kikcik
-
如图。BO=OD,ON=2AC/3-AC/2=AC/6=NC/2.∴N是⊿BCD的重心,从而P为CD中点。
MP‖CD1(中位线)‖A1B.∴A1BPM共面。N∈BP.A1BNM共面 。
拌三丝
-
.平行六面体:
平行四边形ABCD平移向量到的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD-,它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。
4.共线向量
与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.平行于记作.
当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线.
5.共线向量定理及其推论:
共线向量定理:空间任意两个向量、(≠),//的充要条件是存在实数λ,使=λ.
推论:如果为经过已知点A且平行于已知非零向量的直线,那么对于任意一点O,点P在直线上的充要条件是存在实数t满足等式 .其中向量叫做直线的方向向量.
例1 如图,在三棱柱中,M是的中点,
化简下列各式,并在图中标出化简得到的向量:
(1);
(2);
(3)
解:(1)
(2)
(3)
例2、如图,在长方体中,,点E,F分别是的中点,设,试用向量表示和
解:
备用练习题:O为三角形ABC所在平面外一点,D为BC的中点,
已知、、分别为、、
(1)求;(2)若G为三角形ABC的重心,求
课堂练习:P71---1,2,3
三、回顾总结:空间向量的定义与运算法则
四、布置作业
[补充习题]
1、已知平行六面体ABCD-A/B/C/D/中,点G在对角线A/C上且CG:GA/=x,设、、分别为、、,则=____________
2、P-ANCD是正四棱锥,O是底面的中心,则式子=中,x=___,y=___
3、_四边形ABCD是空间四边形,E、H分别是AB、AD上的点,F、G 分别是CB、CD上的点,且,=,求证:四边形EFGH是梯形
4、空间四边形OABC中,G、H分别是△ABC、△OBC的重心,=、=、=,试用、、表示、
[答案]
1、(++)
2、2,2
3、略
4、=(++),=-
[情况反馈]
3.1.2共面向量定理
[教学目标]
一、知识与技能:了解共面向量的含义,理解共面向量定理;利用共面向量定理证明有关线面平行和点共面的简单问题;
二、过程与方法:通过与平面向量的类比,来直观理解共面即平行于同一平面向量的的内含,通过定理证明和应用实例来说明其应用
三、情感态度与价值观:体会空间与平面的形式与本质的一致
[教学重点]共面向量的含义,理解共面向量定理
[教学难点]利用共面向量定理证明有关线面平行和点共面的简单问题
教学过程:
一、创设情景
1、关于空间向量线性运算的理解
如图:长方体AC1中,∥,、、共面,而且=+即其中的一个向量即可以用其它向量线性表示。
二、建构数学
1、 共面向量的定义
一般地,能平移到同一个平面内的向量叫共面向量;
理解:若为不共线且同在平面内,则与共面的意义是在内或
2、共面向量的判定
平面向量中,向量与非零向量共线的充要条件是,类比到空间向量,即有
共面向量定理 如果两个向量不共线,那么向量与向量共面的充要条件是存在有序实数组,使得
这就是说,向量可以由不共线的两个向量线性表示。
三、数学运用
例1 如图,已知矩形ABCD和矩形ADEF所在平面互相垂直,点M,N分别在对角线BD,AE上,且.
求证:MN//平面CDE
证明:=
又与不共线
根据共面向量定理,可知共面。
由于MN不在平面CDE中,所以MN//平面CDE.
例2 设空间任意一点O和不共线的三点A、B、C,若点P满足向量关系(其中x+y+z=1)
试问:P、A、B、C四点是否共面?
解:由可以得到
由A,B,C三点不共线,可知与不共线,所以,,共面且具有公共起点A.
从而P,A,B,C四点共面。
解题总结:
说明1:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使得:,或对空间任意一点O有:。
说明2:(x+y+z) ,x(-)+y(-)+z(-)=,即:
得到x+y+z=,也就是说满足x+y+z=(x+y+z=1)时,P、A、B、C共面
课上练习:教材P74---练习题
四、回顾总结:共面向量定理;
作业:教材P83---7,8,P84---20
[补充习题]
1、已知A、B、C三点不共面,对平面ABC外任意一点O,满足=2--,问点M是否与A、B、C三点共面
2、已知非零向量不共线,如果,求证:A、B、C、D共面。
3、正方体ABCD-A1B1C1D1中,M为DD1的中点,P为AA1的中点,Q∈AC,且AQ:QC=1:2,求证:PQ∥平面A1BM
4、已知长方体AC1中,M为DD1的中点,N在AC上,且AN:NC=2:1,E为BM的中点,求证A1、E、N三点共线
[答案]
1、不共面
2、3、4略
[情况反馈]
3.1.3空间向量的基本定理
[教学目标]
一、知识与技能:掌握空间向量的基本定理及其推论,理解空间任意一个向量可以用不共面的三个已知向量线性表示,而且这种表示是唯一的;在简单问题中,会选择适当的基底来表示任一空间向量。
二、过程与方法:通过类比平面向量结论,猜想空间结论,再证明
三、情感态度与价值观:体会定理的应用技巧
[教学重点]空间向量的基本定理及其推论
[教学难点]空间向量的基本定理唯一性的理解
教学过程:
一、创设情景
平面向量基本定理的内容及其理解
如果是同一平面内的两个不共线向量,那么对
于这一平面内的任一向量,有且只有一对实数,
使
二、建构数学
1、空间向量的基本定理
如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使
证明:(存在性)设不共面,
过点作
过点作直线平行于,交平面于点;
在平面内,过点作直线,分别与直线相交于点,于是,存在三个实数,使
∴ 所以
(唯一性)假设还存在使
∴∴
不妨设即 ∴
∴共面此与已知矛盾 ∴该表达式唯一
综上两方面,原命题成立
由此定理, 若三向量不共面,那么空间的任一向量都可由线性表示,我们把{}叫做空间的一个基底,叫做基向量。
空间任意三个不共面的向量都可以构成空间的一个基底
如果空间一个基底的三个基向量两两互相垂直,那么这个基底叫做正交基底,特别地,当一个正交基底的三个基向量都是单位向量时,称这个基底为单位正交基底,通常用表示。
推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使
三、数学运用
例1 、如图,在正方体中,,点E是AB与OD的交点,M是OD/与CE的交点,试分别用向量表示和
