汉邦问答 / 问答 / 问答详情

共线向量的概念

2023-05-14 13:59:29
人类地板流精华

两个向量的方向相同或者相反,则称两个向量共线又叫做平行

a,b共线则 b=λa (λ≠0)

什么是共线向量 共线向量是什么

共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b 。任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为,如果 a≠0,那么向量b与a共线的充要条件是,存在唯一实数λ,使得 b=λa。共线向量的充分性,对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义知,向量a与b共线。共线向量的唯一性,如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。
2023-05-14 12:30:371

向量共线是什么

  共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量。   任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。   数学中,向量,指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量,数量只有大小,没有方向。
2023-05-14 12:30:441

什么是共线向量?

一向量可以用另一个向量和一个数相乘,则这两个向量共线
2023-05-14 12:30:535

共线向量的概念

x+y=1令a为原点(方便计算,任意点都可)设出b,c,d的坐标,因为向量bc//向量cd则向量bc=q*向量cd(q是一个倍数,任意设的)(*)因为ac-ab=bc,ad-ac=cd(均为向量),将这些坐标全部代入(*)式,可得到形如:ab=x*ac+y*ad的形式,其中x,y是用q表示的,恰好和为1。得证。
2023-05-14 12:31:175

向量共线指的是什么

向量共线定理:若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。两向量平行(共线)有且只有两种情况:两向量所在直线平行,换句话说就是,只要是两条平行直线上的两个向量,都可互称为平行向量(共线向量),与二者的位置、方向相同还是相反无关。两向量所在直线重合。换句话说就是,只要两个向量所在直线重合(或是同一条直线上的两个向量),则这两个向量互称为平行向量(共线向量)。与二者的位置、方向相同还是相反无关。
2023-05-14 12:31:311

共线向量是什么啊?有什么公式没? 求教,

方向相同或相反的非零向量叫平行向量(equal vector).表示为a∥b  任意一组平行向量都可移到同一直线上,  因此平行向量也叫共线向量(collinear vectors).  规定:0向量与任意向量平行.  向量共线的充要条件:...
2023-05-14 12:31:471

共线向量一定在同一条直线上?

平行向量就是共线向量,因为向量可以在平面内平移不对。
2023-05-14 12:32:085

向量共线条件

平面向量共线的条件零向量与任何向量共线以下考虑非零向量,三个方法(1)方向相同或相反(2)向量a=k向量b(3)a=(x1,y1),b=(x2,y2)a//b等价于x1y2-x2y1=0
2023-05-14 12:32:232

向量共线什么意思

两个向量共线就是两个向量平行。简言之,共线向量就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。 共线向量基本定理 如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。 1.充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。 2.必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m∣a∣。那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。如果b=0,那么λ=0。 3.唯一性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。 向量共线证明 要证明两个向量共线,只须证明它们之间有一个倍数关系即可。 例:已知e1、e2是不共线的单位向量,向量a=e1+2e2,b=-2e1+e2,c=4e1+3e2,求证明:a与b+c共线。 证明:∵b+c=(-2e1+e2)+(4e1+3e2)=2e1+4e2=2(e1+2e2)=2a ∴a与b+c共线。
2023-05-14 12:32:291

两个向量共线.能得出什么性质

平行向量就是共线向量 所以a=λb 或者 设向量a(x,y)向量b(x1,y1) 若向量a平行向量b 则xy1=yx1 (内向等于外向)
2023-05-14 12:32:382

向量共线是指什么,共线向量

平行向量(也叫共线向量):方向相同或相反的非零向量a、b叫做平行向量,记作:a∥b,a,b共线则 b=λa (λ≠0)另外规定零向量和任何向量平行。
2023-05-14 12:32:472

平面向量里面的共线是什么意思

[编辑本段]相等向量与共线向量  长度相等且方向相同的向量叫做相等向量。  两个方向相同或相反的非零向量叫做平行向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,共线向量是平行向量,平行向量包含共线向量参考资料:http://baike.baidu.com/view/1431240.htm
2023-05-14 12:32:561

共线向量怎么个定义?

