- Ntou123
-
因式分解,也叫分解因式,因式分解,是主谓短语,分解因式,是动宾短语,就是把多项式,变成一个个式子相乘的形式;如果需要示意图,就看看汉字 “目”、“月” 和 “朋”、“用”,“月” 和 “目” 就是长为 3,宽分别是 a、...
因式分解有几种常见方法
多项式长除法。多项式长除法2023-05-17 03:19:425
什么叫因式分解?分解因式的方法有哪些?
多项式长除法。2023-05-17 03:20:5010
因式分解有哪些公式?
应该问哪些方法!常见的有:(1)提取公因式法(2)公式法(3)十字相乘法(4)分组分解法……2023-05-17 03:21:322
数学因式分解的12种方法
因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)2023-05-17 03:21:474
因式分解的公式
因式分解公式:平方差公式:(a+b)(a-b)=a²-b²完全平方公式:(a±b)²=a²±2ab+b²把式子倒过来:(a+b)(a-b)=a²-b²a²±2ab+b²= (a±b)²就变成了因式分解,因此,我们把用利用平方差公式和完全平方公式进行因式分解的方法称之为公式法。2023-05-17 03:21:5711
因式分解是什么?
a3-b3=a3-a2b+a2b-b3=a2(a-b)+b(a2-b2)=a2(a-b)+b(a+b)(a-b)= (a2+ab+b2)(a-b)x3-27=x3-3x3x3=(x2+3x+9)(x-3)2023-05-17 03:22:293
因式分解的步骤
因式分解的步骤如下:找出公因式;提公因式并确定另一个因式:第一步找公因式可按照确定公因式的方法先确定系数再确定字母;第二步提公因式并确定另一个因式,注意要确定另一个因式。提完公因式后,另一因式的项数与原多项式的项数相同。因式分解法是数学中用以求解高次一元方程的一种方法,与整式乘法是互为逆变形。把方程的一侧的数(包括未知数),通过移动使其值化成0,把方程的另一侧各项化成若干因式的乘积,然后分别令各因式等于0而求出其解的方法叫因式分解法。方法分类:1、把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。2、因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。3、而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数。2023-05-17 03:22:351
因式分解的几种方法
因式分解是将一个多项式表示为若干个乘积的形式,其主要的几种方法有:1. 公因式法:当多项式中存在公因式时,可以通过将公因式提取出来,再将剩余的部分进行因式分解。2. 分组法:将多项式中的项按照某种规律分组,使得每组中的项可以通过提取公因式的方式进行因式分解。3. 十字相乘法:对于二次多项式,可以通过十字相乘的方式进行因式分解,即将多项式中的二次项系数和常数项相乘,然后找出两个数的乘积等于中间项系数的绝对值,再根据这两个数进行因式分解。4. 辗转相除法:对于高次多项式,可以通过辗转相除的方式进行因式分解。先找出一个因数,然后将多项式除以这个因数得到一个新的多项式,再对这个新多项式进行同样的操作,直到无法继续因式分解为止。2023-05-17 03:22:581
什么是因式分解,举例说明
求一个多项式的因式的过程,叫做分解因式。可以直接计算,或运用公式。常用的公式有:a*-b*=(a+b)(a-b)(a+b)*=a*+2ab+b*(a-b)*=a*-2ab+b*方法:⑴提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。am+bm+cm=m(a+b+c)③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.⑵运用公式法①平方差公式:.a^2-b^2=(a+b)(a-b)②完全平方公式:a^2±2ab+b^2=(a±b)^2※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.③立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2).立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2).④完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)⑶分组分解法分组分解法:把一个多项式分组后,再进行分解因式的方法.分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.⑷拆项、补项法拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.⑸十字相乘法①x^2+(pq)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(pq)x+pq=(x+p)(x+q)②kx^2+mx+n型的式子的因式分解如果能够分解成k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(axb)(cxd)a-----/bac=kbd=nc/-----dad+bc=m※多项式因式分解的一般步骤:①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;④分解因式,必须进行到每一个多项式因式都不能再分解为止。(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。2023-05-17 03:23:201
什么叫做因式分解
因式分解的具体含义详细介绍如下:1、简介:把一个多项式在一个范围,如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。2、定义:是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。3、相关结论:分解因式为整式乘法的逆过程。在高等代数上,因式分解有一些重要结论,在初等代数层面上证明很困难,但是理解很容易。4、步骤:如果多项式的首项为负,应先提取负号,如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式。要注意多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净并使每一个括号内的多项式都不能再分解。2023-05-17 03:23:261
因式分解是什么意思?
