汉邦问答 / 问答 / 问答详情

谁有小学奥数题,越多越好!

2023-07-08 10:25:37
TAG: 小学
CarieVinne
二个网站奥数题目都有:
www.aoshu.cn

www.klsx.net

1. 有 28位小朋友排成一行 .从左边开始数第 10位是爱华,从右边开始数他是第几位?

2. 纽约时间是香港时间减 13小时 .你与一位在纽约的朋友约定,纽约时间 4月 1日晚上 8时与他通电话,那么在香港你应几月几日几时给他打电话?

3. 名工人 5小时加工零件 90件,要在 10小时完成 540个零件的加工,需要工人多少人?

4. 大于 100的整数中,被 13除后商与余数相同的数有多少个?

5. 四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人?

6. 在 1998的约数(或因数)中有两位数,其中最大的是哪个数?

7. 英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分?

8. 一个月最多有 5个星期日,在一年的 12个月中,有 5个星期日的月份最多有几个月?

9. 将 0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同 .

□ +□□ =□□□

问算式中的三位数最大是什么数?

10. 有一个号码是六位数,前四位是 2857,后两位记不清,即

2857□□

但是我记得,它能被 11和 13整除,请你算出后两位数 .

11. 某学校有学生 518人,如果男生增加 4%,女生减少 3人,总人数就增加 8人,那么原来男生比女生多几人?

12. 陈敏要购物三次,为了使每次都不产生 10元以下的找赎, 5元、 2元、 1元的硬币最少总共要带几个?

(硬币只有 5元、 2元、 1元三种 .)

13. 右图是三个半圆构成的图形,其中小圆直径为 8,中圆直径为 12,

14.幼儿园的老师把一些画片分给 A, B, C三个班,每人都能分到 6张 .如果只分给 B班,每人能得 15张,如果只分给 C班,每人能得 14张,问只分给 A班,每人能得几张?

15. 两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是 123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?

16.一本小说的页码,在印刷时必须用1989个铅字,在这一本书的页码中数字1出现多少次?

17.把23个数:3,33,333,…,33…3(23个3)相加,则所得的和的末四位数是多少?

18.将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字,两个2之间有二个数字,两个3之间有三个数字,两个4之间有四个数字,那么这样的八位数中最小的是?

19.从 1, 2, 3,…,2004, 2005这些自然数中,最多可以取几个数,才能使其中每两个数的差不等于4?

20.有一个电话号码是六位数,其中左边三个数字相同,右边三个数字是三个连续的自然数,六个数字之和恰好等于末尾的两位数,这个电话号码是多少?

21.若a为自然数,证明10│(a2005-a1949).

22.给出12个彼此不同的两位数,证明:由它们中一定可以选出两个数,它们的差是两个相同数字组成的两位数.

23.求被3除余2,被5除余3,被7除余5的最小三位数.

24.设2n+1是质数,证明:12,22,…,n2被2n+1除所得的余数各不相同.

25.试证不小于5的质数的平方与1的差必能被24整除.

26. 有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是82.5%的糖水100克,问每种应取多少克?

27. 一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是?

28. 有若干千克4%的盐水,蒸发了一些水分后变成了10%的盐水,在加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少千克?

29.已知盐水若干克,第一次加入一定量的水后,盐水浓度变为3%,第二次加入同样多的水后,盐水浓度变为2%。求第三次加入同样多的水后盐水的浓度。

30.有A、B、C三种盐水,按A与B的数量之比为2:1混合,得到浓度为13%的盐水;按A与B的数量之比为1:2混合,得到浓度为14%的盐水;按A、B、C的数量之比为1:1:3混合,得到浓度为10.2%的盐水,问盐水C的浓度是多少?
无尘剑

2007年重点中学入学试卷模拟系列一

基础班

一.选择,把正确答案的序号填在括号内。

(1)有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于( )。

A、21 B、25 C、29 D、58

答案:C

(2)某开发商按照分期付款的形式售房。张明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款5000元,与上一年剩余欠款的利息之和。已知剩余欠款的年利率为0.4%,第( )年张明家需要交房款5200元。

A、7 B、8 C、9 D、10

答案D

(3)在一条笔直的公路上,有两个骑车人从相差500米的A、B两地同时出发。甲从A地出发,每分钟行使600米,乙从B地出发,每分钟行使500米。经过( )分钟两人相距2500米。

A、 B、 C、20 D、30

解:A、B、C、D

考虑二人同时从A 、B两地出发相向而行,那么应该需要(2500+500)÷(600+500)=

二人同时从A 、B两地出发背向而行,那么应该需要(2500-500)÷(600+500)=

二人同时从A 、B两地出发同向而行,分别为(2500+500)÷(600-500)=30

(2500-500)÷(600-500)=20

(4)若干名战士排成8列长方形的队列,若增加120人或减少120人都能组成一个新的正方形队列,那么,原有战士( )人。

A、904 B、136 C、240 D、360

解:A、B

此题反推一下即可。所以选择A、B

(5)一个三位数,它的反序数也是一个三位数,用这个三位数减去它的反序数得到的差不为0,而且是4的倍数。那么,这样的三位数有( )个。

A、2 B、30 C、60 D、50

答案:D

这个三位数与它的反序数除以四的余数应该相等,

不妨设这个三位数是ABC,则它的反序数为CBA。于是有ABC-CBA=4的倍数,即100A+10B+C-(100C+10B+C)=4的倍数,整理得99(A-C)=4的倍数,即可知A-C是4的倍数即可,但是不能使这两个三位数的差为0,所以分别有5,1;6,2;7,3;8,4;9,5四组。每组中分别有10个,那么共有50个。

(6)有若干条长短、粗细相同的绳子,如果从一端点火,每根绳子都正好8分钟燃尽。现在用这些绳子计量时间,比如:在一根绳子的两端同时点火,绳子4分钟燃尽;在一根绳子的一端点火,燃尽的同时点第二根绳子的一端,两根绳子燃尽可计时16分钟。

规则:①计量一个时间最多只能使用3条绳子。

②只能在绳子的端部点火。

③可以同时在几个端部点火。

④点着的火中途不灭。

⑤不许剪断绳子,或将绳子折起。

根据上面的5条规则下列时间能够计量的有( )。

A、6分钟 B、7分钟 C、9分钟

D、10分钟 E、11分钟、 F、12分钟

答案:A,B,C,D,F。只有11分钟计量不出来。

二.填空

(1)我国是世界最缺水的国家之一,人均淡水资源2300吨,仅相当于世界人均的25%。小华想发明一套使海水淡化的设备,每小时淡化出纯净水29900000吨。那么,要使我国人均淡水资源达到世界平均水平,这套设备要运转( )小时(全国人口以13亿计算)

答案:400000

(2)把一个自然数的所有的约数都写出来,然后在这些约数任意找两个相加,这样就可以得到若干个不同的和,其中最小的和是4,最大的和是140。那么,这个自然数是( )。

答案:105

(3)如右图所示,梯形下底是上底的1.5倍,梯形中阴影面积等于空白面积,三角形OBC的面积是12,那么三角形AOD的面积是( )。

答案:8

(4)把1、2、3、4、5、6、7、8、9这九个数填入下面的九个方格内, 每个数只能用一次,使等式成立。

□×□×(□+□+□+□)×(□+□-□)=2002

答案:2×7×(1+3+4+5)×(9+8-6)=2002

(5)将1—9填入下图中,使5条线上的数字之和都等于18,共有( )种填法。

答案:3

(6)用6米、8米、10米、16米、20米、28米分别作为右图的6条边的边长,当这个图形的面积最大时,过A点画一条直线把图形分成面积相等的两部分,这条直线与边界的交点为K,从A点沿边界走到K点,较短的路线是( )米。

答案:40

(7)在一张纸上写上1—100这一百个自然数,1、2、3、4、5、6……99、100。划去前两个数,把它们的和写在最后面:3、4、5、6……99、100、3;然后再划去前两个数,把它们的和写在最后面:5、6、7……

99、100、3、7;如此这样进行下去,直到只剩下一个数为止。问:

①、共写了( )个数;②、最后一个数是( );

③、倒数第二个数是( )。

答案:①199、5050 ②2592

(8)数学考试有一道题是计算4个分数 、 、 、 的平均值,小明很粗心,把其中一个分数的分子和分母抄颠倒了,问抄错后的平均值和正确的答案最大相差( )。

答案:4/15

三、解答题

(1)快车从甲地开往乙地,慢车从乙地开往甲地,两车同时出发相向而行,8小时在途中相遇。相遇后继续向前行驶2小时。这时,快车距乙地还有250千米,慢车距甲地还有350千米。甲、乙两地相距多少千米。

答案:800

设快车速度为V快,慢车速度为V慢,由题中条件知,快车比慢车每小时快10千米,(350-250)÷(2+8)=10,那么就有8V慢-2V快=250,所以V慢=45,那么V快=55,(55+45)=800

(2)桌子上有8枚棋子,甲乙二人轮流拿棋子。规定先拿的只要不都拿走,拿几枚都成,后拿者不能多于先拿的2倍,如此进行下去,谁拿最后一枚棋子谁就算胜利。请你回答,怎样拿必然取胜,为什么?

