汉邦问答 / 问答 / 问答详情

勾股计算公式

2023-05-12 19:11:45
肖振

勾股计算公式:A²+B²=C²,直角三角形两直角边分别为a,b,斜边为C,勾股定理公式是a的平方加上b的平方等于c的平方。

勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:a²+b²=c²

勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。

A²+B²=C²

C=√(A²+B²)

例如:√(120²+90²)=√22500=√150²=150

直角三角形 的三条边是3(直角边)、4(直角边)、5(斜边)

3²+4²=5²

5=√(3²+4²)=√5²=5

什么是勾股?

完美大自然的终极粒子,2005年发现,是夸克的组成部分, 是物理世界在三维空间中形成的正球体。 依据勾股数组呈现严密的接触状态,构造着复杂的中子星和对称的原子核你可以在百度上找到其图形
2023-05-12 16:28:315

勾股计算公式是什么

勾股定理的计算公式为a2+b2=c2,设直角三角形两直角边为a和b,斜边为c。我整理了有关勾股定理的知识点,一起来学习一下吧。 定理定义 在任何一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。在△ABC中,∠C=90°,则a²+b²=c²。 勾股定理介绍 勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。 勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。赵爽在注解《周髀算经》中给出了“赵爽弦图”证明了勾股定理的准确性,勾股数组呈a²+b²=c²的正整数组(a,b,c)。(3,4,5)就是勾股数。 勾股定理逆定理 勾股定理本身是由直角三角形得到其三边满足关系:两直角边的平方和等于斜边平方; 而其逆定理是由三角形两边平方和等于第三边的平方得到三角形是直角三角形。 勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法 常见勾股数 3,4,5 5,12,13 7,24,25 9,40,41 11,60,61 8,15,17
2023-05-12 16:29:271

什么是勾股定理?

分类: 教育/科学 >> 科学技术 问题描述: 求详细解说! 谢了! 解析: 勾股定理是初等几何中的一个基本定理。所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572?~公元前497?)(右图)于公元前550年首先发现的。但毕达哥拉斯对勾股定理的证明方法已经失传。著名的希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明。中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?" 商高回答说:"数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩"得到的一条直角边‘勾"等于3,另一条直角边"股"等于4的时候,那么它的斜边"弦"就必定是5。这个原理是大禹在治水的时候就总结出来的呵。" 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为勾股定理是非常恰当的。 在稍后一点的《九章算术》一书中(约在公元50至100年间)(右图),勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”。《九章算术》系统地总结了战国、秦、汉以来的数学成就,共收集了246个数学的应用问题和各个问题的解法,列为九章,可能是所有中国数学著作中影响最大的一部。 中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图)。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子: 4×(ab/2)+(b-a)2=c2 化简后便可得: a2+b2=c2 亦即:c=(a2+b2)(1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以后的数学家大多继承了这一风格并且有发展,只是具体图形的分合移补略有不同而已。例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽(右图)用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。(左图为刘徽的勾股证明图) 中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。
2023-05-12 16:29:451

勾股定理怎么计算?

首先用勾股定理计算的条件必须是直角三角形,设两条直角边的长为a.b,斜边为c.那么满足a的平方加b的平方等于c的平方。高中学的吧?
2023-05-12 16:29:5414

勾股定理是什么?

分类: 教育/科学 >> 学习帮助 解析: 勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。 勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达高拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”。 勾股定理指出: 直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。 也就是说, 设直角三角形两直角边为a和b,斜边为c,那麽 a2 + b2 = c2 勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。 勾股数组 满足勾股定理方程a2 + b2 = c2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。 由于方程中含有3个未知数,故勾股数组有无数多组。 推广 如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
2023-05-12 16:30:321

什么是勾股定理?