问题一:因式分解是什么意思 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。 问题二:因式分解是什么意思 把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式) 分解公式 平方差公式 (a+b)(a-b)=a2-b2 完全平方公式 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 十字相乘法公式 x2+(a+b)x+ab=(x+a)(x+b) 立方和(差)立方公式 a3-b3=(a-b)(a2+ab+b2) (a+b)3 =a3+3a2b+3ab2+b3 a2-b2=(a+b)(a-b) a3-[-3(a2)b+3ab2]=(a-b) (a-b)2+3ab(a-b) =(a-b) (a2-2ab+b2+3ab)=(a-b) (a2+ab+b2)a3+b3=(a+b)(a2-ab+b2) 其他平方公式 a2+b2=(a+b)2-2ab 或=(a-b)2+2ab 问题三:分解因式是什么意思 把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。 问题四:什么叫做因式,什么叫做因式分解 如果多项式f(x)能够被非零多项式g(x)整除,即可以找出一个多项式g(x),使得f(x)=q(x)・g(x),那么g(x)就叫做f(x)的一个因式。 因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解。 问题五:因式分解的真正含义和方法 因式分解(factorization) 因式分解指的是把一个多项式分解为几个整式的积的形式,它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等. ⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。 ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。 am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形. ⑸十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax b)(cx d) a -----/b ac=k bd=n c /-----d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止。 (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x......>>2023-05-17 03:24:071
什么是因式分解
分类: 教育/科学 >> 学习帮助 问题描述: 用最简单明了的方法说 解析: 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。 附:仅供参考 因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)2023-05-17 03:24:131
什么是因式分解?
什么是因式分解? 把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。在数学求根作图方面有很广泛的应用。 原则: 1.结果最后只留下小括号 2.结果的多项式首项为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子。 3.括号内的首项系数不能为负; 4.如有单项式和多项式相乘,应把单项式提到多项式前。如a(a+b)。2023-05-17 03:24:201
什么是因式分解?
把一个多项式化成几个单项式相乘的过程。方法主要掌握十字相乘法2023-05-17 03:24:282
因式分解有哪几种方法?
因式分解法的四种方法:提公因式法、分组分解法、待定系数法、十字分解法。1、一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。3、待定系数法是初中数学的一个重要方法。用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的。由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。2023-05-17 03:24:341
因式分解步骤
步骤:1、如果多项式的首项为负,应先提取负号;这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。原则:1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。2、分解因式的结果必须是以乘积的形式表示。3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;5、结果的多项式首项一般为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;6、括号内的首项系数一般为正;7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。2023-05-17 03:24:481
什么是因式分解?
把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也就是把这个多项式分解因式所以把一个多项式分解成____的形式,叫做因式分解2023-05-17 03:25:084
因式分解的概念
把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)。它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的。而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高学生综合分析和解决问题的能力。分解因式与整式乘法互逆。同时也是解一元二次方程中因式分解法的重要步骤。扩展资料各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫 做提取公因式分解因式。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。口诀:找准公因式,一次要提尽;全家都搬走,留1把家守;提负要变号,变形看奇偶。参考资料:因式分解的百度百科2023-05-17 03:25:341
因式分解四种基本方法
因式分解四种基本方法是提取公因式,公式法,分组分解法,十字相乘法。1、因式分解是指把一个多项式分解为两个或多个的因式的过程,分解过后会得出一堆蚂运搭较原式简单的多项式的积。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式。2、不定方程是指未知数的个数多于方程个数,且未知数受到某些限制的方程或方程组。不定方程的整数解,判定不定方程是否有解,判定不定方程的解的个数,计算方式不等式估算法是利用不等式等方法,确定出方程中某些变量的范围,进而求解。因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。2023-05-17 03:25:451
因式分解是什么意思
把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)分解公式平方差公式(a+b)(a-b)=a²-b²完全平方公式(a+b)²=a²+2ab+b² (a-b)²=a²-2ab+b²十字相乘法公式x²+(a+b)x+ab=(x+a)(x+b)立方和(差)立方公式a³-b³=(a-b)(a²+ab+b²) (a+b)³ =a³+3a²b+3ab²+b³ a²-b²=(a+b)(a-b)a³-[-3(a²)b+3ab²]=(a-b)(a-b)²+3ab(a-b) =(a-b)(a²-2ab+b²+3ab)=(a-b)(a²+ab+b²)a³+b³=(a+b)(a²-ab+b²)其他平方公式a²+b²=(a+b)²-2ab或=(a-b)²+2ab2023-05-17 03:26:161
“因式分解”的“因式”是什么意思?