答案:后拿胜

提高班

2007年重点中学入学试卷模拟系列一

一.选择,把正确答案的序号填在括号内。

(1)有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于( )。

A、21 B、25 C、29 D、58

答案:C

(2)某开发商按照分期付款的形式售房。张明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款5000元,与上一年剩余欠款的利息之和。已知剩余欠款的年利率为0.4%,第( )年张明家需要交房款5200元。

A、7 B、8 C、9 D、10

答案D

(3)在一条笔直的公路上,有两个骑车人从相差500米的A、B两地同时出发。甲从A地出发,每分钟行使600米,乙从B地出发,每分钟行使500米。经过( )分钟两人相距2500米。

A、 B、 C、20 D、30

解:A、B、C、D

考虑二人同时从A 、B两地出发相向而行,那么应该需要(2500+500)÷(600+500)=

二人同时从A 、B两地出发背向而行,那么应该需要(2500-500)÷(600+500)=

二人同时从A 、B两地出发同向而行,分别为(2500+500)÷(600-500)=30

(2500-500)÷(600-500)=20

(4)若干名战士排成8列长方形的队列,若增加120人或减少120人都能组成一个新的正方形队列,那么,原有战士( )人。

A、904 B、136 C、240 D、360

解:A、B

此题反推一下即可。所以选择A、B

(5)一个三位数,它的反序数也是一个三位数,用这个三位数减去它的反序数得到的差不为0,而且是4的倍数。那么,这样的三位数有( )个。

A、2 B、30 C、60 D、50

答案:D

这个三位数与它的反序数除以四的余数应该相等,

不妨设这个三位数是ABC,则它的反序数为CBA。于是有ABC-CBA=4的倍数,即100A+10B+C-(100C+10B+C)=4的倍数,整理得99(A-C)=4的倍数,即可知A-C是4的倍数即可,但是不能使这两个三位数的差为0,所以分别有5,1;6,2;7,3;8,4;9,5四组。每组中分别有10个,那么共有50个。

(6)有若干条长短、粗细相同的绳子,如果从一端点火,每根绳子都正好8分钟燃尽。现在用这些绳子计量时间,比如:在一根绳子的两端同时点火,绳子4分钟燃尽;在一根绳子的一端点火,燃尽的同时点第二根绳子的一端,两根绳子燃尽可计时16分钟。

规则:①计量一个时间最多只能使用3条绳子。

②只能在绳子的端部点火。

③可以同时在几个端部点火。

④点着的火中途不灭。

⑤不许剪断绳子,或将绳子折起。

根据上面的5条规则下列时间能够计量的有( )。

A、6分钟 B、7分钟 C、9分钟

D、10分钟 E、11分钟、 F、12分钟

答案:A,B,C,D,F。只有11分钟计量不出来。

二.填空

(1)我国是世界最缺水的国家之一,人均淡水资源2300吨,仅相当于世界人均的25%。小华想发明一套使海水淡化的设备,每小时淡化出纯净水29900000吨。那么,要使我国人均淡水资源达到世界平均水平,这套设备要运转( )小时(全国人口以13亿计算)

答案:400000

(2)把一个自然数的所有的约数都写出来,然后在这些约数任意找两个相加,这样就可以得到若干个不同的和,其中最小的和是4,最大的和是140。那么,这个自然数是( )。

答案:105

(3)如右图所示,梯形下底是上底的1.5倍,梯形中阴影面积等于空白面积,三角形OBC的面积是12,那么三角形AOD的面积是( )。

答案:8

(4)把1、2、3、4、5、6、7、8、9这九个数填入下面的九个方格内, 每个数只能用一次,使等式成立。

□×□×(□+□+□+□)×(□+□-□)=2002

答案:2×7×(1+3+4+5)×(9+8-6)=2002

(5)将1—9填入下图中,使5条线上的数字之和都等于18,共有( )种填法。

答案:3

(6)用6米、8米、10米、16米、20米、28米分别作为右图的6条边的边长,当这个图形的面积最大时,过A点画一条直线把图形分成面积相等的两部分,这条直线与边界的交点为K,从A点沿边界走到K点,较短的路线是( )米。

答案:40

(7)在一张纸上写上1—100这一百个自然数,1、2、3、4、5、6……99、100。划去前两个数,把它们的和写在最后面:3、4、5、6……99、100、3;然后再划去前两个数,把它们的和写在最后面:5、6、7……99、100、3、7;如此这样进行下去,直到只剩下一个数为止。问:

①、共写了( )个数;②、最后一个数是( );

③、倒数第二个数是( )。

答案:①199、5050 ②2592

(8)数学考试有一道题是计算4个分数 、 、 、 的平均值,小明很粗心,把其中一个分数的分子和分母抄颠倒了,问抄错后的平均值和正确的答案最大相差( )。

答案:4/15

三、解答题

(1)快车从甲地开往乙地,慢车从乙地开往甲地,两车同时出发相向而行,8小时在途中相遇。相遇后继续向前行驶2小时。这时,快车距乙地还有250千米,慢车距甲地还有350千米。甲、乙两地相距多少千米。

答案:800

设快车速度为V快,慢车速度为V慢,由题中条件知,快车比慢车每小时快10千米,(350-250)÷(2+8)=10,那么就有8V慢-2V快=250,所以V慢=45,那么V快=55,(55+45)=800

(2)桌子上有8枚棋子,甲乙二人轮流拿棋子。规定先拿的只要不都拿走,拿几枚都成,后拿者不能多于先拿的2倍,如此进行下去,谁拿最后一枚棋子谁就算胜利。请你回答,怎样拿必然取胜,为什么?

答案:后拿胜

精英班

2007年重点中学入学试卷模拟系列一

一 在〇内填上“>” “<”或“=”。

2.3×9.6○=3.2×6.9 999999÷7○=142857 (30÷0.75)×(0.75÷30)=○1

6×7×8×9+2○>3025 4×24×25+1○=49×49 101×1.01〇=101+1.01

123×456〇<1234×56 666×668〇<667×667 123+285+658○=255+123+688

2000/2001-1999/2000+1998/1999-1997/1998+…+2/3-1/2〇>1/2-1/3+1/4-1/5+…+1/2000 -1/2001

二 填空

①2002年2月3日迎春杯决赛这一天是星期日,在这一年各月的3日中,星期日、一、二 、三、四、五、六都有,其中最多的是星期(日 ),共有( 3 )天。

②从小到大排列的9个连续自然数,其中排在第三位的数比这9个数总和的1/8少6,

9个数的和是( 288 )。

③商场出售某种儿童玩具,第一天定价每件50元,由于定价过高,一件也未卖出。第二天根据市场情况,每件定价下调不足10元,结果一天全部售出,共收货款2226元,每件玩具降价(8 )元。

④将1,2,3,……,2000,2001,2002这2002个数从小到大排成一列。算出前999个数的平均数及后面1003个数的平均数,这两个平均数的差是( 1001 )。

⑤玛丽和老师做猜数游戏。玛丽在计算器上任意输入一个三位数,老师让她乘27,得数再乘37,把结果的末三位数告诉老师。老师立即猜出玛丽在计算器上输入的三位数是几。现在玛丽告诉老师的末三位数是142。玛丽在计算器上输入的三位数是( 868 )。

⑥一个长方形的周长是2002米,宽是长的5/8。长、宽各增加1米,得到的大长方形面积比原来长方形面积增加了( 1002 )平方米。

⑦在上升的电梯中称重,显示的重量比实际体重增加1/6;在下降的电梯中称重,显示的重量比实际体重减少1/7。小明在上升的电梯中与小刚在下降的电梯中称得的体重相同,且是不足50的整千克数。小明的体重( 36 )千克,小刚的体重( 49 )千克。

⑧从1、2、3、4、5、6、7、8、9、10这十个数中选四个不同的数a、b、c、d,其中a<b<c<d,使得乘积ad和bc是两个相邻的自然数,共有( 11 )种不同的选法。

⑨有若干个小朋友,每人手中都有一根长74厘米的铁丝,他们每人用手中的铁丝制作一个等腰三角形框架(全部用上,无接头,边长是整厘米数),结果每人制作的等腰三角形框架都不相同。请问最多有( 12 )个小朋友。

⑩有若干根长度相同的火柴,把这些火柴摆成下面的图形。照这样摆下去,第77个图形共用( 12088 )根火柴?第n个图形共用火柴根数的计算公式为:2n2+3n-1

三 选择,将正确答案的序号填在( )内。

①从A 站到B站,甲车要行10小时,乙车要行8小时,甲车的速度比乙车慢( )。

A 25% B 20% C 80%

答:B

②图书馆有一些学生在看书,其中男生人数是女生的7/8,后来女生走了1/4,男生走了4人,剩下的男、女生人数相等。求原来男生有多少人?下面正确列式是( )。

A 4÷[7/8-(1-1/4)]×7/8 B 4÷(1/4-1/8)×7/8 C 4×4÷(1-1/8×4)×7/8

答:ABC

③用同一种型号的铁丝制铁丝网,制成下左图1 所示的铁丝网约重60克,制成图2 所示的铁丝网约重( )克。

A 120 B 150 C 180 D 210

答:D

④下中图所示的加法算式中,每个字母代表一个数字,不同的字母代表不同的数字,

那么K与J的积是( )。

A 8 B 12 C 15 D 18

答:BC

⑤下面的立体图形是由若干个同样的正方体积木堆积成的。在这些正方体积木中恰好有4个面和其它积木相接的有( )块。

A 4 B 5 C 6 D 12

答:B

⑥小明用一张梯形纸做折纸游戏。先上下对折,使两底重合,可得图1,并测出未重叠部分的两个三角形面积和是20平方厘米。然后再将图1中两个小三角形部分向内翻折,得到图2。经测算,图2的面积相当于图1的5/6。这张梯形纸的面积是( )平方厘米。

A 50 B 60 C 100 D 120

答:C

⑦小明把一个正方体木块的六个面都均分成9个小正方形,他想用红、黄、蓝三种颜色染这些小正方形,有公共边的两个小正方形染不同颜色。染完后红色小正方形可能有( )个。

A 22 B 20 C 12 D 18

答:D

⑧玛丽参加一次数学竞赛,共有12道题。记分标准是:做对第K题记K分,做错第K题扣K分(K=1,2,3…12)。玛丽做了全部题目,得60分。知道玛丽做错了3道题,那么错题号可能为( )。

