汉邦问答 / 问答 / 问答详情

勾股定理起源?

2023-05-13 08:33:27

勾股定理是怎么样一个故事?起源是什么,怎么发现这条定理的?

北有云溪

来源见下面:

在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

康康map

公元前11世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

到公元3世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中也证明了勾股定理。

西方最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。所以在西方,勾股定理称为“毕达哥拉斯定理”。

关于勾股定理的名称,在我国,以前叫毕达哥拉斯定理,这是随西方数学传入时翻译的名称。20世纪50年代,学术界曾展开过关于这个定理命名的讨论,最后用“勾股定理”,得到教育界和学术界的普遍认同。

勾股定理

扩展资料

意义

1.勾股定理的证明是论证几何的发端;

2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;

3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

参考资料:百度百科-勾股定理

善士六合

公元前11世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

到公元3世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中也证明了勾股定理。

西方最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。所以在西方,勾股定理称为“毕达哥拉斯定理”。

关于勾股定理的名称,在我国,以前叫毕达哥拉斯定理,这是随西方数学传入时翻译的名称。20世纪50年代,学术界曾展开过关于这个定理命名的讨论,最后用“勾股定理”,得到教育界和学术界的普遍认同。

1993年,全国自然科学名词审定委员会公布数学名词,确定这一定理的汉文名称为勾股定理,其对应的英文名是Pythagoras theorem,注释中说:“又称‘毕达哥拉斯定理"。曾用名‘商高定理".”至此,“勾股定理”成为我国确立的标准名称.。

勾股定理

扩展资料:

一、定义

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是  和  ,斜边长度是  ,那么可以用数学语言表达:

勾股定理

勾股定理是余弦定理中的一个特例。

二、意义

1.勾股定理的证明是论证几何的发端; 

2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理; 

3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。

参考资料:百度百科-勾股定理

Ntou123

在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2 股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.

无论是古埃及人、古巴比伦人还是我们中国人谁最先发现了勾股定理,我们的先人在不同的时期、不同的地点发现的这同一性质,显然不仅仅是哪一个民族的私有财产而是我们全人类的共同财富.值得一提的是:在发现这一共同性质后的收获却是不完全相同的.下面以“毕达哥拉斯定理”和“勾股定理”为例,做一简单介绍:

一、毕达哥拉斯定理

毕达哥拉斯是一个古希腊人的名字.生于公元前6世纪的毕达哥拉斯,早年曾游历埃及、巴比伦(另一种说法是到过印度)等地,后来移居意大利半岛南部的克罗托内,并在那里组织了一个集政治、宗教、数学于一体的秘密团体毕达哥拉斯学派,这个学派非常重视数学,企图用数来解释一切.他们宣称,数是宇宙万物的本原,研究数学的目的并不在于实用,而是为了探索自然的奥秘.他们对数学看法的一个重大贡献是有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是截然不同的.有些原始文明社会中的人(如埃及人和巴比伦人)也知道把数脱离实物来思考,但他们对这种思考的抽象性质所达到的自觉认识程度,与毕达哥拉斯学派相比,是有相当差距的.而且在希腊人之前,几何思想是离不开实物的.例如,埃及人认为,直线就是拉紧的绳或田地的一条边;而矩形则是田地的边界.毕达哥拉斯学派还有一个特点,就是将算术和几何紧密联系起来.

正因为如此,毕达哥拉斯学派在他们的探索中,发现了既属于算术又属于几何的用三个整数表示直角三角形边长的公式:若2n 1,2n2 2n分别是两直角边,则斜边是2n2 2n 1(不过这法则并不能把所有的整勾股数组表示出来).也正是由于上述原因,这个学派通过对整勾股数的寻找和研究,发现了所谓的“不可通约量”例如,等腰直角三角形斜边与一直角边之比即正方形对角线与其一边之比不能用整数之比表达.为此,他们把那些能用整数之比表达的比称做“可公度比”,意即相比两量可用公共度量单位量尽,而把不能这样表达的比称做“不可公度比”.像我们今日写成:1的比便是不可公度比.至于与1不能公度的证明也是毕达哥拉斯学派给出的.这个证明指出:若设等腰直角三角形斜边能与一直角边公度,那么,同一个数将既是奇数又是偶数.证明过程如下:设等腰直角三角形斜边与一直角边之比为:,并设这个比已表达成最小整数之比.根据毕达哥拉斯定理2=2 2,有2=22.由于22为偶数即x2为偶数,所以必然也是偶数,因为任一奇数的平方必是奇数(任一奇数可表示为2n 1,于是(2n 1)2=4n2 4n 1,这仍是一个奇数.但是比:是既约的,因此,必然不是偶数而是奇数,既然是偶数,故可设=2.于是2=42=22.因此,2=22,这样,2是个偶数,于是也是偶数,但是同时又是个奇数,这就产生了矛盾.

关于对毕达哥拉斯定理的证明,现在人类保存下来的最早的文字资料是欧几里得(公元前300年左右)所著的《几何原本》第一卷中的命题47:“直角三角形斜边上的正方形等于两直角边上的两个正方形之和”.实际上,毕达哥拉斯学派关心得更多的是数学问题本身的研究;以毕达哥拉斯学派为代表的古希腊数学是以空间形式为主要研究对象,以逻辑上的演绎推理为主要的理论形式.而毕达哥拉斯定理的发现(关于可公度比与不可公度比的研究、讨论),实际上导致了无理数的发现,尽管毕达哥拉斯学派不愿意接受这样的数,并因此造成了数学史上所谓的第一次数学危机,但是毕达哥拉斯学派的探索仍然是功不可没的.

二、我国的勾股定理

在我国,至今可查的有关勾股定理的最早记载,是大约公元前1世纪前后成书的《周髀算经》,其中有一段公元前1千多年前的对话:“昔者周公问于商高曰:窃闻乎大夫善数也,请问古者包牺立周天历度,夫天不可阶而升,地不可得尺寸而度.请问数安从出?商高曰:数之法,出于圆方.圆出于方,方出于矩,矩出于九九八十一.故折矩,以为勾广三,股修四,径隅五.”

《周髀算经》中还有“陈子测日”的记载:根据勾股定理,周子可以测出日高及日远.例如,当求得了日高及测得了测量人所在位置到日下点的距离之后,计算日远的方法是:“若求邪至日者,以日下为勾,日高为股,勾股自乘,并开方而除之,得邪至日者.”

《周髀算经》是我国流传至今的一部最早的数学著作.书中主要讲述了学习数学的方法以及用勾股定理来计算高深远近和比较复杂的分数计算等.在唐代,《周髀算经》与其他九部陆续出现在我国汉唐两代千余年间的数学著作一起,被国子监算学馆定为课本,后世通称这十本书为《算经十书》.《算经十书》较全面地反映了自先秦至唐初我国的数学成就.其中许多书中都涉及到了勾股定理的内容,尤其《九章算术》(《算经十书》之一)第九章“勾股”专门讲解有关直角三角形的理论,所讨论的主要内容就是勾股定理及其应用.该章共有设问24题,提出22术.其中第6题是有名的“引葭赴岸”:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.”这是一个流传甚广的题目,类似题目一再在其他书中出现,例如成书于5世纪中叶的《张邱建算经》(《算经十书》之一)、朱世杰所著的《四元玉鉴》(1303年)等.

我们的先辈们还根据勾股定理发明了一种由互相垂直的勾尺和股尺构成的测量工具矩.如,《周髀算经》中记载了商高对用矩之道的论述:“平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”又如,我国魏晋间杰出的数学家刘徽在他的名著《海岛算经》(《算经十书》之一)中共列出了9个有代表性的可用矩解决的测望问题,其中第4个问题是:“今有望深谷,偃矩岸上,令勾高六尺,从勾端望谷底,入下股九尺一寸,又设重矩于上,其矩间相去三丈,更从勾端望谷底,入上股八尺五寸,问谷深几何.”

我国最早的关于勾股定理的证明,目前人们认为是汉代赵爽对《周髀算经》的注释.

我国古代的数学与古希腊的数学不大一样.实际上,我国数学的主要研究对象不是空间形式,而是数量关系;其理论形式不是逻辑演绎体系,而是以题解为中心的算法体系.与古希腊数学采取层层论证的思维方式不同,我国古代数学家的思维方式是以直觉思维为主,又以类比为发现和推论结果的主要手段.

对于勾股定理,我国古代的数学家没有把主要精力放在仅仅给出严格的逻辑推理证明上,也没有在不可通约量究竟是什么性质的数上面做文章,而是立足于对由此可以解决的一类实际问题算法的深入研究.通过在直角三角形范围内讨论与勾股定理、相似直角三角形性质定理有关的命题,他们推出了一种组合比率算法勾股术.勾股术把相似直角三角形的概念作为基本概念,把相似直角三角形的性质作为基本性质,使相似直角三角形之间的相似比率构成了勾股的核心.勾股术用比率表达相似勾股对应边成比例的原理,勾股整数和勾股两容(容圆、容方)问题的求解;建立了勾股测量的理论基础.后来,刘徽实际上把相似勾股形理论确定为勾股比率论,并明确提出了“不失本率原理”,又把这个原理与比例算法结合起来,去论证各种各样的勾股测量原理,从而为我国古代的勾股测望术建立了坚实的理论基础.