在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着 15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.无论是古埃及人、古巴比伦人还是我们中国人谁最先发现了勾股定理,我们的先人在不同的时期、不同的地点发现的这同一性质,显然不仅仅是哪一个民族的私有财产而是我们全人类的共同财富.值得一提的是:在发现这一共同性质后的收获却是不完全相同的.下面以“毕达哥拉斯定理”和“勾股定理”为例,做一简单介绍:一、毕达哥拉斯定理毕达哥拉斯是一个古希腊人的名字.生于公元前6世纪的毕达哥拉斯,早年曾游历埃及、巴比伦(另一种说法是到过印度)等地,后来移居意大利半岛南部的克罗托内,并在那里组织了一个集政治、宗教、数学于一体的秘密团体毕达哥拉斯学派,这个学派非常重视数学,企图用数来解释一切.他们宣称,数是宇宙万物的本原,研究数学的目的并不在于实用,而是为了探索自然的奥秘.他们对数学看法的一个重大贡献是有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是截然不同的.有些原始文明社会中的人(如埃及人和巴比伦人)也知道把数脱离实物来思考,但他们对这种思考的抽象性质所达到的自觉认识程度,与毕达哥拉斯学派相比,是有相当差距的.而且在希腊人之前,几何思想是离不开实物的.例如,埃及人认为,直线就是拉紧的绳或田地的一条边;而矩形则是田地的边界.毕达哥拉斯学派还有一个特点,就是将算术和几何紧密联系起来.正因为如此,毕达哥拉斯学派在他们的探索中,发现了既属于算术又属于几何的用三个整数表示直角三角形边长的公式:若2n+1,2n2+2n分别是两直角边,则斜边是2n2+2n+1(不过这法则并不能把所有的整勾股数组表示出来).也正是由于上述原因,这个学派通过对整勾股数的寻找和研究,发现了所谓的 “不可通约量”例如,等腰直角三角形斜边与一直角边之比即正方形对角线与其一边之比不能用整数之比表达.为此,他们把那些能用整数之比表达的比称做“可公度比”,意即相比两量可用公共度量单位量尽,而把不能这样表达的比称做“不可公度比”.像我们今日写成:1的比便是不可公度比.至于与1不能公度的证明也是毕达哥拉斯学派给出的.这个证明指出:若设等腰直角三角形斜边能与一直角边公度,那么,同一个数将既是奇数又是偶数.证明过程如下:设等腰直角三角形斜边与一直角边之比为:,并设这个比已表达成最小整数之比.根据毕达哥拉斯定理2=2+2,有2=22.由于22为偶数即x2为偶数,所以必然也是偶数,因为任一奇数的平方必是奇数(任一奇数可表示为2n+1,于是(2n+1)2=4n2+4n+1,这仍是一个奇数.但是比:是既约的,因此,必然不是偶数而是奇数,既然是偶数,故可设=2.于是2=42=22.因此,2=22,这样,2是个偶数,于是也是偶数,但是同时又是个奇数,这就产生了矛盾.关于对毕达哥拉斯定理的证明,现在人类保存下来的最早的文字资料是欧几里得(公元前300年左右)所著的《几何原本》第一卷中的命题47:“直角三角形斜边上的正方形等于两直角边上的两个正方形之和”.实际上,毕达哥拉斯学派关心得更多的是数学问题本身的研究;以毕达哥拉斯学派为代表的古希腊数学是以空间形式为主要研究对象,以逻辑上的演绎推理为主要的理论形式.而毕达哥拉斯定理的发现(关于可公度比与不可公度比的研究、讨论),实际上导致了无理数的发现,尽管毕达哥拉斯学派不愿意接受这样的数,并因此造成了数学史上所谓的第一次数学危机,但是毕达哥拉斯学派的探索仍然是功不可没的.二、我国的勾股定理在我国,至今可查的有关勾股定理的最早记载,是大约公元前1世纪前后成书的《周髀算经》,其中有一段公元前1千多年前的对话:“昔者周公问于商高曰:窃闻乎大夫善数也,请问古者包牺立周天历度,夫天不可阶而升,地不可得尺寸而度.请问数安从出?商高曰:数之法,出于圆方.圆出于方,方出于矩,矩出于九九八十一.故折矩,以为勾广三,股修四,径隅五.”《周髀算经》中还有“陈子测日”的记载:根据勾股定理,周子可以测出日高及日远.例如,当求得了日高及测得了测量人所在位置到日下点的距离之后,计算日远的方法是:“若求邪至日者,以日下为勾,日高为股,勾股自乘,并开方而除之,得邪至日者.”《周髀算经》是我国流传至今的一部最早的数学著作.书中主要讲述了学习数学的方法以及用勾股定理来计算高深远近和比较复杂的分数计算等.在唐代,《周髀算经》与其他九部陆续出现在我国汉唐两代千余年间的数学著作一起,被国子监算学馆定为课本,后世通称这十本书为《算经十书》.《算经十书》较全面地反映了自先秦至唐初我国的数学成就.其中许多书中都涉及到了勾股定理的内容,尤其《九章算术》(《算经十书》之一)第九章“勾股”专门讲解有关直角三角形的理论,所讨论的主要内容就是勾股定理及其应用.该章共有设问24题,提出22术.其中第6题是有名的“引葭赴岸”:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.”这是一个流传甚广的题目,类似题目一再在其他书中出现,例如成书于5世纪中叶的《张邱建算经》(《算经十书》之一)、朱世杰所著的《四元玉鉴》(1303年)等.我们的先辈们还根据勾股定理发明了一种由互相垂直的勾尺和股尺构成的测量工具矩.如,《周髀算经》中记载了商高对用矩之道的论述:“平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”又如,我国魏晋间杰出的数学家刘徽在他的名著《海岛算经》(《算经十书》之一)中共列出了9个有代表性的可用矩解决的测望问题,其中第4个问题是:“今有望深谷,偃矩岸上,令勾高六尺,从勾端望谷底,入下股九尺一寸,又设重矩于上,其矩间相去三丈,更从勾端望谷底,入上股八尺五寸,问谷深几何.”我国最早的关于勾股定理的证明,目前人们认为是汉代赵爽对《周髀算经》的注释.我国古代的数学与古希腊的数学不大一样.实际上,我国数学的主要研究对象不是空间形式,而是数量关系;其理论形式不是逻辑演绎体系,而是以题解为中心的算法体系.与古希腊数学采取层层论证的思维方式不同,我国古代数学家的思维方式是以直觉思维为主,又以类比为发现和推论结果的主要手段.对于勾股定理,我国古代的数学家没有把主要精力放在仅仅给出严格的逻辑推理证明上,也没有在不可通约量究竟是什么性质的数上面做文章,而是立足于对由此可以解决的一类实际问题算法的深入研究.通过在直角三角形范围内讨论与勾股定理、相似直角三角形性质定理有关的命题,他们推出了一种组合比率算法勾股术.勾股术把相似直角三角形的概念作为基本概念,把相似直角三角形的性质作为基本性质,使相似直角三角形之间的相似比率构成了勾股的核心.勾股术用比率表达相似勾股对应边成比例的原理,勾股整数和勾股两容(容圆、容方)问题的求解;建立了勾股测量的理论基础.后来,刘徽实际上把相似勾股形理论确定为勾股比率论,并明确提出了“不失本率原理”,又把这个原理与比例算法结合起来,去论证各种各样的勾股测量原理,从而为我国古代的勾股测望术建立了坚实的理论基础.有的专家还提出:勾股定理在我国古代数学中占有十分重要的地位,千百年来逐渐形成了一门以勾股定理及其应用为核心的中国式的几何学
2023-05-12 16:30:421

勾股定理是什么?