A.⑨ ② ① B.⑥ ② ① C.⑤ ③ ① D.④ ③ ②

答:BCD

⑨生产63个零件,若由师傅独做可比规定时间提前5小时完成;若由徒弟独做超过规定时间7小时才能完成。师徒二人先合作3小时,再由徒弟独做恰好在规定时间内完成。请问:规定完成任务的时间是( )小时。

A 9 B 14 C 21

答:B

四 将下题左面的长方形沿网格线分割成两块,再用这两块拼成右面的正方形。在长方形中画出分法,在正方形中画出拼法。(10 分)

答:

五 简答下面各题。(30分)

1 玛丽和老师做游戏,两人轮流在下面的正方形网格中任意一格内填数,所填的数只能是1、3、4、5、6、7、8、9、10这9个数。每个数只能用一次。全部填完后,一、三两行数的和为玛丽的得分,一、三两列数的和为老师的得分,得分高的人获胜。玛丽首先填数,要想一定取胜的话,最初要在哪一方格中填哪个数?请说明理由。

1、答:应先在D或F处放入1,因为A、C、H、K四个地方是玛丽和老师公有的,要想获胜就要在剩下的4个方格内让自己多,使别人少。

2玛丽有四块完全相同的白色长方形纸板(长和宽都是整厘米数),还有一块面积是A平方厘米的黑色正方形纸板,A是一个三位数。玛丽用这四块白色长方形纸板和那块黑色的正方形纸板拼一个面积是B平方厘米的大正方形(右上图), B也是一个三位数。已知A与B是互为反序的数。那么,白色长方形纸板的长和宽各是多少厘米?

答:长是22厘米,宽是9厘米

目标班

2007年重点中学入学试卷模拟系列一

一 在〇内填上“>” “<”或“=”。

2.3×9.6(=)3.2×6.9 999999÷7=142857 (30÷0.75)×(0.75÷30)=1

6×7×8×9+2>3025 4×24×25+1=49×49 101×1.01=101+1.01

123×456<1234×56 666×668<667×667 123+285+658=255+123+688

2000/2001-1999/2000+1998/1999-1997/1998+…+2/3-1/2>1/2-1/3+1/4-1/5+…+1/2000 -1/2001

二 填空

①2002年2月3日迎春杯决赛这一天是星期日,在这一年各月的3日中,星期日、一、二 、三、四、五、六都有,其中最多的是星期(日 ),共有( 3 )天。

②从小到大排列的9个连续自然数,其中排在第三位的数比这9个数总和的1/8少6,

9个数的和是( 288 )。

③商场出售某种儿童玩具,第一天定价每件50元,由于定价过高,一件也未卖出。第二天根据市场情况,每件定价下调不足10元,结果一天全部售出,共收货款2226元,每件玩具降价(8 )元。

④将1,2,3,……,2000,2001,2002这2002个数从小到大排成一列。算出前999个数的平均数及后面1003个数的平均数,这两个平均数的差是( 1001 )。

⑤玛丽和老师做猜数游戏。玛丽在计算器上任意输入一个三位数,老师让她乘27,得数再乘37,把结果的末三位数告诉老师。老师立即猜出玛丽在计算器上输入的三位数是几。现在玛丽告诉老师的末三位数是142。玛丽在计算器上输入的三位数是( 868 )。

⑥一个长方形的周长是2002米,宽是长的5/8。长、宽各增加1米,得到的大长方形面积比原来长方形面积增加了( 1002 )平方米。

⑦在上升的电梯中称重,显示的重量比实际体重增加1/6;在下降的电梯中称重,显示的重量比实际体重减少1/7。小明在上升的电梯中与小刚在下降的电梯中称得的体重相同,且是不足50的整千克数。小明的体重( 36 )千克,小刚的体重( 49 )千克。

⑧从1、2、3、4、5、6、7、8、9、10这十个数中选四个不同的数a、b、c、d,其中a<b<c<d,使得乘积ad和bc是两个相邻的自然数,共有( 11 )种不同的选法。

⑨有若干个小朋友,每人手中都有一根长74厘米的铁丝,他们每人用手中的铁丝制作一个等腰三角形框架(全部用上,无接头,边长是整厘米数),结果每人制作的等腰三角形框架都不相同。请问最多有( 12 )个小朋友。

⑩有若干根长度相同的火柴,把这些火柴摆成下面的图形。照这样摆下去,第77个图形共用( 12088 )根火柴?第n个图形共用火柴根数的计算公式为:2n2+3n-1

三 选择,将正确答案的序号填在( )内。

①从A 站到B站,甲车要行10小时,乙车要行8小时,甲车的速度比乙车慢( )。

A 25% B 20% C 80%

答:B

②图书馆有一些学生在看书,其中男生人数是女生的7/8,后来女生走了1/4,男生走了4人,剩下的男、女生人数相等。求原来男生有多少人?下面正确列式是( )。

A 4÷[7/8-(1-1/4)]×7/8 B 4÷(1/4-1/8)×7/8 C 4×4÷(1-1/8×4)×7/8

答:ABC

③用同一种型号的铁丝制铁丝网,制成下左图1 所示的铁丝网约重60克,制成图2 所示的铁丝网约重( )克。

A 120 B 150 C 180 D 210

答:D

④下图所示的加法算式中,每个字母代表一个数字,不同的字母代表不同的数字,

那么K与J的积是( )。

A 8 B 12 C 15 D 18

答:BC

⑤下面的立体图形是由若干个同样的正方体积木堆积成的。在这些正方体积木中恰好有4个面和其它积木相接的有( )块。

A 4 B 5 C 6 D 12

答:B

⑥小明用一张梯形纸做折纸游戏。先上下对折,使两底重合,可得图1,并测出未重叠部分的两个三角形面积和是20平方厘米。然后再将图1中两个小三角形部分向内翻折,得到图2。经测算,图2的面积相当于图1的5/6。这张梯形纸的面积是( )平方厘米。

A 50 B 60 C 100 D 120

答:C

⑦小明把一个正方体木块的六个面都均分成9个小正方形,他想用红、黄、蓝三种颜色染这些小正方形,有公共边的两个小正方形染不同颜色。染完后红色小正方形可能有( )个。

A 22 B 20 C 12 D 18

答:D

⑧玛丽参加一次数学竞赛,共有12道题。记分标准是:做对第K题记K分,做错第K题扣K分(K=1,2,3…12)。玛丽做了全部题目,得60分。知道玛丽做错了3道题,那么错题号可能为( )。

A.⑨ ② ① B.⑥ ② ① C.⑤ ③ ① D.④ ③ ②

答:BCD

⑨生产63个零件,若由师傅独做可比规定时间提前5小时完成;若由徒弟独做超过规定时间7小时才能完成。师徒二人先合作3小时,再由徒弟独做恰好在规定时间内完成。请问:规定完成任务的时间是( )小时。

A 9 B 14 C 21

答:B

四 将下题左面的长方形沿网格线分割成两块,再用这两块拼成右面的正方形。在长方形中画出分法,在正方形中画出拼法。(10 分)

答:

五 简答下面各题。(30分)

1 玛丽和老师做游戏,两人轮流在下面的正方形网格中任意一格内填数,所填的数只能是1、3、4、5、6、7、8、9、10这9个数。每个数只能用一次。全部填完后,一、三两行数的和为玛丽的得分,一、三两列数的和为老师的得分,得分高的人获胜。玛丽首先填数,要想一定取胜的话,最初要在哪一方格中填哪个数?请说明理由。

答:应先在D或F处放入1,因为A、C、H、K四个地方是玛丽和老师公有的,要想获胜就要在剩下的4个方格内让自己多,使别人少。

2玛丽有四块完全相同的白色长方形纸板(长和宽都是整厘米数),还有一块面积是A平方厘米的黑色正方形纸板,A是一个三位数。玛丽用这四块白色长方形纸板和那块黑色的正方形纸板拼一个面积是B平方厘米的大正方形(右上图), B也是一个三位数。已知A与B是互为反序的数。那么,白色长方形纸板的长和宽各是多少厘米?

答:长是22厘米,宽是9厘米

3.甲乙两瓶浓度未知的酒精分别含纯酒精200毫升和450毫升,如果把它们均匀混合(忽略体积变化)则混合后的浓度比原来甲瓶的浓度高7%,但比原来乙瓶的浓度低14%,问混合后浓度是多少?

答:设混合后的浓度为x%,则有

200÷(x%-7%)+450÷(x%+14%)=(200+450)×x%

解得x≈13.92,所以混合后的浓度为13.92%

此后故乡只

1、某班有40名学生,其中数学测验,有2名同学因病缺考,这时班级平均分为89分,(按38人计算)。缺考的同学补考各得99分,这个班期中测验平均分是多少分?

2、一个同学前6次测验的平均分是93分,第7次测验的分数比这7次的平均分高3分,他第7次测验得了多少分?

3、两组同学进行跳绳比赛,平均每人每分跳152次,甲组有6人,平均每人每分跳140次,乙组平均每人每分跳160次。那么乙组有多少人?

4、某班统计数学成绩,平均成绩是85.1后来发现张明同学的成绩是96分而被误看做69分,重新计算后,平均成绩是85.7分,这个班共有多少个学生?

5、爸爸带儿子去郊游,爸爸让儿子先走100步后再去追赶,已知爸爸走3步的时间儿子走5步,爸爸走9步的距离与儿子走17步的距离相等。爸爸走多少步可以追上儿子?

6、某小学学生乘汽车去春游,如果每辆车坐65人,就会有15人不能乘车,如果每辆车多坐5人,恰好多余了一辆车,一共有多少辆汽车,多少个学生?

7、快慢两车同时从同一地点出发,沿同一公路追赶前面的骑车人。这两车分别用6分钟、10分钟追上骑车人,现在知道快车每分行400米,慢车每分行320米,骑车人每分行多少米?