解:
例2 如图,已知空间四边形,其对角线,分别是对边的中点,点在线段上,且,用基底向量表示向量
解:
∴
3、课堂练习: 课本练习76页练习1,2,3
四、回顾总结:
空间向量的基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使
推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使
五、布置作业:教材P83---5,6
[补充习题]
1、若、与空间任意向量不能构成一个基底,那么、的关系是_______
2、已知、、是空间一个基底,设=-+3+2,=4-6+2,=-3+12+11,求证、、共面
3、正方体AC1的棱长为a,点M在AD1上,且AM=2MD1,若在DC1上存在点N,在BC上存在点E,使MN∥AE,求BE的长度
4、已知正方体ABCD-A1B1C1D1,P、M为空间任意两点,若,那么点M一定在哪个平面内,证明你的结论
5、在空间平移△ABC到△A1B1C1,连接对应顶点,=,=,=,M是BC1的中点,点N在AC1上,且=2,用基底{,,}表示
[答案]1、共线;2、略;3、;4、BA1D1C; 5、=--+
[情况反馈]
3.1.4空间向量的坐标表示
[教学目标]
一、知识与技能:能用坐标表示空间向量,掌握空间向量的坐标运算;会根据向量的坐标判断两个空间向量平行。
二、过程与方法:通过平面向量的类比得到空间结论,再加以应用
三、情感态度与价值观:体会类比得出结论并从结论应用中总结规律的思想方法
[教学重点]空间向量的坐标运算
[教学难点]空间向量的坐标运算
[教学过程]
一、创设情景
1、空间向量的基本定理
练习:求证空间四边形对边中点连线和空间四边形对角线中点的连线交于一点且互相平分
已知:空间四边形ABCD,E、F、G、H分别是AB、CD、AC、DB的中点
求证:EF、GH交于一点且互相平分
证明:[方法一]用原来方法证明EHFG是平行四边形(略)
[方法二]设EF、GH中点分别为P1、P2(只要证明P1与P2重合)
==
==∴P1与P2重合∴EF、GH交于一点且互相平分
2、平面向量的坐标表示
分别取与轴、轴方向相同的两个单位向量、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
把叫做向量的(直角)坐标,记作
其中叫做在轴上的坐标,叫做在轴上的
坐标, 特别地,,,
二、建构数学
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为,
这个基底叫单位正交基底,用表示;
(2)在空间选定一点和一个单位正交基底,
以点为原点,分别以的方向为正方向建立三条
数轴:轴、轴、轴,它们都叫坐标轴.我们称建
立了一个空间直角坐标系,点叫原点,向量
都叫坐标向量.通过每两个坐标轴的平面叫坐标
平面,分别称为平面,平面,平面。
(3)作空间直角坐标系时,一般使(或),;
(4)在空间直角坐标系中,让右手拇指指向轴的正方向,食指指向轴的正方向,如果中指指向轴的正方向,称这个坐标系为右手直角坐标系规定立几中建立的坐标系为右手直角坐标系
2、空间直角坐标系中的坐标:
如图给定空间直角坐标系和向量,设为坐标向量,则存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作.
在空间直角坐标系中,对空间任一点,存在唯
一的有序实数组,使,有序实数组
叫作向量在空间直角坐标系中的坐标,记
作,叫横坐标,叫纵坐标,叫竖坐标.
3、空间向量的直角坐标运算律
(1)若,,
则,
,
,
,
(2)若,,则.
一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
三、数学运用
例1、已知,求
解:;;
练习:课本78页练习1-6
例2、已知空间三点求下列条件下点D的坐标
(1)A、B、C、D四点围成平行四边形;(2)四边形是梯形
解:设点D(x,y,z)
(1)平行四边形可以为ABCD、ABDC、ACBD三种情况
ABCD为平行四边形时,有为=,(4,-8,2)=(10-x,-y,10-z),D(6,8,8)
ABDC为平行四边形时,=,(4,-8,2)=(x-10,y,z-10),D(14,-8,12)
ACBD为平行四边形时,=,(-12,3,-9)=(x-2,y+5,z-3),D(-10,-2,-6)
总之,点D的坐标为(6,8,8)或(14,-8,12)或(-10,-2,-6)
(2)ABCD为梯形时,和同向且不等,于是λ=且λ>0,λ≠1,(4λ,-8λ,2λ)=(10-x,-y,10-z),D(10-4λ,8λ,10-2λ) (λ>0,λ≠1)
说明:注意说法的不同。
三、回顾总结:空间向量的坐标表示及其运算
四、布置作业:教材P83---9,10,11
[补充习题]
1、空间三点A(1,5,-2),B(2,4,1),C(p,3,q+2),且A、B、C三点共线,则p=_____,q=____
2、求证=(1,6,-3),=(1,-2,9),=(-4,8,-36)共面
3、设点C(2a+1,a+1,3)在点P(2,0,0),A(1,-3,2),B(8,-1,4)确定的平面上,求a的值
4、点P在直线AB上,,A(x1,y1,z1),B(x2,y2,z2)(1) 若P为AB的中点,求点P的坐标 (2) 若=λ(λ≠-1)求点P的坐标;(3)若有点C(x3,y3,z3),ABC构成三角形,求其重心G的坐标
(解答略)
[答案]
1、5,2; 2、略; 3、; 4、(1)(,,);(2) (,,);(3)三坐标的算术平均数
[情况反馈]
3.1.5空间向量的数量积(1)--概念与直接运算
[教学目标]
一、知识与技能:掌握空间向量的夹角的概念,掌握空间向量的数量积的概念、性质和运算律,了解空间向量数量积的几何意义;
二、过程与方法:类比平面向量得到空间向量数量积,并应用
三、情感态度与价值观:体会类比的方法以及数量积的应用
[教学重点]空间向量的夹角的概念,掌握空间向量的数量积的概念、性质和运算律
[教学难点]用向量的方法解决有关垂直、夹角和距离
[教学过程]
一、创设情景
平面向量的数量积的有关定义及法则复习,空间呢?
二、建构数学
1、夹角
定义:是空间两个非零向量,过空间任意一点O,作,则叫做向量与向量的夹角,记作
规定:
特别地,如果,那么与同向;如果,那么与反向;如果,那么与垂直,记作。
2、数量积
(1)设是空间两个非零向量,我们把数量叫作向量的数量积,记作,即
=
(2)夹角:cos<,>=.
⊥=0(、都不是零向量)
(3)运算律
;;
(4)射影的概念:与平面向量类似,在上的射影为||cos<,>
思考:=0吗?
