瑞瑞爱吃桃
-
重要的等价无穷小替换
当x→0时,
sinx~x
tanx~x
arcsinx~x
arctanx~x
1-cosx~(1/2)*(x^2)
(a^x)-1~x*lna ((a^x-1)/x~lna)
(e^x)-1~x
ln(1+x)~x
(1+Bx)^a-1~aBx
[(1+x)^1/n]-1~(1/n)*x
loga(1+x)~x/lna
等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)
求极限时,使用等价无穷小的条件
被代换的量,在取极限的时候极限值为0;
被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。
LuckySXyd
-
重要的等价无穷小替换
当x→0时,
sinx~x
tanx~x
arcsinx~x
arctanx~x
1-cosx~(1/2)*(x^2)
(a^x)-1~x*lna ((a^x-1)/x~lna)
(e^x)-1~x
ln(1+x)~x
(1+Bx)^a-1~aBx
[(1+x)^1/n]-1~(1/n)*x
loga(1+x)~x/lna
值得注意的是,等价无穷小一般只能在乘除中替换,在加减中替换有时会出错!(加减时可以整体代换,不能单独代换或分别代换)
求极限时要多加注意!
康康map
-
x~sinx
x~tanx
x~e^x-1
x~ln(x+1)
以上x均趋于0
其他的我想不出了
Chen
-
重要的等价无穷小替换
当x→0时,
sinx~x
tanx~x
arcsinx~x
arctanx~x
1-cosx~(1/2)*(x^2)
(a^x)-1~x*lna ((a^x-1)/x~lna)
(e^x)-1~x
ln(1+x)~x
(1+Bx)^a-1~aBx
[(1+x)^1/n]-1~(1/n)*x
loga(1+x)~x/lna
等价无穷小是什么?
等价无穷小替换公式如下 :以上各式可通过泰勒展开式推导出来。 等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。 求极限时,使用等价无穷小的条件:1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以,加减时可以整体代换,不一定能随意单独代换或分别代换。2023-05-15 16:46:481
什么是等价无穷小?
等价无穷小 首先来看看什么是无穷小: 无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与零无限接近,即f(x)=0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。例如,f(x)=(x-1)2是当x→1时的无穷小量,f(n)=是当n→∞时的无穷小量,f(x)=sinx是当x→0时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。 这里值得一提的是,无穷小是可以比较的: 假设a、b都是lim的无穷小 如果lim b/a=0,就说b是比a高阶的无穷小,记作b=o(a) 比如b=1/x^2, a=1/x。x->无穷时,通俗的说,b时刻都比a更快地趋于0,所以称做是b高阶。假如有c=1/x^10,那么c比a b都要高阶,因为c更快地趋于0了。 如果lim b/a^n=常数,就说b是a的n阶的无穷小, b和a^n是同阶无穷小。 下面来介绍等价无穷小: 从无穷小的比较里可以知道,如果lim b/a^n=常数,就说b是a的n阶的无穷小, b和a^n是同阶无穷小。特殊地,如果这个常数是1,且n=1,即lim b/a=1,则称a和b是等价无穷小的关系,记作a~b 等价无穷小在求极限时有重要应用,我们有如下定理:假设lim a~a'、b~b'则:lim a/b=lim a'/b' 现在我们要求这个极限 lim(x→0) sin(x)/(x+3) 根据上述定理 当x→0时 sin(x)~x (重要极限一) x+3~x+3 ,那么lim(x→0) sin(x)/(x+3)=lim(x→0) x/(x+3)=0 重要的等价无穷小替换 sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2x^2 a^x-1~xlna e^x-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~1/nx loga(1+x)~1/lna x希望能帮助你,还请及时采纳谢谢。2023-05-15 16:47:012
什么是等价无穷小?
等价无穷小替换公式如下:1、sinx~x2、tanx~x3、arcsinx~x4、arctanx~x5、1-cosx~(1/2)*(x^2)~secx-1等价无穷小是无穷小之间的一种关系,指的是在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。求极限时使用等价无穷小的条件:1、被代换的量,在去极限的时候极限值为0。2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。无穷小比阶:高低阶无穷小量:lim(x趋近于x0)f(x)/g(x)=0,则称当x趋近于x0时,f为g的高阶无穷小量,或称g为f的低阶无穷小量。同阶无穷小量:lim(x趋近于x0)f(x)/g(x)=c(c不等于0),ƒ和ɡ为x趋近于x0时的同阶无穷小量。等价无穷小量:lim(x趋近于x0)f(x)/g(x)=1,则称ƒ和ɡ是当x趋近于x0时的等价无穷小量,记做f(x)~g(x)[x趋近于x0]。2023-05-15 16:47:151
等价无穷小公式是什么?
