- gitcloud
-
1、积化和差公式:
sinαsinβ=- [cos(α+β)-cos(α-β)]
cosαcosβ= [cos(α+β)+cos(α-β)]
sinαcosβ= [sin(α+β)+sin(α-β)]
cosαsinβ= [sin(α+β)-sin(α-β)]
2、和差化积公式
sinθ+sinφ=2sin cos
sinθ-sinφ=2cos sin
cosθ+cosφ=2cos cos
cosθ-cosφ=-2sin sin
和差化积公式是积化和差公式的逆用形式,要注意的是:
①其中前两个公式可合并为一个:sinθ+sinφ=2sincos
②积化和差公式的推导用了“解方程组”的思想,和差化积公式的推导用了“换元”思想。
③只有系数绝对值相同的同名函数的和与差,才能直接运用公式化成积的形式,如果一个正弦与一个余弦的和或差,则要先用诱导公式化成同名函数后再运用公式化积。
④合一变形也是一种和差化积。
⑤三角函数的和差化积,可以理解为代数中的因式分解,因此,因式分解在代数中起什么作用,和差化积公式在三角中就起什么作用。
- 北境漫步
-
和差化积公式即和差化积。和差化积公式,包括正弦、余弦和正切的和差化积公式,是三角函数中的一组恒等式。
正弦、余弦的和差化积
公式
指高中数学三角函数部分的一组恒等式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】
以上四组公式可以由积化和差公式推导得到
证明过程
sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
因为
sin(α+β)=sinαcosβ+cosαsinβ,
sin(α-β)=sinαcosβ-cosαsinβ,
将以上两式的左右两边分别相加,得
sin(α+β)+sin(α-β)=2sinαcosβ,
设α+β=θ,α-β=φ
那么
α=(θ+φ)/2,β=(θ-φ)/2
把α,β的值代入,即得
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
正切的和差化积
tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)
cotα±cotβ=sin(β±α)/(sinα·sinβ)
tanα+cotβ=cos(α-β)/(cosα·sinβ)
tanα-cotβ=-cos(α+β)/(cosα·sinβ)【注意右式前的负号】
证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ
=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)
=sin(α±β)/(cosα·cosβ)=右边
∴等式成立
注意事项
在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次
口诀
正加正,正在前,余加余,余并肩
正减正,余在前,余减余,负正弦
反之亦然
生动的口诀:(和差化积)
帅+帅=帅哥
帅-帅=哥帅
哥+哥=哥哥
哥-哥=负嫂嫂
反之亦然
语文老师教的口诀:
口口之和仍口口 cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
赛赛之和赛口留 sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
口口之差负赛赛 cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
赛赛之差口赛收 sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
另一口诀:
正和正在先,sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
正差正后迁,sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
余和一色余,cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
余差翻了天,cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
另另一种口诀(前提是角度(α+β)/2在前,(α-β)/2在后的标准形式) :
正弦加正弦,正弦在前面,sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
正弦减正弦,余弦在前面,sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
余弦加余弦,余弦全部见,cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
余弦减余弦,余弦(负)不想见,cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
和差化积公式 和差化的公式是什么
1、积化和差公式: sinαsinβ=-[cos(α+β)-cos(α-β)]/2,cosαcosβ=[cos(α+β)+cos(α-β)]/2 ,sinαcosβ=[sin(α+β)+sin(α-β)]/2,cosαsinβ=[sin(α+β)-sin(α-β)]/2。 2、和积公式:sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2],sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2],cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2],cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]。2023-05-15 00:15:301
和差化积公式有哪些?