例1、已知:||=4,||=3,=12,求
(教材P80---例1,解答)
练习;教材P82---5
例2、已知四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=2,AD=3,AA1=5,∠BAA1=∠DAA1=600,求AC1的长
(教材P80---例2,解答)
练习1:求AC1与BD成角的余弦值。()
说明:注意向量的夹角与直线的夹角不同点
练习2:所有的棱长都相等的正四棱锥P-ABCD中,E为PC的中点,求侧棱PA与BE成角的余弦值()
三、小结:主要内容空间向量的数量积
四、作业:教材P83---P84;16,17,21
[补充习题]
1、平行六面体ABCD-A1B1C1D1中,以A为端点的三条棱长都等于1,且两两夹角为600,则对角线AC1=________________
2、正方体ABCD-A1B1C1D1中,P是DD1的中点,O是底面ABCD的中心,求证:B1O⊥平面PAC
3、空间四面体OABC中,M、N、P、Q分别是BC、AC、OA、OB的中点,AB=OC,
(1)求证:PM⊥QN; (2)求; (3)在方向上的投影
[答案]
1、; 3、(2)-a2;(3)-
[情况反馈]
3.1.5空间向量的数量积(2)----坐标运算
[教学目的]
一、知识与技能:掌握空间向量数量积的坐标形式,会用向量的方法解决有关垂直、夹角问题。
二、过程与方法:类比平面的过程,推导----结论--应用
三、情感态度与价值观:体会演绎推理和类比的思想
[教学重点]坐标运算的应用
[教学难点]数量积的坐标运算
[教学过程]
一、复习:空间向量的数量积的定义,思考问题:在一个空间直角坐标系中,,,则=?
二、新课内容:
1、公式推导,得出=a1a2+b1b2+c1c2
2、特别的,=时,有
3、若,,则,或称两点间的距离公式
4、
三、数学运用
例1已知,,求:
(1)线段的中点坐标和长度;
(2)到两点的距离相等的点的坐标满足的条件
解:(1)设是线段的中点,则.
∴的中点坐标是,
空间向量基本定理
空间向量基本定理如下:1、共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb。2、共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y使c=ax+by。3、空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。常识:1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB。2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC(其中x+y+z=1),则四点P、A、B、C共面。3、利用向量证a∥b,就是分别在a,b上取向量a=λb(λ∈R)。4、利用向量证a⊥b,就是分别在a,b上取向量ab=0。5、利用向量求两直线a与b的夹角,就是分别在a,b上取a,b,求:<a,b>的问题。2023-05-14 17:21:531
证明如果a向量和b向量共线,那么2a向量-b向量与a向量共线
楼上的不完整,若a=0,b不等于0,就没有b=ta了。可改为:b=ta或a=0. 共线的问题要考虑零向量。2023-05-14 17:22:253
向量的基本定理有哪些
平面向量基本定理: 如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2。 共面向量基本定理:如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使 p=xa+by。2023-05-14 17:22:391
共线向量定理的证明(多种方法)
如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。 证明: 1)充分性,对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由 实数与向量的积的定义 知,向量a与b共线。 2)必要性,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有 b =λa,当向量a与b反方向时,令 λ=-m,有 b=-λa。如果b=0,那么λ=0。 3)唯一性,如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。 证毕。[编辑本段]推论推论1 两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。 证明: 1)充分性,不妨设μ≠0,则由 λa+μb=0 得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。 2)必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。 证毕。推论2 两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。 证明: 1)充分性,∵μ≠0,∴由 λa+μb=0 可得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。 2)必要性,∵向量a与b共线,且a≠0,则由 共线向量基本定理 知,b=λa;又∵b≠0,∴λ≠0; 取 μ=-1≠0,就有 λa+μb=0,实数λ、μ全不为零。 证毕。推论3 如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得 λa+μb=0,那么λ=μ=0。 证明:(反证法) 不妨假设μ≠0,则由 推论1 知,向量a、b共线;这与已知向量a、b不共线矛盾,故假设是错的,所以λ=μ=0。 证毕。推论4 如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得 向量PC=(1-λ)向量PA+λ向量PB。(其中,向量AC=λ向量AB)。 证明: ∵三点P、A、B不共线,∴向量AB≠0, 由 共线向量基本定理 得, 点C在直线AB上 <=> 向量AC 与 向量AB 共线 <=> 存在唯一实数λ,使 向量AC=λ·向量AB ∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线, ∴向量AC=λ·向量AB <=> 向量PC-向量PA=λ·(向量PB-向量PA) <=> 向量PC=(1-λ)向量PA+λ·向量PB。 证毕。推论5 如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一一对实数λ、μ,使得 向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1) 证明: 在推论4 中,令 1-λ=μ ,则λ+μ=1,知: 三点P、A、B不共线 <=> 点C在直线AB上的充要条件是:存在实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1) 下面证唯一性,若 向量PC=m向量PA+n向量PB,则 m向量PA+n向量PB=λ向量PA+μ向量PB, 即,(m-λ)向量PA+(n-μ)向量PB=0, ∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线, 由 推论3 知,m=λ,n=μ。 证毕。推论6 如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得 λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。 证明: 1)充分性,由推论5 知,若三点P、A、B不共线,则 点C在直线AB上 <=> 存在实数λ、μ,使得 向量PC=λ向量PA+μ向量PB(其中,λ+μ=1)。 取ν=-1,则有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,且实数λ、μ、ν不全为零。 2)必要性,不妨设ν≠0,且有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,则 向量PC=(λ/ν)·向量PA+(μ/ν)·向量PB,(-λ/ν)+(-μ/ν)=1。由推论5 即知,点C在直线AB上。 证毕。推论7 点P是直线AB外任意一点,那么三不同点A、B、C共线的充要条件是:存在全不为零的实数λ、μ、ν,使得 λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。 证明:(反证法) ∵点P是直线AB外任意一点,∴向量PA≠0,向量PB≠0,向量PC≠0,且 向量PA、向量PB、向量PC两两不共线。 由推论6 知,实数λ、μ、ν不全为零, 1)假设实数λ、μ、ν中有两个为零,不妨设λ≠0,μ=0,ν=0。则 λ向量PA=0,∴向量PA=0。这与向量PA≠0。 2)假设实数λ、μ、ν中有一个为零,不妨设λ≠0,μ≠0,ν=0。则 λ向量PA+μ向量PB=0,∴向量PA=(μ/λ)·向量PB,∴向量PA 与 向量PB共线,这与向量PA 与 向量PB不共线矛盾。 证毕。[编辑本段]共线向量定理定理1 ⊿ABC中,点D在直线BC上的充要条件是 其中 都是其对应向量的数量。 证明:有推论5 即可证得。定理2 ⊿ABC中,点D在直线BC上的充要条件是 其中 都是有向面积。通常约定,顶点按逆时针方向排列的三角形面积为正,顶点按顺时针方向排列的三角形面积为负。 证明:由定理1 即可得证。2023-05-14 17:22:481