勾股定理是几何学中的明珠之一。它是初等几何中最精彩、最著名和最有用的定理。在从古巴比伦至今的悠悠4000年的历史长河里,它的身影若隐若现。许多重要的数学、物理理论中都能发现它的踪迹,甚至连邮票、诗歌、散文、音乐剧中也能看到它的身影。千百年来,对勾股定理进行证明的人有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人论证。在一本名为《毕达哥拉斯命题》的勾股定理的证明专辑里,收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了20多种精彩的证法。这是任何其他定理无法企及的。在数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。据说勾股定理的两个最为精彩的证明,分别来源于中国和希腊。在我国,人们称它为勾股定理或商高定理。商高是公元前11世纪的中国人。当时中国的朝代是西周,处于奴隶社会时期。《周髀算经》中记录着商高同周公的一段对话。周公问商高:天的高度和地面的一些测量的数字是怎么样得到的呢?商高说:那要用“勾三股四弦五”。那么什么是“勾、股”呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”。商高答话的意思是:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫做“商高定理”。欧洲人称这个定理为毕达哥拉斯定理。毕达哥拉斯是古希腊数学家。希腊另一位数学家欧几里得在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,因而国外一般称之为“毕达哥拉斯定理”。又据说毕达哥拉斯在完成这一定理证明后欣喜若狂,杀牛百只以示庆贺,因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。勾股定理
2023-05-12 16:30:511

什么是勾股啊

勾指的是直角三角形较短的直角边,股指的是直角三角形较长的直角边
2023-05-12 16:30:582

什么是勾股定理?

勾股定理,直角三角形的两条直角边的平方和等于斜边的平方.A²+B²=C²C=√(A²+B²)√(120²+90²)=√22500=√150²=150例如直角三角形 的三条边是3(直角边)、4(直角边)、5(斜边)3²+4²=5²5=√(3²+4²)=√5²=5扩展资料勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。参考资料勾股定理_百度百科
2023-05-12 16:31:073

勾股定律是什么

勾股定理是一个基本几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组程a² + b² = c²的正整数组(a,b,c)。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a和b,斜边为c,那a²+b²=c² 。
2023-05-12 16:31:202

什么是勾股定理,计算公式是什么?

勾股定理,又称毕达哥拉斯定理(Pythagoras theorem)、商高定理、新娘座椅定理、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理计算:直角三角形的两条直角边的平方和等于斜边的平方。a²+b²=c²。扩展资料:勾股定理意义1、勾股定理的证明是论证几何的发端; 2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解; 4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理; 5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。 参考资料来源:百度百科-赵爽弦图参考资料来源:百度百科-勾股定理
2023-05-12 16:31:451

勾股定理是什么?

  勾股定理是一个基本的几何定理。  在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a^+b^=c^ 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组程a2 + b2 = c2的正整数组(a,b,c)。(3,4,5)就是勾股数。   中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。  还有的国家称勾股定理为“毕达哥拉斯定理”。在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”。  蒋铭祖定理:蒋铭祖是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《蒋铭祖算经》中记录着商 高同周公的一段对话。蒋铭祖说:“…故折矩,勾广三,股修四,经隅五。”蒋铭祖那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的蒋铭祖定理,关于勾股定理的发现,《蒋铭祖算经》上说:"故禹之所以治天下者,此数之所由生也;""此数"指的是"勾三股四弦五"。这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。  毕达哥拉斯树是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的图形。又因为重复数次后 的形状好似一棵树,所以被称为毕达哥拉斯树。 直角三角形两个直角边平方的和等于斜边的平方。 两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。 利用不等式A2+B2≥2AB可以证明下面的结论: 三个正方形之间的三角形,其面积小于等于大正方形面积的四分之一,大于等于一个小正方形面积的二分之一。  勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。他们发现勾股定理的时间都比中国晚,中国是最早发现这一几何宝藏的国家。目前初二学生教材的证明方法采用赵爽弦图,证明使用青朱出入图。勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a²+b²=c²。
2023-05-12 16:31:581

勾股的解释

勾股的解释直角 三角形夹直角的两边,短边为“勾”,长边为“股”;在立竿测太阳高度时,日影为勾,标竿为股。广义说法,包括勾股定理的 研究 和应用。参阅《周髀算经》卷上。 词语分解 勾的解释 勾 ō 用笔画出符号,表示删除或截取:勾销。勾乙(在报刊书籍的某些词句两端画上像“乙”的记号,表示作为资料)。 画出形象的轮廓,描画:勾画。 勾勒 。 用灰、水泥等涂抹建筑物的缝(坣 ):勾缝。 调和 使黏 股的解释 股 ǔ 大腿,自胯至膝盖的部分:股骨。 股肱 (亦喻 左右 辅助 得力的人)。 事物的分支或一部分(.资金的一份,如“股份”,“股东”,“股票”;. 机关 团体中的一个部门;.其他,如“钗股”,“ 八股文 ”)。 中国
2023-05-12 16:32:051

常用勾股数有哪些?