一、正弦、余弦的和差化积:sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 二、正切的和差化积:tanα±tanβ=sin(α±β)/(cosα·cosβ)cotα±cotβ=sin(β±α)/(sinα·sinβ)tanα+cotβ=cos(α-β)/(cosα·sinβ)tanα-cotβ=-cos(α+β)/(cosα·sinβ) 三、积化和差:sinαsinβ=-[cos(α+β)-cos(α-β)]/2 cosαcosβ=[cos(α+β)+cos(α-β)]/2 sinαcosβ=[sin(α+β)+sin(α-β)]/2 cosαsinβ=[sin(α+β)-sin(α-β)]/2和差化积是一种计算三角函数时所使用的数学公式。和差化积公式共10组,包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式。 在应用和差化积时,必须是一次同名(正切和余切除外)三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次。扩展资料:记忆方法:1、只有同名三角函数能和差化积无论是正弦函数还是余弦函数,都只有同名三角函数的和差能够化为乘积。这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。2、乘积项中的角要除以2在和差化积公式的证明中,必须先把α和β表示成两角和差的形式,才能够展开。熟知要使两个角的和、差分别等于α 和β,这两个角应该是和α+β/2和α-β/2,也就是乘积项中角的形式。注意和差化积和积化和差的公式中都有一个“除以2”,但位置不同;而只有和差化积公式中有“乘以2”。2023-05-15 00:15:381
和差化积和积化和差的公式
和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2];sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2];cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2];cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]。积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)];cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)];cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)];sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]。和差化积公式是积化和差公式的逆用形式,要注意的是:其中前两个公式可合并为一个:sinθ+sinφ=2sincos。积化和差公式的推导用了“解方程组”的思想,和差化积公式的推导用了“换元”思想。只有系数绝对值相同的同名函数的和与差,才能直接运用公式化成积的形式,如果一个正弦与一个余弦的和或差,则要先用诱导公式化成同名函数后再运用公式化积。合一变形也是一种和差化积。三角函数的和差化积,可以理解为代数中的因式分解,因此,因式分解在代数中起什么作用,和差化积公式在三角中就起什么作用。2023-05-15 00:15:501
和差化积公式是什么 包括哪些公式
和差化积公式包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式,和差化积公式共10组。在应用和差化积时,必须是一次同名(正切和余切除外)三角函数方可实行。 和差化积公式 sinα+sinβ=2sin[(α+β)/2]²cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]²sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]²cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]²sin[(α-β)/2] sinα²cosβ=0.5[sin(α+β)+sin(α-β)] cosα²sinβ=0.5[sin(α+β)-sin(α-β)] cosα²cosβ=0.5[cos(α+β)+cos(α-β)] sinα²sinβ=-0.5[cos(α+β)-cos(α-β)] 和差化积公式记忆口诀 和差化积公式 和差化积需同名, 变量置换要记清; 假若函数不同名, 互余角度换名称。 简记为: S+S=2S·C S-S=2C·S C+C=2C·C C-C=-2S·S 对于积化合差公式来说,首要的原则是,等号左边的若异名,等号右边全是sin,等号左边同名,等号右边全是cos,其次,右边中间的和与差取决于左边第二项,若是cos,则是+,若是sin,则是-,最后记得sin*sin时要添上一个负号。 对于和差化积公式来说,第一,若等号左边全是sin,则右边异名,若等号左边全是cos,则等号右边同名,第二,等号左边中间的正负号决定了右边第二项,若是正,则是cos,若是负,则是sin,然后可以根据第一条原则写出完整的右边式子,最后记得cos-cos要添一个负号。2023-05-15 00:15:571
和差化积公式是什么 和差化积公式介绍
1、和差化积公式:包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式,和差化积公式共10组。在应用和差化积时,必须是一次同名(正切和余切除外)三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次。 2、和差化积: sinx+siny=2sin[(x+y)/2]cos[(x-y)/2] sinx-siny=2cos[(x+y)/2]sin[(x-y)/2] cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2] cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]2023-05-15 00:16:031
和差化角公式
和差化积公式:sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]和差化积公式由积化和差公式变形得到,积化和差公式是由正弦或余弦的和角公式与差角公式通过加减运算推导而得。推导过程:sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ把两式相加得到:sin(α+β)+sin(α-β)=2sinαcosβ所以,sinαcosβ=[sin(α+β)+sin(α-β)]/2同理,把两式相减,得到:cosαsinβ=[sin(α+β)-sin(α-β)]/2cos(α+β)=cosαcosβ-sinαsinβ,cos(α-β)=cosαcosβ+sinαsinβ把两式相加,得到:cos(α+β)+cos(α-β)=2cosαcosβ所以,cosαcosβ=[cos(α+β)+cos(α-β)]/2同理,两式相减,得到sinαsinβ=-[cos(α+β)-cos(α-β)]/2这样,得到了积化和差的四个公式:sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαsinβ=-[cos(α+β)-cos(α-β)]/2有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的α+β设为θ,α-β设为φ,那么α=(θ+φ)/2,β=(θ-φ)/22023-05-15 00:16:091
和差化积公式?
和差化积就是将和差的三角函数表示成乘积的形式,具体如下:sinx+siny=2sin1/2(x+y)*cos1/2(x-y)sinx-siny=2cos1/2(x+y)*sin1/2(x-y)cosx+cosy=2cos1/2(x+y)*cos1/2(x-y)cosx-cosy=-2sin1/2(x+y)*sin1/2(x-y)2023-05-15 00:16:171
和差化积公式是什么?
sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))三角函数和差化积公式sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]二倍角公式sin(2a)=2sin(a)cos(a)cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)半角公式sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))万能公式sin(a)=(2tan(a/2))/(1+tan^2(a/2))cos(a)=(1-tan^2(a/2))/(1+tan^2(a/2))tan(a)=(2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c)[其中,tan(c)=b/a]a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c)[其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2其他非重点三角函数csc(a)=1/sin(a)sec(a)=1/cos(a)双曲函数sinh(a)=(e^a-e^(-a))/2cosh(a)=(e^a+e^(-a))/2tgh(a)=sinh(a)/cosh(a)2023-05-15 00:16:252
和差化积公式是什么 分享和差化积公式记忆口诀
数学是一门比较复杂的科目,如果基础知识不扎实的话,那么对于以后的学习也是比较吃力的,那么和差化积公式是什么?接下来就让给大家详解一下相关的疑问。 和差化积 和差化积是一种计算三角函数时所使用的数学公式。和差化积公式共10组,包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式。在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次。 和差化积公式 sina +sin B =2sin[(a+β )/2]2 cos[(a-β)/2]; sina -sinβ =2cos[(a+β )/2]°sin[(a-β)/2]; cosa +cos β =2cos[(a+β )/2]2 cos[(a-β)/2]; cosa -cos β=-2sin[(a+β)/2]°sin[(a-β)/2]; sinQ2 cos β =0.5[sin(a+β )+sin(a-β)]; cosQ2sinβ=0. 5[sin(a+β)-sin(a-β)] ; cosa2 cos β =0. 5[cos(a+β )+cos(a-β)]; sinQ2sinβ=-0. 5[cos(a+β)-cos(a-β)]; 和差化积公式记忆口诀 和差化积需同名, 变量置换要记清, 假若函数不同名, 互余角度换名称。 简记为: S+S=2S . C; S-S=2C . S; C+C=2C . C; C-C=-2S●S; 对于积化合差公式来说,首要的原则是,等号左边的若异名,等号右边全是sin,等号左边同名,等号右边全是cos,其次,右边中间的和与差取诀于左边第二项,若是cos,则是+,若是sin,则是-,最后记得sin*sin时要添上一个负号。对于和差化积公式来说,第一,若等号左边全是sin,则右边异名,若等号左边全是cos,则等号右边同名,第二,等号左边中间的正负号决定了右边第二项,若是正,则是cos,若是负,则是sin,然后可以根据第一条原则写 出完整的右边式子,最后记得cos-cos:要添 一个负号。 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解似的唯一的,已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及大边对大角,大角对大边定理和三角形内角和定理去考虑解决问题。 以上就是给大家讲解了关于和差化积公式的基本常识,大家想要轻松的快速计算出和差化积的话,平时一定要多记和差化积公式记忆口诀。2023-05-15 00:16:421
三角函数和差化积公式有哪些
和差化积公式是初中三角函数的重要公式之一,接下来给大家分享三角函数和差化积公式及推导过程,供参考。 和差化积公式 sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2] sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2] cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2] cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 三角函数和差化积口诀 (1)正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦。 (2)差化积需同名,变量置换要记清;假若函数不同名,互余角度换名称。 和差化积公式推导过程 首先,我们知道sin(A+B)=sinA*cosB+cosA*sinB,sin(A-B)=sinA*cosB-cosA*sinB 我们把两式相加就得到sin(A+B)+sin(A-B)=2sinA*cosB 所以,sinA*cosB=(sin(A+B)+sin(A-B))/2 同理,若把两式相减,就得到cosA*sinB=(sin(A+B)-sin(A-B))/2 同样的,我们还知道cos(A+B)=cosA*cosB-sinA*sinB,cos(A-B)=cosA*cosB+sinA*sinB 所以,把两式相加,我们就可以得到cos(A+B)+cos(A-B)=2cosA*cosB 所以我们就得到,cosA*cosB=(cos(A+B)+cos(A-B))/2 同理,两式相减我们就得到sinA*sinB=-(cos(A+B)-cos(A-B))/2 这样,我们就得到了积化和差的四个公式: sinA*cosB=(sin(A+B)+sin(A-B))/2 cosA*sinB=(sin(A+B)-sin(A-B))/2 cosA*cosB=(cos(A+B)+cos(A-B))/2 sinA*sinB=-(cos(A+B)-cos(A-B))/2 有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的A+B设为A,A-B设为B,那么A=(A+B)/2,B=(A-B)/2 把A,B分别用A,B表示就可以得到和差化积的四个公式: sinA+sinB=2sin((A+B)/2)*cos((A-B)/2) sinA-sinB=2cos((A+B)/2)*sin((A-B)/2) cosA+cosB=2cos((A+B)/2)*cos((A-B)/2) cosA-cosB=-2sin((A+B)/2)*sin((A-B)/2)2023-05-15 00:17:321
数学中三角函数和差化积公式是哪些?
三角函数的和差化积公式sinα+sinβ=2sin(α+β)/2·cos(α-β)/2sinα-sinβ=2cos(α+β)/2·sin(α-β)/2cosα+cosβ=2cos(α+β)/2·cos(α-β)/2cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2三角函数的积化和差公式sinα·cosβ=1/2[sin(α+β)+sin(α-β)]cosα·sinβ=1/2[sin(α+β)-sin(α-β)]cosα·cosβ=1/2[cos(α+β)+cos(α-β)]sinα·sinβ=-1/2[cos(α+β)-cos(α-β)]2023-05-15 00:17:402
求一套完整的和差化公式及推理!