把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。2023-05-17 03:26:232
因式分解怎样分解
先提公共的因式,再像 二次那样因式分解.因式分解的步骤:1.提取公因式这个是最基本的.就是有公因式就提出来。(相同取出来剩下的相加或相减)2.完全平方看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按照公式进行.3.平方差公式这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解.4.十字相乘首先观察,有二次项,一次项和常数项,可以采用十字相乘法.(十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。)2023-05-17 03:27:501
怎么分解因式
关于怎么分解因式,步骤如下:如果多项式的首项为负,应先提取负号;如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。因式分解原则:分解因式是多项式的恒等变形,要求等式左边必须是多项式。分解因式的结果必须是以乘积的形式表示。每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;结果的多项式首项一般为正。在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;括号内的首项系数一般为正。如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。2023-05-17 03:28:181
因式分解的办法
因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。 x^5+3x^4y-5x^3y^2+4xy^4+12y^5 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正 归纳方法: 1、提公因式法。 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。当各项的系数有分数时,公因式系数的分母为各分数分母的最小公倍数,分子为各分数分子的最大公约数(最大公因数) 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。 例如:-am+bm+cm=-(a-b-c)m; a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)注意:把2a+1/2变成2(a+1/4)不叫提公因式2、公式法。 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式: (a+b)(a-b)=a^2-b^2 反过来为a^2-b^2=(a+b)(a-b) 完全平方公式:(a+b)^2=a^2+2ab+b^2 反过来为a^2+2ab+b^2=(a+b)^2 (a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 两根式:ax^2+bx+c=a(x-(-b+√(b^2-4ac))/2a)(x-(-b-√(b^2-4ac))/2a) 立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2) 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2) 完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3 公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) 例如:a^2+4ab+4b^2 =(a+2b)^2 3、分组分解法。4、凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)] 5、组合分解法。 6、十字相乘法。十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2)在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。 基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q),所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解,上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) 又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3)。而5+(-3)又恰好等于一次项系数2。所以a^2+2a-15=(a+5)(a-3)十字相乘法讲解:x^2-3x+2如下: x -1 ╳ x -2 左边x乘x= x^2 右边-1乘-2=2 中间-1乘x+(-2)乘x(对角)=-3x 上边的【x+(-1)】乘下边的【x+(-2)】 就等于(x-1)*(x-2) x^2-3x+2=(x-1)*(x-2) 7、双十字相乘法。 8、配方法。 9、拆项法。 10、换元法。 11、长除法。 12、加减项法。 13、求根法。 14、图象法。 15、主元法。 16、待定系数法。 17、特殊值法。 18、因式定理法。2023-05-17 03:29:291
因式分解有几种方法
因式分解 因式分解(factorization) 因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等. ⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的~. ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形. ⑸十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax b)(cx d) a -----/b ac=k bd=n c /-----d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。 经典例题: 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2 解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y) 2.证明:对于任何数x,y,下式的值都不会为33 x^5+3x^4y-5x^3y^2+4xy^4+12y^5 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) 当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立 因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4) 参考资料: http://zhidao.baidu.com/question/36231611.html?ansup12023-05-17 03:29:511
因式分解的概念是什么
因式分解就是把一个多项式变成几个因式的积的形式。2023-05-17 03:30:542
什么叫做因式,什么叫做因式分解
一、因式概念:如果多项式 f(x) 能够被整式 g(x)整除,即可以找出一个多项式 q(x) ,使得 f(x)=q(x)·g(x),那么g(x) 就叫做 f(x) 的一个因式。 这时 q(x) 也是 f(x) 的一个因式,并且 q(x) 、g(x) 的次数都不会大于 f(x) 的次数。 注意:g(x)≠0,但 q(x) 可以等于0(当 f(x)=0 时)。 一个数也可以看做一个因式。 二、因式分解概念:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。例如:m²-n²=(m+n)(m-n) 三、知识点延伸 1、因式分解原则: (1)分解要彻底(是否有公因式,是否可用公式) (2)最后结果只有小括号 (3)最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=-x(2+3y+4z) 2、因式分解技巧: ①因式分解是多项式的恒等变形,要求等式左边必须是多项式。 ②因式分解的结果必须是以乘积的形式表示。 ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。 ④因式分解必须分解到每个多项式因式都不能再分解为止。 注:因式分解前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 3、因式分解的方法 (1)提取公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式.公因式可以是单项式,也可以是多项式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。例如:am+bm+cm=m(a+b+c) 提公因式法基本步骤: (1)找出公因式 (2)提公因式并确定另一个因式 ①第一步找公因式可按照确定公因式的方法先确定系数再确定字母 ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式 ③提完公因式后,另一因式的项数与原多项式的项数相同 (2)公式法 根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解的方法叫做公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 立方和公式:a3+b3=(a+b)(a2-ab+b2) 立方差公式:a3-b3=(a-b)(a2+ab+b2) 完全立方公式:(a±b)3=a3±3a2b+3ab2±b3=(a±b)3 公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca) 例如:a2+4ab+4b2 =(a+2b)2 (3)解方程法 通过解方程来进行因式分解,如: X2-6X+8=0 ,解,得X1=2,X2=4,就得到原式=(X-2)(X-4)2023-05-17 03:32:166
因式分解有多少种方法
一、提取公因式法提取公因式法是最基本的因式分解方法,甚至可以说后面的因式分解方法都是在这个基础上进行使用。一般来说,提取公因式法的使用针对比较直观的因式进行提取,例如学生在多项式中直接看到有一个共同项,立刻就想到提取公因式。例1:因式分解:3x^3+8x^2y+6x^2y^3=x^2(3x+8y+6y^3)有些多项式进行提取公因式法之后,还要进一步进行因式分解,如果没有分解到不能再分,不能算是正确答案。例2:因式分解:x^2y^2-2x^y+x^2=x^2(y^2-2y+1)=x^2(y-1)^2提取公因式的方法在实际因式分解中很少出现,但这种方法是因式分解的基础,要牢固掌握。二、完全平方和公式法完全平方和公式法使用针对这样的多项式:x^2+2xy+y^2,这个式子的逆运算就是计算(x+y)(x+y)。而在实际的计算中不一定就是上面出现的式子,所以需要对这个式子进行理解,用大写字母表示,可以写成A^2+2AB+B^2,这是一个对称的多项式,第一个和第三个分别是某个字母或者称作某个式子的平方,中间一项是两个字母或者两个式子的乘积的2倍。例3:因式分解:9a^2+6a+1=(3a)^2+2x3a+1^2=(3a+1)有时候,因式分解没这么简单的完全平方和,可能要比这个复杂些,可能是一个字母和一个式子的平方和,或者是两个式子的平方和。例4:因式分解:4a^2+4a+1+2ab+b+b^2如果粗略看这个式子,无从下手,进行整理之后,才能找到突破的地方。原式=(2a+1)^2+b(2a+1)+b^2=(2a+b+1)^22023-05-17 03:33:232