abc共线的条件
abc共线的条件,零向量与任何向量共线。非零向量共线条件是b=λa,其中a≠0,λ是唯一实数。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,任意一组平行向量都可移到同一直线上,所以称为共线向量。平面向量共线的条件零向量与任何向量共线,以下考虑非零向量,三个方法(1)方向相同或相反(2)向量a=k向量b(3)a=(x1,y1),b=(x2,y2)a//b等价于x1y2-x2y1=0共线向量基本定理如a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。证明:1)充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即_b_=m_a_。那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。如果b=0,那么λ=0。3)唯一性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。2023-05-14 17:22:541
平面向量基本定理
平面向量基本定理如下;实质作用编辑 播报这项定理其实说明了平面向量可以沿任意指定的两方向分解,同时也说明了由任意两向量可以合成指定向量,即向量的合成与分解 。当两个方向相互垂直时,其实就是把他们在平面直角坐标系中分解,此时(x,y)就称为此向量的坐标。(此向量的起点为原点)所以此定理为向量的坐标表示提供了理论依据。坐标表示编辑 播报在平面直角坐标系中,分别取与x轴,y轴方向相同的两个单位向量i、j作为基底,a为坐标平面内的任意向量,以坐标原点O为起点作向量OP=a。有平面向量基本定理可知,有且只有一对实数x、y,使得向量OP=xi+yj。因此向量,a=xi+yj。我们把实数(x,y)对叫做向量的坐标,记作:a=(x,y)。显然,其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。共面向量编辑 播报共面向量基本定理:如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。(x,y不全为零)归纳反思编辑 播报1.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。2.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择两个不共线的向量 ,平面内的任何一个向量都可以唯一表示,这样几何问题就可以转化为代数问题。2023-05-14 17:23:031
线面平行的判定定理
直线平行平面内的任何一条直线,直线平行平面。2023-05-14 17:23:234
平面向量基本定理的共面向量
共面向量基本定理:如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。2023-05-14 17:23:492
平面共线定理一定是中间那条吗
一定是中间的那一条。共线向量基本定理,数学术语。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。1、充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。2、必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 _b_=m_a_。那么当向量a与b同方向时,令 λ=m,有 b=λa,当向量a与b反方向时,令 λ=-m,有 b=λa。如果b=0,那么λ=0。3、唯一性:如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。证毕。2023-05-14 17:24:021
共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。
零向量与任何向量平行。这是零向量性质若λ=0,b=0,与任意向量平行2023-05-14 17:24:101
向量m与量n共线那么有什么推论
推论1两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得λa+μb=0。证明:1)充分性,不妨设μ≠0,则由λa+μb=0得b=(λ/μ)a。由共线向量基本定理知,向量a与b共线。2)必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以λa-b=0,取μ=-1≠0,故有λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有λa+μb=0。证毕。推论2两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得λa+μb=0。证明:1)充分性,∵μ≠0,∴由λa+μb=0可得b=(λ/μ)a。由共线向量基本定理知,向量a与b共线。2)必要性,∵向量a与b共线,且a≠0,则由共线向量基本定理知,b=λa;又∵b≠0,∴λ≠0;取μ=-1≠0,就有λa+μb=0,实数λ、μ全不为零。证毕。推论3如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得λa+μb=0,那么λ=μ=0。证明:(反证法)不妨假设μ≠0,则由推论1知,向量a、b共线;这与已知向量a、b不共线矛盾,故假设是错的,所以λ=μ=0。证毕。推论4如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得向量PC=(1-λ)向量PA+λ向量PB。(其中,向量AC=λ向量AB)。证明:∵三点P、A、B不共线,∴向量AB≠0,由共线向量基本定理得,点C在直线AB上<=>向量AC与向量AB共线<=>存在唯一实数λ,使向量AC=λ·向量AB∵三点P、A、B不共线,∴向量PA与向量PB不共线,∴向量AC=λ·向量AB<=>向量PC-向量PA=λ·(向量PB-向量PA)<=>向量PC=(1-λ)向量PA+λ·向量PB。证毕。推论5如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一一对实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1)证明:在推论4中,令1-λ=μ,则λ+μ=1,知:三点P、A、B不共线<=>点C在直线AB上的充要条件是:存在实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1)下面证唯一性,若向量PC=m向量PA+n向量PB,则m向量PA+n向量PB=λ向量PA+μ向量PB,即,(m-λ)向量PA+(n-μ)向量PB=0,∵三点P、A、B不共线,∴向量PA与向量PB不共线,由推论3知,m=λ,n=μ。证毕。推论6如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。证明:1)充分性,由推论5知,若三点P、A、B不共线,则点C在直线AB上<=>存在实数λ、μ,使得向量PC=λ向量PA+μ向量PB(其中,λ+μ=1)。取ν=-1,则有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,且实数λ、μ、ν不全为零。2)必要性,不妨设ν≠0,且有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,则向量PC=(λ/ν)·向量PA+(μ/ν)·向量PB,(-λ/ν)+(-μ/ν)=1。由推论5即知,点C在直线AB上。证毕。推论7点P是直线AB外任意一点,那么三不同点A、B、C共线的充要条件是:存在全不为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。证明:(反证法)∵点P是直线AB外任意一点,∴向量PA≠0,向量PB≠0,向量PC≠0,且向量PA、向量PB、向量PC两两不共线。由推论6知,实数λ、μ、ν不全为零,1)假设实数λ、μ、ν中有两个为零,不妨设λ≠0,μ=0,ν=0。则λ向量PA=0,∴向量PA=0。这与向量PA≠0。2)假设实数λ、μ、ν中有一个为零,不妨设λ≠0,μ≠0,ν=0。则λ向量PA+μ向量PB=0,∴向量PA=(μ/λ)·向量PB,∴向量PA与向量PB共线,这与向量PA与向量PB不共线矛盾。证毕。2023-05-14 17:24:161
空间向量公式总结是什么?