高斯公式:eia=cosa+isinaeia*eib=ei(a-b)(cosa+isina)(cosb+isinb)=cos(a+b)+isin(a+b)(cosacosb-sinasinb)+i(cosasinb+sinacosb)=cos(a+b)+isin(a+b)因此,cos(a+b)=cosacosb-sinasinb浅些的说:cos(a+b)=cos[a-(-b)]=cosacos(-b)+sinasin(-b)=cosacosb-sinasinb最后你把b换成-b就可以啦~~2023-05-15 00:17:482
和差化积和积化和差的公式都哪些?等差数列公式都有哪些?
.三角函数的和差化积公式(4个)sinx+siny=2sin[(x+y)/2]cos[(x-y)/2];sinx-siny=2cos[(x+y)/2]sin[(x-y)/2];cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2];2023-05-15 00:17:552
积化和差和差化积公式八个口诀
积化和差和差化积公式八个口诀:积化和差公式:sinαsinβ=-[cos(α+β)-cos(α-β)]cosαcosβ=[cos(α+β)+cos(α-β)]sinαcosβ=[sin(α+β)+sin(α-β)]cosαsinβ=[sin(α+β)-sin(α-β)]和差化积公式:sinθ+sinφ=2sincossinθ-sinφ=2cossincosθ+cosφ=2coscoscosθ-cosφ=-2sinsin解释:(1)积化和差最后的结果是和或者差。(2)若两项相乘,后者为cos项,则积化和差的结果为两项相加;若不是,则结果为两项相减。(3)若两项相乘,一项为sin,另一项为cos,则积化和差的结果中都是sin项。(4)若两项相乘,两项均为sin,则积化和差的结果前面取负号。2023-05-15 00:19:091
和差化积公式是什么?
和差化积公式:sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2] sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2] cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2](X-Y)]2023-05-15 00:19:241
和差化积公式的推导过程
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)2023-05-15 00:19:321
三角公式和差化积,积化和差
和差化积和积化和差的公式:1、sinαsinβ=-[cos(α+β)-cos(α-β)]/2。2、cosαcosβ=[cos(α+β)+cos(α-β)]/2。3、sinαcosβ=[sin(α+β)+sin(α-β)]/2。4、cosαsinβ=[sin(α+β)-sin(α-β)]/2。5、sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]。6、sinθsinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]。7、cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]。8、cosθcosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]。和差化积梗概:和差化积是一种计算三角函数时所使用的数学公式。和差化积公式共10组,包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式。在应用和差化积时,必须是一次同名(正切和余切除外)三角函数方可实行,若是异名,必须用诱导公式化为同名。2023-05-15 00:19:391
和差化积公式
sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]2023-05-15 00:20:073
和差化积与积差化和有什么关系?
和差化积公式推导过程:首先,我们知道sin(a+b)=sina*cosb+cosa*sinbsin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinbcos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)2023-05-15 00:20:131
高中数学积化和差,和和差化积公式
同函相加减,其实并不难。角取和差半,二倍乘在前;正弦相加减,正余余正弦; 余弦相加减,余余正正弦; 若是两余减,负号前面添。2023-05-15 00:20:297
和差化积公式是什么?
sinA+sinB=2*sin[(A+B)/2]*cos[(A-B)/2] sinA-sinB=2*sin[(A-B)/2]*cos[(A+B)/2] cosA+cosB=2*cos[(A+B)/2]*cos[(A-B)/2] cosA-cosB=-2*sin[(A+B)/2]*sin[(A-B)/2]2023-05-15 00:21:192
和差化积公式
和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]。sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]。cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]。cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]。记忆方法:如何只记两个公式甚至一个我们可以只记上面四个公式的第一个和第三个。而第二个公式中的-sinβ=sin(β+π),也就是sinα-sinβ=sinα+sin(β+π),这就可以用第一个公式解决。同理第四个公式中,cosα-cosβ=cosα+cos(β+π),这就可以用第三个公式解决。如果对诱导公式足够熟悉,可以在运算时把cos全部转化为sin,那样就只记住第一个公式就行了。用的时候想得起一两个就行了。结果乘以2这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其积的值域也应该是[-1,1],而和差的值域却是[-2,2],因此乘以2是必须的。2023-05-15 00:21:271
和差化积的公式。
http://baike.baidu.com/link?url=A87ppZY7kP_fQJ66VCRC5FWjOQ93TYQEWTfTW1MQzyEpOl6f-pr-Ze4dBdDKt1gi2023-05-15 00:21:412
sinxsina和差化积公式怎么演化
诱导公式化为同名。差化积公式推导过程:首先,我们知道sin(a+b)=sina×cosb+cosa×sinb,sin(a-b)=sina×cosb-cosa×sinb,我们把两式相加就得到sin(a+b)+sin(a-b)=2sina×cosb,所以,sina×cosb=(sin(a+b)+sin(a-b))/2,同理,若把两式相减,就得到cosa×sinb=(sin(a+b)-sin(a-b))/2,同样的,我们还知道cos(a+b)=cosa×cosb-sina×sinb,cos(a-b)=cosa×cosb+sina×sinb,所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa×cosb,所以我们就得到,cosa×cosb=(cos(a+b)+cos(a-b))/2,同理,两式相减我们就得到sina×sinb=-(cos(a+b)-cos(a-b))/2,这样,我们就得到了积化和差的四个公式:sina×cosb=(sin(a+b)+sin(a-b))/2,cosa×sinb=(sin(a+b)-sin(a-b))/2,cosa×cosb=(cos(a+b)+cos(a-b))/2,sina×sinb=-(cos(a+b)-cos(a-b))/2,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。2023-05-15 00:21:481
三角函数积化和差,和差化积公式
三角函数积化和差的公式是sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]、cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)];和差化积公式为sinα+sinβ=2sin[(α+β)/2+cos(α-β)/2]。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数;而且三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。2023-05-15 00:22:271
谁可以告诉我数学中的和差化积公式?