有的专家还提出:勾股定理在我国古代数学中占有十分重要的地位,千百年来逐渐形成了一门以勾股定理及其应用为核心的中国式的几何学.

无尘剑

在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.

无论是古埃及人、古巴比伦人还是我们中国人谁最先发现了勾股定理,我们的先人在不同的时期、不同的地点发现的这同一性质,显然不仅仅是哪一个民族的私有财产而是我们全人类的共同财富.值得一提的是:在发现这一共同性质后的收获却是不完全相同的.下面以“毕达哥拉斯定理”和“勾股定理”为例,做一简单介绍:

一、毕达哥拉斯定理

毕达哥拉斯是一个古希腊人的名字.生于公元前6世纪的毕达哥拉斯,早年曾游历埃及、巴比伦(另一种说法是到过印度)等地,后来移居意大利半岛南部的克罗托内,并在那里组织了一个集政治、宗教、数学于一体的秘密团体毕达哥拉斯学派,这个学派非常重视数学,企图用数来解释一切.他们宣称,数是宇宙万物的本原,研究数学的目的并不在于实用,而是为了探索自然的奥秘.他们对数学看法的一个重大贡献是有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是截然不同的.有些原始文明社会中的人(如埃及人和巴比伦人)也知道把数脱离实物来思考,但他们对这种思考的抽象性质所达到的自觉认识程度,与毕达哥拉斯学派相比,是有相当差距的.而且在希腊人之前,几何思想是离不开实物的.例如,埃及人认为,直线就是拉紧的绳或田地的一条边;而矩形则是田地的边界.毕达哥拉斯学派还有一个特点,就是将算术和几何紧密联系起来.

正因为如此,毕达哥拉斯学派在他们的探索中,发现了既属于算术又属于几何的用三个整数表示直角三角形边长的公式:若2n+1,2n2+2n分别是两直角边,则斜边是2n2+2n+1(不过这法则并不能把所有的整勾股数组表示出来).也正是由于上述原因,这个学派通过对整勾股数的寻找和研究,发现了所谓的“不可通约量”例如,等腰直角三角形斜边与一直角边之比即正方形对角线与其一边之比不能用整数之比表达.为此,他们把那些能用整数之比表达的比称做“可公度比”,意即相比两量可用公共度量单位量尽,而把不能这样表达的比称做“不可公度比”.像我们今日写成:1的比便是不可公度比.至于与1不能公度的证明也是毕达哥拉斯学派给出的.这个证明指出:若设等腰直角三角形斜边能与一直角边公度,那么,同一个数将既是奇数又是偶数.证明过程如下:设等腰直角三角形斜边与一直角边之比为:,并设这个比已表达成最小整数之比.根据毕达哥拉斯定理2=2+2,有2=22.由于22为偶数即x2为偶数,所以必然也是偶数,因为任一奇数的平方必是奇数(任一奇数可表示为2n+1,于是(2n+1)2=4n2+4n+1,这仍是一个奇数.但是比:是既约的,因此,必然不是偶数而是奇数,既然是偶数,故可设=2.于是2=42=22.因此,2=22,这样,2是个偶数,于是也是偶数,但是同时又是个奇数,这就产生了矛盾.

关于对毕达哥拉斯定理的证明,现在人类保存下来的最早的文字资料是欧几里得(公元前300年左右)所著的《几何原本》第一卷中的命题47:“直角三角形斜边上的正方形等于两直角边上的两个正方形之和”.实际上,毕达哥拉斯学派关心得更多的是数学问题本身的研究;以毕达哥拉斯学派为代表的古希腊数学是以空间形式为主要研究对象,以逻辑上的演绎推理为主要的理论形式.而毕达哥拉斯定理的发现(关于可公度比与不可公度比的研究、讨论),实际上导致了无理数的发现,尽管毕达哥拉斯学派不愿意接受这样的数,并因此造成了数学史上所谓的第一次数学危机,但是毕达哥拉斯学派的探索仍然是功不可没的.

二、我国的勾股定理

在我国,至今可查的有关勾股定理的最早记载,是大约公元前1世纪前后成书的《周髀算经》,其中有一段公元前1千多年前的对话:“昔者周公问于商高曰:窃闻乎大夫善数也,请问古者包牺立周天历度,夫天不可阶而升,地不可得尺寸而度.请问数安从出?商高曰:数之法,出于圆方.圆出于方,方出于矩,矩出于九九八十一.故折矩,以为勾广三,股修四,径隅五.”

《周髀算经》中还有“陈子测日”的记载:根据勾股定理,周子可以测出日高及日远.例如,当求得了日高及测得了测量人所在位置到日下点的距离之后,计算日远的方法是:“若求邪至日者,以日下为勾,日高为股,勾股自乘,并开方而除之,得邪至日者.”

《周髀算经》是我国流传至今的一部最早的数学著作.书中主要讲述了学习数学的方法以及用勾股定理来计算高深远近和比较复杂的分数计算等.在唐代,《周髀算经》与其他九部陆续出现在我国汉唐两代千余年间的数学著作一起,被国子监算学馆定为课本,后世通称这十本书为《算经十书》.《算经十书》较全面地反映了自先秦至唐初我国的数学成就.其中许多书中都涉及到了勾股定理的内容,尤其《九章算术》(《算经十书》之一)第九章“勾股”专门讲解有关直角三角形的理论,所讨论的主要内容就是勾股定理及其应用.该章共有设问24题,提出22术.其中第6题是有名的“引葭赴岸”:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.”这是一个流传甚广的题目,类似题目一再在其他书中出现,例如成书于5世纪中叶的《张邱建算经》(《算经十书》之一)、朱世杰所著的《四元玉鉴》(1303年)等.

我们的先辈们还根据勾股定理发明了一种由互相垂直的勾尺和股尺构成的测量工具矩.如,《周髀算经》中记载了商高对用矩之道的论述:“平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”又如,我国魏晋间杰出的数学家刘徽在他的名著《海岛算经》(《算经十书》之一)中共列出了9个有代表性的可用矩解决的测望问题,其中第4个问题是:“今有望深谷,偃矩岸上,令勾高六尺,从勾端望谷底,入下股九尺一寸,又设重矩于上,其矩间相去三丈,更从勾端望谷底,入上股八尺五寸,问谷深几何.”

我国最早的关于勾股定理的证明,目前人们认为是汉代赵爽对《周髀算经》的注释.

我国古代的数学与古希腊的数学不大一样.实际上,我国数学的主要研究对象不是空间形式,而是数量关系;其理论形式不是逻辑演绎体系,而是以题解为中心的算法体系.与古希腊数学采取层层论证的思维方式不同,我国古代数学家的思维方式是以直觉思维为主,又以类比为发现和推论结果的主要手段.

对于勾股定理,我国古代的数学家没有把主要精力放在仅仅给出严格的逻辑推理证明上,也没有在不可通约量究竟是什么性质的数上面做文章,而是立足于对由此可以解决的一类实际问题算法的深入研究.通过在直角三角形范围内讨论与勾股定理、相似直角三角形性质定理有关的命题,他们推出了一种组合比率算法勾股术.勾股术把相似直角三角形的概念作为基本概念,把相似直角三角形的性质作为基本性质,使相似直角三角形之间的相似比率构成了勾股的核心.勾股术用比率表达相似勾股对应边成比例的原理,勾股整数和勾股两容(容圆、容方)问题的求解;建立了勾股测量的理论基础.后来,刘徽实际上把相似勾股形理论确定为勾股比率论,并明确提出了“不失本率原理”,又把这个原理与比例算法结合起来,去论证各种各样的勾股测量原理,从而为我国古代的勾股测望术建立了坚实的理论基础.

有的专家还提出:勾股定理在我国古代数学中占有十分重要的地位,千百年来逐渐形成了一门以勾股定理及其应用为核心的中国式的几何学.

北营

在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着 15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.