什么叫因式分解?请详细解释
分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号. 当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定唯一。 例1分解因式:x15+m12+m9+m6+m3+1 解原式=(x15+m12)+(m9+m6)+(m3+1) =m12(m3+1)+m6(m3+1)+(m3+1) =(m3+1)(m12+m6++1) =(m3+1)[(m6+1)2-m6] =(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3) 例2分解因式:x4+5x3+15x-9 解析可根据系数特征进行分组 解原式=(x4-9)+5x3+15x =(x2+3)(x2-3)+5x(x2+3) =(x2+3)(x2+5x-3) 附:仅供参考 第4课 因式分解 〖知识点〗 因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。 〖大纲要求〗 理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。 〖考查重点与常见题型〗 考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。 因式分解知识点 多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有: (1)提公因式法 如多项式 其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式. (2)运用公式法,即用 写出结果. (3)十字相乘法 对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则 对于一般的二次三项式 寻找满足 a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则 (4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号. (5)求根公式法:如果 有两个根X1,X2,那么 考查题型: 1.下列因式分解中,正确的是( )????????? (A) 1- 14 x2= 14 (x + 2) (x- 2) (B)4x –2 x2 – 2 = - 2(x- 1)2 (C) ( x- y )3 –(y- x) = (x – y) (x – y + 1) ( x –y – 1) (D) x2 –y2 – x + y = ( x + y) (x – y – 1) 2.下列各等式(1) a2- b2 = (a + b) (a–b ),(2) x2–3x +2 = x(x–3) + 2 (3 ) 1 x2 –y2 -1 ( x + y) (x – y ) ,(4 )x2 + 1 x2 -2-( x -1x )22023-05-17 03:33:461
分解因式和因式分解的区别是什么
多项式长除法。2023-05-17 03:34:596
因式分解怎么解?
没有题怎么解啊。题主是不是忘了上传图片,还是为了刷任务?2023-05-17 03:37:405
因式分解的四种方法?
因式分解的四种方法:公因式法、公式法、十字相乘法和分组分解法。2023-05-17 03:41:051
因式分解方法什么
x^2-(a+b)x+ab可以分解为(x-a)(x-b)多用于化简和解一元二次方程。2023-05-17 03:42:075
数学因式分解的方法
你好,很高兴为你解答:因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a +4ab+4b (2003南通市中考题) a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析:1 -3 7 2 2-21=-19 7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7、分解因式2x -x -6x -x+2 2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ ,x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11、分解因式x +9x +23x+15 令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)2023-05-17 08:03:332
因式分解的方法有哪些
在初高中,同学们都会接触到很多因式分解的例子与试题,那有什么因式分解的方法呢,须注意什么。以下是由我为大家整理的“因式分解的方法有哪些”,仅供参考,欢迎大家阅读。 因式分解的方法 一、运用公式法 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a^2-b^2=(a+b)(a-b) a^2+2ab+b^2=(a+b)^2 a^2-2ab+b^2=(a-b)^2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 二、平方差公式 1、式子: a^2-b^2=(a+b)(a-b)。 2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 三、因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.因式分解,必须进行到每一个多项式因式不能再分解为止。 四、完全平方公式 1、把乘法公式(a+b)^2=a^2+2ab+b^2 和 (a-b)^2=a^2-2ab+b^2反过来, 就可以得到:a^2+2ab+b^2=(a+b)^2 和 a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。 2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。 3、当多项式中有公因式时,应该先提出公因式,再用公式分解。 4、完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 5、分解因式,必须分解到每一个多项式因式都不能再分解为止。 五、分组分解法 我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。 如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。 原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)。 做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。但不难看出这两项还有公因式(m+n),因此还能继续分解,所以:原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)×(a+b)。 这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。 六、提公因式法 1、在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。 2、运用公式x^2 +(p+q)x+pq=(x+q)×(x+p)进行因式分解要注意: (1)必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。 (2)将常数项分解成满足要求的两个因数积的多次尝试,一般步骤: ① 列出常数项分解成两个因数的积各种可能情况; ②尝试其中的哪两个因数的和恰好等于一次项系数。 3、将原多项式分解成(x+q)(x+p)的形式。 七、分式的乘除法 1、把一个分式的分子与分母的公因式约去,叫做分式的约分。 2、分式进行约分的目的是要把这个分式化为最简分式。 3、如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。 4、分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)^2=(y-x)^2, (x-y)^3=-(y-x)^3。 5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方。 6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。 八、分数的加减法 1、通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。 2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。 3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。 4、通分的依据:分式的基本性质。 5、通分的关键:确定几个分式的公分母。通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。 6、类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。 7、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。 同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。 8、异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。 9、同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。 10、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。 11、异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。 12、作为最后结果,如果是分式则应该是最简分式。 九、含有字母系数的一元一次方程 引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)。 在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。 拓展阅读:因式分解需注意 (1)分解因式与整式乘法是互为逆变形; (2)等式左边必须是多项式,且分解因式的结果必须是以乘积的形式表示; (3)每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; (4)分解因式必须分解到每个多项式因式都不能再分解为止。2023-05-17 08:03:401
什么是因式分解?