空间向量公式如下:1、空间向量线面夹角公式是cosθ=(ab的内积)/(|a||b|)。2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。3、空间向量的模公式:空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是:²√x²+y²+z²,平面向量(x,y),模长是:²√x²+y²。空间向量基本定理:1、共线向量定理两个空间向量a、b向量,a∥b的充要条件是存在唯一的实数λ,使a=λb。2、共面向量定理如果两个向量a、b不共线,则向量c与向量a、b共面的充要条件是:存在唯一的一对实数x、y,使c=ax+by。2023-05-14 17:24:251
共面向量定理
共面向量定理是能平移到同一平面上的三个向量叫做共面向量。共面向量定理是数学学科的基本定理之一。属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂问题。共面定理得内容为:如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在有序实数对(x,y),使p=xa+yb。推论:共面向量是一组有特殊位置关系的向量,即平行于同一个平面的一组向量、零向量与任何一组共面的向量共面,设O、A、B、C是不共面的四点,则对空间任意一点P,都存在唯一的有序实数组(x,y,z)。空间任一点P位于平面MAB内的充要条件是:存在有序实数对{x.y},使MP=xMA+yMB或对空间任一定点O,有OP=OM+xMA+yMB。2023-05-14 17:24:401
高一数学,平面向量的数量积问题
一、基本知识: 1.向量的概念及其表示方法:既有大小又有方向的量叫做向量,用有向线段表示,有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向。2.向量的运算向量运算定义坐标运算运算律加法己知向量 、 ,在平面内任取一点 ,解 , ,则向量 叫做 与 的和,记作 ;求两个向量和的运算,叫做向量的加法。减法向量 加上 的相反的向量,叫做 与 的差;求两个向量差的运算,叫做向量的减法实数与向量的积,其中当 与 同向, ;当 时 与 反向, 向量的数量职二、重要定理、公式 1.平面向量基本定理:若 、 是同一平面内的两个不共线的向量,那么,对该平面内的任一向量 ,有且只有一对实数 、 ,使 2.两个向量平行的充要条件:∥ 若 , 则∥ 3.两个非零向量垂直的充要条件:若 , 则4.线段的定比分点坐标公式:设 , , ,且 ,则当 时,得中点坐标公式 5.平移公式:若点 按向量 平移至 ,则 6.正弦定理、余弦定理:(1)正弦定理: (2)余弦定理:三、学习要求和需要注意的问题 1.学习要求(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念。(2)掌握向量的加法与减法的运算法则及运算律。(3)掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。(4)了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量可以处理有关长度、角度和垂直问题,掌握向量垂直的条件(6)掌握线段的定比分点和中点坐标公式,并且能熟悉运用;掌握平移公式。(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。(8)通过解三角形的应用学习,继续提高运用所学知识解决实际问题的能力。2.需要注意的问题(1)这一章里,我们学习的向量具有大小和方向两个要素,用有向线段表示向量时,与有向线段起点的位置没有关系,同向且等长的有向线段都表示同一向量。(2)共线向量和平面向量的两条基本定理,揭示了共线向量和平面向量的基本结构,它们是进一步研究向量的基础。(3)向量的数量积是一个数,当两个向量的夹角是锐角时,它们的数量积大于0;当两个向量的夹角是钝角时,它们的数量积小于0;当两个向量的夹角是90°时,它们的数量积等于0,零向量与任何向量的数量积等于0。(4)通过向量的数量积,可以计算向量的长度、平面内两点间的距离、两个向量的夹角、判断相应的两条直线是否垂直。(5)数量积不满足结合律,这是因为 与 的结果都是数量,所以 与 都没有意义,当然就不可能相等。2023-05-14 17:24:521
向量共线怎么判断,还有怎么计算向量共线
已知空间任意一点O和不共线的三点A.B.C,则点P位于平面ABC内的充要条件是:存在x.y.z∈R,满足x+y+z=1 使OP=xOA+yOB+zOC。 证明:(充分性) ∵x+y+z=1 ∴ z=1-x-y 又∵OP=xOA+yOB+zOC ∴ OP =xOA+yOB+(1-x-y)OC OP=x(OA-OC)+y(OB-OC)+OC OP-OC=x(OA-OC)+y(OB-OC) ∴ CP=xCA+yCB 又由已知条件A、B、C三点不共线可得CA、CB是不共线向量 ∴ 根据平面向量的基本定理可知,点P位于平面ABC内 ∴ 充分性成立(必要性) ∵点P位于平面ABC内 又由已知条件A、B、C三点不共线可得CA、CB是不共线向量 ∴ 根据平面向量的基本定理可知,存在实数x,y使得 CP=xCA+yCB ∴ OP-OC=x(OA-OC)+y(OB-OC) OP=x(OA-OC)+y(OB-OC)+OC OP =xOA+yOB+(1-x-y)OC 令z=1-x-y 则x+y+z=1 且 OP=xOA+yOB+zOC 即,存在实数x、y、z满足x+y+z=1,使得OP=xOA+yOB+zOC ∴ 必要性成立2023-05-14 17:24:591
在平面向量基本定理中当向量a与e1共线时
这个题目的叙述是错误的.从来没有听说有这个说法.如令a=2*e1,此时λ=2,u=0,λ+u=2. 倒是有一个定理:点M与直线AB共线的充分必要条件是,对于取定的任意一点O有:OM=λ*OA+u*OB,其中λ+u=12023-05-14 17:25:161
平面向量平行和垂直的判定方法是?
两个向量a,b平行:a=λb(b不是零向量);两个向量垂直:数量积为0,即a•b=0平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。注意:(1)相等向量具有传递性,非零向量的平行也具有传递性。(2)共线向量即为平行向量,它们均与起点无关。(3)平行向量就是共线向量,二者是等价的;但相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量。扩展资料:平面向量的其他知识:1、平面向量的基本定理如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2。2、平面向量的坐标表示在直角坐标系内,分别取与x轴,y轴正方向相同的两个单位向量i,j作为基底,对任一向量a,有唯一一对实数x,y,使得:a=xi+yj,(x,y)叫做向量a的直角坐标,记作a=(x,y),显然i=(1,0),j=(0,1),0=(0,0)。2023-05-14 17:25:241
高一数学向量题
它是假设a、tb、1/3(a+b) 在同一条直线上,即三者共线(共线向量有a=λb)2023-05-14 17:25:334
平面向量基本定理
平面向量基本定理是在向量知识体系中占有核心地位的定理。一方面,平面向量基本定理是平面向量正交分解及坐标表示的基础,坐标表示使平面中的向量与其坐标建立起了一一对应的关系,这为通过数的运算处理形的问题搭起了桥梁。另一方面,平面向量基本定理是平行向量基本定理由一维到二维的推广,揭示了平面向量的结构特征,将来还可以推广为空间向量基本定理.因此,平面向量基本定理在向量知识体系中起着承上启下的重要作用。特点(1)给定平面内两个不共线的向量,通过线性运算,可以构造出该平面内的所有向量。(2)通过线性运算构造平面内所有向量,至少需要两个不共线的向量。(3)平面内任意向量的问题都可以转化为基底中两个向量之间的问题,从而化任意为确定,化未知为已知。(4)选定基底后,平面内的任意向量与有序实数对一一对应,为通过数的运算处理形的问题搭起了桥梁,实现了形与数的统一。2023-05-14 17:25:421
谁有向量的公式
向量加法与减法的几何表示:平行四边形法则、三角形法则。向量加法有如下规律:+=+(交换律);(c)=()c(结合律);0=+(-)=0.1.实数与向量的积:实数与向量的积是一个向量。(1)||=||||;(2)当>0时,与的方向相同;当<0时,与的方向相反;当=0时,=0.(3)若=(),则=().两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则‖b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1e2.2.P分有向线段所成的比:设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使=,叫做点P分有向线段所成的比。当点P在线段上时,>0;当点P在线段或的延长线上时,<0;分点坐标公式:3.向量的数量积:(1).向量的夹角:(2).两个向量的数量积:(3).向量的数量积的性质:(4).向量的数量积的运算律:4.主要思想与方法:本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。2023-05-14 17:25:582
向量平行公式和垂直公式怎么写
a,b是两个向量,a=(a1,a2),b=(b1,b2)。a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数。a垂直b:a1b1+a2b2=0。 共线向量基本定理 如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。 证明: 1)充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。 2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m∣a∣。那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。如果b=0,那么λ=0。 3)唯一性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。 平面向量基本定理 如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。 在平面直角坐标系中,分别取与x轴,y轴方向相同的两个单位向量i、j作为基底,a为坐标平面内的任意向量,以坐标原点O为起点作向量OP=a。有平面向量基本定理可知,有且只有一对实数x、y,使得 向量OP=xi+yj。 因此向量,a=xi+yj。 我们把实数(x,y)对叫做向量的坐标,记作:a=(x,y)。 显然,其中(x,y)就是点P的坐标。 向量OP称为点P的位置向量。2023-05-14 17:26:041
向量的共线冲要条件
向量共线的充要条件是由实数与向量的积推出的,它是平面向量的基本定理的一种特殊情况,具体内容为:向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa, 由于零向量与任一向量共线,故上述定理又可叙述为向量b与向量a共线的充要条件是:存在不全为0的实数λ1, λ2, 使得λ1a+λ2b=0, 它的逆否命题为:若向量a, b不共线,(a≠0, b≠0),且λ1a+λ2b=0, 则λ1=λ2=0,这些结论可用来证明几何中三点共线与两直线平行等问题.2023-05-14 17:26:134
共线定理
共线定理也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。2023-05-14 17:26:311
(高一)向量共线定理是哪些?