和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)−sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)2023-05-15 00:22:342
和差化积,积化差等公式为?
http://zhidao.baidu.com/question/61774950.html2023-05-15 00:22:412
和差化积公式是怎样的
和差化积公式: sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2] sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2] cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]2023-05-15 00:22:591
和差化积公式
用这个公式sinθ-sinφ=2cos(α/2+β/2)sin(α/2-β/2)2023-05-15 00:23:082
积化和差与和差化积公式
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2cos[(a+b)/2]sin[(a-b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]sinacosb=1/2*[sin(a+b)+sin(a-b)]2023-05-15 00:23:211
求“积化和差,和差化积”公式的推导过程!
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)2023-05-15 00:23:301
积化和差公式记忆口诀 和差化积公式记忆口诀顺口溜
1、和差化积公式记忆口诀1:帅+帅=帅哥,sina+sinβ=2sin(a+β)/2*cos(a-β)/2;帅-帅=哥帅,sina-sinβ=2cos(a+β)/2*sin(a-β)/2;哥+哥=哥哥,cosa+cosβ=2cos(a+β)/2*cos(a-β)/2;哥-哥=负嫂嫂。cosa-cosβ=-2sin(a+β)/2*sin(a-β)/2(反之亦然) 2、和差化积公式记忆口诀2:正和正在先,sina+sinβ=2sin(a+β)/2*cos(a-β)/2;正差正后迁,sina-sinβ=2cos(a+β)/2*sin(a-β)/2;余和一色余,cosa+cosβ=2cos(a+β)/2*cos(a-β)/2;余差翻了天。cosa-cosβ=-2sin(a+β)/2*sin(a-β)/2 3、和差化积公式记忆口诀3:口口之和仍口口,sina+sinβ=2sin(a+β)/2*cos(a-β)/2;赛赛之和赛口留,sina-sinβ=2cos(a+β)/2*sin(a-β)/2;口口之差负赛赛,cosa+cosβ=2cos(a+β)/2*cos(a-β)/2;赛赛之差口赛收。cosa-cosβ=-2sin(a+β)/2*sin(a-β)/2 4、和差化积公式记忆口诀4:正弦加正弦,正弦在前面,sina+sinβ=2sin(a+β)/2*cos(a-β)/2;正弦减正弦,余弦在前面,sina-sinβ=2cos(a+β)/2*sin(a-β)/2;余弦加余弦,余弦全部见,cosa+cosβ=2cos(a+β)/2*cos(a-β)/2;余弦减余弦,余弦(负)不想见。cosa-cosβ=-2sin(a+β)/2*sin(a-β)/2。注:角度(a+β)/2在前,(a-β)/2在后的标准形式 5、和差化积公式记忆口诀5:正加正,正在前,sina+sinβ=2sin(a+β)/2*cos(a-β)/2;正减正,余在前,sina-sinβ=2cos(a+β)/2*sin(a-β)/2;余加余,余并肩,cosa+cosβ=2cos(a+β)/2*cos(a-β)/2;余减余,负正弦。cosa-cosβ=-2sin(a+β)/2*sin(a-β)/22023-05-15 00:23:511
和差化积公式
sina+sinb=2sin1/2(a+b)*cos1/2(a-b)sina-sinb=2cos1/2(a+b)*sin1/2(a-b)cosa+cosb=2cos1/2(a+b)*cos1/2(a-b)cosa-cosb=-2sin1/2(a+b)*sin1/2(a-b)2023-05-15 00:24:003
如何速记“积化和差”“和差化积”公式
1、积化和差口诀:积化和差得和差,余弦在后要相加;异名函数取正弦,正弦相乘取负号。2、和差化积公式口诀:正弦+正弦,正弦在前;正弦-正弦,正弦在后;余弦+余弦,余弦并肩;余弦-余弦,余弦靠边。积化和差跟和差化积是逆向的不需再记口诀了,口诀记多了也容易混。这公式很重要的,学数学专业较常用的(作常识了)。记忆容易,不必死记,记住cos(A+B),COS(A-B)及sin的展开即可,用的时候脑中想这几个展开即可,简单加减,再乘除1/2即可,用时1、2秒就算出。扩展资料和差化积公式:包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式,和差化积公式共10组。在应用和差化积时,必须是一次同名(正切和余切除外)三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次。积化和差最后的结果是和或者差;若两项相乘,后者为cos项,则积化和差的结果为两项相加;若不是,则结果为两项相减;若两项相乘,一项为sin,另一项为cos,则积化和差的结果中都是sin项;若两项相乘,两项均为sin,则积化和差的结果前面取负号。2023-05-15 00:24:091
求积化和差、和差化积公式,要完整的
三角函数的和差化积公式 sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]三角函数的积化和差公式sinα·cosβ=[sin(α+β)+sin(α-β)]/2cosα·sinβ=[sin(α+β)-sin(α-β)]/2cosα·cosβ=[cos(α+β)+cos(α-β)]/2sinα·sinβ=-[cos(α+β)-cos(α-β)]/22023-05-15 00:24:376