等价无穷小的公式:1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-1。2、(a^x)-1~x*lna [a^x-1)/x~lna]。3、(e^x)-1~x、ln(1+x)~x。4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。等价无穷小使用过程中需要注意:一般不在加减法中使用等价无穷小,要想在加减法中使用是需要满足一些条件的,因此针对初学者来说,建议大家不在加减法中使用。学习过程是快乐的,数学学习也会给我们带来快乐,这种快乐是内啡肽产生的,是内在的,而不是多巴胺产生,因为多巴胺带给我们的只是一时的快乐,让我们多产生内啡肽,带给我们更多内在的自信和快乐。2023-05-15 16:47:281
什么是等价的无穷小?
1、定义等价无穷小:是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。同阶无穷小:如果lim F(x)=0,lim G(x)=0,且lim F(x)/G(x)=c,c为常数并且c≠0,则称F(x)和 G(x)是同阶无穷小。同阶无穷小量,其主要对于两个无穷小量的比较而言,意思是两种趋近于0的速度相仿。2、判断等价无穷小的两个无穷小之比必须是1;同阶无穷小的两个无穷小之比是个不为0的常数。因此,同阶无穷小中包含等价无穷小。扩展资料:常用的的等价无穷小公式:参考资料来源:百度百科-等价无穷小参考资料来源:百度百科-同阶无穷小2023-05-15 16:47:401
常见的等价无穷小有哪些
当 x → 0 时, sinx ~ x, tanx ~ x, arcsinx ~ x, arctanx ~ x, ln(1+x) ~ x1 - cosx ~ x^2/2, e^x - 1 ~ x, √(1+x) ~ x/2, (1+x)^(1/n) ~ x/n 等2023-05-15 16:48:445
什么是等价无穷小
等价无穷小 首先来看看什么是无穷小: 无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与零无限接近,即f(x)=0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。例如,f(x)=(x-1)2是当x→1时的无穷小量,f(n)=是当n→∞时的无穷小量,f(x)=sinx是当x→0时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。 这里值得一提的是,无穷小是可以比较的: 假设a、b都是lim的无穷小 如果lim b/a=0,就说b是比a高阶的无穷小,记作b=o(a) 比如b=1/x^2, a=1/x。x->无穷时,通俗的说,b时刻都比a更快地趋于0,所以称做是b高阶。假如有c=1/x^10,那么c比a b都要高阶,因为c更快地趋于0了。 如果lim b/a^n=常数,就说b是a的n阶的无穷小, b和a^n是同阶无穷小。 下面来介绍等价无穷小: 从无穷小的比较里可以知道,如果lim b/a^n=常数,就说b是a的n阶的无穷小, b和a^n是同阶无穷小。特殊地,如果这个常数是1,且n=1,即lim b/a=1,则称a和b是等价无穷小的关系,记作a~b 等价无穷小在求极限时有重要应用,我们有如下定理:假设lim a~a'、b~b'则:lim a/b=lim a'/b' 现在我们要求这个极限 lim(x→0) sin(x)/(x+3) 根据上述定理 当x→0时 sin(x)~x (重要极限一) x+3~x+3 ,那么lim(x→0) sin(x)/(x+3)=lim(x→0) x/(x+3)=0 重要的等价无穷小替换 sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2x^2 a^x-1~xlna e^x-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~1/nx loga(1+x)~1/lna x希望能帮助你,还请及时采纳谢谢。2023-05-15 16:49:171
等价无穷小是什么意思?
指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。求极限时使用等价无穷小的条件:1、被代换的量,在去极限的时候极限值为0。2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,函数值f(x)与零无限接近,即f(x)=0,则称f(x)为当x→x0时的无穷小量。等价无穷小是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。等价无穷小也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。2023-05-15 16:49:231
等价无穷小是什么意思?