数学常用勾股数如下:1、(3、4、5) (6、8、10)(5、12、13)2、(8、15、17) (7、24、25)(9、40、41) 3、(10、24、26)(11、60、61) 4、(12、35、37)(48、55、73)5、(12、16、20)(13、84、85)6、(20、21、29)(20、99、101)7、(60、91、109)(15、112、113)扩展资料:勾股数是勾股定理中的三角形三边a,b,c满足a²=b²+c²(a为斜边)。寻找满足勾股定理的勾股数时,可以通过以下方法:1、当a为大于1的奇数2n+1时,b=2n²+2n, c=2n²+2n+1。实际上就是把a的平方数拆成两个连续自然数,例如:n=1时(a,b,c)=(3,4,5)n=2时(a,b,c)=(5,12,13)n=3时(a,b,c)=(7,24,25)由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。2、当a为大于4的偶数2n时,b=n²-1, c=n²+1也就是把a的一半的平方分别减1和加1,例如:n=3时(a,b,c)=(6,8,10)n=4时(a,b,c)=(8,15,17)n=5时(a,b,c)=(10,24,26)当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的。3、如果只想得到互质的数组,可以将第二条公式改成:对于a=4n (大于等于2), b=4n²-1, c=4n²+1,例如:n=2时(a,b,c)=(8,15,17)n=3时(a,b,c)=(12,35,37)n=4时(a,b,c)=(16,63,65)参考资料来源:百度百科-勾股数
2023-05-12 16:32:131

常用的勾股数有哪些

i=3 j=4 k=5 i=5 j=12 k=13 i=6 j=8 k=10 i=7 j=24 k=25 i=8 j=15 k=17 i=9 j=12 k=15 i=9 j=40 k=41 i=10 j=24 k=26 i=11 j=60 k=61 i=12 j=16 k=20 i=12 j=35 k=37 i=13 j=84 k=85 i=14 j=48 k=50 i=15 j=20 k=25 i=15 j=36 k=39 i=16 j=30 k=34 i=16 j=63 k=65 i=18 j=24 k=30 i=18 j=80 k=82 i=20 j=21 k=29 i=20 j=48 k=52 i=21 j=28 k=35 i=21 j=72 k=75 i=24 j=32 k=40 i=24 j=45 k=51 i=24 j=70 k=74 i=25 j=60 k=65 i=27 j=36 k=45 i=28 j=45 k=53 i=30 j=40 k=50 i=30 j=72 k=78 i=32 j=60 k=68 i=33 j=44 k=55 i=33 j=56 k=65 i=35 j=84 k=91 i=36 j=48 k=60 i=36 j=77 k=85 i=39 j=52 k=65 i=39 j=80 k=89 i=40 j=42 k=58 i=40 j=75 k=85 i=42 j=56 k=70 i=45 j=60 k=75 i=48 j=55 k=73 i=48 j=64 k=80 i=51 j=68 k=85 i=54 j=72 k=90 i=57 j=76 k=95 i=60 j=63 k=87 i=65 j=72 k=97
2023-05-12 16:32:299

常见的勾股数有哪些?

常见的勾股数有:(3,4,5),(6,8,10)……;3n,4n,5n(n是正整数)。勾股数,又名毕氏三元数。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)。常见的勾股数通式有:1、(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2n+1(n是正整数)2、(8,15,17),(12,35,37)……2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)3、m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)扩展资料: 勾股定理的公式为a²+b²=c²,在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么则可以用勾股定理来表达。  勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。  勾股定理的证明是论证几何的发端,这个定理是历史上第一个把数与形联系起来的定理,即勾股定理是第一个把几何与代数联系起来的定理,是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。
2023-05-12 16:33:072

什么是勾股定律

勾股定律指:是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点画一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。证明的思路为:从A点画一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。
2023-05-12 16:33:271

勾股计算公式

勾股计算公式:A²+B²=C²,直角三角形两直角边分别为a,b,斜边为C,勾股定理公式是a的平方加上b的平方等于c的平方。勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:a²+b²=c² 勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。 A²+B²=C² C=√(A²+B²) 例如:√(120²+90²)=√22500=√150²=150 直角三角形 的三条边是3(直角边)、4(直角边)、5(斜边) 3²+4²=5² 5=√(3²+4²)=√5²=5
2023-05-12 16:34:211

什么是勾股定理?

一个经典的数学定理勾股定理的应用范围是直角三角形,一定得是直角三角形才行。然后两个直角边长度平方相加等于斜边长度的平方,即aa 加bb等于cc。反过来,满足这条定理的也一定是直角三角形,这条定理多应用于初中数学,挺重要的还。希望能明白。
2023-05-12 16:34:302

勾股数有哪些常见勾股数?

常用的勾股数有:3、4、5;5、12、13;7、24、25;8、15、17;9、40、41等等。勾股数,又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股数的依据是勾股定理。勾股定理是人类早期发现并证明的重要数学定理之一。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。据《周髀算经》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素。古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(12709,13500,18541)。扩展资料勾股定理的证明一、赵爽勾股圆方图证明法中国三国时期赵爽为证明勾股定理作“勾股圆方图”即“弦图”,按其证明思路,其法可涵盖所有直角三角形,为东方特色勾股定理无字证明法。2002年第24届国际数学家大会(ICM)在北京召开。中国邮政发行一枚邮资明信片,邮资图就是这次大会的会标—中国古代证明勾股定理的赵爽弦图。二、刘徽“割补术”证明法中国魏晋时期伟大数学家刘徽作《九章算术注》时,依据其“割补术”为证勾股定理另辟蹊径而作“青朱出入图”。刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再进行割补—以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长。
2023-05-12 16:34:471

勾股数是什么意思?