和差化积和积化和差的公式
和差化积和积化和差的公式:一、积化和差公式sinαsinβ=-[cos(α+β)-cos(α-β)]/2。cosαcosβ=[cos(α+β)+cos(α-β)]/2。sinαcosβ=[sin(α+β)+sin(α-β)]/2。cosαsinβ=[sin(α+β)-sin(α-β)]/2。二、和差化积公式sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]。sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]。cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]。cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2](X-Y)]。和差化积公式:包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式,和差化积公式共10组。在应用和差化积时,必须是一次同名(正切和余切除外)三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次。2023-05-15 00:25:111
和差化积公式是怎样的 现在做题很多都要用到这样,但是我上学期又没学得好啊~
和差化积公式:sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2] sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2] cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]2023-05-15 00:25:381
和差化积公式是高中学的吗 和差化积公式介绍
1、和差化积公式是高中学的。 2、和差化积公式:包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式,和差化积公式共10组。在应用和差化积时,必须是一次同名(正切和余切除外)三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次。2023-05-15 00:25:461
求一套完整的和差化公式及推理!
A组 正余弦 sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 证明:其实就是展开整理了(我们就是这么做的,尽管公式都不要求记,也基本不用……) sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β,设 α+β=θ,α-β=φ 那么 α=(θ+φ)/2,β=(θ-φ)/2把α,β的值代入,即得 sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2] 其他的证明同理,注意最后一式有负号B组 正余切(不知道记得准不准了……) tanα±tanβ=sin(α±β)/(cosα·cosβ) cotα±cotβ=sin(β±α)/(sinα·sinβ) tanα+cotβ=cos(α-β)/(cosα·sinβ) tanα-cotβ=-cos(α+β)/(cosα·sinβ) 证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ) =sin(α±β)/(cosα·cosβ)=右边 ∴等式成立2023-05-15 00:25:531
和差化积、积化和差公式。
这为三角函数的和差化积公式 sinα+sinβ=2sin(α+β)/2·cos(α-β)/2sinα-sinβ=2cos(α+β)/2·sin(α-β)/2cosα+cosβ=2cos(α+β)/2·cos(α-β)/2cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2这为三角函数的积化和差公式sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)]cosα ·sinβ=1/2 [sin(α+β)-sin(α-β)]cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)]sinα ·sinβ=-1/2 [cos(α+β)-cos(α-β)]和差化积公式是积化和差公式的逆用形式,要注意的是:①其中前两个公式可合并为一个:sinθ+sinφ=2sincos②积化和差公式的推导用了“解方程组”的思想,和差化积公式的推导用了“换元”思想。③只有系数绝对值相同的同名函数的和与差,才能直接运用公式化成积的形式,如果一个正弦与一个余弦的和或差,则要先用诱导公式化成同名函数后再运用公式化积。④合一变形也是一种和差化积。⑤三角函数的和差化积,可以理解为代数中的因式分解,因此,因式分解在代数中起什么作用,和差化积公式在三角中就起什么作用。积化和差与积差化积是一种孪生兄弟,不可分离,在解题过程中,要切实注意两者的交替使用。如在一般情况下,遇有正、余弦函数的平方,要先考虑降幂公式,然后应用和差化积、积化和差公式交替使用进行化简或计算。和积互化公式其基本功能在于:当和、积互化时,角度要重新组合,因此有可能产生特殊角;结构将变化,因此有可能产生互消项或互约因式,从而利于化简求值。正因为如此“和、积互化”是三角恒等变形的一种基本手段。2023-05-15 00:26:031
和差化积的所有公式
积化和差公式sinαsinβ=-[cos(α+β)-cos(α-β)]cosαcosβ=[cos(α+β)+cos(α-β)]sinαcosβ=[sin(α+β)+sin(α-β)]cosαsinβ=[sin(α+β)-sin(α-β)]和差化积公式sinθ+sinφ=2sin(α/2+β/2)cos(α/2-β/2)sinθ-sinφ=2cos(α/2+β/2)sin(α/2-β/2)cosθ+cosφ=2cos(α/2+β/2)cos(α/2-β/2)cosθ-cosφ=-2sin(α/2+β/2)sin(α/2-β/2)2023-05-15 00:26:135
和差化积公式是如何推导的?