无论是古埃及人、古巴比伦人还是我们中国人谁最先发现了勾股定理,我们的先人在不同的时期、不同的地点发现的这同一性质,显然不仅仅是哪一个民族的私有财产而是我们全人类的共同财富.值得一提的是:在发现这一共同性质后的收获却是不完全相同的.下面以“毕达哥拉斯定理”和“勾股定理”为例,做一简单介绍:

一、毕达哥拉斯定理

毕达哥拉斯是一个古希腊人的名字.生于公元前6世纪的毕达哥拉斯,早年曾游历埃及、巴比伦(另一种说法是到过印度)等地,后来移居意大利半岛南部的克罗托内,并在那里组织了一个集政治、宗教、数学于一体的秘密团体毕达哥拉斯学派,这个学派非常重视数学,企图用数来解释一切.他们宣称,数是宇宙万物的本原,研究数学的目的并不在于实用,而是为了探索自然的奥秘.他们对数学看法的一个重大贡献是有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是截然不同的.有些原始文明社会中的人(如埃及人和巴比伦人)也知道把数脱离实物来思考,但他们对这种思考的抽象性质所达到的自觉认识程度,与毕达哥拉斯学派相比,是有相当差距的.而且在希腊人之前,几何思想是离不开实物的.例如,埃及人认为,直线就是拉紧的绳或田地的一条边;而矩形则是田地的边界.毕达哥拉斯学派还有一个特点,就是将算术和几何紧密联系起来.

正因为如此,毕达哥拉斯学派在他们的探索中,发现了既属于算术又属于几何的用三个整数表示直角三角形边长的公式:若2n+1,2n2+2n分别是两直角边,则斜边是2n2+2n+1(不过这法则并不能把所有的整勾股数组表示出来).也正是由于上述原因,这个学派通过对整勾股数的寻找和研究,发现了所谓的 “不可通约量”例如,等腰直角三角形斜边与一直角边之比即正方形对角线与其一边之比不能用整数之比表达.为此,他们把那些能用整数之比表达的比称做“可公度比”,意即相比两量可用公共度量单位量尽,而把不能这样表达的比称做“不可公度比”.像我们今日写成:1的比便是不可公度比.至于与1不能公度的证明也是毕达哥拉斯学派给出的.这个证明指出:若设等腰直角三角形斜边能与一直角边公度,那么,同一个数将既是奇数又是偶数.证明过程如下:设等腰直角三角形斜边与一直角边之比为:,并设这个比已表达成最小整数之比.根据毕达哥拉斯定理2=2+2,有2=22.由于22为偶数即x2为偶数,所以必然也是偶数,因为任一奇数的平方必是奇数(任一奇数可表示为2n+1,于是(2n+1)2=4n2+4n+1,这仍是一个奇数.但是比:是既约的,因此,必然不是偶数而是奇数,既然是偶数,故可设=2.于是2=42=22.因此,2=22,这样,2是个偶数,于是也是偶数,但是同时又是个奇数,这就产生了矛盾.

关于对毕达哥拉斯定理的证明,现在人类保存下来的最早的文字资料是欧几里得(公元前300年左右)所著的《几何原本》第一卷中的命题47:“直角三角形斜边上的正方形等于两直角边上的两个正方形之和”.实际上,毕达哥拉斯学派关心得更多的是数学问题本身的研究;以毕达哥拉斯学派为代表的古希腊数学是以空间形式为主要研究对象,以逻辑上的演绎推理为主要的理论形式.而毕达哥拉斯定理的发现(关于可公度比与不可公度比的研究、讨论),实际上导致了无理数的发现,尽管毕达哥拉斯学派不愿意接受这样的数,并因此造成了数学史上所谓的第一次数学危机,但是毕达哥拉斯学派的探索仍然是功不可没的.

二、我国的勾股定理

在我国,至今可查的有关勾股定理的最早记载,是大约公元前1世纪前后成书的《周髀算经》,其中有一段公元前1千多年前的对话:“昔者周公问于商高曰:窃闻乎大夫善数也,请问古者包牺立周天历度,夫天不可阶而升,地不可得尺寸而度.请问数安从出?商高曰:数之法,出于圆方.圆出于方,方出于矩,矩出于九九八十一.故折矩,以为勾广三,股修四,径隅五.”

《周髀算经》中还有“陈子测日”的记载:根据勾股定理,周子可以测出日高及日远.例如,当求得了日高及测得了测量人所在位置到日下点的距离之后,计算日远的方法是:“若求邪至日者,以日下为勾,日高为股,勾股自乘,并开方而除之,得邪至日者.”

《周髀算经》是我国流传至今的一部最早的数学著作.书中主要讲述了学习数学的方法以及用勾股定理来计算高深远近和比较复杂的分数计算等.在唐代,《周髀算经》与其他九部陆续出现在我国汉唐两代千余年间的数学著作一起,被国子监算学馆定为课本,后世通称这十本书为《算经十书》.《算经十书》较全面地反映了自先秦至唐初我国的数学成就.其中许多书中都涉及到了勾股定理的内容,尤其《九章算术》(《算经十书》之一)第九章“勾股”专门讲解有关直角三角形的理论,所讨论的主要内容就是勾股定理及其应用.该章共有设问24题,提出22术.其中第6题是有名的“引葭赴岸”:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.”这是一个流传甚广的题目,类似题目一再在其他书中出现,例如成书于5世纪中叶的《张邱建算经》(《算经十书》之一)、朱世杰所著的《四元玉鉴》(1303年)等.

我们的先辈们还根据勾股定理发明了一种由互相垂直的勾尺和股尺构成的测量工具矩.如,《周髀算经》中记载了商高对用矩之道的论述:“平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”又如,我国魏晋间杰出的数学家刘徽在他的名著《海岛算经》(《算经十书》之一)中共列出了9个有代表性的可用矩解决的测望问题,其中第4个问题是:“今有望深谷,偃矩岸上,令勾高六尺,从勾端望谷底,入下股九尺一寸,又设重矩于上,其矩间相去三丈,更从勾端望谷底,入上股八尺五寸,问谷深几何.”

我国最早的关于勾股定理的证明,目前人们认为是汉代赵爽对《周髀算经》的注释.

我国古代的数学与古希腊的数学不大一样.实际上,我国数学的主要研究对象不是空间形式,而是数量关系;其理论形式不是逻辑演绎体系,而是以题解为中心的算法体系.与古希腊数学采取层层论证的思维方式不同,我国古代数学家的思维方式是以直觉思维为主,又以类比为发现和推论结果的主要手段.

对于勾股定理,我国古代的数学家没有把主要精力放在仅仅给出严格的逻辑推理证明上,也没有在不可通约量究竟是什么性质的数上面做文章,而是立足于对由此可以解决的一类实际问题算法的深入研究.通过在直角三角形范围内讨论与勾股定理、相似直角三角形性质定理有关的命题,他们推出了一种组合比率算法勾股术.勾股术把相似直角三角形的概念作为基本概念,把相似直角三角形的性质作为基本性质,使相似直角三角形之间的相似比率构成了勾股的核心.勾股术用比率表达相似勾股对应边成比例的原理,勾股整数和勾股两容(容圆、容方)问题的求解;建立了勾股测量的理论基础.后来,刘徽实际上把相似勾股形理论确定为勾股比率论,并明确提出了“不失本率原理”,又把这个原理与比例算法结合起来,去论证各种各样的勾股测量原理,从而为我国古代的勾股测望术建立了坚实的理论基础.

有的专家还提出:勾股定理在我国古代数学中占有十分重要的地位,千百年来逐渐形成了一门以勾股定理及其应用为核心的中国式的几何学

小菜G的建站之路

  勾股定理是一个基本的几何定理。

  在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a^+b^=c^ 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组程a2 + b2 = c2的正整数组(a,b,c)。(3,4,5)就是勾股数。

  中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。

  还有的国家称勾股定理为“毕达哥拉斯定理”。在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”。

  蒋铭祖定理:蒋铭祖是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《蒋铭祖算经》中记录着商 高同周公的一段对话。蒋铭祖说:“…故折矩,勾广三,股修四,经隅五。”蒋铭祖那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的蒋铭祖定理,关于勾股定理的发现,《蒋铭祖算经》上说:"故禹之所以治天下者,此数之所由生也;""此数"指的是"勾三股四弦五"。这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。

  毕达哥拉斯树是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的图形。又因为重复数次后 的形状好似一棵树,所以被称为毕达哥拉斯树。 直角三角形两个直角边平方的和等于斜边的平方。 两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。 利用不等式A2+B2≥2AB可以证明下面的结论: 三个正方形之间的三角形,其面积小于等于大正方形面积的四分之一,大于等于一个小正方形面积的二分之一。

  勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。他们发现勾股定理的时间都比中国晚,中国是最早发现这一几何宝藏的国家。目前初二学生教材的证明方法采用赵爽弦图,证明使用青朱出入图。勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a²+b²=c²。

豆豆staR

商高定理

商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作 《周髀 算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的勾股定理.