向量a≠0,a,b共线,<==>存在实数m,使得b=ma,若a=(x1,y1)与b=x2,y2)共线,则x1/x2=y1/y2(允许分子分母同时为0).若A,B,C三点共线,则向量PC=xPA+(1-x)PB,其中x是实数。仅供参考。2023-05-14 17:26:382
共线定理
平面向量共线定理:共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。证明:1、充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。2、必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m∣a∣。那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有 b=λa。如果b=0,那么λ=0。3、唯一性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。2023-05-14 17:26:451
平面向量共线定理
一、平面向量共线定理:共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。 共线向量基本定理为如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。平面向量,共线的条件:1、方向相同或相反。2、向量a=k向量b。3、a=(x1,y1),b=(x2,y2),a//b等价于x1y2-x2y1=02023-05-14 17:26:521
空间向量共线定理
空间向量共线定理如下:共线向量基本定理,数学术语。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。共线向量基本定理如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。证明:1)充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义知,向量a与b共线。2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有 b=λa,当向量a与b反方向时,令 λ=-m,有 b=λa。如果b=0,那么λ=0。3)唯一性:如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。证毕。2023-05-14 17:27:231
向量共线定理m-n表示什么
m-n表示向量差。共线向量基本定理数学定理科普中国 | 本词条由“科普中国”科学百科词条编写与应用工作项目审核审阅专家 杜强共线向量基本定理,数学术语。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。中文名共线向量基本定理别名向量共线定理表达式b=λa适用领域几何应用学科数学共线向量基本定理推论共线向量定理TA说共线向量基本定理如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。证明:1)充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义知,向量a与b共线。2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有 b=λa,当向量a与b反方向时,令 λ=-m,有 b=λa。如果b=0,那么λ=0。3)唯一性:如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。证毕。[1]推论推论1两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。证明:1)充分性,不妨设μ≠0,则由 λa+μb=0 得 -b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。2)必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。证毕。推论2两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。证明:1)充分性,∵μ≠0,∴由 λa+μb=0 可得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。2)必要性,∵向量a与b共线,且a≠0,则由 共线向量基本定理 知,b=λa;又∵b≠0,∴λ≠0; 取 μ=-1≠0,就有 λa+μb=0,实数λ、μ全不为零。证毕。推论3如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得 λa+μb=0,那么λ=μ=0。证明:(反证法)不妨假设μ≠0,则由 推论1 知,向量a、b共线;这与已知向量a、b不共线矛盾,故假设是错的,所以λ=μ=0。证毕。推论4如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得向量PC=(1-λ)向量PA+λ向量PB。(其中,向量AC=λ向量AB)。证明:∵三点P、A、B不共线,∴向量AB≠0,由 共线向量基本定理 得,点C在直线AB上 <=> 向量AC 与 向量AB 共线 <=> 存在唯一实数λ,使 向量AC=λ·向量AB∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线,∴向量AC=λ·向量AB <=> 向量PC-向量PA=λ·(向量PB-向量PA) <=> 向量PC=(1-λ)向量PA+λ·向量PB。证毕。推论5如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一一对实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1)证明:在推论4 中,令 1-λ=μ ,则λ+μ=1,知:三点P、A、B不共线 <=> 点C在直线AB上的充要条件是:存在实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1)下面证唯一性,若 向量PC=m向量PA+n向量PB,则 m向量PA+n向量PB=λ向量PA+μ向量PB,即,(m-λ)向量PA+(n-μ)向量PB=0,∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线,由 推论3 知,m=λ,n=μ。证毕。推论6如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。2023-05-14 17:27:421
向量有什么定理吗?