相同的,两个向量共线就是指两个向量在同一直线上,方向可能相同也可能相反,也就是共线向量的定义。
2023-05-14 12:33:022

空间向量如何共线?

设a=(x1,y1),b=(x2,y2),如果x2/x1=y2/y1,也就是x1y2=x2y1,则共线。分四种情况:①横坐标都为0的两个向量共线。②纵坐标都为0的俩个向量共线。③0向量(横、纵坐标都是0)与任何向量共线。④横坐标之比等于纵坐标之比的两个向量共线(其中,比值为正则同向,比值为负则反向)。平面向量:a=(a1,a2),b=(b1,b2),则 a//b <=> a1b2 = a2b1 。空间向量:a=(a1,a2,a3),b=(b1,b2,b3),则 a//b <=> 存在实数 x、y 使 xa = yb ,用坐标写出来就是 a1/b1 = a2/b2 = a3/b3 。当然这个成比例是有一个前提,就是它们非零。如果有0,则对应的也为0扩展资料向量的线性运算、向量的数量积与向量积的计算方法:向量的加法向量的加法满足平行四边形法则和三角形法则。向量的加法OB+OA=OC.向量的减法如果a、b是互为相反的向量。那么a=-b,b=-a,a+b=0.0的反向量为0向量的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π。
2023-05-14 12:33:091

两个向量共线说明什么

两个向量共线说明两个向量是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。
2023-05-14 12:33:221

两向量共线公式

两者共线时ad=bc。若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数)。向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使λa+μb=0。更一般的,平面内若a=(p1,p2),b=(q1,q2),a∥b的充要条件是p1·q2=p2·q1。共线向量也是平行向量,方向相同或相反的非零向量称为平行向量,用a∥b、 任何一组平行向量都可以移动到同一直线上,因此称为共线向量。共线向量的基本定理表明,如果≠0,则向量b与a共线的充要条件是存在唯一实数λ,使得b=λa。充分性,不妨设μ≠0,则由 λa+μb=0 得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。
2023-05-14 12:33:311

请问在向量中什么叫共线?

平行向量就是共线向量
2023-05-14 12:34:015

什么是向量的共线? 什么事向量平行?

向量共线即是向量平行。向量共线与向量平行可以不加区别,等同看待。因为高中课本中所说的向量都是自由向量,也就是说向量的起点可以任意移动,即向量平移后依然被看作是同一个向量。所以两个向量共线,可以认为它们平行,反之,两个向量平行,也可以认为它们共线,条件可以互用。 如果用(x,y)形式表示向量,如(2,5)肯定和(2,5)两个向量共线;向量(4,10)就与向量(2,5)平行。共线平行定理:若向量a不等于0,向量b//向量a的充要条件是:存在唯一的实数k,使 向量b=k(向量a).若向量a=(a1,a2),向量b=(b1,b2),向量b=k(向量a),即(b1,b2)=k(a1,a2),(b1,b2)=(ka1,ka2),有b1=ka1,b2=ka2.因为 a1,a2,b1,b2都是待定量,含有它们分别相等或分别成比例的两层意思,一般,k=1,向量a向量b就是同一个向量,即共线;k不等于1,向量a向量b(用数字表示是不一样的),那就是平行。
2023-05-14 12:34:171