等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。等价无穷小1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)10、a^x-1~xlna (x→0)11、e^x-1~x (x→0)12、ln(1+x)~x (x→0)2023-05-15 16:49:371
请问等价无穷小的具体求法是什么?
具体回答如下:im(x~0)(tanx-x)/x^k=lim(x~0)[(secx)^2-1]/kx^(k-1)=lim(x~0)(tanx)^2/kx^(k-1)~lim(x~0)x^(3-k)/k=A为一个常数所以3-k=0k=3所以等价无穷小为x^3扩展资料:等价无穷小是无穷小之间的一种关系,在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的,无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。求极限时,使用等价无穷小的条件:1、被代换的量,在取极限的时候极限值为0。2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。2023-05-15 16:49:441
等价无穷小的公式是什么?
等价无穷小替换公式如下 :以上各式可通过泰勒展开式推导出来,等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。 注意1、0是可以作为无穷小的常数。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。2、x趋于0时候,求极限,可以运用等价无穷小来求解。x趋于0时候,求f(x²/sin²x)也可以使用等价无穷小求解。x²和sin²x是等价无穷小,所以可以求得函数的极限。3、等价无穷小:高数中常用于求x趋于0时候极限,当然,x趋于无穷的时候也可求,转化成倒数即成为等价无穷小。2023-05-15 16:50:021
等价无穷小的定义?
等价无穷小的替换公式如下:当x趋近于0时: e^x-1 ~ x;ln(x+1) ~ x;sinx ~ x;arcsinx ~ x;tanx ~ x;arctanx ~ x;1-cosx ~ (x^2)/2;tanx-sinx ~ (x^3)/2;(1+bx)^a-1 ~ abx;的是等价无穷小的替换一般用在乘除中,一般不用在加减运算的替换。无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。因此常量也是可以当做变量来研究的。1、0是可以作为无穷小的常数。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。2、x趋于0时候,求极限,可以运用等价无穷小来求解。x趋于0时候,求f(x²/sin²x)也可以使用等价无穷小求解。x²和sin²x是等价无穷小,所以可以求得函数的极限。3、等价无穷小:高数中常用于求x趋于0时候极限,当然,x趋于无穷的时候也可求,转化成倒数即成为等价无穷小。2023-05-15 16:50:152
常用的等价无穷小公式有哪些?
当x趋近于0的时候有以下几个常用的等价无穷小的公式:1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-12、(a^x)-1~x*lna [a^x-1)/x~lna]3、(e^x)-1~x、ln(1+x)~x4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。2023-05-15 16:50:311
常用的等价无穷小是什么?
等价无穷小的公式:1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-1。2、(a^x)-1~x*lna [a^x-1)/x~lna]。3、(e^x)-1~x、ln(1+x)~x。4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简。求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0。作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。2023-05-15 16:50:431
等价无穷小的使用条件是什么?
条件:1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。事实上,等价无穷小是由泰勒公式推导而来,所以运用等价无穷小的结论就是,乘除可以整体换,而加减情况不能换,即使可以,那也是凑巧正确。下面给出什么情况下会“凑巧正确”。使用等价无穷小有两大原则:1、乘除极限直接用。2、加减极限时看分子分母阶数。若使用等价无穷小后分子分母阶数相同,则可用;若阶数不同则不可用。性质1、无穷小量不是一个数,它是一个变量。2、零可以作为无穷小量的唯一一个常量。3、无穷小量与自变量的趋势相关。4、有限个无穷小量之和仍是无穷小量。5、有界函数与无穷小量之积为无穷小量。2023-05-15 16:50:561
等价无穷小的运用条件是什么?
等价无穷小的运用条件是什么?等价无穷小的运用条件是指在一个变量趋于无穷小(或零)的情况下,其它变量不随之发生显著的变化。2023-05-15 16:51:102
等价无穷小的定义是什么 比如sin~x的意思是什么 谢谢
sinx~x表示limsinx/x=1(x→0)一般等价无穷小有两层意思1.两个都是无穷小,也就是两者都是趋近于0。2.两者趋近于0的速度差不多,所以是等价的。具体就用limsinx/x=1(x→0)来刻画。极限为1sinx~tanx~x表示limsinx/tanx=1(x→0)凡是说两个是等价无穷小的就是两者之比求极限,变量趋近于0比值极限为1。但是sinx-1~x-π/2此时x→π/2时sinx-1与x-π/2为等价无穷小sinx-1与x-π/2都趋近于0且lim(sinx-1)/(x-π/2)=1但注意,x→π/2而不是x→02023-05-15 16:51:262
什么是等价无穷小?