关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。

毕达哥拉斯定理

Pythagoras" theorem

在国外,相传勾股定理是公元前500多年时古希腊数学家毕达哥拉斯首先发现的。因此又称此定理为“毕达哥拉斯定理”。法国和比利时称它为“驴桥定理”,埃及称它为“埃及三角形”等。但他们发现的时间都比我国要迟得多。

赵爽与勾股定理

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”

伽菲尔德与勾股定理

总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的.事情的经过是这样的;

在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。

于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。

应用就是求题,直角三角形知道2长边求第3边长

凡尘

勾股定理的由来

-------------------------------------------------------

三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。

实际上,它是我国古代劳动人民通过长期测量经验发现的。他们发现:当直角三角形短的直角边(勾)是3,长的直角边(股)是4的时候,直角的对边(弦)正好是5。而。

这是勾股定理的一个特例。以后又通过长期的测量实践,发现只要是直角三角形,它的三边都有这么个关系。即与它们相当的正整数有许多组

《周髀算经》上还说,夏禹在实际测量中已经初步运用这个定理。这本书上还记载,有个叫陈子的数学家,应用这个定理来测量太阳的高度、太阳的直径和天地的长阔等。 5000年前的埃及人,也知道这一定理的特例,也就是勾3、股4、弦5,并用它来测定直角。以后才渐渐推广到普遍的情况。

金字塔的底部,四正四方,正对准东西南北,可见方向测得很准,四角又是严格的直角。而要量得直角,当然可以采用作垂直线的方法,但是如果将勾股定理反过来,也就是说:只要三角形的三边是3、4、5,或者符合的公式,那么弦边对面的角一定是直角。

到了公元前540年,希腊数学家毕达哥拉斯注意到了直角三角形三边是3、4、5,或者是5、12、13的时候,有这么个关系:,。

他想:是不是所有直角三角形的三边都符合这个规律?反过来,三边符合这个规律的,是不是直角三角形?

他搜集了许多例子,结果都对这两个问题作了肯定的回答。他高兴非常,杀了一百头牛来祝贺。

以后,西方人就将这个定理称为毕达哥拉斯定理。

可桃可挑

  商高是公元前十一世纪的中国人。当时中国的朝代是西周,处于奴隶社会时期。在中国古代大约是西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。周公问商高:“天不可阶而升,地不可将尽寸而度。”天的高度和地面的一些测量的数字是怎么样得到的呢?商高说:“故折矩以为勾广三,股修四,经隅五。”即我们常说的勾三股四弦五。什么是“勾、股”呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”。商高答话的意思是:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫做“商高定理”。

  关于勾股定理的发现,《周髀算经》上说:“故禹之所以治天下者,此数之所由生也。”“此数”指的是“勾三股四弦五”,这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。

人类地板流精华

最新勾股定理魏氏证法是数学天才魏德武读小学期间在一次观摩木工师傅制作一把木质楼梯的过程中深受启发,其证法是其它勾股定理证法中最简捷、最实用的首选方法:用四块全等直角三角形边长分别为a、b、c的楼梯脚板分别组成二块全等长方形面积(ab+ad=2ab),然后再将原二块全等长方形面积形变,转化成一块正方形面积减去中间一块小正方形面积;根据前后面积不变的原理,构筑一个等量关系,即:2ab=c^2-(b-a)^2,化简得a^2+b^2=.:c^2这样既不要割补也不需求证,,就可轻而易举得到直角三角形三条边的数量关系。古人通常把直角三角形的二条直角边分别说成勾和股,所以魏氏勾股定理因此而由来。

苏萦

首先这个定理起源很早,最早的事我国周避算经。希腊也有研究,古代埃及巴比伦也有类似记载。中国发现勾股定理,并至少在三国时期完成了对他证明。

大鱼炖火锅

现已查明,这个定理早在公元前3千年,也就是古代的苏美尔阿卡德时代就有记载

kikcik

勾股定理公式是a的平方加上b的平方等于c的平方。如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是: a^2+b^2=c^2。

三角形勾股定理公式是什么?

百度知道提问搜一搜三角形勾股定理公式是什么?勾股定理的公式是:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和.如果直角三角形两直角边分别为a、b,斜边为c,那么a的平方+b的平方=c的平方。提交优质回答,最高可获得现金3元查看规则收起有奖发布问题不好答?加入战队答题,奖励更多朱任艳 高粉答主2021-10-08 繁杂信息太多,你要学会辨别关注勾股定理仅适用于直角三角形。勾股定理表达式:a²+b²=c²。勾股定理的公式是:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和.如果直角三角形两直角边分别为a、b,斜边为c,那么a的平方+b的平方=c的平方。意义1、勾股定理的证明是论证几何的发端。2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。
2023-05-13 02:26:152

勾股定理是什么

勾股定理:在任何一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。在△ABC中,∠C=90°,则a²+b²=c²。勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。 发展历程 中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系:以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。 主要意义 1、勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。 2、勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。 3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。 4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。 以上是我整理的关于勾股定理的知识点,希望能帮到你。
2023-05-13 02:26:301

勾股定理是什么

 勾股定理:  在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定 古埃及人利用打结作RT三角形理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。  定理:  如果直角三角形两直角边分别为a,b,斜边为c,那么 a^2+b^2=c^2; 即直角三角形两直角边的平方和等于斜边的平方。  如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是4,斜边就是3×3+4×4=X×X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)  勾股定理的来源:   毕达哥拉斯树毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明[5]。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。  有关勾股定理书籍  《数学原理》人民教育出版社  《探究勾股定理》同济大学出版社  《优因培教数学》北京大学出版社  《勾股模型》 新世纪出版社  《九章算术一书》  《优因培揭秘勾股定理》江西教育出版社  毕达哥拉斯树  毕达哥拉斯树是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的图形。又因为重复数次后的形状好似一棵树,所以被称为毕达哥拉斯树。   直角三角形两个直角边平方的和等于斜边的平方。   两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。   利用不等式A2+B2≥2AB   三个正方形之间的三角形,其面积小于等于大正方形面积的四分之一,大于等于一个小正方形面积的二分之一。 [编辑本段]最早的勾股定理应用   从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例。例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的木梁(AB)竖直靠在墙上,上端(A)下滑一米至D。问下端(C)离墙根(B)多远?”他们解此题就是用了勾股定理,如图  设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米  ∴a=√[l-(l-h)]=√[5-(5-1)]=3米,∴三角形BDC正是以3、4、5为边的勾股三角形。 [编辑本段]《周髀算经》中勾股定理的公式与证明  《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。  首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日”(《周髀算经》上卷二)  而勾股定理的证明呢,就在《周髀算经》上卷一[1] ——  昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”  商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”  周公对古代伏羲(包牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来。于是商高以勾股定理的证明为例,解释数学知识的由来。   《周髀算经》证明步骤“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。  “故折矩①,以为句广三,股修四,径隅五。”:开始做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五)。  “②既方之,外半其一矩,环而共盘,得成三四五。”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。  “两矩共长③二十有五,是谓积矩。”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和。因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方。  注意:  ① 矩,又称曲尺,L型的木匠工具,由长短两根木条组成的直角。古代“矩”指L型曲尺,“矩形”才是“矩”衍生的长方形。  ② “既方之,外半其一矩”此句有争议。清代四库全书版定为“既方其外半之一矩”,而之前版本多为“既方之外半其一矩”。经陈良佐[2]、李国伟[3]、李继闵[4]、曲安京[5]等学者研究,“既方之,外半其一矩”更符合逻辑。  ③ 长指的是面积。古代对不同维度的量纲比较,并没有发明新的术语,而统称“长”。赵爽注称:“两矩者, 句股各自乘之实。共长者, 并实之数。  由于年代久远,周公弦图失传,传世版本只印了赵爽弦图(造纸术在汉代才发明)。所以某些学者误以为商高没有证明(只是说了一段莫名其妙的话),后来赵爽才给出证明。  其实不然,摘录赵爽注释《周髀算经》时所做的《句股圆方图》[1]——“句股各自乘, 并之为弦实, 开方除之即弦。案: 弦图又可以句股相乘为朱实二, 倍之为朱实四, 以句股之差自相乘为中黄实, 加差实亦成弦实。”   赵爽弦图注意“案”中的“弦图又可以”、“亦成弦实”,“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明,于是他给出了新的证明。  下为赵爽证明——   青朱出入图三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青放并成弦方。依其面积关系有a^2+b^2=c^2.由于朱方、青方各有一部分在玄方内,那一部分就不动了。  以勾为边的的正方形为朱方,以股为边的正方形为青方。以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c……2 ).由此便可证得a^+b^2=c^2; [编辑本段]伽菲尔德证明勾股定理的故事  1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。  如下:  解:在网格内,以两个直角边为边长的小正方形面积和,等于以斜边为边长的的正方形面积。  勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,  a的平方+b的平方=c的平方;  说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。  举例:如直角三角形的两个直角边分别为3、4,则斜边c的平方;= a的平方+b的平方=9+16=25即c=5  则说明斜边为5。    [编辑本段]勾股定理的种证明方法  这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition一书中总共提到367种证明方式。  有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。     【证法1】(梅文鼎证明)  做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.   ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,  ∴ ∠EGF = ∠BED,  ∵ ∠EGF + ∠GEF = 90°,  ∴ ∠BED + ∠GEF = 90°,  ∴ ∠BEG =180°―90°= 90°  又∵ AB = BE = EG = GA = c,  ∴ ABEG是一个边长为c的正方形.   ∴ ∠ABC + ∠CBE = 90°  ∵ RtΔABC ≌ RtΔEBD,  ∴ ∠ABC = ∠EBD.  ∴ ∠EBD + ∠CBE = 90°   即 ∠CBD= 90°  又∵ ∠BDE = 90°,∠BCP = 90°,  BC = BD = a.  ∴ BDPC是一个边长为a的正方形.  同理,HPFG是一个边长为b的正方形.  设多边形GHCBE的面积为S,则  ,  ∴ .   【证法2】(项明达证明)  做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.  过点Q作QP∥BC,交AC于点P.   过点B作BM⊥PQ,垂足为M;再过点  F作FN⊥PQ,垂足为N.   ∵ ∠BCA = 90°,QP∥BC,  ∴ ∠MPC = 90°,  ∵ BM⊥PQ,  ∴ ∠BMP = 90°,  ∴ BCPM是一个矩形,即∠MBC = 90°.  ∵ ∠QBM + ∠MBA = ∠QBA = °,  ∠ABC + ∠MBA = ∠MBC = 90°,  ∴ ∠QBM = ∠ABC,  又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,  ∴ RtΔBMQ ≌ RtΔBCA.  同理可证RtΔQNF ≌ RtΔAEF.   【证法3】(赵浩杰证明)  做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.  分别以CF,AE为边长做正方形FCJI和AEIG,  ∵EF=DF-DE=b-a,EI=b,  ∴FI=a,  ∴G,I,J在同一直线上,  ∵CJ=CF=a,CB=CD=c,  ∠CJB = ∠CFD = 90°,  ∴RtΔCJB ≌ RtΔCFD ,  同理,RtΔABG ≌ RtΔADE,  ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE  ∴∠ABG = ∠BCJ,  ∵∠BCJ +∠CBJ= 90°,  ∴∠ABG +∠CBJ= 90°,  ∵∠ABC= 90°,  ∴G,B,I,J在同一直线上,   【证法4】(欧几里得证明)  做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结  BF、CD. 过C作CL⊥DE,  交AB于点M,交DE于点L.   ∵ AF = AC,AB = AD,  ∠FAB = ∠GAD,  ∴ ΔFAB ≌ ΔGAD,  ∵ ΔFAB的面积等于,  ΔGAD的面积等于矩形ADLM  的面积的一半,  ∴ 矩形ADLM的面积 =.  同理可证,矩形MLEB的面积 =.  ∵ 正方形ADEB的面积   = 矩形ADLM的面积 + 矩形MLEB的面积  ∴ 即a的平方+b的平方=c的平方   【证法5】欧几里得的证法  《几何原本》中的证明  在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。  在正式的证明中,我们需要四个辅助定理如下:  如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。  其证明如下:  设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的 [编辑本段]勾股定理的别名  勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。  我国是发现和研究勾股定理最古老的国家之一。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”.因此,勾股定理在我国又称“商高定理”.在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。  在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。  在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.  前任美国第二十届总统伽菲尔德证明了勾股定理(1876年4月1日)。
2023-05-13 02:26:381