向量的共线与共线向量有什么关系

两向量共线指的是两个向量平行,就是共线向量。向量的共线是指两向量在同一直线上,平移后就不在一条直线上了。
2023-05-14 12:34:251

向量共线怎么判断,还有怎么计算向量共线

已知空间任意一点O和不共线的三点A.B.C,则点P位于平面ABC内的充要条件是:存在x.y.z∈R,满足x+y+z=1使OP=xOA+yOB+zOC。证明:(充分性)∵x+y+z=1∴z=1-x-y又∵OP=xOA+yOB+zOC∴OP=xOA+yOB+(1-x-y)OCOP=x(OA-OC)+y(OB-OC)+OCOP-OC=x(OA-OC)+y(OB-OC)∴CP=xCA+yCB又由已知条件A、B、C三点不共线可得CA、CB是不共线向量∴根据平面向量的基本定理可知,点P位于平面ABC内∴充分性成立(必要性)∵点P位于平面ABC内又由已知条件A、B、C三点不共线可得CA、CB是不共线向量∴根据平面向量的基本定理可知,存在实数x,y使得CP=xCA+yCB∴OP-OC=x(OA-OC)+y(OB-OC)OP=x(OA-OC)+y(OB-OC)+OCOP=xOA+yOB+(1-x-y)OC令z=1-x-y则x+y+z=1且OP=xOA+yOB+zOC即,存在实数x、y、z满足x+y+z=1,使得OP=xOA+yOB+zOC∴必要性成立
2023-05-14 12:34:332

相等的两个向量一定是共线向量么??要详细回答 谢谢

人教版教材上说两个方向相同或相反的非零向量叫平行向量,然后规定零向量与任意向量平行,而平行向量又叫共线向量,所以你们老师说的应该是对的
2023-05-14 12:35:585

怎么证明两个向量共线

若存在唯一实数λ使得向量a= λ向量b,则向量a平行向量b
2023-05-14 12:36:142

计算两向量共线

若存在唯一实数λ使得向量a=λ向量b,则向量a平行向量b,或已知两向量坐标对应成比例
2023-05-14 12:36:232

如何证明两向量共线?

3点共线:首先证明他们是平行向量,然后证明,一向量的终点与另一向量的起点相同,或者起点与起点相同,终点与终点相同,…就可以证明了。4点共面:证明两个向量是平行向量(且不共线)就可以说明4点共面。
2023-05-14 12:36:311

向量的共线冲要条件

向量共线的充要条件是由实数与向量的积推出的,它是平面向量的基本定理的一种特殊情况,具体内容为:向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa,由于零向量与任一向量共线,故上述定理又可叙述为向量b与向量a共线的充要条件是:存在不全为0的实数λ1,λ2,使得λ1a+λ2b=0,它的逆否命题为:若向量a,b不共线,(a≠0,b≠0),且λ1a+λ2b=0,则λ1=λ2=0,这些结论可用来证明几何中三点共线与两直线平行等问题.
2023-05-14 12:36:391

谁给解释一下向量共线定理

共线向量基本定理:设a、b是共线向量(平行向量),且b≠0,则存在唯一实数λ,使a=λb。三点共线:设平面内三个不同点A、B、C,O是平面内异于A、B、C的任一点,则A、B、C三点共线的充要条件是:存在实数x,y,使OA=xOB+yOC,且x+y=1。
2023-05-14 12:36:571

向量共线的问题。

你的题设已经告知你只能是这个情况了因为a,b向量不共线那么不可能相等啦方向都不同啊那么只能向量的系数均为0了
2023-05-14 12:37:043

向量共线问题

方向相同或相反的非零向量叫平行向量。表示为a∥b  任意一组平行向量都可移到同一直线上,  因此平行向量也叫共线向量。  规定:0向量与任意向量平行。  向量共线的充要条件:  若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数)。  向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使λa+μb=0  更一般的,平面内若a=(p1,p2)b=(q1,q2),a∥b的充要条件是p1·q2=p2·q1是否可以解决您的问题?
2023-05-14 12:37:121

坐标向量中一对共线向量怎么判断是同向还是反向?

向量有大小和方向,判断平行向量同向还是异向可以让两个平行向量作内积,也就是点乘;如果为正是为同向平行,如果为负是为异向平行。
2023-05-14 12:37:202

两个共线向量方向相同吗?