两个等价无穷小的比的极限等于1而两个同阶无穷小的比的极限为非零的有限常数。由此可见,等价无穷小其实就是同阶无穷小的一种特例。等价无穷小,必然是同阶无穷小。而同阶无穷小不一定是等价无穷小。2023-05-15 16:51:321
常用的等价无穷小公式是什么?
等价无穷小的公式:1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-1。2、(a^x)-1~x*lna [a^x-1)/x~lna]。3、(e^x)-1~x、ln(1+x)~x。4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。注意:无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。 无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。2023-05-15 16:51:501
什么是等价无穷小?
等价无穷小量具有传递性质的,所以x→0时1-cosx与secx-1是等价无穷小。当x趋向于其它值时,这两个可能不是无穷小量,更不是等价无穷小。无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现,无穷小量即以数0为极限的变量,无限接近于0。因变自变自变量是被操纵的变量,而因变量是被测定或被记录的变量。这两个专业用语的区别看上去会使很多读者产生混淆,正如一些读者所说的——“全部变量都具有依赖性”。不过,一旦你认识到这种区别,就会发现这个区别是必不可少的。自变量与因变量一词主要用于变量被操纵的实验研究中,在这种意义上,自变量在研究对象反应形式、特征、目的上是独立的,其他一些变量则“依赖于”操纵变量或实验条件的改变。2023-05-15 16:52:071
高等函数等价无穷小的总结即常见的等价无穷小(要全点)!!!!
重要的等价无穷小替换当x→0时,sinx~xtanx~xarcsinx~xarctanx~x1-cosx~(1/2)*(x^2)(a^x)-1~x*lna ((a^x-1)/x~lna)(e^x)-1~xln(1+x)~x(1+Bx)^a-1~aBx[(1+x)^1/n]-1~(1/n)*xloga(1+x)~x/lna2023-05-15 16:52:384
等价无穷小
当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2x^2 a^x-1~xlna e^x-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~1/nx loga(1+x)~x/lna 值得注意的是,等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(也不是不能替换,但是有条件)2023-05-15 16:52:532
等价无穷小的定义
当x趋于某个值或无穷大时,f(x)和g(x)均趋于0,且f(x)/g(x)趋于1那么称当x趋于……时,f(x)与g(x)是等价的无穷小。2023-05-15 16:53:023
怎么求等价无穷小呢
无!2023-05-15 16:53:233
求考研常用到的等价无穷小和等价无穷大。
没有等价无穷大这个概念,只有等价无穷小。x~sinx,arcsinx,tanx,arctanx,e∧x-1,ln(1+x)1-cosx~1/2 x²(1+x)∧a-1~ax2023-05-15 16:53:323
x趋于无穷,等价无穷小是什么
x趋于无穷不可以用等价无穷小代换;理由如下:1、因为,在x→∞时,总存在这样的x:使得sinx=0。所以,总存在值为0的x*sinx,于是x*sinx不是无穷大。2、因为,有界量乘无穷小量仍为无穷小量。x=kπ,x→无穷,k→无穷, limsinx=limsinkπ=0x=2kπ+1/2π,x→无穷,k→无穷, limsinx=limsin2kπ+1/2π=1无穷如果集合A与集合B之间存在双射(一一对应),就认为它们的基数一样大;如果A与B的某个子集有双射,就认为A的基数不比B更大,也就是A到B有单射,B到A有满射;当A的基数不比B更大,且A、B基数不一样大时,就认为A比B基数小。在ZFC集合论的框架下,任何集合都是良序的,从而两个集的基数总是大于、小于、等于中的一种,不会出现无法比较的情况。但若不包括选择公理,只有良序集的基数才能比较。2023-05-15 16:53:381
如何求等价无穷小
等价无穷小,是指两个在同一过程中的无穷小,它们的比在同一过程中的极限是1. 求法就是按定义把它们两个相除.求它们的比的极限.所有求极限的方法都可以用!需要指出的是:你这个题中没指明哪个变化过程:应该是x→0举几个例子(包括你提的这个):后一个例子中,事先不能确定应该是x的几次方,因此用n,最后确定n=2, 但极限还不是1.于是想到如下结论,2023-05-15 16:54:041
常见的等价无穷小代换有哪些???