向量共线定理:若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。两向量平行(共线)有且只有两种情况:两向量所在直线平行,换句话说就是,只要是两条平行直线上的两个向量,都可互称为平行向量(共线向量),与二者的位置、方向相同还是相反无关。两向量所在直线重合。换句话说就是,只要两个向量所在直线重合(或是同一条直线上的两个向量),则这两个向量互称为平行向量(共线向量)。与二者的位置、方向相同还是相反无关。2023-05-14 17:27:481
共线向量基本定理的推论
两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。证明:1)充分性,不妨设μ≠0,则由 λa+μb=0 得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。2)必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。证毕。 两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。证明:1)充分性,∵μ≠0,∴由 λa+μb=0 可得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。2)必要性,∵向量a与b共线,且a≠0,则由 共线向量基本定理 知,b=λa;又∵b≠0,∴λ≠0; 取 μ=-1≠0,就有 λa+μb=0,实数λ、μ全不为零。证毕。 如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得 λa+μb=0,那么λ=μ=0。证明:(反证法)不妨假设μ≠0,则由 推论1 知,向量a、b共线;这与已知向量a、b不共线矛盾,故假设是错的,所以λ=μ=0。证毕。 如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得向量PC=(1-λ)向量PA+λ向量PB。(其中,向量AC=λ向量AB)。证明:∵三点P、A、B不共线,∴向量AB≠0,由 共线向量基本定理 得,点C在直线AB上 <=> 向量AC 与 向量AB 共线 <=> 存在唯一实数λ,使 向量AC=λ·向量AB∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线,∴向量AC=λ·向量AB <=> 向量PC-向量PA=λ·(向量PB-向量PA) <=> 向量PC=(1-λ)向量PA+λ·向量PB。证毕。 如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一一对实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1)证明:在推论4 中,令 1-λ=μ ,则λ+μ=1,知:三点P、A、B不共线 <=> 点C在直线AB上的充要条件是:存在实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1)下面证唯一性,若 向量PC=m向量PA+n向量PB,则 m向量PA+n向量PB=λ向量PA+μ向量PB,即,(m-λ)向量PA+(n-μ)向量PB=0,∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线,由 推论3 知,m=λ,n=μ。证毕。 如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。证明:1)充分性,由推论5 知,若三点P、A、B不共线,则 点C在直线AB上 <=> 存在实数λ、μ,使得 向量PC=λ向量PA+μ向量PB(其中,λ+μ=1)。取ν=-1,则有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,且实数λ、μ、ν不全为零。2)必要性,不妨设ν≠0,且有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,则 向量PC=(λ/ν)·向量PA+(μ/ν)·向量PB,(-λ/ν)+(-μ/ν)=1。由推论5 即知,点C在直线AB上。证毕。 点P是直线AB外任意一点,那么三不同点A、B、C共线的充要条件是:存在全不为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。证明:(反证法)∵点P是直线AB外任意一点,∴向量PA≠0,向量PB≠0,向量PC≠0,且 向量PA、向量PB、向量PC两两不共线。由推论6 知,实数λ、μ、ν不全为零,1)假设实数λ、μ、ν中有两个为零,不妨设λ≠0,μ=0,ν=0。则 λ向量PA=0,∴向量PA=0。这与向量PA≠0。2)假设实数λ、μ、ν中有一个为零,不妨设λ≠0,μ≠0,ν=0。则 λ向量PA+μ向量PB=0,∴向量PA=(μ/λ)·向量PB,∴向量PA 与 向量PB共线,这与向量PA 与 向量PB不共线矛盾。证毕。2023-05-14 17:28:071
向量必杀五个定理是什么?
只有两个定理:平面向量基本定理、共面向量基本定理。如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2。 向量组I(含有s个向量)可以由向量组II(含有t个向量)线性表示,则 秩(I)≤秩(II)。这时候得不出关于s与t的任何关系式,只能是 秩(I)≤秩(II)≤t。相关介绍:在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。向量的记法:印刷体记作粗体的字母(如a、b、u、v);手写体在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。2023-05-14 17:28:211
向量a=0, b=0,则a共线条件是什么
b=λa,λ不等于零。基本定理:如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。拓展资料:(1)共线向量基本定理如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。(2)推论1.两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。2.如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得 λa+μb=0,那么λ=μ=0。3.如果三点M、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得向量MC=(1-λ)向量MA+λ向量MB。4.如果三点M、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一一对实数λ、μ,使得向量MC=λ向量MA+μ向量MB。5.如果三点M、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得λ向量MA+μ向量MB+ν向量MC=0,λ+μ+ν=0。6.点M是直线AB外任意一点,那么三不同点A、B、C共线的充要条件是:存在全不为零的实数λ、μ、ν,使得λ向量MA+μ向量MB+ν向量MC=0,λ+μ+ν=0。参考资料:百度百科2023-05-14 17:28:341
向量必杀五个定理是啥
只有两个定理:平面向量基本定理。共面向量基本定理。如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2。 向量组I(含有s个向量)可以由向量组II(含有t个向量)线性表示,则 秩(I)≤秩(II)。这时候得不出关于s与t的任何关系式,只能是 秩(I)≤秩(II)≤t。比较共线向量与平行向量关系:由于任何一组平行向量都可移到同一直线上,故平行向量也叫做共线向量。平行向量与相等向量的关系:相等的向量一定平行,但是平行的向量并不一定相等。两个向量相等并不一定这两个向量一定要重合。只用这两个向量长度相等且方向相同即可。其中“方向相同”就包含着向量平行的含义。2023-05-14 17:28:591
向量共线定理λ+μ怎么读
读:兰亩达+miu向量共线定理:若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m∣a∣。那么当向量a与b同方向时,令λ=m,有 b=λa,当向量a与b反方向时,令λ=-m,有b=λa。如果b=0,那么λ=0。唯一性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。2023-05-14 17:29:141
如果a=0,那么向量b与a共线的充要条件是什么?
如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。共线向量的定义:共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。扩展资料:2023-05-14 17:29:201
向量共面的条件是什么?
向量共面的条件如下:设三个向量是向量a,向量b,向量c。则向量a,向量b,向量c共线的充要条件是:存在两个实数x,y,使得向量a=x向量b+y向量c。(即一个向量可以写成另外两个向量的线性组合)。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。基本定理:共线向量定理:两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb。共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。空间向量分解定理:如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。2023-05-14 17:29:451
等和线定理是什么?
向量等和线定理是相等的向量一定平行,但是平行的向量并不一定相等。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。证明:1)充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义知,向量a与b共线。2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有 b=λa,当向量a与b反方向时,令 λ=-m,有 b=λa。如果b=0,那么λ=0。3)唯一性:如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。2023-05-14 17:29:591
向量与向量之间可以共线吗?
如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。共线向量的定义:共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。扩展资料:2023-05-14 17:30:111
平面向量基本定理和公式
如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。 坐标表示 在平面直角坐标系中,分别取与x轴,y轴方向相同的两个单位向量i、j作为基底,a为坐标平面内的任意向量,以坐标原点O为起点作向量OP=a。有平面向量基本定理可知,有且只有一对实数x、y,使得 向量OP=xi+yj。 因此向量,a=xi+yj。 我们把实数(x,y)对叫做向量的坐标,记作:a=(x,y)。 显然,其中(x,y)就是点P的坐标。 向量OP称为点P的位置向量。 共面向量 共面向量基本定理:如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。(x,y不全为零) 归纳反思 1.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。 2.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择两个不共线的向量 ,平面内的任何一个向量都可以唯一表示,这样几何问题就可以转化为代数问题。 平面向量基本定理 如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。事实上,这个定理表明,平面向量可以在任意给定的两个方向上分解,任意两个向量都可以合成一个给定的向量,即向量的合成和分解。 当两个方向相互垂直时,它们实际上是在直角坐标系中分解的,(x,y)称为矢量的坐标。(矢量的起点是原点)所以这个定理为矢量的坐标表示提供了理论基础。2023-05-14 17:30:231
为什么平面向量的基本定理中要求e1e2不共线?