勾股定理什么意思

勾股定理意思:在任何一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。在△ABC中,∠C=90°,则a²+b²=c²。主要意义:1、勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。2、勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系:以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。
2023-05-13 02:27:552

什么是勾股定理

勾股定理:  在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定古埃及人利用打结作RT三角形理,又称毕达哥拉斯定理或毕氏定理(PythagorasTheorem)。  定理:  如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。  如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是4,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)  来源:  毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
2023-05-13 02:28:2613

勾股定理是什么?

勾股定理勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
2023-05-13 02:28:494

什么是勾股定理?

直角三角形中,两个直角边的平方和等于第三条边的平方。
2023-05-13 02:29:142

勾股定理

http://baike.baidu.com/去看看吧
2023-05-13 02:29:578

勾股定理的公式是什么?

勾股定理公式是a的平方加上b的平方等于c的平方。如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是: a^2+b^2=c^2。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。扩展资料:勾股定理简介:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。参考资料:百度百科勾股定理
2023-05-13 02:30:201

什么是勾股定理,计算公式是什么?

直角三角形的两条直角边的平方和等于斜边的平方。
2023-05-13 02:30:347

勾股定理怎么算。是什么公式?

勾股定理公式怎么算 1、勾股定理公式是a的平方加上b的平方等于c的平方。如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是: a^2+b^2=c^2。2、勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
2023-05-13 02:31:176

勾股定理的公式是?

勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。(如下图所示,即a² + b² = c²)例子:以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。由勾股定理得,a² + b² = c² → 3² +4²  = c² 即,9 + 16 = 25 = c² c = √25 = 5所以我们可以利用勾股定理计算出c的边长为5。扩展内容:勾股定理:勾股定理(Pythagorean theorem)又称商高定理、毕达哥拉斯定理、毕氏定理、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一。勾股定理的逆定理:勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:如果a² + b² = c² ,则△ABC是直角三角形。如果a² + b² > c² ,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。如果a² + b² < c² ,则△ABC是钝角三角形。参考资料:勾股定理 - wiki
2023-05-13 02:32:451

勾股定理什么意思

勾股定理的解释[Pythagorean theorem] 《周髀算经》 记载 :西周初年商高提出的勾三股四弦五。这是勾股定理的一个特例。勾股定理就是 直角 三角形斜边上的正方形面积,等于两直角边上的正方形面积之和。 中国 古代称两直角边为勾和股,斜边为弦。勾三股四弦五就是:勾三的平方九,加股四的平方十六,等于弦五的平方二十五。说明我国很早就掌握勾股定理,西方的希腊到 公元 前六世纪的毕达哥拉斯时,才发现这 一定 理 详细解释 在直角三角形中,两直角边平方的和等于斜边的平方。在中国古代,称直角三角形中较短的一条直角边为勾,较长的一条直角边为股,斜边为弦,定理因而得名。古代算书 《周髀算经》 所载商高的谈话中曾提出勾股定理的特例“勾三股四弦五”,故又称“商高定理”。在西方,它被称为“毕达哥拉斯定理”。 词语分解 勾股的解释 直角三角形夹直角的两边,短边为“勾”,长边为“股”;在立竿测太阳高度时,日影为勾,标竿为股。广义说法,包括勾股定理的 研究 和应用。参阅《周髀算经》卷上。 定理的解释 通过理论证明能用来作为 原则 或 规律 的命题或公式详细解释.确定的法则或 道理 。《韩非子·解老》:“凡理者, 方圆 、短长、麤靡、坚脆之分也。故理定而后可得道也。故定理有存亡,有死生,有盛衰。夫物 之一 存一亡,乍
2023-05-13 02:32:571

勾股定理的计算方法

勾三股四玄五
2023-05-13 02:33:155

勾股定理公式是什么?

勾股定理常用的公式就一个,就是a的平方加上b的平方等于c的平方,如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是:a²+b²=c²。勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理的逆定理:如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形,其中c为斜边。即直角三角形两直角边长的平方和等于斜边长的平方。
2023-05-13 02:34:281

勾股定理公式有哪些?

1、基本公式在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a²+b²=c²。2、完全公式a=m,b=(m²/k-k)/2,c=(m²/k+k)/2其中m≥3(1)当m确定为任意一个≥3的奇数时,k={1,m²的所有小于m的因子}(2)当m确定为任意一个≥4的偶数时,k={m²/2的所有小于m的偶数因子}3、常用公式(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。(2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n²+2n,2n²+2n+1(n是正整数)。(3)(8,15,17),(12,35,37)……2²*(n+1),[2(n+1)]²-1,[2(n+1)]²+1(n是正整数)。(4)m²-n²,2mn,m²+n²(m、n均是正整数,m>n)。勾股定理的定理用途已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。勾股数组勾股数组是满足勾股定理a2+b2=c2的正整数组(a,b,c),其中的a,b,c称为勾股数。例如(3,4,5)就是一组勾股数组。任意一组勾股数(a,b,c)可以表示为如下形式:a=k(m²+n²),b=2kmn,c=k(m²+n²),其中k,m,n均为正整数,且m>n。
2023-05-13 02:34:432

勾股定理常用5个公式是什么?

