我们熟悉的形式,在三角函数中,要充分利用1的代换(1=sin^2x+cos^2x)以及二倍角公式、和差化积与积化和差等公式。2023-07-17 18:50:072
根号下a^2-x^2 的积分公式
详情如图所示有任何疑惑,欢迎追问2023-07-17 18:50:185
不定积分求导过程是什么?
不定积分求导, 直接等于被积函数。2023-07-17 18:50:522
1/不定积分怎么求
求不定积分的方法:公式法,分项积分法,因式分解法“凑”微分法(第一换元法),第二换元法,分部微分法,有理函数的积分。方法一:基本公式法因为积分运算微分运算的逆运算,所以从导数公式可得到相应的积分公式。我们可以利用积分公式来算积分方法二:分项积分法,即将一整式分项计算积分方法三:因式分解法,分母是可因式分解的多项式,可用此方法做。方法四:第一换元法————“凑”微分法2023-07-17 18:51:271
关于高等数学不定积分几个公式
基本公式只有两个,一个是∫dx/(a^2+X^2)=(1/a)*arctan(x/a)+C,一个是∫dx/√(a^2-X^2)=arcsin(x/a)+C其他带根号的都是用三角函数换元做的。√(a^2+X^2)用正切换元,√(X^2-a^2)用正割换元。1/(a^2-X^2)分部分分式,掌握基本方法,不拘泥于公式。2023-07-17 18:52:152
不定积分公式
不定积分公式为:在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′= f。不定积分和定积分间的关系由微积分基本定理确定,其中F是f的不定积分。根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。扩展资料:积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。2023-07-17 18:52:382
不定积分的计算公式有哪些?
1、∫0dx=c 不定积分的定义2、∫x^udx=(x^(u+1))/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c10、∫1/√(1-x^2) dx=arcsinx+c11、∫1/(1+x^2)dx=arctanx+c12、∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c13、∫secxdx=ln|secx+tanx|+c 基本积分公式14、∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c15、∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c16、∫sec^2 x dx=tanx+c;17、∫shx dx=chx+c;18、∫chx dx=shx+c;19、∫thx dx=ln(chx)+c;不定积分解题技巧个人经验首先,要知道一下,不定积分其实就是求导的逆运算,就像下面的公式;只不过在后面加上常数C,因为加上C与不加C的导数结果一样,毕竟,常数的导数为0嘛。下图是书上的公式以验证词步骤。其次,要谈论对第一类换元法的理解,所谓的第一类换元其实就是一种拼凑利用f"(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)分布积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,我认为比较好的记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)2023-07-17 18:54:431
不定积分计算公式是什么?
∫cscxdx=∫1/sinx dx=∫1/[2sin(x/2)cos(x/2)] dx=∫1/[sin(x/2)cos(x/2)] d(x/2)=∫1/ [cos^2(x/2) * tan(x/2) ]d(x/2)=∫sec^2(x/2)/tan(x/2) d(x/2)=∫1/tan(x/2) d(tan(x/2))=ln|tan(x/2)|+C不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C2023-07-17 18:55:061
不定积分的公式是什么?
∫√(a^2-x^2)dx设x=asint则dx=dasint=acostdta^2-x^2=a^2-a^2sint^2=a^2cost^2∫√(a^2-x^2)dx=∫acost*acostdt=a^2∫cost^2dt=a^2∫(cos2t+1)/2dt=a^2/4∫(cos2t+1)d2t=a^2/4*(sin2t+2t)将x=asint代回∫√(a^2-x^2)dx=x√(a^2-x^2)/2+a^2*arcsin(x/a)/2+C扩展资料不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C2023-07-17 18:56:052
不定积分的公式是什么啊?
∫(x^2lnx)dx=1/3∫lnxdx^3=1/3(x^3lnx-∫x^3dlnx)=1/3(x^3lnx-∫x^2dx)=1/3(x^3lnx-x^3/3+c)=x^3(3lnx-1)/9+c不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C2023-07-17 18:56:122
不定积分的公式是什么?