平面向量基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2。分析,如果E1和E2共线,就会存在无数个有序实数对使得A=XE1+YE2。2023-05-14 17:30:311
证明线面平行的方法
证明线面平行的方法如下:1、利用定义:线面平行(即直线与平面无任何公共点)。2、利用判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;(只需在平面内找一条直线和平面外的直线平行就可以)。3、利用面面平行的性质:两个平面平行,则一个平面内的直线必然平行于另一个平面。4、空间向量法:即证明直线的向量与平面的法向量垂直,就可以说明该直线与平面平行。线面平行,几何术语。定义为一条直线与一个平面无公共点(不相交),称为直线与平面平行。判定定理如下:1、平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。已知:a∥b,a⊄α,b⊂α,求证:a//α。反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α。因为a//b,所以A不在b上,在α内过A作c//b,则a∩c=A,又因为 a//b,b//c,所以a//c,与a∩c=A矛盾,所以假设不成立,a//α。向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。因为b⊂α,所以b⊥p,即p·b=0,因为a//b,由共线向量基本定理可知存在一实数k使得a=kb,那么p·a=p·kb=kp·b=0,即a⊥p,所以a//α。2、平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。已知:a⊥b,b⊥α,且a不在α上。求证:a//α。证明:设a与b的垂足为A,b与α的垂足为B。假设a与α不平行,那么它们相交,设a∩α=C,连接BC由于不在直线上的三个点确定一个平面,因此ABC首尾相连得到△ABC。因为B∈α,C∈α,b⊥α,所以b⊥BC,即∠ABC=90°,因为a⊥b,即∠BAC=90°,所以在△ABC中,有两个内角为90°,这是不可能的事情。所以假设不成立,a//α。2023-05-14 17:30:381
反向共线怎么算
你好。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。2023-05-14 17:31:081
高一数学平面向量该如何学习
一、基本知识: 1.向量的概念及其表示方法:既有大小又有方向的量叫做向量,用有向线段表示,有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向。2.向量的运算向量运算定义坐标运算运算律加法己知向量 、 ,在平面内任取一点 ,解 , ,则向量 叫做 与 的和,记作 ;求两个向量和的运算,叫做向量的加法。减法向量 加上 的相反的向量,叫做 与 的差;求两个向量差的运算,叫做向量的减法实数与向量的积,其中当 与 同向, ;当 时 与 反向, 向量的数量职二、重要定理、公式 1.平面向量基本定理:若 、 是同一平面内的两个不共线的向量,那么,对该平面内的任一向量 ,有且只有一对实数 、 ,使 2.两个向量平行的充要条件:∥ 若 , 则∥ 3.两个非零向量垂直的充要条件:若 , 则4.线段的定比分点坐标公式:设 , , ,且 ,则当 时,得中点坐标公式 5.平移公式:若点 按向量 平移至 ,则 6.正弦定理、余弦定理:(1)正弦定理: (2)余弦定理:三、学习要求和需要注意的问题 1.学习要求(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念。(2)掌握向量的加法与减法的运算法则及运算律。(3)掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。(4)了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量可以处理有关长度、角度和垂直问题,掌握向量垂直的条件(6)掌握线段的定比分点和中点坐标公式,并且能熟悉运用;掌握平移公式。(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。(8)通过解三角形的应用学习,继续提高运用所学知识解决实际问题的能力。2.需要注意的问题(1)这一章里,我们学习的向量具有大小和方向两个要素,用有向线段表示向量时,与有向线段起点的位置没有关系,同向且等长的有向线段都表示同一向量。(2)共线向量和平面向量的两条基本定理,揭示了共线向量和平面向量的基本结构,它们是进一步研究向量的基础。(3)向量的数量积是一个数,当两个向量的夹角是锐角时,它们的数量积大于0;当两个向量的夹角是钝角时,它们的数量积小于0;当两个向量的夹角是90°时,它们的数量积等于0,零向量与任何向量的数量积等于0。(4)通过向量的数量积,可以计算向量的长度、平面内两点间的距离、两个向量的夹角、判断相应的两条直线是否垂直。(5)数量积不满足结合律,这是因为 与 的结果都是数量,所以 与 都没有意义,当然就不可能相等。2023-05-14 17:31:171
线面平行的判断方法是什么?
性质定理:直线L平行于平面α,平面β经过L且与平面α相交于直线L‘,则L∥L‘;判定定理:直线L‘在平面α上,直线L不在平面α上,且L"∥L,则L∥α。判定定理、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行,性质定理、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。线面平行证明已知:a∥b,a⊄α,b⊂α,求证:a∥α反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α∵a∥b,∴A不在b上在α内过A作c∥b,则a∩c=A又∵a∥b,b∥c,∴a∥c,与a∩c=A矛盾。∴假设不成立,a∥α向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。∵b⊂α∴b⊥p,即p·b=0∵a∥b,由共线向量基本定理可知存在一实数k使得a=kb那么p·a=p·kb=kp·b=0即a⊥p∴a∥α以上内容参考:百度百科——线面平行2023-05-14 17:31:231
共面向量定理为什么要求ab不共线
1.根据定义,平行于同一个平面的向量叫做共面向量. 2.空间中任意一个向量都可以平移. 因此 根据平面向量基本定理,平面中的任意一个向量的都可以用两个不共线的向量来表示. 如果这两个向量共线的话,只能表示与之平行的那些向量,而无法表示其它所有的向量.2023-05-14 17:31:381
高一数学平面向量该如何学习
重点在数量积部分,必考必考啊2023-05-14 17:31:582
平面基本向量与向量共线的区别与联系
平面基本向量和向量共线的区别在于,平面基本向量是指在平面上的两个向量,它们的方向不同,但是它们的终点都在同一个点上;而向量共线是指在平面上的两个向量,它们的方向相同,但是它们的终点不在同一个点上。它们的联系在于,它们都是在平面上的两个向量,它们都有自己的方向和终点。2023-05-14 17:32:081
共面向量基本定理
共面向量定理是能平移到同一平面上的三个向量叫做共面向量。共面向量定理是数学学科的基本定理之一。属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂问题。共面定理得内容为:如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在有序实数对(x,y),使p=xa+yb。推论:共面向量是一组有特殊位置关系的向量,即平行于同一个平面的一组向量、零向量与任何一组共面的向量共面,设O、A、B、C是不共面的四点,则对空间任意一点P,都存在唯一的有序实数组(x,y,z)。空间任一点P位于平面MAB内的充要条件是:存在有序实数对{x.y},使MP=xMA+yMB或对空间任一定点O,有OP=OM+xMA+yMB。2023-05-14 17:32:151
平面向量基本定理与向量共线定理在内容和表达形式上有什么区别与联系
若a向量与b向量共线,a=kbk为常数追问:两者到底有什么区别追问:平面向量基本定理有什么作用?2023-05-14 17:32:331
共面向量定理的内容
如果两个向量a.b不共线,则向量p与向量a.b共面的充要条件是存在有序实数对(x.y),使 p=xa+yb定义为:能平移到同一平面上的三个向量叫做共面向量2023-05-14 17:32:422