8、用一个杯子向一个空瓶里倒水。如果倒进3杯水,连瓶共重440克,如果倒进5杯水,连瓶共重600克,一杯水重多少克?

9、在桥上测量桥高,把绳长对折后垂到水面,还余4米,把绳长3折后垂到水面,还余1米,桥高多少米?绳长多少米?

10、100个人买100枝笔。3个人合买一枝毛笔,1个人买3枝铅笔,买了几枝铅笔?

11、甲、乙、丙三个班共有学生144人,首先从甲班调出与乙班相同的人数给乙班,接着从乙班调出与丙班相同的人数给丙班,再从丙班调出与这时的甲班相同的人数给甲班,这样甲、乙、丙三个班人数相等,原来甲班比乙班多多少人?

12、某学校体育老师和一个小朋友去买足球,他发现自己身边的钱买10个冠军牌足球还差42元,后来他向朋友借了1000元,买了31个冠军牌足球,结果多了13元,体育老师原来身边有多少钱?

13、某小组加工一批零件,前三天共加工97个,第4天比四天加工的平均数多11个,第四天加工多少个?

14、甲乙两棉田平均每公顷收皮棉940千克,甲棉田6公顷,平均每公顷收1020千克,乙棉田每公顷比平均数少120千克,乙棉田有多少公顷?

15、狗和兔同时从A地跑向B地,狗跑3步的距离等于兔跑5步的距离,而狗跑两步的时间等于兔跑三步的时间,狗跑600步到B地,这时兔子还要跑多少步才能到达B地?

16、小欣每天读12页书,8天读一本书的一半,此后为了在计划时间内读完这本书,他每天多读4页,小欣读完这本书共用多少天?

17、某班同学植一批树苗,已经植好了82棵,如果以后每天比原来多植5棵,还需要植6天,但最后一天要多植两棵,如果仍按原计划植就需要再植两天,这个班一共植了多少棵树?

18、一块地用3台铁牛牌拖拉机8小时耕完,用4台丰收牌拖拉机9小时耕完,现用两台铁牛牌拖拉机和两台丰收牌拖拉机同时耕,几小时可以耕完?

19、两分币和5分币共有68枚值2.26元,其中两分币比5分币多多少枚?

20、甲、乙、丙三人同乘火车去某地,因他们每人的行李都超过了免费的重量,需另加行李费,甲支付了3元,乙支付了5元,丙支付了7元,三人的行李共重90千克,如果这些行李一人携带,需付行李费35元,丙带的行李重多少千克?

21、甲种货物的单价是乙种货物的4倍,如果甲种货物的单价减少9元,乙种货物的单价增加9元,则两种货物的单价相等,那么两种货物原来的单价是多少元?

22、有兄弟两人,哥哥所有的钱数是弟弟的3倍,若弟弟给哥哥6元,那么哥哥所有的钱数是弟弟的5倍,哥哥原有多少钱?

23、一个文具店出售每支5角的铅笔,很少有人买,于是文具店把这种铅笔降价出售,结果库存的铅笔全部卖完,共卖得31.93元,这个文具店库存这种铅笔多少支?每支降价多少元?

24、甲、乙两车同时从相距480千米的两地出发,相向行驶,已知甲车的速度是乙车的1.5倍,结果甲车比乙车早两小时到达两地的中点,求甲 、乙两车的速度。

25、8个高年级男同学和26小朋友每人搬一次砖,如果每个高年级的男同学每次搬的砖是每个小朋友的4倍,高年级的男同学比小朋友一共多搬12块砖,他们一共搬了多少块砖?

26、四个同学参加数学竞赛,已知甲、乙、丙三人平均分是90分,乙、丙、丁三人平均分是91分,并且乙、丙比甲、丁两人共多得3分,求甲、乙、丙、丁四人共得多少分?

27、生产一批零件,师傅独做要4小时,徒弟独做要5小时,如果师徒两人合作两小时,每小时多做5个零件也能完成,这批零件共有多少个?

28、快、慢两车从甲、乙两地相对开出,如果慢车先开3小时,快车再开出,相遇时慢车比快车多行30千米,如果快车先开出3小时,慢车再开出,相遇时,快车比慢车多行118千米,如果两车同时出发,4小时相遇,求快车每小时比慢车多行多少千米?

29、龙镇小学五年级某班学生采集标本,采集昆虫标本的有25人,采集植物标本的有19人,两种标本都采集的有8人,全班共有40人,有多少人没有采集标本?

30、甲、乙两店卖同一种铅笔,为了促销,甲店8折出售,乙店买10枝送两枝,小明在两家店各买了10枝,请你比一比,实际是哪家商店卖得便宜?

31、袋子里有三种球,分别标有数字2、3和5,小明从中摸出12个球,他们的数字之和是43,问小明最多摸出标有数字2的球多少个?

32、有6个谜语让在座的50人猜共猜对202个。已知每人至少猜对两个谜语,且猜对两个的有5人,猜对4个的有9人,猜对3饿和5个的人数一样多,那么6个谜语全猜对的有多少人?

33、张大伯卖了一天的水果,晚上数钱时他发现手头的一叠纸币是一些两元和五元的,张大伯把这堆纸币分成钱数相等的两堆,第一堆中五元与两元的钱数相等,第二堆中五元与两元的张数相等,你知道这叠纸币至少有多少元?

34、有252双丝袜分装在4只小盒与9只大盒内,4只小盒装的双数相等,9只大盒装的双数也相等,问大、小盒各装多少 ?

35、有红、白球若干个,如果每次拿出一个红球和一个白球,拿到没有红求时,还剩50个白球,如果每次拿走一个红球和3个白球,则拿到没有白球时,红球还剩下150个,这堆球里红球、白球各有多少个?

36、1千克奶油比1千克核桃仁多含脂肪200克,6千克奶油和8千克核桃仁的含脂肪量相等,问每千克奶油和每千克核桃仁各含脂肪多少克?37、六(五)班平均分成三组去植树,第一小组分得总数的1/4多5棵,第二小组分得剩下的1/5多12棵,最后剩下的给了第三小组,结果三组分的同样多,这批树有多少棵?

38、甲、乙、丙、丁四人合作一批零件,甲分得这批零件的1/6多30个,乙分得剩下的1/2少45个,丙分得又剩下的4/9多10个,最后剩下的给丁,结果四人做得一样多,这批零件共多少个?

39、光华电子厂有四个车间,第一、二车间共105人,第二、三、三车间共270人,第二车间正好占全厂人数的1/14,全厂共有多少人?

40、一批零件甲、乙合作8天完成,乙、丙合作6天完成,丙、丁合作12天完成,甲、丁合作几天完成?

41、有一个水池,用一根长3.5米的竹竿竖直地插入池中,在竹竿与水面的交接处注上记号后取出,然后将竹竿倒过来,依照上述方法再做一次,如果两个记号间的距离是整个竹竿长度的1/7,那么水池中的水深多少米?

42、如果一根竹竿竖直地插入深4.8米的水池中,在竹竿与水面的交接处做上记号后取出,然后将竹竿倒过来,依照上述方法再做一次,如果两个记号间的距离是整个竹竿长度的1/5,那么竹竿长多少米?

43、某校派出60名选手参加市少年田径邀请赛,其中女选手占1/4,正式比赛时,有几名女选手因故缺席,这样使女选手人数变为参赛选手总数的2/11,正式参赛的女选手有多少名?

44、有一堆糖果,其中奶糖占9/20,再放入16块水果糖后,奶糖就占1/4,奶糖有多少块?

45、红星幼儿园原来白皮球是红皮球的3/5,后来又买进了18个红皮球。这时白皮球是红皮球的3/7,白皮球有多少个?

46、张大伯家养的鸡的只数是鸭只数的3/5,后来卖出120只鸭子,这时鸡的只数是鸭的7/10,张大伯家养鸡多少只?

47、四个小组加工一批零件,第一小组所做的等于其余小组所做的1/2,第二小组所做的等于其他小组所做的1/3,第三小组所做的是其余小组所做的1/4,第四小组做了650个,这批零件共有多少个?

48、甲、乙、丙三队合修一条公路,甲修的等于乙、丙的和,乙修的是甲、丙总和的1/5,甲比乙多修4.8千米,甲修了多少千米?

49、甲、乙两个仓库共存粮1680吨,已知甲仓库存粮的1/4等于乙仓库存粮的1/3。甲仓库存粮多少吨?

50、有甲、乙两种金属,甲金属的1/16等于乙金属的1/33,而乙金属的/55比甲金属的1/40重7克。甲金属重多少克?

苏萦

甲组的四名工人三月份完成的总工作量比此月人均定额的四倍多20,乙组的五名工人三月份完成的总工作量比

1设:人均定额为x件(6x-20-5x)/5=(4x+20-4x)/4x/5-4=5x=45 件2(4x+20)/4 - (6x-20)/5=2x+5-6x/5+4=2x/5=7x=35 件3(6x-20)/5-(4x+20)/4=26x/5-4-x-5=2x/5=11x=55 件
2023-07-08 09:20:263

甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人

[(4X+20)/4+(6X-20)/5]/2-(6X-20)/5=2(2.2X+1)/2-1.2X+4=22.2X+1-2.4X+8=4-0.2X=4-9X=25答:人均定额25件如果甲组工人实际完成的此月人均工作量比乙组多两件,那么此月人均定额是20件,因为假设人均定额为X件,那么根据题意4X+20=5X,由此X=20件;2、如果甲组工人实际完成的此月人均工作量比乙组少2件,那么此月人均定额是24件,因为假设人均定额为X件,那么根据题意4X+20=5X-4,由此X=24件
2023-07-08 09:20:413

甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件

1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?解:设此月人均定额是x件.1/4(4x20)=1/5(6x-20)x5=6/5-4x=452)如果甲组工人实际完成的此月人均工作量比乙组多2件,那么此月人均定额是多少件?解:设此月人均定额是x件1/4(4x20)-1/5(6x-20)=2x=353)如果甲组工人实际完成的此月人均工作量比乙组少2件,那么此月人均定额是多少件?解:设此月人均定额是x件1/5(6x-20)-1/4(4x20)=2x=55
2023-07-08 09:20:482

两道数学题,求解!!用方程!!回答好了还追加!!!