因式分解 (factorization) 多项式有时可以有不同的写法,如(a+b)(b+c)和ab+b²+ac+bc均表达同一个多项式。 (a+b)(b+c)=(a+b)b+(a +b)c =ab+b2+ac+bc (a+b)(b+c)表达了两个一次式相乘的结果,我们称a+b和b+c为(a+b)(b+c)的因式。在小学阶段,我们也学过把整数进行因子分解。例如, 120 = 23×3×5 及108 = 22×32。 把一个代数式如ab+b2+ac+bc化为(a+b)(b+c),称为因式分解。 因式分解一个多项式可以有多种不同的技巧。最基本的步骤是观察各项之间有没有相同的因子或共同的因式(公因式)。例如: (a)2x+2y+2z = 2(x+y+z) 2是多项式中3项的公因子。 (b)3x²+4x+5x2 = x(3x+4+5x) x是多项式中3项的公因式。 因式分解多项式就是展开多项式的相反过程。 → 3x2+4x+5x² x(3x+4+5x) ← 以下的网址有详细教你十字相乘同因式分解,你可以上去: ymca-coll .edu/maths/powerp oint/F.2_ppt/f2_chp0 3.ppt 因式与因式分解: (1)设A、B为两多项式,若A可被B整除,则称A为B的 倍式,B为A的因式。 (2)把一多项式分解成质因式的连乘积,这种运算叫做因式分 解。 2、因式分解的方法(一): 提出公因式法 (1)原则:ma+mb-mc=m(a+b-c) (2)各项提公因式法:把各项的公因式提出 3、因式分解的方法(二): 利用乘法公式因式分解 (1)完全平方式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 (2)平方差:a2-b2=(a+b)(a-b) (3)立方和:a3+b3=(a+b)(a2-ab+b2 ) (4)立方差:a3-b3=(a-b)(a2+ab+b2) 4、因式分解的方法(三): 二次三项式的因式分解法-十字交乘法 (1)x2+px+q=(x+a)(x+b ),其中p=a+b q=ab (2)mx2+px+q=(ax+b)(c x+d),其中m=ac p=ad+bc q=bd 举例或说明 1如果多项式A能被多项式B整除,商式为多项式C,可以写成A ÷ B = C,也可以写成A = B × C。这个时候,我们说多项式B和多项式C是多项式A的因式,而多项式A是多项式B和多项式C的倍式。因为x2+4x+3能被x+1整除,商式是x+3,所以x+1和x+3是x2+4x+3的因式,而x2+4x+3是x+1和x+3的倍式。 2将一个x的二次式写成两个x的一次式的乘积,叫做这个二次式的因式分解。x2+4x-5 的因式分解是 (x+5)( x-1) 我们把它写成 x2+4x-5=(x+5)( x-1) 谢 你系指 将一条2次方程 转做最初个form...? 如果系既...应该系分解后既formula 乘开最后会变番你未分解条formula既 参考: me2023-05-17 08:03:471
什么叫因式分解,什么叫分解因式
你好,这两个概念是一个意思。把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)。望采纳,谢谢2023-05-17 08:03:563
怎样分解因式???
利用公式a^2+b^2+2ab=(a+b)^2(a-b)^2=a^2-2ab+b^2还有十字相乘配方分组(三,一分和二,二分)列如5a^2+6b-15a-2ab=(5a^2-2ab)+(6b-15a)=a(5a-2b)-3(5a-2b)=(a-3)(5a-2b)(二,二分)4x-4xy-a^2+y^2=(2x-y)^2-a^2=(2x-y-a)^2^2指平方我是新手麻烦给点分2023-05-17 08:04:362
因式分解都有那些方法
考点聚焦】 <br>1.能说出因式分解的意义,并了解因式分解与整式乘法的区别和联系. <br>2.了解因式分解的一般步骤. <br>3.掌握提公因式法(字母的指数是数字)、运用公式法(直接用公式不超过两次)、分组分解法(分组后能直接提公因式或运用公式,无需拆项或添项)这三种分解因式的基本方法,会用这些方法分解不超过四项的多项式. <br> <br>【典型例题剖析】 <br>例1(浙江省绍兴市2002年中考试题)分解因式5x-5x3=_______. <br>解:5x-5x3=5x(1-x2)=5x(1-x)(1+x). <br>答案:5x(1-x)(1+x) <br>说明:一个多项式中每项都含有的公共的因式,是这个多项式的公因式,提公因式法是因式分解的基本方法之一,务必熟练掌握. <br>例2(福建省福州市2002年中考试题)分解因式a3-a=_______. <br>解:a3-a=a(a2-1)=a(a-1)(a+1) <br>答案:a(a-1)(a+1) <br>说明:实施一步分解因式以后,如果还含有能分解的因式,要继续分解,直至每一个因式都不能再分解为止. <br>例3(浙江省丽水市2002年中考试题)分解因式4x2-y2=_______. <br>解:4x2-y2=(2x)2-y2=(2x-y)(2x+y) <br>答案:(2x-y)(2x+y) <br>说明:运用公式法分解因式时,要把握所用公式的特点及各项的系数. <br>例4(山东省济南市2001年中考试题)分解因式:(x+y)2-(x+y)-2=_________. <br>解:(x+y)2-(x+y)-2=(x+y-2)(x+y+1). <br>答案:(x+y-2)(x+y+1) <br>说明:把(x+y)作为一个整体进行分解,要比先展开后再分解简洁,这也是分解因式中的常用的方法. <br>例5(宣武区2001年中考试题) <br>把多项式2xy-x2-y2+1分解因式的结果是( ) <br>A.