这里的a书上有说的!存在一个数λ,b均为向量,则向量a与b同向,则反向,(注,这里的λ可正可负,若λ为正值,λ为负值。亲~你木有好好看书哦,使得a=λb(λ不等于0)成立。)则向量a与b共线
2023-05-14 12:37:293

两个向量共线,那么这两个向量一定线性相关吗

两个向量共线,那么这两个向量一定线性相关吗? 证明:如果a,b共线,则存在一个非零整数n使得a=nb,于是a-nb=0,于是a,b线性相关
2023-05-14 12:37:351

共线向量怎么个定义? 不是共于一线吗

所谓共线向量,就是方向相同或者相反的两个向量.零向量与任何非零向量共线.
2023-05-14 12:37:421

要想是共线向量必须满足什么条件

共线向量之间就差一个倍数关系。凡有倍数关系的就共线,没有倍数关系的就不共线。如(1,2)与(3,6)就共线,因为 (3,6)=3(1,2),(-1,3)与(1,3)就不共线 。
2023-05-14 12:37:501

向量共线时两个向量的乘积有什么特点?

0
2023-05-14 12:37:593

什么叫做共线向量

表示两个向量的有向线段所在的直线平行或重合
2023-05-14 12:40:365

什么叫做共线向量

共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。1)充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义 知,向量a与b共线。2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 _b_=m_a_。那么当向量a与b同方向时,令 λ=m,有 b =λa,当向量a与b反方向时,令 λ=-m,有 b=λa。如果b=0,那么λ=0。3)唯一性:如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。扩展资料共线向量的来源:向量的名词虽来自哈密顿,但向量作为一条有向线段的思想却由来已久。向量理论的起源与发展主要有三条线索:物理学中的速度和力的平行四边形法则、位置几何、复数的几何表示。物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。参考资料来源:百度百科-共线向量基本定理
2023-05-14 12:41:131

共线向量的定义是什么

  共线向量的定义是什么 篇1   共线向量基本定理,数学术语。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。   共线向量基本定理   如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。   证明:   1)充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的"定义知,向量a与b共线。   2)必要性 : 已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有b=λa,当向量a与b反方向时,令 λ=-m,有b=λa。如果b=0,那么λ=0。   3)唯一性:如果b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。   共线向量的定义是什么 篇2   共线向量的定义   平行向量,也叫共线向量。是指方向相同或相反的非零向量。零向量和任何向量平行。   共线向量与其它比较   共线向量与平行向量关系   由于任何一组平行向量都可移到同一直线上,故平行向量也叫做共线向量。   平行向量与相等向量的关系   相等的向量一定平行,但是平行的向量并不一定相等。两个向量相等并不一定这两个向量一定要重合。只用这两个向量长度相等且方向相同即可。其中“方向相同”就包含着向量平行的含义 。   共线向量的基本内容   向量:既有大小又有方向的`量叫向量。   零向量:长度为0的向量,记作 。   单位向量:长度为1个单位长度的向量。   平行向量:也叫共线向量,方向相同或相反的非零向量。   相等向量:长度相等且方向相同的向量。
2023-05-14 12:41:281

向量共线是什么意思

两个向量共线就是两个向量平行。简言之,共线向量就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理1.充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。2.必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m∣a∣。那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。如果b=0,那么λ=0。3.唯一性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。
2023-05-14 12:41:351

向量共线定理

共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是存在唯一实数λ,使得b等于λa。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。向量共线的概括在数学中,向量也称为欧几里得向量、几何向量、矢量,指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指代表向量的方向,线段长度代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量。几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的向量是哪一种概念。
2023-05-14 12:41:581

如何证明两向量共线?