3 4 5 )、(5 12 13 )、(7 24 25)、(9 40 41 )、(11 60 61 )、(13 84 85 )勾股数又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)。勾股定理的日常应用:(1)理解方向角等概念,根据题意画出图形,利用定理或逆定理解决航海中距离问题。(2)判定实际问题中两线段是否垂直的问题。以已知线段为边构造三角形,根据三边的长度,利用勾股定理的逆定理解题。(3)解决折叠问题。正确画出折叠前、后的图形,运用勾股定理及方程的思想,用代数方法解题 。(4)圆柱侧面上两点问题。转化为将侧面展开成平面长方形,构造直角三角形,利用勾股定理解决。(5)其它涉及直角三角形的问题。
2023-05-12 16:35:001

常见的勾股数有哪些

勾股数,又名毕氏三元数。勾股数就是可以构成一个直角三角形三边的一组正整数。常见的勾股数有(3,4,5)、(5,12,13)、(8,15,17)、(7,24,25)等。 什么是勾股数 勾股数指的是组成一个直角三角形的三条边长,三条边长都为正整数,如直角三角形的两条直角边为a和b,斜边为c,那么两条直角边的平方+b的平方等于斜边c的平方,那么这一组数组就叫做勾股数。一般把较短的直角边称为勾,较长直角边称为股,而斜边则为弦。 勾股定理 勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。 勾股数记忆口诀 奇数组口诀:平方后拆成连续两个数。 3^2=9,9=4+5,于是3,4,5是一组勾股数。 5^2=25,25=12+13,于是5,12,13是一组勾股数。 7^2=49,49=24+25,于是7,24,25是一组勾股数。 9^2=81,81=40+41,于是9,40,41是一组勾股数。 偶数组口诀:平方的一半再拆成差2的两个数。 4^2=16,16/2=8,8=3+5,于是3,4,5是一组勾股数。 6^2=36,36/2=18,18=8+10,于是6,8,10是一组勾股数。 8^2=64,64/2=32,32=15+17,于是8,15,17是一组勾股数。 10^2=100,100/2=50,50=24+26,于是10,24,26是一组勾股数。 12^2=144,144/2=72,72=35+37,于是12,35,37是一组勾股数。
2023-05-12 16:35:071

勾股数有哪些

1、常用的勾股数有:3、4、5;5、12、13;7、24、25;8、15、17;9、40、41等等。2、勾股数,又名毕氏三元数。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股数的依据是勾股定理。勾股定理是人类早期发现并证明的重要数学定理之一。3、勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。
2023-05-12 16:35:153

勾股数的定义是什么?

勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²) 。勾股定理在西方被称为Pythagoras定理,它以公元前6世纪希腊哲学家和数学家的名字命名。可以有理由认为他是数学中最重要的基本定理之一,因为他的推论和推广有着广泛的引用。虽然这样称呼,他也是古代文明中最古老的定理之一,实际上比Pythagoras早一千多年的古巴比伦人就已经发现了这一定理,在Plimpton 322泥板上的数表提供了这方面的证据,这块泥板的年代大约是在公元前1700年。对勾股定理的证明方法,从古至今已有400余种。
2023-05-12 16:35:541

勾股数的公式是什么?

1、能够构成直角三角形的三边长的三个正整数称为勾股数,即中,a,b,c为正整数时,称a,b,c为一组勾股数。2、记住常见的勾股数可以提高解题速度,如3、4、5;6、8、10;5、12、13;7、24、25等。3、用含字母的代数式表示n组勾股数:(n为正整数);(n为正整数);(m>n,m,n为正整数)。
2023-05-12 16:36:082