具体回答如下:对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。不定积分的公式:1、∫adx=ax+C,a和C都是常数2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-13、∫1/xdx=ln|x|+C4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠15、∫e^xdx=e^x+C6、∫cosxdx=sinx+C7、∫sinxdx=-cosx+C8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C2023-07-17 18:58:391
请问不定积分的公式有哪些?
解答如下:sinarctanx=x/(1+x*x)的平方根;cosarctanx=1/(1+x*x)的平方根;cotarctanx=1/x;sinarccosx=(1-x*x)的平方根;tanarccosx=(1-x*x)的平方根/x扩展资料不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C2023-07-17 18:59:331
不定积分常用公式大全
有很多的同学是非常的想知道,不定积分常用公式有哪些,我整理了相关信息,希望会对大家有所帮助! 不定积分常用公式有哪些 1)∫0dx=c 不定积分的定义 2)∫x^udx=(x^(u+1))/(u+1)+c 3)∫1/xdx=ln|x|+c 4)∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 基本积分公式 14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx dx=shx+c; 19) ∫thx dx=ln(chx)+c; 不定积分解题技巧个人经验 首先,要知道一下,不定积分其实就是求导的逆运算,就像下面的公式; 只不过在后面加上常数C,因为加上C与不加C的导数结果一样,毕竟,常 数的导数为0嘛。下图是书上的公式以验证词步骤。 其次,我们要谈论对第一类换元法的理解,所谓的第一类换元其实就是一种拼凑 利用f"(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来) 分布积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,我认为比较好的记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)2023-07-17 18:59:461
不定积分的计算公式是什么?
1/2ln[(1+x)/(1-x)]+C解题过程如下:=1/2∫[1/(1-x)+1/(1+x)]dx=1/2[-ln(1-x)+ln(1+x)]+C=1/2ln[(1+x)/(1-x)]+C在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。扩展资料常用积分公式:1)∫0dx=c2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c4)∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c一般定理定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。2023-07-17 18:59:591
不定积分的计算公式
√(1-x^2)的不定积分为 (1/2)[arcsinx + x√(1 - x^2)] + C 。√(1-x^2)的不定积分的计算方法为:∫√(1 - x^2) dx =∫√(1 - sin^2θ)(cosθdθ)=∫cosθ^2 dθ=∫(1 + cos2θ)/2 dθ=θ/2 + (sin2θ)/4 + C= (arcsinx)/2 + (sinθcosθ)/2 + C= (arcsinx)/2 + (x√(1 - x^2))/2 + C= (1/2) + C。不定积分解释根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。2023-07-17 19:00:071
不定积分公式有哪些啊?
常用不定积分公式如下:1、∫0dx=c。2、∫x^udx=(x^(u+1))/(u+1)+c。3、∫1/xdx=ln|x|+c。4、∫a^xdx=(a^x)/lna+c。5、∫e^xdx=e^x+c。6、∫sinxdx=-cosx+c。不定积分其他情况简介。许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。2023-07-17 19:00:471
不定积分的计算公式是什么啊?
具体回答如下:对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。不定积分的公式:1、∫adx=ax+C,a和C都是常数2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-13、∫1/xdx=ln|x|+C4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠15、∫e^xdx=e^x+C6、∫cosxdx=sinx+C7、∫sinxdx=-cosx+C8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C2023-07-17 19:01:032
不定积分公式有哪些?
解答如下:sinarctanx=x/(1+x*x)的平方根;cosarctanx=1/(1+x*x)的平方根;cotarctanx=1/x;sinarccosx=(1-x*x)的平方根;tanarccosx=(1-x*x)的平方根/x扩展资料不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C2023-07-17 19:01:371
不定积分怎么求?
解题过程如下图所示:在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F,即F ′ = f。 不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。不定积分的公式:不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。这样,许多函数的定积分的计算就可以简便地通过求不定积分来进行。设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(C为任意常数)叫做函数f(x)的不定积分,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。2023-07-17 19:01:511
不定积分的计算公式是什么?