(1)假设两组工人实际完成的此月人均工作量为x(4x-20)/4=(5x+20)/6x=50此月人均定额为 (4*50-20)/4=45件。……(2)假设甲组工人实际完成的此月人均工作量为x(4x-20)/4=[5(x-2)+20]/6x=40此月人均定额为 (4*40-20)/4=35件。……(3)假设甲组工人实际完成的此月人均工作量为x(4x-20)/4=[5(x+2)+20]/6x=60此月人均定额为 (4*60-20)/4=55件。…………………………2题(1)假设入场x次时,购证和不购证一样x+80=3xx=40……(2)假设入场x次时,购证比不购证更合算x+80<3xx>40……(3)假设入场x次时,不购证比购证更合算x+80>3xx<40
2023-07-08 09:20:552

帮我出几道初一的一元一次方程应用题,有关行程,工程问题的

帮我出几道初一的一元一次方程应用题,有关行程,工程问题的 一项工作,甲单独做需15天完成,乙单独做需12天完成,这项工作由甲、乙两人合做,并且施工期间乙休息7天,问几天完成? 设需要X天完成。 由题知:甲每天完成1/15 乙每天完成1/12 得出方程:1/15*X+1/12*(X-7)=1 然后解出来得:X=10.5 故需要11天完成 2.甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件. (1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件? (2)如果甲组工人实际完成的此月人均工作量比乙组的多2件,那么此月人均定额是多少? (3)如果甲组工人实际完成的此月人均工作量比乙组的少2件,那么此月人均定额是多少件? (1)设:两组工人实际完成的此月人均工作量为x件,此月人均定额是y件。 4x=4y+20 5x=6y-20 解得,x=50,y=45 (2)设甲组工人实际完成的此月人均工作量为x件,此月人均定额是y件。 4x=4y+20 5(x-2)=6y-20 解得,x=40,y=35 (3)设甲组工人实际完成的此月人均工作量为x件,此月人均定额是y件。 4x=4y+20 5(x+2)=6y-20 解得,x=60,y=55 某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人。先采用分层抽样方法(层内采用不放回简单随即抽样)从甲、乙两组 *** 抽取3名工人进行技术考核。 (Ⅰ)求从甲、乙两组个抽取的人数; (Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率; (Ⅰ) 分层抽样应该就是按比例来的,甲乙两组的总人数比为2:1 一共抽3人,甲组就抽取2人,乙组抽取1人 如果要列出式子的话,甲组抽取人数=(3*10)/ 15 = 2,乙组抽取人数=(3*5)/15 = 1 (Ⅱ) 从甲组抽取2人,其中恰有1名女工人,就是说1男1女 概率=C61*C41=24 PS:不够来找我 去百度空间留言 我想知道初一一元一次方程应用题的整理:行程,工程. 审题->设未知数->列方程->解方程->检验->答,一步都不要少。三,分析条件分析不出来时,逐句读题,再配合线段图,表格,扇形图解决。四,单位要统一 谁给我几题初一的一元一次方程应用题 1、运动场的跑道一圈长400米,甲练习起自行车,平均每分骑350m。乙练习跑步,平均每分跑250m,两人从同一处同时往返方向出发,经过多长时间首次相遇?又经过多长时间再次相遇? 2、一家游泳馆每年6——8月出售夏季会员证,每张会员证80元,直线本人使用,凭证购入场券每张1元,不凭证每张3元。 问:(1)什么情况下,沟会员证和不购付一样的价钱? (2)什么情况下,沟会员证比不购更合算? (3)什么情况下,不够会员证比购证更合算? 3、京沪高速公路全长1262千米,一辆汽车从北京出发,匀速行驶5小时后,提速20千米/时;又匀速行驶5小时后,减速10千米/时;又匀速行驶5小时后到达上海。 问:(1)求各段时间的的车速。(精确的1千米/时) (2)根据地图推断,出发8小时后汽车在公路的哪一段? 1.(350+250)/400=6/4(秒) (350+250)/400=6/4(秒) 2.设游泳X次 (1)80+X=3X X=40 答:当游泳40次时沟会员证和不购付一样的价钱 (2)80+X>3X X>40 答:当游泳多于40次时沟会员证比不购更合算 (3)80+X<3X X<40 答:当游泳少于40次时不够会员证比购证更合算 3.设车速为X千米 (1)5X+5(20+X)+5(X+20-10)=1262 1262=10X+100+5X-50 1262=15X-50 X=87 (2)5*87+3(87+20)=756(千米) 答:车速为87千米,出发8小时后汽车在公路的756千米处 谁可以给我找30题初一一元一次方程和10题工程问题应用题? -2/9-7/9-56 4.6-(-3/4+1.6-4-3/4) 1/2+3+5/6-7/12 [2/3-4-1/4*(-0.4)]/1/3+2 22+(-4)+(-2)+4*3 -2*8-8*1/2+8/1/8 (2/3+1/2)/(-1/12)*(-12) (-28)/(-6+4)+(-1) 2/(-2)+0/7-(-8)*(-2) (1/4-5/6+1/3+2/3)/1/2 18-6/(-3)*(-2) (5+3/8*8/30/(-2)-3 (-84)/2*(-3)/(-6) 1/2*(-4/15)/2/3 -1+2-3+4-5+6-7 -50-28+(-24)-(-22) -19.8-(-20.3)-(+20.2)-10.8 0.25- +(-1 )-(+3 ) -1-〔1-(1-0.6÷3)〕×〔2-(-3)×(-4)〕 0÷(-4)-42-(-8)÷(-1)3 -32-(-3) 2-(-3)3+(-1)6 3×(-2)2+(-2×3)2+(-2+3)2 (-12)÷4×(-6)÷2 (-12)÷4×(-6)×2 75÷〔138÷(100-54)〕 85×(95-1440÷24) 80400-(4300+870÷15) 240×78÷(154-115) 1437×27+27×563 〔75-(12+18)〕÷15 2160÷〔(83-79)×18〕 280+840÷24×5 325÷13×(266-250) 85×(95-1440÷24) 58870÷(105+20×2) 1437×27+27×563 81432÷(13×52+78) [37.85-(7.85+6.4)] ×30 156×[(17.7-7.2)÷3] (947-599)+76×64 36×(913-276÷23) -(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕 (31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35) 0.8×[(10-6.76)÷1.2] (136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5 0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5) 812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6 85+14×(14+208÷26) 120-36×4÷18+35 (284+16)×(512-8208÷18) 9.72×1.6-18.305÷7 如何学好初一数学一元一次方程中工程问题的应用题? 看到一个网页,链接给你,希望对你有帮助 初一数学一元一次方程应用题专项讲解_百度文库 :wenku.baidu./link?url=Y8PuXApBvKxCRCE13J5Sq3Vora6X08rzTVVXvKZquUBKtzKUrzzkD8AcrqxDm1TyuYNwcGPyueDQvzJUU3KkdybywBoDokBDRX4cNPwp7 初一一元一次方程工程应用题练习题+答案15道 速求 1、一项工程,甲,乙两队合作30天完成.如果甲队单独做24天后,乙队再加入合作,两队合作12天后,甲队因事离去,由乙队继续做了15天才完成.这项工程如果由甲队单独完成,需要多少天 分析:甲先做24天,乙最后做15天,可以理解为又合做15天加先合做12天,共合做27天. =90(天) 2、一项工程,甲,乙两队合做每天能完成全工程的.甲队独做3天,乙队独做5天后,可完成全工程的.如果全工程由乙队单独做,多少天可以完成 可理解为两队合做了3天.=10(天) 3、甲,乙两队合作,20天完成一项工程.如果两队合作8天后,乙队再独做4天,还剩下这项工程的.甲,乙两队独做各需几天完成 乙的工效= 乙需的天数:1÷=60(天) 甲乙需的天数:1÷=30(天) 4、一项工程,甲,队独做10天可以完成,乙队独做30天可以完成.现在两队合作期间甲队休息了2天,乙队休息了8天(两队不在同一天休息).从开始到完工共用了多少天 分析:可理解为甲多做6天.+8=11(天) 5、一项工程,如甲队独做,可6天完成.甲3天的工作量,乙要4天完成.两队合做了2天后,由乙队单独做,乙队还需做多少天才能完成 甲的工效,乙的工效, =3(天) 6、修一条公路,甲队独修15天完工,乙队独修12天完工.两队合修4天后,乙队调走,剩下的路由甲队继续修完.甲队一共修了多少天 答案:10(天) 7、一项工程,甲单独做20天完成,乙单独做30天完成.甲,乙合做几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天.乙请假多少天 答案:10(天) 8、一条公路由甲,乙两个筑路队合修要12天完成.现在由甲队修3天后,再由乙队修1天,共修了这条公路的.如果这条公路由甲队单独修,要多少天才能修完 答案:120(天) 9、两列火车同时从甲,乙两地同时相对开出.快车行完全程需要20小时,慢车行完全程需要30小时.开出后15小时两车相遇.已知快车中途停留4小时,慢车停留了几小时 答案:2(小时) 10、师徒两人共同加工一批零件,2天加工了总数的.这批零件如果全部由师傅单独加工,需10天完成.如果全部由徒弟加工,需要多少天才能完成 答案:15(天) 11:甲,乙两队开挖一条水渠.甲队单独挖要8天完成,乙队单独挖要12天完成.现在两队同时挖了几天后,乙队调走,余下的甲队在3天内完成.乙队挖了多少天 解:可以理解为甲队先做3天后两队合挖的.=3(天) 12:加工一批零件,甲单独做20天可以完工,乙单独做30天可以完工.现两队合作来完成这个任务,合作中甲休息了2 .5天,乙休息了若干天,这样共14天完工.乙休息了几天 解:分析:共14天完工,说明甲做(14-2.5)天,其余是乙做的,用14天减去乙做的天数就是乙休息的天数.14-=1(天) 13:一池水,甲,乙两管同时开,5小时灌满,乙,丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲,丙两管同时开2小时才能灌满.乙单独开几小时可以灌满 解:分析:把乙先开做6小时看作与甲做2小时,与丙做2小时,还有2小时,现在可理解为甲乙同开2小时,乙丙同开2小时,剩下的是乙2小时放的.1÷=20(小时) 14:某工程,甲,乙合作1天可以完成全工程的.如果这项工程由甲队单独做2天,再由乙队单独做3天,能完成全工程的.甲,乙两队单独完成这项工程各需要几天 解:分析:可以理解为两队合作2天,余下的是乙1天做的,乙的工效, 甲:=12(天) 15:一项工程,甲先单独做2天,然后与乙合做7天,这样才能完成全工程的一半.已知甲,乙工效的比是2:3.如果这项工程由乙单独做,需要多少天才能完成 解:分析:乙的工效是甲工效的3÷2=1.5倍,设甲的工效为x,乙的工效为1.5x, (2+7)x+1.5x×7=,解之得:x=,乙工效1÷1.5x =26(天) 一元一次方程式工程问题 举一个简单例子.:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成? 一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位, 再根据基本数量关系式,得到 所需时间=工作量÷工作效率 =6(天)u2022 两人合作需要6天. 这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的. 为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是 30÷(3+ 2)= 6(天) 数计算,就方便些. ∶2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也 需时间是 因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些. 一、两个人的问题 标题上说的“两个人”,也可以是两个组、两个队等等的两个集体. 例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作? 答:乙需要做4天可完成全部工作. 解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是 (18- 2 × 3)÷ 3= 4(天). 解三:甲与乙的工作效率之比是 6∶ 9= 2∶ 3. 甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天). 例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天? 解:共做了6天后, 原来,甲做 24天,乙做 24天, 现在,甲做0天,乙做40=(24+16)天. 这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率 如果乙独做,所需时间是 如果甲独做,所需时间是 答:甲或乙独做所需时间分别是75天和50天. 例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天? 解:先对比如下: 甲做63天,乙做28天; 甲做48天,乙做48天. 就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的 甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做 因此,乙还要做 28+28= 56 (天). 答:乙还需要做 56天. 例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间? 解一:甲队单独做8天,乙队单独做2天,共完成工作量 余下的工作量是两队共同合作的,需要的天数是 2+8+ 1= 11(天). 答:从开始到完工共用了11天. 解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作 (30- 3 × 8- 1× 2)÷(3+1)= 1(天). 解三:甲队做1天相当于乙队做3天. 在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量. 4=3+1, 其中3天可由甲队1天完成,因此两队只需再合作1天. 例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天? 解一:如果16天两队都不休息,可以完成的工作量是 由于两队休息期间未做的工作量是 乙队休息期间未做的工作量是 乙队休息的天数是 答:乙队休息了5天半. 解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份. 两队休息期间未做的工作量是 (3+2)×16- 60= 20(份). 因此乙休息天数是 (20- 3 × 3)÷ 2= 5.5(天). 解三:甲队做2天,相当于乙队做3天. 甲队休息3天,相当于乙队休息4.5天. 如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是 16-6-4.5=5.5(天). 例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天? 解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙. 设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份. 8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要 (60-4×8)÷(4+3)=4(天). 8+4=12(天). 答:这两项工作都完成最少需要12天. 例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他 要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天? 解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份. 两人合作,共完成 3× 0.8 + 2 × 0.9= 4.2(份). 因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是 (30-3×8)÷(4.2-3)=5(天). 很明显,最后转化成“鸡兔同笼”型问题. 例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时快 如果这件工作始终由甲一人单独来做,需要多少小时? 解:乙6小时单独工作完成的工作量是 乙每小时完成的工作量是 两人合作6小时,甲完成的工作量是 甲单独做时每小时完成的工作量 甲单独做这件工作需要的时间是 答:甲单独完成这件工作需要33小时. 这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例8就是如此.例8也可以整数化,当求出乙每 有一点方便,但好处不大.不必多此一举. 二、多人的工程问题 我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多. 例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成? 解:设这件工作的工作量是1. 甲、乙、丙三人合作每天完成 减去乙、丙两人每天完成的工作量,甲每天完成 答:甲一人独做需要90天完成. 例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些? 例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天? 解:甲做1天,乙就做3天,丙就做3×2=6(天). 说明甲做了2天,乙做了2×3=6(天),丙做2×6=12(天),三人一共做了 2+6+12=20(天). 答:完成这项工作用了20天. 本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了 例11 一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天? 解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的4÷2=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天,相当于乙做3天,甲的工作效率是乙的工作效率的3倍. 他们共同做13天的工作量,由甲单独完成,甲需要 答:甲独做需要26天. 事实上,当我们算出甲、乙、丙三人工作效率之比是3∶2∶1,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成. 例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作? 解一:设这项工作的工作量是1. 甲组每人每天能完成 乙组每人每天能完成 甲组2人和乙组7人每天能完成 答:合作3天能完成这项工作. 解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此7人4天能完成. 现在已不需顾及人数,问题转化为: 甲组独做12天,乙组独做4天,问合作几天完成? 小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数. 例13 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件? 解一:仍设总工作量为1. 甲每天比乙多完成 因此这批零件的总数是 丙车间制作的零件数目是 答:丙车间制作了4200个零件. 一元一次方程——工程问题(全部) 1.某工程,甲单独做25天完成,乙单独做35天完成。现由甲先做若干天后,乙加入合做,但乙加入后,甲每天只工作半天,这样自甲开始工作22天后才完成。甲做了几天?乙做了几天? 2.某项工程,甲、乙两队合作20天可完成,甲队单独做30天可完成。现在两队合做15天后,余下的由甲队完成还需要多少天? 3.某项工程,甲、乙两队合作8天可以完成。若甲队单独做6天后,剩下的工程由乙队单独做12天 才能完成。 问:甲、乙两队单独完成这项工程,各需要多少天? 4. 某工程甲单独做50天可以完成,乙单独做75天可以完成。现在两人合作,但途中乙因事离开了几天,最后一共花了40天把这项工程做完,则乙中途离开了几天? 5.某项工程,甲单独做需36天完成,乙单独做需45天完成。如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。问:甲队干了多少天? 问一道初一二元一次方程组的行程问题的应用题 甲乙两人以不变的速度在环形路上跑步,相向而行,每隔两分钟相遇一次,同向而行,每隔六分钟相遇一次,已知甲比乙跑得快,求甲乙每分钟跑多少圈。 解:假设甲乙每分钟分别跑x和y圈,这个环形路长为z 2x+2y=z 6x-6y=z 解得到 x=z/3,y=z/6 那么甲每分钟跑1/3圈,乙每分钟跑1/6圈 初一的一元一次方程的应用题怎么写啊? 解:设。。。。。。。。为x(单位) 根据题意,得。。。。。。。(列出的方程) 。。。。。。。。。。。。。。。(过程) x=。。。。。(答案,千万别加单位) 答:。。。。。。。。。
2023-07-08 09:21:011