推导过程:可以用积化和差公式推导,也可以由和角公式得到,以下用和角公式证明之。由和角公式有:两式相加、减便可得到上面的公式,同理可证明公式。对于(5)、(6),有:证毕。扩展资料记忆方法1、只记两个公式甚至一个可以只记上面四个公式的第一个和第三个。第二个公式中的 ,即 ,这就可以用第一个公式。同理,第四个公式中, ,这就可以用第三个公式解决。如果对诱导公式足够熟悉,可以在运算时把余弦全部转化为正弦,那样就只记住第一个公式就行了。用的时候想得起一两个就行了。2、结果乘以2这一点最简单的记忆方法是通过三角函数的值域判断。正弦和余弦的值域都是[-1,1],其积的值域也应该是[-1,1],而和差的值域却是[-2,2] ,因此乘以2是必须的。也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:故最后需要乘以2。参考资料:百度百科-和差化积公式2023-05-15 00:26:291
积化和差和差化积公式八个
积化和差和差化积公式八个如下:积化和差公式:sinαbaisinβ=-[cos(α+β)-cos(α-β)]/2,cosαcosβ=[cos(α+β)+cos(α-β)]/2,sinαcosβ=[sin(α+β)+sin(α-β)]/2,cosαsinβ=[sin(α+β)-sin(α-β)]/2。和差化积公式:sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2],sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2],cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2],cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]。2023-05-15 00:27:231
如何速记“积化和差”“和差化积”公式
积化和差sinx*cosy=(sin(x+y)+sin(x-y))/2cosx*siny=(sin(x+y)-sin(x-y))/2cosx*cosy=(cos(x+y)+cos(x-y))/2sinx*siny=-(cos(x+y)-cos(x-y))/2口诀(默认x+y在前,x-y在后):同名余弦,异名正弦。正正全减,余余全加。正余相加,余正相减。和差化积sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)口诀(默认x+y在前,x-y在后):两正相加正在前两正相减余在前两余相加都是余两余相减负正弦(请多次练习背诵)2023-05-15 00:27:3310
高数中的和差化一公式是什么?
cosx+cosy=2cos((x+y)/2)cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)sin((x-y)/2)sinx+siny=2sin((x+y)/2)cos((x-y)/2)sinx+siny=2cos((x+y)/2)sin((x-y)/2)2023-05-15 00:29:321
数学中三角函数和差化积公式是哪些?
三角函数公式大全两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A = 2tanA/(1-tan² A) Sin2A=2SinA•CosA Cos2A = Cos^2 A--Sin² A =2Cos² A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)³; cos3A = 4(cosA)³ -3cosA tan3a = tan a • tan(π/3+a)• tan(π/3-a) 半角公式 sin(A/2) = √{(1--cosA)/2} cos(A/2) = √{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) = √{(1+cosA)/(1-cosA)} ? tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA) 和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a) cos(π+a) = -cos(a) tgA=tanA = sinA/cosA 万能公式 sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²} cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2} 其它公式 a•sin(a)+b•cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a] a•sin(a)-b•cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]²; 1-sin(a) = [sin(a/2)-cos(a/2)]²;其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a) 双曲函数 sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tg h(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα2023-05-15 00:29:423
帮忙总结一下和差化积公式,详细一点哦!谢谢了。
正弦、余弦的和差化积公式 指高中数学三角函数部分的一组恒等式 sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】 以上四组公式可以由积化和差公式推导得到证明过程 法1 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 因为 sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 设 α+β=θ,α-β=φ 那么 α=(θ+φ)/2, β=(θ-φ)/2 把α,β的值代入,即得 sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2] 法2 根据欧拉公式,e ^Ix=cosx+isinx 令x=a+b 得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b) 