解答如下:secx=1/cosx∫secxdx=∫1/cosxdx=∫1/(cosx的平方)dsinx=∫1/(1-sinx的平方)dsinx令sinx=t代人可得:原式=∫1/(1-t^2)dt=1/2∫[1/(1-t)+1/(1+t)]dt=1/2∫1/(1-t)dt+1/2∫1/(1+t)dt=-1/2ln(1-t)+1/2ln(1+t)+C将t=sinx代人可得原式=[ln(1+sinx)-ln(1-sinx)]/2+C拓展资料:必定积分性质:根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。参考资料:百度百科:不定积分2023-07-17 19:03:421
不定积分的计算方式有哪些?
求积分的公式如下:1、∫0dx=c不定积分的定义2、∫x^udx=(x^(u+1))/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c10、∫1/√(1-x^2)dx=arcsinx+c11、∫1/(1+x^2)dx=arctanx+c12、∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c13、∫secxdx=ln|secx+tanx|+c14、∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c15、∫1/√(a^2-x^2)dx=(1/a)*arcsin(x/a)+c16、∫sec^2xdx=tanx+c17、∫shx dx=chx+c18、∫chx dx=shx+c19、∫thx dx=ln(chx)+c2023-07-17 19:03:591
不定积分怎么求?
不定积分的运算法则如下:积分公式法:直接利用积分公式求出不定积分。换元积分法:换元积分法可分为第一类换元法与第二类换元法,第一类换元法通过凑微分,最后依托于某个积分公式。进而求得原不定积分。分部积分法:将所求积分化为两个积分之差,积分容易者先积分。任何真分式总能分解为部分分式之和。有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和可见问题转化为计算真分式的积分。求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。设函数和u,v具有连续导数,则uv=udv+vdu。移项得到udv=duv-vdu,两边积分,得分部积分公式:∫udv=uv-∫vdu 。称公式1为分部积分公式。如果积分∫vdu易于求出,则左端积分式随之得到。2023-07-17 19:04:211
不定积分常用公式大全
有很多的同学是非常的想知道,不定积分常用公式有哪些,我整理了相关信息,希望会对大家有所帮助! 不定积分常用公式有哪些 1)∫0dx=c 不定积分的定义 2)∫x^udx=(x^(u+1))/(u+1)+c 3)∫1/xdx=ln|x|+c 4)∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 基本积分公式 14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx dx=shx+c; 19) ∫thx dx=ln(chx)+c; 不定积分解题技巧个人经验 首先,要知道一下,不定积分其实就是求导的逆运算,就像下面的公式; 只不过在后面加上常数C,因为加上C与不加C的导数结果一样,毕竟,常 数的导数为0嘛。下图是书上的公式以验证词步骤。 其次,我们要谈论对第一类换元法的理解,所谓的第一类换元其实就是一种拼凑 利用f"(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来) 分布积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,我认为比较好的记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)2023-07-17 19:06:541
不定积分公式都有哪些啊?
常用不定积分公式如下:1、∫0dx=c。2、∫x^udx=(x^(u+1))/(u+1)+c。3、∫1/xdx=ln|x|+c。4、∫a^xdx=(a^x)/lna+c。5、∫e^xdx=e^x+c。6、∫sinxdx=-cosx+c。不定积分其他情况简介。许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。2023-07-17 19:07:121
不定积分和求导
第二个对,第一个还要对x^2求导2023-07-17 19:07:323
不定积分公式是什么?