甲组的4名工人3月份完成的总工作量

解:设此月人均定额是x件,甲组实际人均工作量:(4x+20)÷4乙组实际人均工作量:(6x-20)÷5(1)(4x+20)÷4-2=(6x-20)÷5x+5-2=1.2x-40.2x=7x=35(2)(4x+20)÷4+2=(6x-20)÷5x+5+2=1.2x-40.2x=11x=55
2023-07-08 09:21:125

甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,一组的5名工人3月份的总工作量比此月人均定

1)解:设此月人均定额是x件,依题意得:(4x+20)/4-(6x-20)/5=2 x=352)解:设此月人均定额是x件,依题意得:(6x-20)/5 -(4x+20)/4=2 x=55
2023-07-08 09:21:282

甲组的4名工人3月份完成的工作总量比此月人均定额的4倍多20件,乙组的5个工人3月份完成的总工作量

2023-07-08 09:21:341

甲组的4名员工3月份完成的工作总量比此月人均定额的4倍多20件,

1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?解:设此月人均定额是x件.1/4(4x20)=1/5(6x-20)x5=6/5-4x=452)如果甲组工人实际完成的此月人均工作量比乙组多2件,那么此月人均定额是多少件?解:设此月人均定额是x件1/4(4x20)-1/5(6x-20)=2x=353)如果甲组工人实际完成的此月人均工作量比乙组少2件,那么此月人均定额是多少件?解:设此月人均定额是x件1/5(6x-20)-1/4(4x20)=2x=55
2023-07-08 09:21:412

求助初中数学 甲组的四名工人3月份完成总工作量比次月人均定额的4倍躲20件乙组的5名工人3月份完成的总工作

1、设次月额定量x(4x+20)÷4=(6x-20)÷5得x=452、(4x+20)÷4=(6x-20)÷5+2得x=353、(4x+20)÷4=(6x-20)÷5-2得x=55
2023-07-08 09:21:483

甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比

如果不用方程来做:甲组4个人,超额了20件(不超额的话,4个人正好完成人均定额的4倍,而实际是4倍多20),所以每人超额5件乙组5个人,超额了人均定额的1倍减20件(不超额的话,5个人完成人均定额的5倍,而实际是6倍少20),所以每人超额 人均定额的0.2倍-4件(1)由假设知,5=人均定额的0.2倍-4,人均定额为45(2)由假设知,5=人均定额的0.2倍-4+2,人均定额为35(3)由假设知,5=人均定额的0.2倍-4-2,人均定额为55如果用方程做,假设人均定额为x(1)(4x+20)/4=(6x-20)/5 x=45(2)(4x+20)/4=(6x-20)/5+2 x=35(3)(4x+20)/4=(6x-20)/5-2 x=55
2023-07-08 09:22:071

初一数学

一、填一填,画龙点睛(每小题2分,共20分) 1. 白天的温度是12℃,夜间下降了t℃,则夜间的温度是 ℃。 2. 去括号合并:2(a-b)-(2a+3b)= 。 3. 方程2y-6=y+7变形为2y-y=7+6,这种变形叫 ,根据是 。 4. x=3是方程11-2x=ax-1的解,则a= 。 5. 当x= 时,式子 与 互为相反数。 6. 甲班有a人,乙班的人数是甲班人数的2倍少b人,则乙班的人数为 。 7. 某厂产值每年平均增长x%,若第一年的产值为50万元,则第二年的产值为 万元。 8. 如果2、2、5和x的平均数为5,而3、4、5、x和y的平均数也是5,那么x= , y= 。 9. 飞机在A、B两城之间飞行,顺风速度是每小时a千米,逆风速度是每小时b千米,则风的速度是每小时 千米。 10. 某公司2002年的出口额为107万美元,你1992年出口额的4倍还多3万美元,设公司1992年的出口额为x万美元,可以列出方程: 。 二、选一选,慧眼识金(每小题3分,共18分) 11. 下列四个式子中是方程的是( ) A.1+2+3+4=10 B.2x-3 C.x=1 D.|1- |= 12. 在解方程 - =1时,去分母正确的是( ) A.3(x-1)-2(2+3x)=1 B.3(x-1)-2(2x+3)=6 C.3x-1-4x+3=1 D.3x-1-4x+3=6 13. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来的两位数是( ) A.54 B.27 C.72 D.45 14. 一项工程甲单独做要x天完成,乙单独做需要y天完成,两人合作这项工程需要( )天完成。 A. B. + C. D.1÷( + ) 15. 某工厂计划每天烧煤a吨,实际每天少烧b吨,则m吨煤可多烧( )天。 A. - B. C. - D. - 16. 一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,可列方程:( ) A.x-1=(26-x)+2 B.x-1=(13-x)+2 C.x+1=(26-x)-2 D.x+1=(13-x)-2 三、解下列方程(每小题5分,共20分) 17. 2x-3=x+1 18. -2(x-5)=8- 19. - =1 20. - =1.6 四、列方程解应用题(每小题7分,共42分) 21. 在一只底面直径为30cm,高为8cm,的圆锥形容器中倒满水,然后将水倒入一只底面直径为10cm的圆柱形空容器里,圆柱形容器中的水有多高? 22. 甲、乙两人练习跑步,从同一地点出发,甲每分钟跑250米,乙每分钟跑200米,甲因找跑鞋比乙晚出发3分钟,结果两人同时到达终点,求两人所跑的路程。 23. 为了拓展销路,商店对某种照相机的进价作了调整,按原价的8折出售,此时的利润为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元? 24. 爷爷与孙子下棋,爷爷赢一盘记1分,孙子赢一盘记3分,两人下了12盘(未出现和棋)后,得分相同,他们各赢了多少盘? 25.甲队原有工人68人,乙队原有工人44人,现又有42名工人调入这两队,为了使乙队人数是甲队人数 ,应调往甲乙两队各多少人? 26. 一个三位数满足条件:①三个数位上的数字和为20;②百位上的数字比十位上的数字大5;③个位上的数字是十位上的数字的3倍,这个三位数是几?
2023-07-08 09:22:172

甲组的4明工人3月份完成总工作量比此月任均定额的4被多20件,乙组的5名工人3月份完成的总工作量比此月人均

甲组的4明工人3月份完成总工作量比此月任均定额的4被多20件,乙组的5名工人3月份完成的总工作量比此月人均额的6倍少20件1.如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?2.如果甲组工人实际完成的此月人均工作量比乙组多两件,那么此月人均定额是多少件?3.如果甲组工人实际完成的此月人均工作量比乙组的少2见,那么此月均定额是多少件?
2023-07-08 09:22:231

甲组的四名工人三月份完成的总工作量比此月人均定额的四倍多二十件乙组的五名工人三月份完成的总工作量比

2023-07-08 09:22:303

甲组的4名工人,工作3月份的总工作量比此月人均定额的4倍多20件,乙组的5名工人,三月份完成的总工作量比

好好学习
2023-07-08 09:22:454

急求初一数学分类讨论应用题(心得,题目,谢谢)

2023-07-08 09:22:554

问一道数学题【初一】【请用一元一次方程】【过程详细】【思路清晰】

解:(1)设3月份人均定额是X件 根据题意:(1)(4X+20)/4=(6X-20)/5 解得 X=45 (2)(4X+20)/4=2+(6X-20)/5 解得 X=35 (3)4X+20)/4=-2+(6X-20)/5 X=55 答:(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是45件. (2)如果甲组工人实际完成的此月人均工作量比乙组的多2件,那么,此月人均定额是35件. (3)如果甲组工人实际完成的此月人均工作量比乙组的少2件,那么此月人均定额是55件.
2023-07-08 09:23:033

数学问题

2023-07-08 09:23:121

初一数学题 求解(两大题)

1)假设人均定额是x(4x+20)/4=(6x-20)/5解x=45(2)假设人均定额是x (4x+20)/4=(6x-20)/5+2解x=35(3)假设人均定额是x (4x+20)/4=(6x-20)/5-2解x=552 假设刚开始时速为xkm/h(1)5x+5(X+20)+5(X-10)=1262解x=88 x+20=108 x-10=98(2)8小时后则路程=5X88+108X3=764km
2023-07-08 09:23:194

5道初中解方程的应用题

2.解:设X天可以追上.(150*12)+150X=240X3.解:设X分钟可以首次相遇(350+250)X=400设y分钟可以再次相遇(350+250)X=400*2
2023-07-08 09:23:401

急急急急急急急~~马上就要~~哪位好心人帮帮忙~~过程详细,用方程解

2023-07-08 09:23:462

数学问题一共4题,要用方程解!!方程解哦!,我很急的,拜托!!~

1.解 设一件衣服X枚硬币 2.解 设标价X元 X+10/12=X+2/7 (1-15.2%)*90%X=250 X=46/5 X=1.6
2023-07-08 09:23:556

初一数学一元一次方程应用题

同意楼上,文库是个好地方
2023-07-08 09:24:123

家族的四名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人

55这个答案就行,可以了
2023-07-08 09:24:292

找一些初中一年级(一元一次方程)应用题

很简单的!某人原计划骑车以12千米/时的速度由A地到B地,这样便可以在规定时间到达,但他因事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比规定的时间早4分钟到达B地,求A、B两地间的距离.
2023-07-08 09:24:408

20道初一解方程应用题

1 青山水泥厂要把一批水泥运到码头,用本厂的一辆货车来运需10才能运完;如果用运输公司的一辆大货车来运只需5次就能运完。现由本厂的一辆货车运送了4次,剩下部分由本厂一辆货车和运输公司的一辆大货车共同运送,问剩下的需要几次才能运完?2 甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件,那么:①如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?②如果甲组工人实际完成的此月人均工作量比乙组多2件,那么此月人均定额是多少件?③如果甲组工人实际完成的此月人均工作量比乙组少2件,那么此月人均定额是多少件?3 买练习本,店主说如果多买一些就打八折,我就买了20本,结果便宜了1.6元,猜多少钱一本? 4 某中学的学生自己动手整修操场,如果让初一学生单独工作,需要7.5小时完成,如果让初2学生单独工作,需要5个小时完成,如果让初1和初2学生一起工作一小时,再由初2学生单独工作完成剩下的部分,共需多少时间完成?5 现对某商品降价10%促销,为了是销售总金额不变,销售量要比按原价销售时增加百分之几?6 有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50平方米墙面未来得及刷,同样时间内5名二级技工粉刷了10个房间之外,还多刷了另外的40平方米墙面,每名一级技工比二级技工一天多粉刷10平方米墙面,求每个房间需要粉刷的墙面面积。现在暂时没这么多题,先找到这六个题。(如果你看过或做过,这我就无能为力了)
2023-07-08 09:25:232

什么叫人均定额

这里人均定额是什么并不重要,我猜是每个人至少要完成的量 设人均定额为X则 甲组的工作总量为4X+20 人均工作量=(4X+20)/4=X+5 乙组的工作总量为6X+20 人均工作量=(6X-20)/5=6/5*X-4(1)两组员工实际人均工作量相等 得 X+5=6/5*X-4得 X=45 (2)甲组实际人均工作量比乙组多两件 得 X+5=6/5*X-4+2得 X=15 (3) 甲组实际人均工作量比乙组少两件得 X+5=6/5*X-4-2得 X=55
2023-07-08 09:25:441

奥数有甲乙丙三组工人,甲组4人的工作·····

甲乙效率比=5:4,乙丙效率比=7:4甲效率:丙效率=(5:4)*(7:4)=35:16[13+12*(4/5)]*3/[10*(16/35)]=14.83丙组10人需要15天才能完成。
2023-07-08 09:25:521