(x-y+1)(y-x+1) B.(x+y-1)(y-x+1) <br>C.(x+y-1)(x-y+1) D.(x-y+1)(x-y-1) <br>剖析:2xy-x2-y2+1=1-(x2+y2-2xy)=1-(x-y)2=〔1-(x-y)〕〔1+(x-y)〕 <br>=(1-x+y)(1+x-y)=(x-y+1)(y-x+1). <br>答案:A <br>说明:本题是分组后,运用公式分解因式.在运用公式时,要注意把握公式的特征.特别要注意符号的变化,这方面仍是出错率较高的地方. <br> guoyingkr 2009-12-11 22:02:21 第一类换元法,也称为凑微分法,顾名思义,就是把f[g(x)]g"(x)dx转化为f[g(x)d(g(x))的形式,所以用好这一方法的关键就是把给定的积分里的被积分式写成f[g(x)]g"(x)dx。要求对基本初等函数的导数,基本初等函数与其导数的关系很清楚(比如有些函数求导后,函数的形式不变,像露幂函数,指数函数)。除此,多项式的因式分解,三角函数恒等式等等都会用到。学习的方法就是多做题,多看典型的例题,并做好总结。第二类换元法,模式是把f(x)dx经过代换x=g(t)转化为f[g(t)]g"(t)dt,求出原函数后再回代x=g(t)的反函数t=h(x)。常用的代换是根式代换,三角代换,倒代换。适用于含有简单的根式,根式下是一次函数,如1/(√x+1)的积分,就可以考虑把√x代换;或被积函数里有√(a^2±x^2),√(x^2-a^2);还有些题目可以适用到代换,把1/x代换一下,如1/(x√(1+x^2))的积分。熟能生巧!! 定理1 设具有原函数,可导,则有换元公式.此公式称为第一类换元公式(凑微分法)说明:使用此公式的关键在于将化为.观察重点不同,所得结论不同.例1 求.解 被积函数中,是一个复合函数:,常数因子恰好是中间变量的导数.因此,作变换,便有==,再以代人,即得.例2 求.解 被积函数.这里缺少这样一个因子,但由于是是常数,故可改变系数凑出这个因子:,从而令,便有==.一般地,对于积分,总可以变换,把它化为==例3 求.解 被积函数中的一个因子为;剩下的因子恰好是中间变量的导数,于是有=.例4 求.解 设,则,即,因此,==.例5 求.解 =.因为,所以设,那么,即,因此==-=.类似地可得.在对变量代换比较熟悉以后,就不一定要写出中间变量.例6 求.解 =.在上例中,我们实际上已经用了变量代换,并在求出积分之后,代回了原积分变量,只是没有把这些步骤写出来而已.例7 求.解 =.凑微分运用时的难点在于题中哪一部分凑成,这需要解题经验,如果记熟下列一些微分公式,解题中则会给我们一些启示:; 例8 求.解 由于,所以====.求.解 ==.求.解 由于,因此,=.下面再举一些积分的例子,它们的被积函数中含有三角函数,在计算这种积分的过程中,往往要用到一些三角恒等式.求.解 ==.求.解 ====.求.解 ==.类似地可得 .求.解 ==因为,所以上述不定积分又可表为:=.求.解 ==..解 ===.求.解 利用三角学中的积化和差公式得 ,于是 =.2,第二类换元法定理2 设是单调的,可导的函数,并且.又设具有原函数,则有换元公式=(第二类积分换元公式)其中是的反函数.证 设的原函数为,记,利用复合函数及反函数的求导法则,得到,即是的原函数.所以有=这就证明了公式. 下面举例说明换元公式的应用. 解 求这个积分的困难在于有根式,但我们可以利用三角公式来化去根式.设,那么=,,于是根式化成了三角式,所求积分化为.利用例14的结果得由于,所以,,于是所求积分为.求解 和上例类似,可以利用三角公式来化去根式.设,那末,,于是利用例17的结果得为了要把及换成的函数,可以根据作辅助三角形(图4-3),便有且,因此,,其中.求解 和以上两例类似,可以利用公式来化去根式.注意到被积函数的定义域是和两个区间,我们在两个区间内分别求不定积分当时,设,那末,于是为了把及换成的函数,我们根据作辅助三角形(图4—4),得到因此,其中.当时,令,那么.由上段结果,有=,其中.把在及内的结果合起来,可写作.从上面的三个例子可以看出:如果被积函数含有,可以作代换化去根式;如果被积函数含有,可以作代换化去根式;如果被积函数含有,可以作代换化去根式.但具体解题时要分析被积函数的具体情况,选取尽可能简捷的代换,不要拘泥于上述的变量代换(如例4,例8).下面我们通过例子来介绍一种也很有用的代换——倒代换,利用它常可消去在被积函数的分母中的变量因子.求解 设 那末,于是=,当时,有==当时,有相同的结果.基本积分表(2):⒃ ⒄ ,⒅ ,⒆ ,⒇ ,(21) ,(22) ,(23) ,(24) .求.解 =,利用公式⒇,便得=.求.解 =,利用公式(23),便得=.求.解 =,利用公式(22),便得=.二,分部积分法问题: 解决思路: 利用两个函数乘积的求导法则.设函数及具有连续导数.那么,两个函数乘积的导数公式为,移项,得 .对这个等式两边求不定积分,得. (1)公式(1)称为分部积分公式.如果求有困难,而求比较容易时,分部积分公式就可以发挥作用了.为简便起见,也可把公式(1)写成下面的形式. (2)现在通过例子说明如何运用这个重要公式. 