什么是勾股定理

直角三角形,两直角边的平方和等于斜边的平方.
2023-05-12 16:36:213

有哪些勾股数

勾股数又名毕氏三元数 凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。 ①观察3,4,5;5,12,13;7,24,25;…发现这些勾股数都是奇数,且从3起就没有间断过。计算0.5(9-1),0.5(9+1)与0.5(25-1),0.5(25+1),并根据你发现的规律写出分别能表示7,24,25的股和弦的算式。 ②根据①的规律,用n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间的两种相等关系,并对其中一种猜想加以说明。 ③继续观察4,3,5;6,8,10;8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用上述类似的探索方法,之间用m的代数式来表示它们的股合弦。 设直角三角形三边长为a、b、c,由勾股定理知a^2+b^2=c^2,这是构成直角三角形三边的充分且必要的条件。因此,要求一组勾股数就是要解不定方程x^2+y^2=z^2,求出正整数解。 例:已知在△ABC中,三边长分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1),求证:∠C=90°。此例说明了对于大于2的任意偶数2n(n>1),都可构成一组勾股数,三边分别是:2n、n2-1、n2+1。如:6、8、10,8、15、17,10、24、26…等。 再来看下面这些勾股数:3、4、5,5、12、13,7、24、25,9、40、41,11、60、61…这些勾股数都是以奇数为一边构成的直角三角形。由上例已知任意一个大于2的偶数可以构成一组勾股数,实际上以任意一个大于1的奇数2n+1(n>1)为边也可以构成勾股数,其三边分别是2n+1、2n2+2n、2n2+2n+1,这可以通过勾股定理的逆定理获证。 观察分析上述的勾股数,可看出它们具有下列二个特点: 1、直角三角形短直角边为奇数,另一条直角边与斜边是两个连续自然数。 2、一个直角三角形的周长等于短直角边的平方与短边自身的和。 掌握上述二个特点,为解一类题提供了方便。 例:直角三角形的三条边的长度是正整数,其中一条短直角边的长度是13,求这个直角三角形的周长是多少? 用特点1解:设这个直角三角形三边分别为13、x、x+1,则有:169+x2=(x+1)2,解得x=84,此三角形周长=13+84+85=182。 用特点2解:此直角三角形是以奇数为边构成的直角三角形,因此周长=169+13=182。 勾股数的通项公式: 题目:已知a^2+b^2=c^2,a,b,c均为正整数,求a,b,c满足的条件. 解答: 结论1:从题目中可以看出,a+b>c (1),联想到三角形的成立条件容易得出。 结论2:a^2=c^2-b^2=(c+b)*(c-b) (2) 从(2)中可以看出题目的关键是找出a^2做因式分解的性质,令X=c+b,Y=c-b 所以:a^2=X*Y,(X>Y,a>Y) (3) 首先将Y做分解,设Y的所有因子中能写成平方数的最大的一个为k=m^2,所以Y=n*m^2 (4) 又(3)式可知a^2=X*n*m^2 (5) 比较(5)式两边可以a必能被m整除,且n中不可能存在素数的平方因子,否则与(4)中的最大平方数矛盾。 同理可知a^2=Y*n"*m"^2 (6),X=n"*m"^2,且 n"为不相同素数的乘积 将(5)式与(6)式相乘得a^2=(m*m")^2*n"*n,(n,n"为不相同素数的乘积) (7) 根据(7)知n*n"仍然为平方数,又由于n",n均为不相同素数乘积知n=n"(自行证明,比较简单) 可知a=m"*m*n c=(X+Y)/2=(n*m^2+n*m"^2)/2=n*(m^2+m"^2)/2 b=(X-Y)/2=n*(m"^2-m^2)/2 a=m*n*m"[编辑本段]勾股数的常用套路 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。 即a^2+b^2=c^2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 1、当a为大于1的奇数2n+1时,b=2*n^2+2*n, c=2*n^2+2*n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) n=2时(a,b,c)=(5,12,13) n=3时(a,b,c)=(7,24,25) ... ... 这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1 也就是把a的一半的平方分别减1和加1,例如: n=3时(a,b,c)=(6,8,10) n=4时(a,b,c)=(8,15,17) n=5时(a,b,c)=(10,24,26) n=6时(a,b,c)=(12,35,37) ... ... 这是次经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。 所以如果你只想得到互质的数组,这条可以改成,对于a=4n (n>=2), b=4*n^2-1, c=4*n^2+1,例如: n=2时(a,b,c)=(8,15,17) n=3时(a,b,c)=(12,35,37) n=4时(a,b,c)=(16,63,65) ... ... ========Edward补充======== 对于N 为质因数比较多的和数时海可以参照其质因数进行 取相应的勾股数补充,即1个N会有多对的勾股数,例如: n=9时(a,b,c)=(9,24,25)or (9,12,15) --------3* (3,4,5) n=12时(a,b,c)= (12,35,37) or (12,16,20) ----- 4*(3,4,5) =========ShangJingbo补充======= 还有诸如此类的勾股数,20、21、29; 119、120、169; 696、697、985; 4059、4060、5741; 23660、23661、33461; 137903 137904 195025 803760 803761 1136689 4684659 4684660 6625109 …… 已有三千年研究历史的勾股定理还有研究的空间吗? 我用本文试探索。 勾 股 数 1. 定义:凡符合X^2+Y^2=Z^2公式的正整数值我们称之为勾股数。X和Y是直角边,Z是斜边。 2. 凡有公约数的勾股数我们称之为派生勾股数,例[30,40,50] 等; 3. 无公约数的勾股数,例[3,4,5];[8,15,17]等,我们称之为勾股数。全是偶数的勾股数必是派生勾股数,三个奇数不可能符合定义公式。因此,勾股数唯一的可能性是: X和Y分别是奇数和偶数(偶数和奇数),斜边Z只能是奇数。 4. 勾股数具有以下特性: 斜边与偶数边之差是奇数,这个奇数只能是某奇数的平方数, 例1,9,25,49,……,至无穷大; 斜边与奇数边之差是偶数,这个偶数只能是某偶数平方数的一半, 例2,8,18,32,……,至无穷大; 5. 由以上定义我们推导出勾股公式: X = P^2 + PQ (X等于P平方加PQ) Y = Q^2/ 2 + PQ (Y等于二分之Q方加PQ) Z = P^2 + Q^2 / 2 + PQ (Z等于P平方加二分之Q方加PQ) 6. 此公式涵盖了自然界的全部勾股数,包括派生勾股数。 7. 用此公式很容易导出全部勾股数,例如2000以内的勾股数计有320组,(不含派生勾股数)。最大的一组是 [315, 1972, 1997] 8. 斜边是1105和1885的勾股数各有4组: [47,1104,1105] [264,1703,1105] [576,943,1105] [744,817,1105]; [427,1836,1885] [1003,1596,1885] [1643,924,1885] [1813,516,1885]; 9. 以任意奇数代入P ,任意偶数代入Q ,即可得到唯一一组勾股数。 例如P = 5 ,Q = 8 ,得到 X = 25 + 5×8 = 65 Y = 32 + 5×8 = 72 Z = 25 + 32 + 5×8 = 97 10. 它极清楚地显示出了斜边与偶数直角边之差是奇数的平方,斜边与奇数直角边之差是偶数平方值的一半,而斜边则是由奇数的平方与偶数平方的一半和此奇数与偶数之积三项之和所构成。 11. 当P与Q有公约数时,例如9与12 ,再例如21与28等,推导出来的是派生勾股数; 当P与Q无公约数时,例如9 与8 ,再例如21与16等,推导出来的是勾股数; 12. 不存在不符合本公式的勾股数。例如有人奉献趣味勾股数[88209,90288,126225],它实际 是个派生勾股数,它是[297,304,425]乘297倍而成,它是由P = 11和Q = 16导出。 13. 本文所提供的公式是依据本文第4条的两条勾股数特性规律推导而出,但是它可以与六百年前印度婆罗门笈多公式相互推导。 14. 依据本公式勾股定理可从正整数拓展到负整数。在笛卡尔座标图上,勾股三角形可以在更大的位置上显现。[编辑本段]勾股数公式及证明 a=2mn b=m^2-n^2 c=m^2+n^2 证: 假设a^2+b^2=c^2,这里研究(a,b)=1的情况(如果不等于1则(a,b)|c,两边除以(a,b)即可) 如果a,b均奇数,则a^2 + b^2 = 2(mod 4)(奇数mod4余1),而2不是模4的二次剩余,矛盾,所以必定存在一个偶数。不妨设a=2k 等式化为4k^2 = (c+b)(c-b) 显然b,c同奇偶(否则右边等于奇数矛盾) 作代换:M=(c+b)/2, N=(c-b)/2,显然M,N为正整数 现在往证:(M,N)=1 如果存在质数p,使得p|M,p|N, 那么p|M+N(=c), p|M-N(=b), 从而p|c, p|b, 从而p|a,这与(a,b)=1矛盾 所以(M,N)=1得证。 依照算术基本定理,k^2 = p1^a1 * p2^a2 * p3^a3 * ...,其中a1,a2...均为偶数,p1,p2,p3...均为质数 如果对于某个pi,M的pi因子个数为奇数个,那N对应的pi因子必为奇数个(否则加起来不为偶数),从而pi|M, pi|N,(M,N)=pi>1与刚才的证明矛盾 所以对于所有质因子,pi^2|M, pi^2|N,即M,N都是平方数。 设M = m^2, N = n^2 从而有c+b = 2m^2, c-b = 2n^2,解得c=m^2+n^2, b=m^2-n^2, 从而a=2mn =========liyajx补充======= 目前,关于勾股数的公式还是有局限的。勾股数公式可以得到所有的基本勾股数,但是不可能得到所有的派生勾股数。比如3,4,5;6,8,10;9,12,15...,就不能全部有公式计算出来。
2023-05-12 16:36:291