过程,谢谢

解:设此月人均定额为x件,则甲组的总工作量为(4x+20)件,人均为(4x+20)/4件;乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件,乙组的总工作量为(6x-20)件,乙组人均为(6x-20)/5件.(1)∵两组人均工作量相等,∴(4x+20)/4=(6x-20)/5,解得:x=45.所以,此月人均定额是45件;(2)∵甲组的人均工作量比乙组多2件,∴[(4x+20)/4]-2=(6x-20)/5 ,解得:x=35,所以,此月人均定额是35件;(3)∵甲组的人均工作量比乙组少2件,∴(4x+20)/4=[(6x-20)/5 ]-2 ,解得:x=55,所以,此月人均定额是55件.【答案】(1)45件;(2)35件;(3)55件.
2023-07-08 09:25:591

甲乙等4名工人被随机分配到A B C三个不同的车间,每个车间至少一名工人。求甲 乙同时分配到A的概率

甲乙等五名工人被随机的分到A,B,C三个不同的岗位工作,每个岗位至少有一名工人
2023-07-08 09:26:062

有甲乙丙三组工人,甲组4人的工作,乙组需5人完成;乙组3人的工作,丙组需8人完成。一项工作。需要甲组13人

2023-07-08 09:26:158

有甲乙丙三组工人,甲组4人的工作,乙组需5人完成;乙组3人的工作,丙组需8人完成。一项工作。需要甲组13

我光看都晕了
2023-07-08 09:26:313

有甲乙丙三组工人,甲组4人的工作,乙组需5人完成;乙组3人的工作,丙组需8人完成。一项工作

解:设这个单位为"1"。那么甲的工作效率为113乙的则是115甲乙和并是
2023-07-08 09:26:492

香港海员工人运动时间

香港海员工人运动时间1922年1月12日。这是近代史上以香港海员为主体的重要罢工斗争,香港的中国海员于1922年1月12日向英国资本家提出增加工资等要求,遭到拒绝。并限时24小时圆满答复,否则举行罢工,资本家仍旧置之不理,由此震惊中外的香港海员大罢工爆发。罢工使5条太平洋航线和9条近海航线陷于瘫痪。3月初,罢工人数增至10万人以上,席卷整个香港。3月4日,港英当局派出大批武装军警。1922年1月,香港海员为反对英帝国主义压迫、争取改善待遇举行罢工斗争,这是中国第一次工人运动高潮的起点。1921年3月6日,香港海员工会正式成立,定名为中华海员工业联合总会。总会成立后,积极开展为海员增加工资、改善待遇的斗争。1921年9月,海员工会向资本家提出增加工资、工会有权介绍海员就业和派代表参加签订雇工合同的3项要求,遭到拒绝。11月,海员工会再次向资本家提出要求,再次被拒绝。1922年1月12日,海员工会第三次向资本家提出。拓展资料:港海员长期遭受英帝国主义的殖民统治和资本家的残酷剥削。为了反抗压迫与剥削,工人运动领袖苏兆征、林伟民等人于1921年3月在香港组建中华海员工业联合总会,并于1922年1月12日组织发动了香港海员大罢工。中共广东支部在广州组织成立了罢工后援会,发表《敬告罢工海员》书,给予罢工运动大力支持和指导。2月1日,港英当局武力封闭中华海员工业联合总会,并强行拆去工会招牌,逮捕罢工领袖,激起全港10多万工人大罢工,海运瘫痪。1922年3月6日,港英当局在强大的压力下,被迫把海员工会招牌送还。3月8日,历时56天的香港海员大罢工宣告胜利。广州10余万工人举行大会,欢送香港工人胜利返港。香港海员大罢工成为中国工人运动第一次高潮的起点,推动了全国工人运动的发展。
2023-07-08 09:26:551

求解小学奥数的一道求人数的工效应用题

由题意可知:上午去甲工地的人数是总数的3/(3+1)=3/4,去乙工地人数是总数的1-3/4=1/4; 下午去乙工地的人数是总数的5/12,去甲工地人数是总数的1-5/12=7/12。 设:这批工人一天工作量为“1”则:甲工地的工作量是3/4×1/2+7/12×1/2, 乙工地的工作量为(3/4×1/2+7/12×1/2)÷3/2, 乙工地已完成1/4×1/2+5/12×1/2, 剩下工作量为(3/4×1/2+7/12×1/2)÷3/2-(1/4×1/2+5/12×1/2)=1/9,这需4名工人再做1天, 则这批工人有4÷1/9=36人
2023-07-08 09:27:133

甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人

hkjklfvgho;obujk.l nbghujvcdfngdfygku,vhjm,jvyucfyvgyuivlghjh,kgbh vmlk;;bbbbyhuilbnyujvfytryuv uio;njhuik,vtykftgyju
2023-07-08 09:27:3512

甲组的四名工人3月份完成的总工作量比此月人均定额的四倍多二十件乙组的五名工人三月份完成的总工作量比此

设3月份人均定额是X件 根据题意:(1)(4X+20)/4=(6X-20)/5 解得 X=45 (2)(4X+20)/4=2+(6X-20)/5 解得 X=35 (3)4X+20)/4=-2+(6X-20)/5 X=55 答:(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是45件
2023-07-08 09:28:171

甲组的4名员工3月份完成的工作总量比此月人均定额的4倍多20件,

1 (4x+20)/4=(6x-20)/5 x=45如果两组员工实际完成的此月人均工作量相等,那么此月人均定额是45件2 (4x+20)/4-(6x-20)/5=2 x=35如果甲组员工实际完成的此月人均工作量比乙组多两件,那么此月人均定额是35件3 (6x-20)/5-(4x+20)/4=2 x=55如果甲组员工实际完成的此月人均工作量比乙组少两件,那么此月人均定额是55件
2023-07-08 09:29:091

甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人

1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件? 解:设此月人均定额是X件.1/4(4x+20)=1/5(6x-20)x+5=6/5-4x=452)如果甲组工人实际完成的此月人均工作量比乙组多2件,那么此月人均定额是多少件? 解:设此月人均定额是X件1/4(4x+20)-1/5(6x-20)=2x=353)如果甲组工人实际完成的此月人均工作量比乙组少2件,那么此月人均定额是多少件? 解:设此月人均定额是X件1/5(6x-20)-1/4(4x+20)=2x=55
2023-07-08 09:29:253

应用题(有两问)(用方程)

希望对你有帮助解:设3月份人均定额是X件 根据题意:(1)(4X+20)/4=(6X-20)/5 解得 X=45 (2)(4X+20)/4=2+(6X-20)/5 解得 X=35 (3)4X+20)/4=-2+(6X-20)/5 X=55 答:(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是45件祝你周末过得开心
2023-07-08 09:29:322

急求初一数学分类讨论题(越多越好,要有解)

去新东方 查
2023-07-08 09:29:434

甲乙效率比=5:4,乙丙效率比=7:4甲效率:丙效率=(5:4)*(7:4)=35:16[13+12*(4/5)]*3/[10*(16/35)]=14.83丙组10人需要15天才能完成。
2023-07-08 09:30:041

有甲、乙、丙三组工人,甲组4人的工作,乙组需要5人完成;乙组3人的工作,丙组需要8人完成.一项工作,需

(10× 5 4 +20)×3÷(10×1× 3 8 ),=97.5÷ 15 4 ,=97.5× 4 15 ,=26(天);答:如果让丙组10人去做,则需要26天.
2023-07-08 09:30:121

有甲乙丙三组工人,甲组4人的工作,乙组需5人完成;乙组3人的工作,丙组需8人完成。

25人
2023-07-08 09:30:223

有甲乙丙三组工人,甲组4人的工作,乙组需5人完成;乙组4人的工作,丙组需3人完成。

看效率
2023-07-08 09:30:302

有甲、乙、丙三组工人,甲组4人的工作,乙组需5人完成;乙组3人的工作,丙组需8人完成。

甲组4人的工作,乙组需5人完成,所以甲乙工作效率比:1/4:1/5=5:4乙组3人的工作,丙组需8人完成,所以乙丙工作效率比:1/3:1/8=8:3所以甲乙丙三人工作效率比为10:8:3甲13人,乙15人,干三天,共完成(13*10+15*8)*3=750(份)则丙干750/(10*3)=25天
2023-07-08 09:30:391

假设用一维数组记录某工人三月份的出勤情况,1表示出勤,0表示缺勤。

#include"stdio.h"void main(){ int a[10]={0,1,1,0,1,1,0,1,1,0};//假设3月份有10个工作日 int sum = 0; for(int i=0;i<10;i++) sum+=a[i]*50; printf("该名工人3月份工资为:%d",sum); printf(" ");}
2023-07-08 09:30:451

有甲、乙、丙三组工人,甲组2人的工作,乙组需3人完成;乙组4人的工作,丙组需6人完成;一项工程需甲

2023-07-08 09:31:113

初一数学

(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据“1名熟练工和2名新工人每月可安装8辆电动汽车”和“2名熟练工和3名新工人每月可安装14辆电动汽车”列方程组求解.(2)设工厂有a名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据a,n都是正整数和0<n<10,进行分析n的值的情况;(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少,两个条件进行分析.解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据题意,得x+2y=82x+3y=14,解得x=4y=2.答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.(2)设工厂有a名熟练工.根据题意,得12(4a+2n)=240,2a+n=10,n=10-2a,又a,n都是正整数,0<n<10,所以n=8,6,4,2.即工厂有4种新工人的招聘方案.①n=8,a=1,即新工人8人,熟练工1人;②n=6,a=2,即新工人6人,熟练工2人;③n=4,a=3,即新工人4人,熟练工3人;④n=2,a=4,即新工人2人,熟练工4人.(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3.根据题意,得W=2000a+1200n=2000a+1200(10-2a)=12000-400a.要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.
2023-07-08 09:31:353

求答案8. 有12名工人分别看管机器台数资料如下:2、5、4、4、3、4、3、4、4、2、2、4,按以上资料编制变量

2023-07-08 09:32:112