求解 这个积分用换元积分法不易求得结果.现在试用分部积分法来求它.但是怎样选取和呢 如果设,那么,代人分部积分公式(2),得=,而容易积出,所以=.求这个积分时,如果设,那么于是 =上式右端的积分比原积分更不容易求出.由此可见,如果和选取不当,就求不出结果,所以应用分部积分法时,恰当选取和是一个关键.选取和一般要考虑下面两点: (1) 要容易求得;(2) 要比容易积出. 求.解 设,那末,于是=.求.解 设,那末,于是=.这里比容易积出,因为被积函数中的幂次前者比后者降低了一次.由例26可知,对再使用一次分部积分法就可以了.于是===.总结:如果被积函数是幂函数和正(余)弦函数或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数为.这样用一次分部积分法就可以使幂函数的幂次降低一次.这里假定幂指数是正整数.求.解 设,那末,利用分部积分公式得=.求.解 设,那末,于是====.求.解 设,那末,于是====.总结:如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可以考虑用分部积分法,并设对数函数或反三角函数为.下面几个例子中所用的方法也是比较典型的.求.解 设,那末,于是=.等式右端的积分与等式左端的积分是同一类型的.对右端的积分再用一次分部积分法:设,那末,于是=.由于上式右端的第三项就是所求的积分,把它移到等号左端去,再两端同除以2,便得=.因上式右端已不包含积分项,所以必须加上任意常数C.求.解 设,那末,于是====.由于上式右端的第三项就是所求的积分,把它移到等号左端去,再两端各除以2,便得= 在分部积分法运用比较熟练以后,就不必再写出哪一部分选作u,哪一部分选作dv.只要把被积表达式凑成的形式,便可使用分部积分公式.求解 令,则.于是=利用例2的结果,并用代回,便得所求积分:==.三,简单有理函数的积分有理函数是指由两个多项式的商所表示的函数,即具有如下形式的函数:其中m和n都是非负整数;及都是实数,并且.假定在分子多顷式与分母多项式之间是没有公因式的.(1)当有理函数(1)的分子多项式的次数n小于其分母多项式的次数m,即n < m时,称这有理函数是真分式;(2)当n≥m时,称这有理函数是假分式.利用多项式的除法,总可以将一个假分式化成一个多项式和一个真分式之和的形式.例如, .难点 将有理函数化为部分分式之和.多项式的积分容易求得,而要计算真分式的积分需要用到真分式的下列性质:如果多项式在实数范围内能分解成一次因式和二次质因式的乘积,如 (其中),那么真分式可以分解成如下部分分式之和:+++其中等都是常数.有理函数化为部分分式之和的一般规律:1) 分母中如果有因式,那末分解后有下列k个部分分式之和:其中A1,A2,…,都是常数.特别地,如果k=1,那么分解后有了;2) 分母中如果有因式,其中<0,那么分解后有下列k个部分分式之和:,其中都是常数.特别地,如果k =1,那么分解后有.真分式化为部分分式之和的待定系数法:例如,真分式可分解成,其中A,B为待定常数,可以用如下的方法求出待定系数.第一种方法 两端去分母后,得, (3)或 .因为这是恒等式,等式两端的系数和常数项必须分别相等,于是有从而解得 A=-5,B=6.第二种方法 在恒等式(3)中,代人特殊的值,从而求出待定的常数.在(3)式中令,得A=-5;令=3,得B=6. 同样得到.又如,真分式可分解成,再求待定系数A,B,C.两端去分母后,得. (4)在(4)式中,令=0,得A=1,令=1,得B=1.把A,B的值代入(4)式,并令=2,得1=1+2+2C,即C=一1.所以再如,真分式成,两端去分母后,得,或. (5)比较(5)式两端的各同次幂的系数及常数项,有.解之得 .于是 .下面举几个有理真分式的积分例子.求.解 因为,所以===求.解 由于被积函数的分母是二次质因式,所以应另想别的方法.因为分子是一次式-2,而分母的导数也是一个一次式:,所以可以把分子拆成两部分之和:一部分是分母的导数乘上一个常数因子;另一部分是常数,即.这样,所求的积分可计算如下:==.求.解 因为,所以===.求.解 因为所以====.总之,有理函数分解为多项式及部分分式之和以后,各个部分都能积出,且原函数都是初等函数.此外,由代数学知道,从理论上说,多项式总可以在实数范围内分解成一次因式及二次质因式的乘积,从而把有理函数分解为多项式与部分分式之和.因此,有理函数的原函数都是初等函数.2023-05-17 08:04:461
因式分解是怎么算的
因式分解 :把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 3、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 3、 分组分解法 4、要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 6、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 7、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 8、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。2023-05-17 08:04:531
因式分解有哪几种方法?