哈哈,是的呢。谢啦,2023-05-15 16:54:112
无穷小量的计算公式有哪些?
当x趋近于0的时候有以下几个常用的等价无穷小的公式:1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-12、(a^x)-1~x*lna [a^x-1)/x~lna]3、(e^x)-1~x、ln(1+x)~x4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。扩展资料:两个重要极限:1、2、(其中e=2.7182818 是一个无理数,也就是自然对数的底数)。无穷小的性质:1、无穷小量不是一个数,它是一个变量。2、零可以作为无穷小量的唯一一个常量。3、无穷小量与自变量的趋势相关。4、有限个无穷小量之和仍是无穷小量。5、有限个无穷小量之积仍是无穷小量。6、有界函数与无穷小量之积为无穷小量。7、特别地,常数和无穷小量的乘积也为无穷小量。8、恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。无穷小比阶:高低阶无穷小量:lim(x趋近于x0)f(x)/g(x)=0,则称当x趋近于x0时,f为g的高阶无穷小量,或称g为f的低阶无穷小量。同阶无穷小量:lim(x趋近于x0)f(x)/g(x)=c(c不等于0),ƒ和ɡ为x趋近于x0时的同阶无穷小量。等价无穷小量:lim(x趋近于x0)f(x)/g(x)=1,则称ƒ和ɡ是当x趋近于x0时的等价无穷小量,记做f(x)~g(x)[x趋近于x0]。参考资料来源:百度百科-无穷小量2023-05-15 16:54:181
等价无穷小公式是什么?
等价无穷小公式:x~sinx~tanx~arcsinx~arctanx;x~ln(1+x)~(e^x-1);(1-cosx)~x*x/2;[(1+x)^n-1]~nx;loga(1+x)~x/lna;a的x次方~xlna;(1+x)的1/n次方~1/nx(n为正整数)。等价无穷小使用过程中需要注意一些事项:一般不在加减法中使用等价无穷小,要想在加减法中使用是需要满足一些条件的,因此针对初学者来说,建议大家不在加减法中使用。学习过程是快乐的,数学学习也会给我们带来快乐,这种快乐是内啡肽产生的,是内在的,而不是多巴胺产生,因为多巴胺带给我们的只是一时的快乐,让我们多产生内啡肽,带给我们更多内在的自信和快乐。2023-05-15 16:54:531
等价无穷小的定义是什么?
1、定义等价无穷小:是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。同阶无穷小:如果lim F(x)=0,lim G(x)=0,且lim F(x)/G(x)=c,c为常数并且c≠0,则称F(x)和 G(x)是同阶无穷小。同阶无穷小量,其主要对于两个无穷小量的比较而言,意思是两种趋近于0的速度相仿。2、判断等价无穷小的两个无穷小之比必须是1;同阶无穷小的两个无穷小之比是个不为0的常数。因此,同阶无穷小中包含等价无穷小。扩展资料:常用的的等价无穷小公式:参考资料来源:百度百科-等价无穷小参考资料来源:百度百科-同阶无穷小2023-05-15 16:55:061
求等价无穷小的具体公式是什么?
等价无穷小的公式:1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-1。2、(a^x)-1~x*lna [a^x-1)/x~lna]。3、(e^x)-1~x、ln(1+x)~x。4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简。求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0。作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。2023-05-15 16:56:101
什么是等价无穷小
常见的等价无穷小有:sinx~x;tanx~x;arctanx~x;ln(1+x)~x;arcsinx~x;eˣ-1~x;aˣ-1~xlna(a>0,a≠1)。采用泰勒展开的高阶等价无穷小:sinx=x-(1/6)x^3+o(x^3)cosx=1-(x^2)/2!+(x^4)/4!+o(x^4)tanx=x+(1/3)x^3+o(x^3)arcsinx=x+(1/6)x^3+o(x^3)arctanx=x-(1/3)x^3+o(x^3)In(1+x)=x-(x^2)/2+(x^3)/3+o(x^3)e^x=1+x+(1/2)x^2+(1/6)x^3+o(x^3)(1+x)^a=1+ax+a(a-1)(x^2)/2+o(x^2)求极限时使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。2023-05-15 16:56:221
什么是等价无穷小?