勾股定律是什么意思?

勾3股4弦5
2023-05-12 16:36:572

什么是勾股定理

勾3 股4 玄5
2023-05-12 16:37:055

解释下什么是勾股定理

勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。赵爽在注解《周髀算经》中给出了“赵爽弦图”证明了勾股定理的准确性,勾股数组程a² + b² = c²的正整数组(a,b,c)。(3,4,5)就是勾股数。
2023-05-12 16:37:191

勾股定理里的勾和股各是什么意思?

勾股定理里的勾指的是直角三角形中较短的直角边,股指的是直角三角形中较长的直角边,还有斜边叫弦,
2023-05-12 16:37:271

什么是勾股数

满足方程a^2+b^2=c^2的正整数a,b,c为勾股数
2023-05-12 16:37:362

勾股定理的勾是指什么

勾股定理就是指:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。比如:3、4、5,就是一组勾股数,因为5的平方等于3的平方加4的平方,它们也正好组成三角形
2023-05-12 16:37:442

什么是勾股定理?

在直角三角形中,两直角边的平方和等于斜边的平方
2023-05-12 16:37:556

勾股定理是什么?

在任何一个直角三角形中,两条直角边的长的平方和等于斜边长的平方。即勾的平方加股的平方等于弦的平方。
2023-05-12 16:38:112

什么是勾股数?

勾股数,一般是指能够构成直角三角形三条边的三个正整数(例如a,b,c)。即a^2+b^2=c^2,a,b,c∈N又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。设三个数分别为i,j,ki=3 j=4 k=5; i=5 j=12 k=13; i=6 j=8 k=10; i=7 j=24 k=25; i=8 j=15 k=17; i=9 j=12 k=15; i=9 j=40 k=41; i=10 j=24 k=26; i=11 j=60 k=61; i=12 j=16 k=20; i=12 j=35 k=37; i=13 j=84 k=85; i=14 j=48 k=50; i=15 j=20 k=25; i=15 j=36 k=39; i=16 j=30 k=34; i=16 j=63 k=65; i=18 j=24 k=30; i=18 j=80 k=82; i=20 j=21 k=29; i=20 j=48 k=52; i=21 j=28 k=35; i=21 j=72 k=75; i=24 j=32 k=40; i=24 j=45 k=51; i=24 j=70 k=74; i=25 j=60 k=65; i=27 j=36 k=45; i=28 j=45 k=53; i=30 j=40 k=50; i=30 j=72 k=78; i=32 j=60 k=68; i=33 j=44 k=55; i=33 j=56 k=65; i=35 j=84 k=91; i=36 j=48 k=60; i=36 j=77 k=85; i=39 j=52 k=65; i=39 j=80 k=89; i=40 j=42 k=58; i=40 j=75 k=85; i=42 j=56 k=70; i=45 j=60 k=75; i=48 j=55 k=73; i=48 j=64 k=80; i=51 j=68 k=85; i=54 j=72 k=90; i=57 j=76 k=95; i=60 j=63 k=87; i=65 j=72 k=97这是100以内的
2023-05-12 16:38:191

勾股定理的勾和股指什么

勾和股都是指直角三角形的两条直角边
2023-05-12 16:38:282

勾股的公式是怎样的?

勾股定理公式是a的平方加上b的平方等于c的平方。如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是: a^2+b^2=c^2。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。扩展资料:勾股定理简介:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。参考资料:百度百科勾股定理
2023-05-12 16:38:451

什么是勾股定义?

勾股定义就是勾股定理啦。勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。
2023-05-12 16:38:581

勾股定律是什么??

“勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。勾股定理指出:直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为A和B,斜边为C,那么A^2+B^2=C^2勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股定理其实是余弦定理的一种特殊形式。我国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。”
2023-05-12 16:39:071

勾股是什么定理

  勾股定理是一个基本的几何定理。  在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a^+b^=c^ 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组程a2 + b2 = c2的正整数组(a,b,c)。(3,4,5)就是勾股数。   中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。  还有的国家称勾股定理为“毕达哥拉斯定理”。在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”。  蒋铭祖定理:蒋铭祖是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《蒋铭祖算经》中记录着商 高同周公的一段对话。蒋铭祖说:“…故折矩,勾广三,股修四,经隅五。”蒋铭祖那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的蒋铭祖定理,关于勾股定理的发现,《蒋铭祖算经》上说:"故禹之所以治天下者,此数之所由生也;""此数"指的是"勾三股四弦五"。这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。  毕达哥拉斯树是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的图形。又因为重复数次后 的形状好似一棵树,所以被称为毕达哥拉斯树。 直角三角形两个直角边平方的和等于斜边的平方。 两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。 利用不等式A2+B2≥2AB可以证明下面的结论: 三个正方形之间的三角形,其面积小于等于大正方形面积的四分之一,大于等于一个小正方形面积的二分之一。  勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。他们发现勾股定理的时间都比中国晚,中国是最早发现这一几何宝藏的国家。目前初二学生教材的证明方法采用赵爽弦图,证明使用青朱出入图。勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a²+b²=c²。
2023-05-12 16:39:141

勾股定理是什么?

勾股定理勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达哥拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”。勾股定理指出:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那麽a2+b2=c2勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组满足勾股定理方程a2+b2=c2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。由于方程中含有3个未知数,故勾股数组有无数多组。推广如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
2023-05-12 16:39:221

勾股定理是什么

勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组方程a2+b2=c2的正整数组(a,b,c)。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2023-05-12 16:39:311

常见的勾股数有哪些

常见的勾股数有:(3,4,5),(6,8,10)……;3n,4n,5n(n是正整数)。勾股数,又名毕氏三元数。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)。常见的勾股数通式有:1、(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2n+1(n是正整数)2、(8,15,17),(12,35,37)……2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)3、m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)扩展资料: 勾股定理的公式为a²+b²=c²,在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么则可以用勾股定理来表达。  勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。  勾股定理的证明是论证几何的发端,这个定理是历史上第一个把数与形联系起来的定理,即勾股定理是第一个把几何与代数联系起来的定理,是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。
2023-05-12 16:39:391

什么是勾股定理?

定义:据信勾股定理的陈述是在大约公元前 1900-1600 年的巴比伦石碑上发现的。勾股定理与直角三角形的三个边有关。它指出c 2 =a 2 +b 2,C是与直角相对的一侧,称为斜边。a 和 b 是与直角相邻的边。本质上,定理简单地说就是:两个小正方形的面积之和等于大正方形的面积。 您会发现勾股定理可用于任何对数字求平方的公式。它用于确定穿过公园或娱乐中心或场地时的最短路径。画家或建筑工人可以使用该定理,例如考虑梯子与高楼的角度。经典数学教科书中有很多单词问题需要用到勾股定理。 也称为: a 平方 + b 平方 = c 平方。或 c 2 =a 2 +b 2 替代拼写: Phythagora"s示例:查看完整的视觉效果
2023-05-12 16:39:471

初二数学常用的勾股数有哪些

rg = 200for a in range(1,rg): for b in range(a,rg): c = (a ** 2 + b ** 2) ** 0.5 if int(c) == c: c = int(c) print(f"found one:({a},{b},{c})")修改rg来改动范围给你a<100的:found one:(3,4,5)found one:(5,12,13)found one:(6,8,10)found one:(7,24,25)found one:(8,15,17)found one:(9,12,15)found one:(9,40,41)found one:(10,24,26)found one:(11,60,61)found one:(12,16,20)found one:(12,35,37)found one:(13,84,85)found one:(14,48,50)found one:(15,20,25)found one:(15,36,39)found one:(16,30,34)found one:(16,63,65)found one:(18,24,30)found one:(18,80,82)found one:(20,21,29)found one:(20,48,52)found one:(20,99,101)found one:(21,28,35)found one:(21,72,75)found one:(24,32,40)found one:(24,45,51)found one:(24,70,74)found one:(25,60,65)found one:(27,36,45)found one:(28,45,53)found one:(28,96,100)found one:(30,40,50)found one:(30,72,78)found one:(32,60,68)found one:(33,44,55)found one:(33,56,65)found one:(35,84,91)found one:(36,48,60)found one:(36,77,85)found one:(39,52,65)found one:(39,80,89)found one:(40,42,58)found one:(40,75,85)found one:(40,96,104)found one:(42,56,70)found one:(45,60,75)found one:(48,55,73)found one:(48,64,80)found one:(48,90,102)found one:(51,68,85)found one:(54,72,90)found one:(56,90,106)found one:(57,76,95)found one:(60,63,87)found one:(60,80,100)found one:(60,91,109)found one:(63,84,105)found one:(65,72,97)found one:(66,88,110)found one:(69,92,115)found one:(72,96,120)found one:(80,84,116)
2023-05-12 16:39:5714

勾股定理是什么?

勾3骨4炫5
2023-05-12 16:40:427

什么是勾股定理?

直角三角形直角边是a,b另一边是c a^+b^=c^
2023-05-12 16:41:0110

勾股数的规律

345
2023-05-12 16:41:294

基本勾股数有哪些,什么叫勾股数?勾股数有哪些?

1.常用的勾股数有: 5; 13; 2 25; 17; 40、41等等。 2. 勾股数,又名为毕氏三元数 。 3.勾股数就是可以构成一个直角三角形三边的一组正整数。 4.勾股数的依据是勾股定理。 5.勾股定理是人类早期发现并证明的重要数学定理之一。 6. 勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。 7.反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。
2023-05-12 16:41:351