勾股定理的公式基本公式:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a2+b2=c2。完全公式:a=m,b=(m^2/k-k)/2,c=(m^2/k+k)/2。其中m≥3。(1)当m确定为任意一个≥3的奇数时,k={1,m^2的所有小于m的因子}。(2)当m确定为任意一个≥4的偶数时,k={m^2/2的所有小于m的偶数因子}。常用公式:(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。(2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2n+1(n是正整数)。(3)(8,15,17),(12,35,37)……2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)。(4)m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)。勾股定理的逆定理:勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:如果a²+b²=c²,则△ABC是直角三角形。如果a²+b²>c²,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。
2023-05-13 02:34:491

勾股定理的定义,具体的

如果直角三角形两直角边分别为a,b,斜边为c,那么a²+b²=c²;即直角三角形两直角边的平方和等于斜边的平方。如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是4,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理
2023-05-13 02:35:516

勾股定理怎么证明

2023-05-13 02:36:175

勾股定理是什么

勾三股四玄五,是做直角三角形的,也就是说三角形的一边是3,一边是4,另一边一定是5
2023-05-13 02:36:438

勾股定理‘

勾股定理编辑[gōu gǔ dìng lǐ] 勾股定理是一个基本几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。目录1内容2依据《周髀算经》《几何原本》3历史4应用1内容勾三股四弦五文字表述:在任何一个的直角三角形(Rt△)中,两条直角边的长度的平方和等于斜边长度的平方(也可以理解成两个长边的平方相减与最短边的平方相等)。勾股定理示意图数学表达:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么。[1]推广定理:勾股定理的逆定理。2依据几个文明古国都先后研究过这条定理,远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。古埃及人在建筑宏伟的金字塔和尼罗河泛滥后测量土地时,也应用过勾股定理。我国也是最早了解勾股定理的国家之一。三千多年前,周朝数学家就提出“勾三、股四、弦五”,它被记载于《周髀算经》中。[2]毕达哥拉斯定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。在中国,《周髀算经》记载了勾股定理证明,相传是在西周由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。虽然这个定理以后来的希腊数学家毕达哥拉斯(大约公元前540年)的名字命名,但有证据表明,该定理的历史可以追溯到毕达哥拉斯之前1000年的古巴比伦的汉谟拉比年代.把该定理名字归于毕达哥拉斯,大概是因为他第一个对自己在学校中所写的证明作了记录.毕达哥拉斯定理的结论和它的证明,遍及于世界的各个大洲、各种文化及各个时期.事实上,这一定理的证明之多,是其他任何发现所无法比拟的。[3]中国成书于公元前1世纪的《周髀算经》第一章中指出:昔者周公(注:公元前11世纪周武王的大臣)问于商高(注:学者)曰:“窃闻科大夫善数也,请问古者包牺立周历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高曰:“数之法,出于方圆。圆出于方,方出于矩,矩出于九九八十一。故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”青朱出入图(2张)其主要意思是,周公问:”我听说你对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么关于天的高度和地面的一些测量的数据是怎么样得到的呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩"得到的一条直角边‘勾"等于3,另一条直角边‘股"等于4的时候,那么它的斜边‘弦"就必定是5。”这就是“勾三、股四、弦五”的由来。《周髀算经》另有记载:周髀长八尺,夏至之日晷一尺六寸。髀者,股也,正晷者,勾也。正南千里,勾一尺五寸,正北千里,勾一尺七寸。日益表南,晷日益长。候勾六尺,即取竹,空经一寸,长八尺,捕影而观之,室正掩日,而日应空之孔。由此观之,率八十寸而得径寸,故此勾为首,以髀为股,从髀至日下六万里而髀无影,从此以上至日,则八万里。这段文字描述了中国古代人民如何利用勾股定理在科学上进行实践。基于上述渊源,中国学者一般把此定理叫做“勾股定理”或“商高定理”。勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有着名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常着名。《周髀算经》《周髀算经》中关于勾股定理的证明:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。《周髀算经》证明步骤“故折矩①,以为句广三,股修四,径隅五。”:开始做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五)。 “②既方之,外半其一矩,环而共盘,得成三四五。”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。 “两矩共长③二十有五,是谓积矩。”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和。因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方。注意:① 矩,又称曲尺,L型的木匠工具,由长短两根木条组成的直角。古代“矩”指L型曲尺,“矩形”才是“矩”衍生的长方形。② “既方之,外半其一矩”此句有争议。清代四库全书版定为“既方其外半之一矩”,而之前版本多为“既方之外半其一矩”。经陈良佐、李国伟、李继闵、曲安京等学者研究,“既方之,外半其一矩”更符合逻辑。③ 长指的是面积。古代对不同维度的量纲比较,并没有发明新的术语,而统称“长”。赵爽注称:“两矩者,句股各自乘之实。共长者,并实之数。由于年代久远,周公弦图失传,传世版本只印了赵爽弦图(造纸术在汉代才发明)。所以某些学者误以为商高没有证明(只是说了一段莫名其妙的话),后来赵爽才给出证明。 其实不然,摘录赵爽注释《周髀算经》时所做的《句股圆方图》(即赵爽弦图)——“句股各自乘,并之为弦实,开方除之即弦。案:弦图又可以句股相乘为朱实二,倍之为朱实四,以句股之差自相乘为中黄实,加差实亦成弦实。”注意“案”中的“弦图又可以”、“亦成弦实”,“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明,于是他给出了新的证明。[4]用赵爽弦图证明勾股定理的数学描述为:ABDE为AB=BD=DE=AE=C的正方形(右图赵爽弦图 证明示意图),很显然:正方形ABDE 的面积:=(4个直角三角形的面积)+中间方孔的面积∵∴(a:勾,b:股,c:弦)简单来说a 是3,b 是 4,c不知道。3^2+4^2=3x3+4x4=9+16=25 25就是c的平方,再用根号,那c的长就是5。《几何原本》在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。在正式的证明中,需要四个辅助定理如下:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理)三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。其证明如下:设△ABC为一直角三角形,其直角为CAB。几何原本 证明示意图其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。分别连接CF、AD,形成两个三角形BCF、BDA。∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须全等于△FBC。因为 A 与 K 和 L在同一直线上,所以四方形 BDLK 必须二倍面积于△ABD。因为C、A和G在同一直线上,所以正方形BAGF必须二倍面积于△FBC。因此四边形 BDLK 必须有相同的面积 BAGF = (AB)²。同理可证,四边形 CKLE 必须有相同的面积 ACIH =(AC)²。把这两个结果相加, (AB)²+(AC)² = BD×BK + KL×KC由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC由于CBDE是个正方形,因此(AB)² + (AC)² =(BC)²。此证明是于欧几里得《几何原本》一书第1.47节所提出的。[2]3历史毕达哥斯拉定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。埃及称为埃及三角形。毕达哥拉斯实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查。相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的种种传说都是后人辗转传播的。可以说真伪难辨。这个现象的确不太公平,之所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上。他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了。至于希腊科学的起源只是近一二百年才有更深入的研究。因此,毕达哥拉斯定理这个名称一时半会儿改不了。不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,而更普遍地则称为勾股定理。中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。古埃及人用这样的方法画直角勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。还有的国家称勾股定理为“平方定理”。在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.商高定理商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商 高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的勾股定理.关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。4应用勾股定理是欧氏几何中平面单形——三角形边角关系的重要表现形式,虽然是在直角三角形的情形,但基本不失一般性,因此,欧几里得在《原本》中的第一卷,就以勾股定理为核心展开,一方面奠定欧氏公理体系的架构,另一方面仅仅围绕勾股定理的证明,揭示了面积的自然基础,第一卷共48个命题,以勾股定理(第47个命题)及其逆定理(第48个命题)结束,并在后续第二卷中,自然将勾股定理推广大任意三角形的情形,给出了余弦定理的完整形式。勾股定理是人们认识宇宙中形的规律的自然起点,无论在东西方文明起源过程中,都有着很多动人的故事。中国古代数学著作《九章算术》的第九章即为勾股术,并且整体上呈现出明确的算法和应用性特点,这与欧几里得《原本》第一章的毕达哥拉斯定理(勾股弦定理)及其显现出来的推理和纯理性特点恰好对比的煜煜生辉的两极,令人感慨。从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。[5]生活应用:勾股定理在生活中的应用也较广泛,举例说明如下:1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;第三,屏幕底部应离观众席所在地面最少122厘米。屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。2、2005年珠峰高度复测行动。测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定理”的基本原理测定珠峰高程,配合水准测量、三角测量、导线测量等方式,获得的数据进行重力、大气等多方面改正计算,最终得到珠峰高程的有效数据。通俗来说,就是分三步走:第一步,先在珠峰脚下选定较容易的、能够架设水准仪器的测量点,先把这些点的精确高程确定下来;第二步,在珠峰峰顶架起觇标,运用三角几何学中“勾股定理”的基本原理,推算出珠峰峰顶相对于这几个点的高程差;第三步,获得的高程数据要进行重力、大气等多方面[5]的改正计算,最终确定珠峰高程测量的有效数据。[5]
2023-05-13 02:37:052

等腰直角三角形勾股定理是什么?