常见的等价无穷小有:sinx~x;tanx~x;arctanx~x;ln(1+x)~x;arcsinx~x;eˣ-1~x;aˣ-1~xlna(a>0,a≠1)。等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。扩展资料:求极限时,使用等价无穷小的条件:1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。2023-05-15 16:56:281
什么是等价无穷小
无穷小可以理解为无限接近于零。而等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。2023-05-15 16:56:372
高数中8个常用等价无穷小是哪些?
高数中8个常用等价无穷小:sinx~x 、tanx~x 、arcsinx~x 、arctanx~x。1-cosx~(1/2)、(x^2)~secx-1 、(a^x)-1~x*lna ((a^x-1)/x~lna) 、(e^x)-1~x 、ln(1+x)~x 。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。数学分析的基础概念。它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。极限方法是数学分析用以研究函数的基本方法,分析的各种基本概念,连续、微分、积分和级数)都是建立在极限概念的基础之上。然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。历史上是柯西(Cauchy,A.-L.,首先较为明确地给出了极限的一般定义。2023-05-15 16:56:461
什么是等价无穷小?举例说明。
常见的等价无穷小整个式子中的乘、除因子可以用等价无穷小替换,加、减时不能用等价无穷小替换,部分式子中的乘、除因子也不能用等价无穷小替换。当x→0的等价无穷小量例:2023-05-15 16:57:091
ax的等价无穷小是什么
aⅹ的等价无穷小是asinx和atanx重要等价无穷小的公式:(1)sinx~x(2)tanx~x(3)arcsinx~x(4)arctanx~x(5)1-cosx~(1/2)*(x^2)~secx-1(6)(a^x)-1~x*lna ((a^x-1)/x~lna)(7)(e^x)-1~x(8)ln(1+x)~x(9)(1+Bx)^a-1~aBx(10)[(1+x)^1/n]-1~(1/n)*x(11)loga(1+x)~x/lna(12)(1+x)^a-1~ax(a≠0)等价无穷小注意:可以拆成两个极限分别求结果,然后在加起来,所以相当于独立求两个的极限,你们两者爱怎么用等价无穷小怎么用,但如果只有一个有极限,或两个都没有。用等价无穷小量的替换时,必须要整体替换。用泰勒展开式,来对函数在一点附近的函数进行近似,近似式的阶数越高2023-05-15 16:57:271
无穷小的等价公式是什么?
无穷小的等价公式是=1-cosx。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。当x趋向于0时,有以下重要等价无穷小:1.sinX~X。2.tanX~X。3.arcsinX~X。4.ln(1+X)~X。5.e^x-1~X。6.a^x-1~Xlna (a>0,a≠1)。7.1-cosX~1/2X^2。8.(1+βx)^α-1~αβx。9.(1+x)^a-1~ax。10.㏒(1+x)~x/ln(a>0,a≠1)。2023-05-15 16:57:341
考研范围内,等价无穷小的替换公式有哪些?
考研范围内,等价无穷小的替换公式如下:当x趋近于0时: e^x-1 ~ x;ln(x+1) ~ x;sinx ~ x;arcsinx ~ x;tanx ~ x;arctanx ~ x;1-cosx ~ (x^2)/2;tanx-sinx ~ (x^3)/2;(1+bx)^a-1 ~ abx;值得注意的是等价无穷小的替换一般用在乘除中,一般不用在加减运算的替换。无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。因此常量也是可以当做变量来研究的。这么说来——0是可以作为无穷小的常数。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。2023-05-15 16:57:561
等价无穷小有哪些?
常见的等价无穷小有:sinx~x;tanx~x;arctanx~x;ln(1+x)~x;arcsinx~x;eˣ-1~x;aˣ-1~xlna(a>0,a≠1)。等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。扩展资料:求极限时,使用等价无穷小的条件:1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。2023-05-15 16:58:031
有哪些常用的等价无穷小?