3点共线:首先证明他们是平行向量,然后证明,一向量的终点与另一向量的起点相同,或者起点与起点相同,终点与终点相同,…就可以证明了。4点共面:证明两个向量是平行向量(且不共线)就可以说明4点共面。
2023-05-14 12:42:173

向量共线定理

向量共线定理:若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。两向量平行(共线)有且只有两种情况:两向量所在直线平行,换句话说就是,只要是两条平行直线上的两个向量,都可互称为平行向量(共线向量),与二者的位置、方向相同还是相反无关。两向量所在直线重合。换句话说就是,只要两个向量所在直线重合(或是同一条直线上的两个向量),则这两个向量互称为平行向量(共线向量)。与二者的位置、方向相同还是相反无关。
2023-05-14 12:42:311

两个向量共线公式

两个向量共线公式:向量m=(a,b),向量n=(c,d),两者共线时ad=bc。若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数)。向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使λa+μb=0。更一般的,平面内若a=(p1,p2),b=(q1,q2),a∥b的充要条件是p1·q2=p2·q1。
2023-05-14 12:42:501

三点共线向量公式

三点共线向量公式:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)。三点共线指的是三点在同一条直线上。可以设三点为A、B、C,利用向量证明:λAB=AC(其中λ为非零实数)。三点共线证明方法:方法一:取两点确立一条直线,计算该直线的解析式.代入第三点坐标看是否满足该解析式(直线与方程)。方法二:设三点为A、B、C,利用向量证明:λAB=AC(其中λ为非零实数)。方法三:利用点差法求出AB斜率和AC斜率,相等即三点共线。方法四:用梅涅劳斯定理。
2023-05-14 12:43:091

共线向量一定在同一条直线上?

平行向量就是共线向量,因为向量可以在平面内平移不对。
2023-05-14 13:33:415

向量共线定理

向量共线定理:若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。两向量平行(共线)有且只有两种情况:两向量所在直线平行,换句话说就是,只要是两条平行直线上的两个向量,都可互称为平行向量(共线向量),与二者的位置、方向相同还是相反无关。两向量所在直线重合。换句话说就是,只要两个向量所在直线重合(或是同一条直线上的两个向量),则这两个向量互称为平行向量(共线向量)。与二者的位置、方向相同还是相反无关。
2023-05-14 13:33:581

若两个向量共线.则可以得到什么公式

如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。证明:1)充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义 知,向量a与b共线。2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有 b =λa,当向量a与b反方向时,令 λ=-m,有 b=-λa。如果b=0,那么λ=0。3)唯一性:如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。推论1两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。证明:1)充分性,不妨设μ≠0,则由 λa+μb=0 得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。2)必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。证毕。推论2两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。证明:1)充分性,∵μ≠0,∴由 λa+μb=0 可得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。2)必要性,∵向量a与b共线,且a≠0,则由 共线向量基本定理 知,b=λa;又∵b≠0,∴λ≠0; 取 μ=-1≠0,就有 λa+μb=0,实数λ、μ全不为零。证毕。推论3如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得 λa+μb=0,那么λ=μ=0。证明:(反证法)不妨假设μ≠0,则由 推论1 知,向量a、b共线;这与已知向量a、b不共线矛盾,故假设是错的,所以λ=μ=0。证毕。推论4如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得向量PC=(1-λ)向量PA+λ向量PB。(其中,向量AC=λ向量AB)。证明:∵三点P、A、B不共线,∴向量AB≠0,由 共线向量基本定理 得,点C在直线AB上 <=> 向量AC 与 向量AB 共线 <=> 存在唯一实数λ,使 向量AC=λ·向量AB∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线,∴向量AC=λ·向量AB <=> 向量PC-向量PA=λ·(向量PB-向量PA) <=> 向量PC=(1-λ)向量PA+λ·向量PB。证毕。推论5如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一一对实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1)证明:在推论4 中,令 1-λ=μ ,则λ+μ=1,知:三点P、A、B不共线 <=> 点C在直线AB上的充要条件是:存在实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1)下面证唯一性,若 向量PC=m向量PA+n向量PB,则 m向量PA+n向量PB=λ向量PA+μ向量PB,即,(m-λ)向量PA+(n-μ)向量PB=0,∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线,由 推论3 知,m=λ,n=μ。证毕。推论6如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。证明:1)充分性,由推论5 知,若三点P、A、B不共线,则 点C在直线AB上 <=> 存在实数λ、μ,使得 向量PC=λ向量PA+μ向量PB(其中,λ+μ=1)。取ν=-1,则有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,且实数λ、μ、ν不全为零。2)必要性,不妨设ν≠0,且有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,则 向量PC=(λ/ν)·向量PA+(μ/ν)·向量PB,(-λ/ν)+(-μ/ν)=1。由推论5 即知,点C在直线AB上。证毕。推论7点P是直线AB外任意一点,那么三不同点A、B、C共线的充要条件是:存在全不为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。证明:(反证法)∵点P是直线AB外任意一点,∴向量PA≠0,向量PB≠0,向量PC≠0,且 向量PA、向量PB、向量PC两两不共线。由推论6 知,实数λ、μ、ν不全为零,1)假设实数λ、μ、ν中有两个为零,不妨设λ≠0,μ=0,ν=0。则 λ向量PA=0,∴向量PA=0。这与向量PA≠0。2)假设实数λ、μ、ν中有一个为零,不妨设λ≠0,μ≠0,ν=0。则 λ向量PA+μ向量PB=0,∴向量PA=(μ/λ)·向量PB,∴向量PA 与 向量PB共线,这与向量PA 与 向量PB不共线矛盾。证毕。
2023-05-14 13:34:173