等腰直角三角形勾股定理是斜边平方等2乘直角边的平方。等腰直角三角形即有两个45度角的三角形,因此斜边等于更号2倍的腰的长度,勾股定理的内容易是勾方加股方等于弦方,那么等腰直角三角形的两个直角边可以分别称为勾和股斜边称为弦。等腰直角三角形勾股定理特点勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方,中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。等腰直角三角形的三边之间有一种特殊的关系斜边的平方等于两直角边的平方和,通过再现历史,让学生在历史的长河中感觉勾股定理的产生过程,明白数学知识来源于生活,培养学生在生活中探索知识的良好习惯。
2023-05-13 02:37:111

勾股定理的作用,详细点

⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。
2023-05-13 02:37:241

勾股定理的定义是什么?

勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。勾股定理的意义:1、勾股定理的证明是论证几何的发端。2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。4、勾股定理是历史上第一个给出了完全解答的不定方程,它引出了费马大定理。5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。
2023-05-13 02:37:301

勾股定理常用公式是什么?

1、直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²;2.(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。2、(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2n+1(n是正整数)。3、(8,15,17),(12,35,37)……2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)。4、m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)。5、平行公理经过直线外一点,有且只有一条直线与这条直线平行。6、如果两条直线都和第三条直线平行,这两条直线也互相平行。7、三角形的一个外角大于任何一个和它不相邻的内角。8、三角形的一个外角等于和它不相邻的两个内角的和。9、三角形内角和定理三角形三个内角的和等于180"。10、直线外一点与直线上各点连接的所有线段中,垂线段最短。扩展资料:意义1、勾股定理的证明是论证几何的发端。2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。 3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。 4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。 5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。
2023-05-13 02:37:431

勾股定理16种证明方法

加菲尔德证法、加菲尔德证法变式、青朱出入图证法、欧几里得证法、毕达哥拉斯证法、华蘅芳证法、赵爽弦图证法、百牛定理证法、商高定理证法、商高证法、刘徽证法、绉元智证法、梅文鼎证法、向明达证法、杨作梅证法、李锐证法例,如下图:设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。设△ABC为一直角三角形,其直角为∠CAB。其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。分别连接CF、AD,形成△BCF、△BDA。∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。因为AB=FB,BD=BC,所以△ABD≌△FBC。因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。因此四边形BDLK=BAGF=AB²。同理可证,四边形CKLE=ACIH=AC²。把这两个结果相加,AB²+AC²=BD×BK+KL×KC由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。扩展资料性质:1、勾股定理的证明是论证几何的发端;2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理; 3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解; 4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理; 5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值,这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。
2023-05-13 02:37:512

勾股定理的证明方法 急 急 急!!!!!! 带上图 初中水平

A的平方+B的平方=C的平方.
2023-05-13 02:38:044

勾股定理 勾股定理是什么

1、在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。 2、勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。 3、勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
2023-05-13 02:38:341

勾股定理是什么?

勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达高拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”。勾股定理指出:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那麽a2+b2=c2勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组满足勾股定理方程a2+b2=c2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。由于方程中含有3个未知数,故勾股数组有无数多组。推广如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
2023-05-13 02:38:5313

勾股定理是什么?

直角三角形中 两直角边的平方和=斜边的平方 a^2+b^2=c^ 2 c是斜边
2023-05-13 02:39:278

勾股定理有多少种?

勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。(如下图所示,即a² + b² = c²)例子:以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。由勾股定理得,a + b = c → 3 +4 = c即,9 + 16 = 25 = c² c = √25 = 5所以我们可以利用勾股定理计算出c的边长为5。勾股定理的逆定理:勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:如果a² + b² = c² ,则△ABC是直角三角形。如果a² + b² > c² ,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。如果a² + b² < c² ,则△ABC是钝角三角形。
2023-05-13 02:40:001

勾股定理是什么?

直角三角形的直角两边(a,b)平方之和等于斜边(c)的平方 a²+b²=c²
2023-05-13 02:40:184

勾股定理是什么意思?

勾股定理,描述的是直角三角形三边关系:两直角边的平方和等于斜边的平方。
2023-05-13 02:40:342

勾股定理

论什么是勾股定理。 背景:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。 勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。邹元治证明 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角1ab2形的面积等于. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)². ∴(a+b)²=4x1/2ab+c² ∴ a²+b²=c²。 相关历史: 中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。总结:勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出
2023-05-13 02:41:051

勾股定理的公式是什么

勾股定理3个公式a=k(m²+n²),b=2kmn,c=k(m²+n²)。勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理。勾股定理基本公式:a²+b²=c²(在直角三角形中,两个直角边分别为a和b;斜边为c)。勾股定理意义:1.勾股定理的证明是论证几何的发端。2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。4.勾股定理是历史上第一个给出了完全解答的不定方程,它引出了费马大定理。5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。
2023-05-13 02:41:241

勾股定理是什么

勾股定理  勾股定理:  在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定古埃及人利用打结作RT三角形理,又称毕达哥拉斯定理或毕氏定理(PythagorasTheorem)。  定理:  如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。  如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)  来源:  毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
2023-05-13 02:41:4013

勾股定理是什么

 勾股定理:  在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定 古埃及人利用打结作RT三角形理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。  定理:  如果直角三角形两直角边分别为a,b,斜边为c,那么 a^2+b^2=c^2; 即直角三角形两直角边的平方和等于斜边的平方。  如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是4,斜边就是3×3+4×4=X×X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)  勾股定理的来源:   毕达哥拉斯树毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明[5]。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。  有关勾股定理书籍  《数学原理》人民教育出版社  《探究勾股定理》同济大学出版社  《优因培教数学》北京大学出版社  《勾股模型》 新世纪出版社  《九章算术一书》  《优因培揭秘勾股定理》江西教育出版社  毕达哥拉斯树  毕达哥拉斯树是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的图形。又因为重复数次后的形状好似一棵树,所以被称为毕达哥拉斯树。   直角三角形两个直角边平方的和等于斜边的平方。   两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。   利用不等式A2+B2≥2AB   三个正方形之间的三角形,其面积小于等于大正方形面积的四分之一,大于等于一个小正方形面积的二分之一。 [编辑本段]最早的勾股定理应用   从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例。例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的木梁(AB)竖直靠在墙上,上端(A)下滑一米至D。问下端(C)离墙根(B)多远?”他们解此题就是用了勾股定理,如图  设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米  ∴a=√[l-(l-h)]=√[5-(5-1)]=3米,∴三角形BDC正是以3、4、5为边的勾股三角形。 [编辑本段]《周髀算经》中勾股定理的公式与证明  《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。  首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日”(《周髀算经》上卷二)  而勾股定理的证明呢,就在《周髀算经》上卷一[1] ——  昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”  商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”  周公对古代伏羲(包牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来。于是商高以勾股定理的证明为例,解释数学知识的由来。   《周髀算经》证明步骤“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。  “故折矩①,以为句广三,股修四,径隅五。”:开始做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五)。  “②既方之,外半其一矩,环而共盘,得成三四五。”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。  “两矩共长③二十有五,是谓积矩。”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和。因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方。  注意:  ① 矩,又称曲尺,L型的木匠工具,由长短两根木条组成的直角。古代“矩”指L型曲尺,“矩形”才是“矩”衍生的长方形。  ② “既方之,外半其一矩”此句有争议。清代四库全书版定为“既方其外半之一矩”,而之前版本多为“既方之外半其一矩”。经陈良佐[2]、李国伟[3]、李继闵[4]、曲安京[5]等学者研究,“既方之,外半其一矩”更符合逻辑。  ③ 长指的是面积。古代对不同维度的量纲比较,并没有发明新的术语,而统称“长”。赵爽注称:“两矩者, 句股各自乘之实。共长者, 并实之数。  由于年代久远,周公弦图失传,传世版本只印了赵爽弦图(造纸术在汉代才发明)。所以某些学者误以为商高没有证明(只是说了一段莫名其妙的话),后来赵爽才给出证明。  其实不然,摘录赵爽注释《周髀算经》时所做的《句股圆方图》[1]——“句股各自乘, 并之为弦实, 开方除之即弦。案: 弦图又可以句股相乘为朱实二, 倍之为朱实四, 以句股之差自相乘为中黄实, 加差实亦成弦实。”   赵爽弦图注意“案”中的“弦图又可以”、“亦成弦实”,“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明,于是他给出了新的证明。  下为赵爽证明——   青朱出入图三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青放并成弦方。依其面积关系有a^2+b^2=c^2.由于朱方、青方各有一部分在玄方内,那一部分就不动了。  以勾为边的的正方形为朱方,以股为边的正方形为青方。以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c……2 ).由此便可证得a^+b^2=c^2; [编辑本段]伽菲尔德证明勾股定理的故事  1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。  如下:  解:在网格内,以两个直角边为边长的小正方形面积和,等于以斜边为边长的的正方形面积。  勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,  a的平方+b的平方=c的平方;  说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。  举例:如直角三角形的两个直角边分别为3、4,则斜边c的平方;= a的平方+b的平方=9+16=25即c=5  则说明斜边为5。    [编辑本段]勾股定理的种证明方法  这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition一书中总共提到367种证明方式。  有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。     【证法1】(梅文鼎证明)  做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.   ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,  ∴ ∠EGF = ∠BED,  ∵ ∠EGF + ∠GEF = 90°,  ∴ ∠BED + ∠GEF = 90°,  ∴ ∠BEG =180°―90°= 90°  又∵ AB = BE = EG = GA = c,  ∴ ABEG是一个边长为c的正方形.   ∴ ∠ABC + ∠CBE = 90°  ∵ RtΔABC ≌ RtΔEBD,  ∴ ∠ABC = ∠EBD.  ∴ ∠EBD + ∠CBE = 90°   即 ∠CBD= 90°  又∵ ∠BDE = 90°,∠BCP = 90°,  BC = BD = a.  ∴ BDPC是一个边长为a的正方形.  同理,HPFG是一个边长为b的正方形.  设多边形GHCBE的面积为S,则  ,  ∴ .   【证法2】(项明达证明)  做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.  过点Q作QP∥BC,交AC于点P.   过点B作BM⊥PQ,垂足为M;再过点  F作FN⊥PQ,垂足为N.   ∵ ∠BCA = 90°,QP∥BC,  ∴ ∠MPC = 90°,  ∵ BM⊥PQ,  ∴ ∠BMP = 90°,  ∴ BCPM是一个矩形,即∠MBC = 90°.  ∵ ∠QBM + ∠MBA = ∠QBA = °,  ∠ABC + ∠MBA = ∠MBC = 90°,  ∴ ∠QBM = ∠ABC,  又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,  ∴ RtΔBMQ ≌ RtΔBCA.  同理可证RtΔQNF ≌ RtΔAEF.   【证法3】(赵浩杰证明)  做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.  分别以CF,AE为边长做正方形FCJI和AEIG,  ∵EF=DF-DE=b-a,EI=b,  ∴FI=a,  ∴G,I,J在同一直线上,  ∵CJ=CF=a,CB=CD=c,  ∠CJB = ∠CFD = 90°,  ∴RtΔCJB ≌ RtΔCFD ,  同理,RtΔABG ≌ RtΔADE,  ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE  ∴∠ABG = ∠BCJ,  ∵∠BCJ +∠CBJ= 90°,  ∴∠ABG +∠CBJ= 90°,  ∵∠ABC= 90°,  ∴G,B,I,J在同一直线上,   【证法4】(欧几里得证明)  做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结  BF、CD. 过C作CL⊥DE,  交AB于点M,交DE于点L.   ∵ AF = AC,AB = AD,  ∠FAB = ∠GAD,  ∴ ΔFAB ≌ ΔGAD,  ∵ ΔFAB的面积等于,  ΔGAD的面积等于矩形ADLM  的面积的一半,  ∴ 矩形ADLM的面积 =.  同理可证,矩形MLEB的面积 =.  ∵ 正方形ADEB的面积   = 矩形ADLM的面积 + 矩形MLEB的面积  ∴ 即a的平方+b的平方=c的平方   【证法5】欧几里得的证法  《几何原本》中的证明  在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。  在正式的证明中,我们需要四个辅助定理如下:  如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。  其证明如下:  设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的 [编辑本段]勾股定理的别名  勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。  我国是发现和研究勾股定理最古老的国家之一。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”.因此,勾股定理在我国又称“商高定理”.在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。  在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。  在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.  前任美国第二十届总统伽菲尔德证明了勾股定理(1876年4月1日)。
2023-05-13 02:42:221