主要内容:通过根式换元、分项凑分以及分部积分法等相关知识,介绍不定积分∫x√(x+2)dx的三种计算方法和步骤。根式换元法:设√(x+2)=t,则x=(t^2-2),代入得:∫x√(x+2)dx=∫t*(t^2-2)d(t^2-2),=2∫t^2*(t^2-2)dt,=2∫(t^4-2t^2)dt,=2/5*t^5-4/3*t^3+C,=2/5*(x+2)^(5/2)-4/3*(x+2)^(3/2)+C,根式部分凑分法∫x√(x+2)dx=∫x√(x+2)d(x+2),=2/3∫xd(x+2)^(3/2),=2/3*x(x+2)^(3/2)- 2/3∫(x+2)^(3/2)dx,=2/3*x(x+2)^(3/2)- 4/3∫(x+2)^(3/2)d(x+2),=2/3*x(x+2)^(3/2)- 4/15*(x+2)^(5/2)+C,整式部分凑分法A=∫x√(x+2)dx,=(1/2)∫√(x+2)dx^2,=(1/2)x^2√(x+2)-(1/2)∫x^2d√(x+2),=(1/2)x^2√(x+2)-(1/4)∫x^2/√(x+2)dx,=(1/2)x^2√(x+2)-(1/4)∫[x(x+2)-2*(x+2)+4]/√(x+2)dx,=(1/2)x^2√(x+2)-(1/4)A+1/2∫√(x+2)dx-∫dx/√(x+2),即:(5/4)A=(1/2)x^2√(x+2)+1/2∫√(x+2)dx-2∫dx/2√(x+2),A=(2/5)x^2√(x+2)+2/5∫√(x+2)d(x+2)-8/5√(x+2),A=(2/5)x^2√(x+2)+4/15(x+2)^(3/2)-8/5*√(x+2)+C。不定积分概念设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。不定积分的计算求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。不定积分的主要计算方法有:凑分法、公式法、第一类换元法、第二类换元法、分部积分法和泰勒公式展开近似法等。2023-07-17 19:08:341
不定积分的计算公式?
回答如下:∫1/(1-x^2)dx=1/2∫[1/(1-x)+1/(1+x)]dx=1/2[-ln(1-x)+ln(1+x)]+C=1/2ln[(1+x)/(1-x)]+C不定积分的公式:1、∫adx=ax+C,a和C都是常数2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-13、∫1/xdx=ln|x|+C4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠15、∫e^xdx=e^x+C6、∫cosxdx=sinx+C7、∫sinxdx=-cosx+C8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C2023-07-17 19:10:431
不定积分的计算公式到底是什么?
具体回答如下:x的平方/根号下a平方-x平方的不定积分=d积分(x/a)^2/根号(1-(x/a)^2)dx设x/a=sint则x=asint,dx=acostdt原=积分(sint)^2/cost*acostdt=积分a(sint)^2dt=a积分(1-cos2t)/2dt=a(t/2+sin2t/4)=(a/2)arcsin(x/a)+x根号(1-(x/a)^2)+c解释根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。2023-07-17 19:10:571
常用不定积分公式有哪些?
常用不定积分公式如下:1、∫0dx=c。2、∫x^udx=(x^(u+1))/(u+1)+c。3、∫1/xdx=ln|x|+c。4、∫a^xdx=(a^x)/lna+c。5、∫e^xdx=e^x+c。6、∫sinxdx=-cosx+c。不定积分其他情况简介。许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。2023-07-17 19:11:221
不定积分基本公式
不定积分基本公式:∫ a dx = ax + C,a和C都是常数∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1∫ 1/x dx = ln|x| + C∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1∫ e^x dx = e^x + C∫ cosx dx = sinx + C∫ sinx dx = - cosx + C∫ cotx dx = ln|sinx| + C = - ln|cscx| + C∫ tanx dx = - ln|cosx| + C = ln|secx| + C∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C∫ sec^2(x) dx = tanx + C∫ csc^2(x) dx = - cotx + C∫ secxtanx dx = secx + C∫ cscxcotx dx = - cscx + C∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C∫ dx/√(a^2 - x^2) = arcsin(x/a) + C∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C2023-07-17 19:13:481
不定积分的常用公式有哪些
1)∫0dx=c 不定积分的定义2)∫x^udx=(x^(u+1))/(u+1)+c 3)∫1/xdx=ln|x|+c 4)∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 基本积分公式14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx dx=shx+c; 19) ∫thx dx=ln(chx)+c;2023-07-17 19:16:042