如何证明两向量共线?

共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。证明:1、充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义 知,向量a与b共线。2、必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 _b_=m_a_。那么当向量a与b同方向时,令 λ=m,有 b =λa,当向量a与b反方向时,令 λ=-m,有 b=λa。如果b=0,那么λ=0。3、唯一性:如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。扩展资料:向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 [1]  如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。参考资料来源:百度百科——共线向量基本定理
2023-05-14 13:34:311

矩阵的内积是什么意思?

矩阵的内积参照向量的内积的定义是 两个向量对应分量乘积之和.比如: α=(1,2,3), β=(4,5,6)则 α, β的内积等于 1*4 +2*5 + 3*6 = 32α与α 的内积 = 1*1+2*2+3*3 = 14.拓展资料:内积(inner product),又称数量积(scalar product)、点积(dot product)是一种向量运算,但其结果为某一数值,并非向量。其物理意义是质点在F的作用下产生位移S,力F所做的功,W=|F||S|cosθ。在数学中,数量积(dot product; scalar product,也称为点积)是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。 两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为: a·b=a1b1+a2b2+……+anbn。 使用矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为: a·b=a*b^T,这里的b^T指示矩阵b的转置。
2023-05-14 12:30:121

向量内积(a,b+c)

∵a+b+c=0,|a|=3,|b|=4,|c|=5 ∴ab的夹角的余弦值:cosC=0 bc夹角的余弦值:cosA=b/c=4/5 ac夹角的余弦值:cosB=a/c=3/5 a·b+b·c+c·a =3*4*0+4*5*4/5+3*5*3/5 =16+9 =25
2023-05-14 12:30:061

线性代数中内积的概念

在数学中,数量积(dot product; scalar product,也称为点积)是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:a·b=a1b1+a2b2+……+anbn。使用矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为:a·b=a^T*b,这里的a^T指示矩阵a的转置。正交变换是线性变换的一种,它从实内积空间V映射到V自身,且保证变换前后内积不变。 因为向量的模长与夹角都是用内积定义的,所以正交变换前后一对向量各自的模长和它们的夹角都不变。特别地,标准正交基经正交变换后仍为标准正交基。扩展资料点积的值:u的大小、v的大小、u,v夹角的余弦。在u,v非零的前提下,点积如果为负,则u,v形成的角大于90度;如果为零,那么u,v垂直;如果为正,那么u,v形成的角为锐角。两个单位向量的点积得到两个向量的夹角的cos值,通过它可以知道两个向量的相似性,利用点积可判断一个多边形是面向摄像机还是背向摄像机。向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物体离光照的轴线越近,光照越强。参考资料来源:百度百科-点积
2023-05-14 12:29:511