勾股定理怎么算?

勾股定律又称勾股弦定理、勾股定理,是一个基本的几何定理,指在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别a是和b,斜边长度是c,那么可以用数学语言表达:a²+ b² =c² 。 勾股定律又称勾股弦定理、勾股定理,是一个基本的几何定理,指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,故称之为勾股定理。 在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别a是和b,斜边长度是c,那么可以用数学语言表达:a²+ b² =c² 。勾股定理是余弦定理中的一个特例。 公元前十一世纪,周朝数学家商高就提出勾三、股四、弦五。《周髀算经》中记录着商高同周公的一段对话。商高说:故折矩,勾广三,股修四,经隅五。意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成勾三股四弦五,根据该典故称勾股定理为商高定理。 公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中勾股各自乘,并而开方除之,即弦,赵爽创制了一幅勾股圆方图,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。 外国 远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为普林顿322的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。 公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。 公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。 1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。
2023-05-13 02:42:371

勾股定理的原理是什么?

定理:  如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方; 即直角三角形两直角边的平方和等于斜边的平方。  如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是4,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)  来源:   毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
2023-05-13 02:42:431

初中数学勾股定理的公式有哪些

其实就是底+高=斜面(简化)
2023-05-13 02:42:599

勾股定理是什么意思?

勾股定理:指直角三角形的两条直角边的平方和等于斜边的平方。拓展资料勾股定理的定义:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:a²+b²=c²。在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。参考资料:百度百科 勾股定理
2023-05-13 02:43:311

勾股定理是什么?

在一个三角形中,两条边的平方和等于另一条边的平方,那么这个三角形就是直角三角形
2023-05-13 02:43:473

勾股定理是啥意思

勾股定理的解释[Pythagorean theorem] 《周髀算经》 记载 :西周初年商高提出的勾三股四弦五。这是勾股定理的一个特例。勾股定理就是 直角 三角形斜边上的正方形面积,等于两直角边上的正方形面积之和。 中国 古代称两直角边为勾和股,斜边为弦。勾三股四弦五就是:勾三的平方九,加股四的平方十六,等于弦五的平方二十五。说明我国很早就掌握勾股定理,西方的希腊到 公元 前六世纪的毕达哥拉斯时,才发现这 一定 理 详细解释 在直角三角形中,两直角边平方的和等于斜边的平方。在中国古代,称直角三角形中较短的一条直角边为勾,较长的一条直角边为股,斜边为弦,定理因而得名。古代算书 《周髀算经》 所载商高的谈话中曾提出勾股定理的特例“勾三股四弦五”,故又称“商高定理”。在西方,它被称为“毕达哥拉斯定理”。 词语分解 勾股的解释 直角三角形夹直角的两边,短边为“勾”,长边为“股”;在立竿测太阳高度时,日影为勾,标竿为股。广义说法,包括勾股定理的 研究 和应用。参阅《周髀算经》卷上。 定理的解释 通过理论证明能用来作为 原则 或 规律 的命题或公式详细解释.确定的法则或 道理 。《韩非子·解老》:“凡理者, 方圆 、短长、麤靡、坚脆之分也。故理定而后可得道也。故定理有存亡,有死生,有盛衰。夫物 之一 存一亡,乍
2023-05-13 02:44:071

勾股定理

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法
2023-05-13 02:44:152

什么是勾股定理?

勾股定理: 在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^2+b^2=c^2; 即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2 ,那么这个三角形是直角三角形。(称勾股定理的逆定理) 来源: 是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
2023-05-13 02:44:235

什么是勾股定理?

连接ae 设正方形的边长为4∵ec=4分之1bc ∴ec=1 be=3∵f为dc中点∴df=fc=2利用勾股定理 ef=根号5∵ab=4 be=3利用勾股定理 ∴ae=5同理:∵ab=2 df=2∴af=2根号5通过计算得: af平方+ef平方=ae平方∴三角形afe是直角三角形∴af垂直ef
2023-05-13 02:44:3915

什么是勾股定理?怎么算,请举个例子说明

勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。(如下图所示,即a² + b² = c²)例子:以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。由勾股定理得,a² + b² = c² → 3² +4²  = c² 即,9 + 16 = 25 = c² c = √25 = 5所以我们可以利用勾股定理计算出c的边长为5。扩展内容:勾股定理:勾股定理(Pythagorean theorem)又称商高定理、毕达哥拉斯定理、毕氏定理、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一。勾股定理的逆定理:勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:如果a² + b² = c² ,则△ABC是直角三角形。如果a² + b² > c² ,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。如果a² + b² < c² ,则△ABC是钝角三角形。参考资料:勾股定理 - wiki
2023-05-13 02:45:091

勾股定理的解释

在直角三角形中,斜边的平方等于两直角边的平方和。中国古代的勾股定理:勾三股四弦五是这一定理的特殊情况,因为5²=3²+4².如果这样解释太肤浅,就当我没说,可不予理睬。
2023-05-13 02:45:232

勾股定理常用11个公式是什么?

3、常用公式(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。(5,12,13),(7,24,25),(9,40,41)……2n+1,2n²+2n,2n²+2n+1(n是正整数)。(8,15,17),(12,35,37)……2²*(n+1),[2(n+1)]²-1,[2(n+1)]²+1(n是正整数)。m²-n²,2mn,m²+n²(m、n均是正整数,m&gt;n)。
2023-05-13 02:45:302

勾股定理公式是什么呢?

勾股定理公式是a的平方加上b的平方等于c的平方。如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是: a^2+b^2=c^2。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。扩展资料:勾股定理简介:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以
2023-05-13 02:45:541