常见的等价无穷小有:sinx~x;tanx~x;arctanx~x;ln(1+x)~x;arcsinx~x;eˣ-1~x;aˣ-1~xlna(a>0,a≠1)。等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。无穷小的性质:1、无穷小量不是一个数,它是一个变量。2、零可以作为无穷小量的唯一一个常量。3、无穷小量与自变量的趋势相关。4、有限个无穷小量之和仍是无穷小量。5、有限个无穷小量之积仍是无穷小量。6、有界函数与无穷小量之积为无穷小量。7、特别地,常数和无穷小量的乘积也为无穷小量。8、恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。2023-05-15 16:58:091
等价无穷小是什么意思
①被代换的量,在取极限的时候极限值不为0;②被代换的量作为加减的元素时就不可以使用,作为被乘或者被除的元素时可以用等价无穷小代换。无穷小相当于泰勒公式展开到第一项,基本什么时候都可以用,应用条件是:等价代换的需为整个式子的因子,而不能部分代换。等价无穷小数学分析的基础概念。它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。极限方法是数学分析用以研究函数的基本方法,分析的各种基本概念(连续、微分、积分和级数)都是建立在极限概念的基础之上,然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。扩展资料:柯西(Cauchy,A.-L.)首先较为明确地给出了极限的一般定义。他说,“当为同一个变量所有的一系列值无限趋近于某个定值,并且最终与它的差要多小就有多小”(《分析教程》,1821),这个定值就称为这个变量的极限。其后,外尔斯特拉斯(Weierstrass,K.(T.W.))按照这个思想给出严格定量的极限定义,这就是现在数学分析中使用的ε-δ定义或ε-Ν定义等。从此,各种极限问题才有了切实可行的判别准则。在分析学的其他学科中,极限的概念也有同样的重要性,在泛函分析和点集拓扑等学科中还有一些推广。参考资料:等价无穷小_百度百科2023-05-15 16:58:231
怎么等价无穷小?
等价无穷小的公式:1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-1。2、(a^x)-1~x*lna [a^x-1)/x~lna]。3、(e^x)-1~x、ln(1+x)~x。4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简。求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0。作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。2023-05-15 16:58:521
等价无穷小的条件是什么?
等价无穷小的条件是什么?等价无穷小的条件是:当两个量的比值趋近于零时,它们之间的差异可以忽略不计。2023-05-15 16:59:062
等价无穷小有哪些公式呢?
等价无穷小的公式:1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-1。2、(a^x)-1~x*lna [a^x-1)/x~lna]。3、(e^x)-1~x、ln(1+x)~x。4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。等价无穷小使用过程中需要注意:一般不在加减法中使用等价无穷小,要想在加减法中使用是需要满足一些条件的,因此针对初学者来说,建议大家不在加减法中使用。学习过程是快乐的,数学学习也会给我们带来快乐,这种快乐是内啡肽产生的,是内在的,而不是多巴胺产生,因为多巴胺带给我们的只是一时的快乐,让我们多产生内啡肽,带给我们更多内在的自信和快乐。2023-05-15 16:59:181
等价无穷小怎么判断?
具体回答如下:lim(x~0)(tanx-x)/x^k=lim(x~0)[(secx)^2-1]/kx^(k-1)=lim(x~0)(tanx)^2/kx^(k-1)~lim(x~0)x^(3-k)/k=A为一个常数所以3-k=0k=3所以等价无穷小为x^3扩展资料:积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2023-05-15 16:59:301
等价无穷小的公式?
等价无穷小的公式?无穷小可以用δ表示,等价无穷小的公式为:δ > 0。 如果觉得可以的话给我个点个赞!谢谢!2023-05-15 16:59:372
等价无穷小在加减运算中什么条件下才能用?
不需要看那些,正规考试中会扣分的(绝大多分都会扣了),严格根据定义来2023-05-15 17:00:067
无穷小的等价公式是什么?
无穷小的等价公式是=1-cosx。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。求极限时,使用等价无穷小的条件:1.被代换的量,在取极限的时候极限值为0;2.被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。等价无穷小替换公式:x-arcsinx~(x^3)/6tanx-sinx~(x^3)/2e^x-1~xtanx-x~(x^3)/32023-05-15 17:03:021