分组分解因式,换元法2023-05-17 08:05:1315
什么是因式分解?
把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)。它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的。而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高学生综合分析和解决问题的能力。分解因式与整式乘法互逆。同时也是解一元二次方程中因式分解法的重要步骤。扩展资料各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫 做提取公因式分解因式。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。口诀:找准公因式,一次要提尽;全家都搬走,留1把家守;提负要变号,变形看奇偶。参考资料:因式分解的百度百科2023-05-17 08:05:432
什么是电阻?
阻碍电流流动的原件叫电阻2023-05-17 03:15:017
电阻105是多大?
1MΩ2023-05-17 03:14:494
电阻是什么东西
电阻器(Resistor)在日常生活中一般直接称为电阻。是一个限流元件,将电阻接在电路中后,电阻器的阻值是固定的一般是两个引脚,它可限制通过它所连支路的电流大小。阻值不能改变的称为固定电阻器。阻值可变的称为电位器或可变电阻器。理想的电阻器是线性的,即通过电阻器的瞬时电流与外加瞬时电压成正比。用于分压的可变电阻器。在裸露的电阻体上,紧压着一至两个可移金属触点。触点位置确定电阻体任一端与触点间的阻值。2023-05-17 03:14:401
电阻的计算公式是什么?
电阻计算的公式:(1)R=ρL/S (其中,ρ表示电阻的电阻率,是由其本身性质决定,L表示电阻的长度,S表示电阻的横截面积) (2)定义式:R=U/I(3)串联电路中的总电阻:R=R1+R2+R3+……+Rn(4)并联电路中的总电阻:1/R=1/R1+1/R2+……+1/Rn(5)通过电功率求电阻:R=U²/P;R=P/I²扩展资料:电阻器(Resistor)在日常生活中一般直接称为电阻。是一个限流元件,将电阻接在电路中后,电阻器的阻值是固定的一般是两个引脚,它可限制通过它所连支路的电流大小。阻值不能改变的称为固定电阻器。阻值可变的称为电位器或可变电阻器。理想的电阻器是线性的,即通过电阻器的瞬时电流与外加瞬时电压成正比。用于分压的可变电阻器。在裸露的电阻体上,紧压着一至两个可移金属触点。触点位置确定电阻体任一端与触点间的阻值。端电压与电流有确定函数关系,体现电能转化为其他形式能力的二端器件,用字母R来表示,单位为欧姆Ω。实际器件如灯泡,电热丝,电阻器等均可表示为电阻器元件。电阻元件的电阻值大小一般与温度,材料,长度,还有横截面积有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。电阻在电路中通常起分压、分流的作用。对信号来说,交流与直流信号都可以通过电阻。按材料分类a、线绕电阻器由电阻线绕成电阻器 用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。绕线电阻具有较低的温度系数,阻值精度高,稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。b、碳合成电阻器由碳及合成塑胶压制成而成。c、碳膜电阻器在瓷管上镀上一层碳而成,将结晶碳沉积在陶瓷棒骨架上制成。碳膜电阻器成本低、性能稳定、阻值范围宽、温度系数和电压系数低,是目前应用最广泛的电阻器。d、金属膜电阻器在瓷管上镀上一层金属而成,用真空蒸发的方法将合金材料蒸镀于陶瓷棒骨架表面。金属膜电阻比碳膜电阻的精度高,稳定性好,噪声,温度系数小。在仪器仪表及通讯设备中大量采用。e、金属氧化膜电阻器在瓷管上镀上一层氧化锡而成,在绝缘棒上沉积一层金属氧化物。由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强 按用途分,有通用、精密、高频、高压、高阻、大功率和电阻网络等。参考资料:百度百科-电阻器2023-05-17 03:14:241
电阻是什么意思?
概念 导体对电流的阻碍作用就叫该导体的电阻.电阻小的物质称为电导体,简称导体.电阻大的物质称为电绝缘体,简称绝缘体. 在物理学中,用电阻(resistance)来表示导体对电流阻碍作用的大小.导体的电阻越大,表示导...2023-05-17 03:14:172
电阻的问题?
其实很简单,听着奥!!!有平面图类似这样的、这种,你只要记住箭头往下指的地方远离接在变阻器上的电线就是阻值变大。还有一种就是你要记住,看下面的线接在哪 只要远离下面的接头,就是最大阻值仔细想想你就明白了不懂反问我!!!呵呵2023-05-17 03:13:511
电阻的作用
降压、分压、限流、保护等,具体作用要根据电路来分析。2023-05-17 03:13:444
电阻的定义
定义:导体对电流的阻碍作用就叫导体的电阻。电阻(Resistor)是所有电子电路中使用最多的元件。电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。电阻都有一定的阻值,它代表这个电阻对电流流动阻挡力的大小。电阻的单位是欧姆,用符号“Ω”表示。欧姆是这样定义的:当在一个电阻器的两端加上1伏特的电压时,如果在这个电阻器中有1安培的电流通过,则这个电阻器的阻值为1欧姆。出了欧姆外,电阻的单位还有千欧(KΩ,兆欧(MΩ)等。电容是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容的符号是C。在国际单位制里,电容的单位是法拉,简称法,符号是F。一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法。谢谢2023-05-17 03:13:331