所以cos(a+b)=cosacosb-sinasinb sin(a+b)=sinacosb+sinbcosa编辑本段正切的和差化积 tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明) cotα±cotβ=sin(β±α)/(sinα·sinβ) tanα+cotβ=cos(α-β)/(cosα·sinβ) tanα-cotβ=-cos(α+β)/(cosα·sinβ) 证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ) =sin(α±β)/(cosα·cosβ)=右边 ∴等式成立编辑本段注意事项 在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次 口诀 正加正,正在前,余加余,余并肩 正减正,余在前,余减余,负正弦 反之亦然 生动的口诀:(和差化积) 帅+帅=帅哥 帅-帅=哥帅 哥+哥=哥哥 哥-哥=负嫂嫂 反之亦然编辑本段记忆方法 和差化积公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了各自的简单记忆方法。结果乘以2 这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其积的值域也应该是[-1,1],而和差的值域却是[-2,2],因此乘以2是必须的。 也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如: cos(α-β)-cos(α+β) =[(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)] =2sinαsinβ 故最后需要乘以2。只有同名三角函数能和差化积 无论是正弦函数还是余弦函数,都只有同名三角函数的和差能够化为乘积。这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。乘积项中的角要除以2 在和差化积公式的证明中,必须先把α和β表示成两角和差的形式,才能够展开。熟知要使两个角的和、差分别等于α和β,这两个角应该是(α+β)/2和(α-β)/2,也就是乘积项中角的形式。 注意和差化积和积化和差的公式中都有一个“除以2”,但位置不同;而只有和差化积公式中有“乘以2”。使用哪两种三角函数的积 这一点较好的记忆方法是拆分成两点,一是是否同名乘积,二是“半差角”(α-β)/2的三角函数名。 是否同名乘积,仍然要根据证明记忆。注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。所以,余弦的和差化作同名三角函数的乘积;正弦的和差化作异名三角函数的乘积。 (α-β)/2的三角函数名规律为:和化为积时,以cos(α-β)/2的形式出现;反之,以sin(α-β)/2的形式出现。 由函数的奇偶性记忆这一点是最便捷的。如果要使和化为积,那么α和β调换位置对结果没有影响,也就是若把(α-β)/2替换为(β-α)/2,结果应当是一样的,从而(α-β)/2的形式是cos(α-β)/2;另一种情况可以类似说明。余弦-余弦差公式中的顺序相反/负号 这是一个特殊情况,完全可以死记下来。 当然,也有其他方法可以帮助这种情况的判定,如(0,π]内余弦函数的单调性。因为这个区间内余弦函数是单调减的,所以当α大于β时,cosα小于cosβ。但是这时对应的(α+β)/2和(α-β)/2在(0,π)的范围内,其正弦的乘积应大于0,所以要么反过来把cosβ放到cosα前面,要么就在式子的最前面加上负号。2023-05-15 00:29:501
和差化积公式是什么时候学的 和差化积公式介绍
1、和差化积公式是高中的时候学的。 2、和差化积公式:包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式,和差化积公式共10组。在应用和差化积时,必须是一次同名(正切和余切除外)三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次。2023-05-15 00:29:571
和差化积公式记忆口诀 顺口溜
和差化积公式记忆口诀 顺口溜如下:1、和差化积公式记忆口诀1:帅+帅=帅哥,sina+sinβ=2sin(a+β)/2*cos(a-β)/2;帅-帅=哥帅,sina-sinβ=2cos(a+β)/2*sin(a-β)/2;哥+哥=哥哥,cosa+cosβ=2cos(a+β)/2*cos(a-β)/2;哥-哥=负嫂嫂。cosa-cosβ=-2sin(a+β)/2*sin(a-β)/2(反之亦然)2、和差化积公式记忆口诀2:正和正在先,sina+sinβ=2sin(a+β)/2*cos(a-β)/2;正差正后迁,sina-sinβ=2cos(a+β)/2*sin(a-β)/2;余和一色余,cosa+cosβ=2cos(a+β)/2*cos(a-β)/2;余差翻了天。cosa-cosβ=-2sin(a+β)/2*sin(a-β)/23、和差化积公式记忆口诀3:口口之和仍口口,sina+sinβ=2sin(a+β)/2*cos(a-β)/2;赛赛之和赛口留,sina-sinβ=2cos(a+β)/2*sin(a-β)/2;口口之差负赛赛,cosa+cosβ=2cos(a+β)/2*cos(a-β)/2;赛赛之差口赛收。cosa-cosβ=-2sin(a+β)/2*sin(a-β)/24、和差化积公式记忆口诀4:正弦加正弦,正弦在前面,sina+sinβ=2sin(a+β)/2*cos(a-β)/2;正弦减正弦,余弦在前面,sina-sinβ=2cos(a+β)/2*sin(a-β)/2;余弦加余弦,余弦全部见,cosa+cosβ=2cos(a+β)/2*cos(a-β)/2;余弦减余弦,余弦(负)不想见。cosa-cosβ=-2sin(a+β)/2*sin(a-β)/2。注:角度(a+β)/2在前,(a-β)/2在后的标准形式5、和差化积公式记忆口诀5:正加正,正在前,sina+sinβ=2sin(a+β)/2*cos(a-β)/2;正减正,余在前,sina-sinβ=2cos(a+β)/2*sin(a-β)/2;余加余,余并肩,cosa+cosβ=2cos(a+β)/2*cos(a-β)/2;余减余,负正弦。cosa-cosβ=-2sin(a+β)/2*sin(a-β)/22023-05-15 00:30:031
和差化积公式是啥,各位帮忙
和差化积公式,包括正弦、余弦和正切的和差化积公式,是三角函数中的一组恒等式。2023-05-15 00:30:332